1
|
Caetano D, Junior LA, Carneiro J, Ducatti DRB, Gonçalves AG, Noseda MD, Duarte MER. Semisynthesis of new sulfated heterorhamnan derivatives obtained from green seaweed Gayralia brasiliensis and evaluation of their anticoagulant activity. Int J Biol Macromol 2024; 267:131506. [PMID: 38604422 DOI: 10.1016/j.ijbiomac.2024.131506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Marine green algae produce sulfated polysaccharides with diverse structures and a wide range of biological activities. This study aimed to enhance the biotechnological potential of sulfated heterorhamnan (Gb1) from Gayralia brasiliensis by chemically modifying it for improved or new biological functions. Using controlled Smith Degradation (GBS) and O-alkylation with 3-chloropropylamine, we synthesized partially water-soluble amine derivatives. GBS modification increase sulfate groups (29.3 to 37.5 %) and α-l-rhamnose units (69.9 to 81.2 mol%), reducing xylose and glucose, compared to Gb1. The backbone featured predominantly 3- and 2-linked α-l-rhamnosyl and 2,3- linked α-l-rhamnosyl units as branching points. Infrared and NMR analyses confirmed the substitution of hydroxyl groups with aminoalkyl groups. The modified compounds, GBS-AHCs and GBS-AHK, exhibited altered anticoagulant properties. GBS-AHCs showed reduced effectiveness in the APTT assay, while GBS-AHK maintained a similar anticoagulant activity level to Gb1 and GBS. Increased nitrogen content and N-alkylation in GBS-AHCs compared to GBS-AHK may explain their structural differences. The chemical modification proposed did not enhance its anticoagulant activity, possibly due to the introduction of amino groups and a positive charge to the polymer. This characteristic presents new opportunities for investigating the potential of these polysaccharides in various biological applications, such as antimicrobial and antitumoral activities.
Collapse
Affiliation(s)
- Danielly Caetano
- Pós-graduação em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
| | - Lauri Alves Junior
- Pós-graduação em Ciências - Bioquímica, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
| | - Jaqueline Carneiro
- Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
| | - Diogo R B Ducatti
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
| | | | - Miguel D Noseda
- Pós-graduação em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil; Pós-graduação em Ciências - Bioquímica, Universidade Federal do Paraná, Curitiba, Paraná, Brazil; Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
| | - Maria Eugênia R Duarte
- Pós-graduação em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil; Pós-graduação em Ciências - Bioquímica, Universidade Federal do Paraná, Curitiba, Paraná, Brazil; Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
2
|
Castro RH, Burgos I, Corredor LM, Llanos S, Franco CA, Cortés FB, Romero Bohórquez AR. Carboxymethyl Scleroglucan Synthesized via O-Alkylation Reaction with Different Degrees of Substitution: Rheology and Thermal Stability. Polymers (Basel) 2024; 16:207. [PMID: 38257006 PMCID: PMC10821296 DOI: 10.3390/polym16020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 01/24/2024] Open
Abstract
This paper presents the methodology for synthesizing and characterizing two carboxymethyl EOR-grade Scleroglucans (CMS-A and CMS-B). An O-Alkylation reaction was used to insert a hydrophilic group (monochloroacetic acid-MCAA) into the biopolymer's anhydroglucose subunits (AGUs). The effect of the degree of the carboxymethyl substitution on the rheology and thermal stability of the Scleroglucan (SG) was also evaluated. Simultaneous thermal analysis (STA/TGA-DSC), differential scanning calorimetry (DSC), X-ray Diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Scanning Electron Microscopy, and Energy Dispersive Spectroscopy (SEM/EDS) were employed to characterize both CMS products. FTIR analysis revealed characteristic peaks corresponding to the carboxymethyl functional groups, confirming the modification. Also, SEM analysis provided insights into the structural changes in the polysaccharide after the O-Alkylation reaction. TGA results showed that the carboxymethylation of SG lowered its dehydroxylation temperature but increased its thermal stability above 300 °C. The CMS products and SG exhibited a pseudoplastic behavior; however, lower shear viscosities and relaxation times were observed for the CMS products due to the breakage of the SG triple helix for the chemical modification. Despite the viscosity results, the modified Scleroglucans are promising candidates for developing new engineering materials for EOR processes.
Collapse
Affiliation(s)
- Rubén H. Castro
- Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellín 050034, Colombia; (C.A.F.); (F.B.C.)
| | - Isidro Burgos
- Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (I.B.); (S.L.); (A.R.R.B.)
| | - Laura M. Corredor
- Centro de Innovación y Tecnología—ICP, Ecopetrol S.A., Piedecuesta 681011, Colombia;
| | - Sebastián Llanos
- Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (I.B.); (S.L.); (A.R.R.B.)
| | - Camilo A. Franco
- Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellín 050034, Colombia; (C.A.F.); (F.B.C.)
| | - Farid B. Cortés
- Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellín 050034, Colombia; (C.A.F.); (F.B.C.)
| | - Arnold R. Romero Bohórquez
- Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (I.B.); (S.L.); (A.R.R.B.)
| |
Collapse
|
3
|
Shen X, Xie S, Zhang H, Wang T, Zhang B, Zhao H. Effects of Persimmon ( Diospyros kaki L. cv. Mopan) Polysaccharide and Their Carboxymethylated Derivatives on Lactobacillus Strains Proliferation and Gut Microbiota: A Comparative Study. Int J Mol Sci 2023; 24:15730. [PMID: 37958715 PMCID: PMC10648239 DOI: 10.3390/ijms242115730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Persimmon is a fruit that contains sugars, vitamins, phenolic compounds, and various other nutrients. The aim of this study was to explore the structure of carboxymethylated persimmon polysaccharide (CM-PFP) and its interaction with the human gut microbiota. Carboxymethyl modification of the persimmon polysaccharide (PFP) increased both the Mw and Mn, enhanced dispersion stability, and decreased thermal stability. Both PFP and CM-PFP promoted the proliferation of Lactobacillus while inhibiting the proliferation of Staphylococcus aureus and Escherichia coli. In the simulated fecal fermentation, the pH of PFP- and CM-PFP-containing media decreased, the content of short-chain fatty acids increased, and the abundance of intestinal flora at the phylum and genus levels changed. The relative abundance of harmful intestinal bacteria was significantly reduced in both PFP and CM-PFP groups. Furthermore, it was found that CM-PFP was more easily metabolized than PFP, glucose, and fructo-oligosaccharide (FOS) and had a proliferation increase effect on Lactobacillus. Therefore, CM-PFP has a significant positive effect on both Lactobacillus proliferation and the human gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongfei Zhao
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.S.); (S.X.); (H.Z.); (T.W.); (B.Z.)
| |
Collapse
|
4
|
Baghel M, Sakure K, Giri TK, Maiti S, Nakhate KT, Ojha S, Sharma C, Agrawal Y, Goyal S, Badwaik H. Carboxymethylated Gums and Derivatization: Strategies and Significance in Drug Delivery and Tissue Engineering. Pharmaceuticals (Basel) 2023; 16:ph16050776. [PMID: 37242559 DOI: 10.3390/ph16050776] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Natural polysaccharides have been widely exploited in drug delivery and tissue engineering research. They exhibit excellent biocompatibility and fewer adverse effects; however, it is challenging to assess their bioactivities to that of manufactured synthetics because of their intrinsic physicochemical characteristics. Studies showed that the carboxymethylation of polysaccharides considerably increases the aqueous solubility and bioactivities of inherent polysaccharides and offers structural diversity, but it also has some limitations that can be resolved by derivatization or the grafting of carboxymethylated gums. The swelling ratio, flocculation capacity, viscosity, partition coefficient, metal absorption properties, and thermosensitivity of natural polysaccharides have been improved as a result of these changes. In order to create better and functionally enhanced polysaccharides, researchers have modified the structures and properties of carboxymethylated gums. This review summarizes the various ways of modifying carboxymethylated gums, explores the impact that molecular modifications have on their physicochemical characteristics and bioactivities, and sheds light on various applications for the derivatives of carboxymethylated polysaccharides.
Collapse
Affiliation(s)
- Madhuri Baghel
- Department of Pharmaceutical Chemistry, Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Junwani, Bhilai 490020, Chhattisgarh, India
| | - Kalyani Sakure
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - Tapan Kumar Giri
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Yogeeta Agrawal
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sameer Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Hemant Badwaik
- Department of Pharmaceutical Chemistry, Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Junwani, Bhilai 490020, Chhattisgarh, India
| |
Collapse
|
5
|
Sustainable functionalization and modification of materials via multicomponent reactions in water. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2150-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Stiernet P, Debuigne A. Imine-Based Multicomponent Polymerization: Concepts, Structural Diversity and Applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Nichols BLB, Chen J, Mischnick P, Edgar KJ. Selective Oxidation of 2-Hydroxypropyl Ethers of Cellulose and Dextran: Simple and Efficient Introduction of Versatile Ketone Groups to Polysaccharides. Biomacromolecules 2020; 21:4835-4849. [PMID: 33236636 DOI: 10.1021/acs.biomac.0c01045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxidation of polysaccharides has been a useful approach to new materials. However, selectivity in oxidation of polysaccharide macromolecular polyols remains a significant challenge with few methods for the synthesis of ketone-substituted polysaccharides. We report here a selective, practical, and efficient process, beginning with 2-hydroxypropyl ethers of polysaccharides that are simple and economical to prepare. We demonstrate this approach herein using commercial 2-hydroxypropyl cellulose (HPC) and 2-hydroxypropyl dextran (HPD) that we prepared. We oxidize the terminal, secondary alcohols of the oligo(2-hydroxypropyl) substituents with sodium hypochlorite so that the product has an oligo(2-hydroxypropyl) side chains terminated by a ketone. We demonstrate the high chemo- and regioselectivity of this oxidation by analytical methods including hydrolysis to monosaccharides and mass spectrometry of the resulting mixture. We provide an initial demonstration of the potential utility of these keto-polysaccharides by reacting Ox-HPC with primary amines to form Schiff base imines, providing proactive polymers.
Collapse
Affiliation(s)
- Brittany L B Nichols
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Junyi Chen
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Petra Mischnick
- Institute of Food Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Kevin J Edgar
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States.,Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
8
|
Chakka VP, Zhou T. Carboxymethylation of polysaccharides: Synthesis and bioactivities. Int J Biol Macromol 2020; 165:2425-2431. [PMID: 33132131 DOI: 10.1016/j.ijbiomac.2020.10.178] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022]
Abstract
Polysaccharides are a structurally diverse class of biomolecules with a wide variety of bioactivities. Natural polysaccharides isolated from plants and fungi are used as raw materials in food and pharmaceutical industries due to their therapeutic properties, non-toxicity, and negligible side effects, but many natural polysaccharides possess low bioactivities when compared to synthetic medicines due to their structure and physicochemical properties. Literature studies revealed that carboxymethylation of polysaccharides enhances the bioactivities and water solubility of native polysaccharides significantly, and provide structural diversity and even the addition of new bioactivities. This review article mainly focuses on the recent research on carboxymethylation of polysaccharides including preparation, characterization, and bioactivities. This article also throws light on future directions and scope to develop new carboxymethylated polysaccharide derivatives for many industries such as food processing, cosmetics, nutraceuticals, and pharmaceutical industry.
Collapse
Affiliation(s)
- Vara Prasad Chakka
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
9
|
Gd(DOTA)-grafted submicronic polysaccharide-based particles functionalized with fucoidan as potential MR contrast agent able to target human activated platelets. Carbohydr Polym 2020; 245:116457. [PMID: 32718599 DOI: 10.1016/j.carbpol.2020.116457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022]
Abstract
Early detection of thrombotic events remains a big medical challenge. Dextran-based submicronic particles bearing Gd(DOTA) groups and functionalized with fucoidan have been produced via a simple and green water-in-oil emulsification/co-crosslinking process. Their capacity to bind to human activated platelets was evidenced in vitro as well as their cytocompatibility with human endothelial cells. The presence of Gd(DOTA) moieties was confirmed by elemental analysis and total reflection X-ray fluorescence (TRXF) spectrometry. Detailed characterization of particles was performed in terms of size distribution, morphology, and relaxation rates. In particular, longitudinal and transversal proton relaxivities were respectively 1.7 and 5.0 times higher than those of DOTAREM. This study highlights their potential as an MRI diagnostic platform for atherothrombosis.
Collapse
|
10
|
Carboxymethylated Sulfated Heteroexopolysaccharide from a Haloarchaeal Strain as Potential Biomolecule for Harmless Adjuvant Therapy in Cancer Treatment. J CHEM-NY 2020. [DOI: 10.1155/2020/8907958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study explored the possible use of a microbial carboxymethylated sulfated heteroexopolysaccharide (CS-hEPS) as a potential anticancer agent. The investigation was carried out through antioxidant, antifatigue, and antiproliferative activities. Antioxidant potential including scavenging DPPH and hydroxyl radical activities and reducing power was evaluated. Antifatigue activity was determined by assessing the endurance of mice using the forced swimming test. Following 30 days of CS-hEPS oral treatment at different doses, biochemical parameters related to fatigue such as lactic dehydrogenase (LDH), serum urea nitrogen (SUN), and hepatic glycogen (HG) contents were measured. Antitumor activities were investigated against human cancer liver and myelogenous leukemia cells. Results showed that CS-hEPS possesses notable antioxidant, antifatigue, and antitumor effects. CS-hEPS significantly inhibited the proliferation of leukemia (86.6 ± 0.32%) and cancer liver (58.6 ± 0.43%) cells. CS-hEPS are promising natural antioxidant, antifatigue, and antitumor harmless adjuvant materials that could be applied in human cancer therapy.
Collapse
|
11
|
Abstract
Β-glucan is a strongly hydrophilic non-starchy polysaccharide, which, when incorporated in food, is renowned for its ability to alter functional characteristics such as viscosity, rheology, texture, and sensory properties of the food product. The functional properties of β-glucans are directly linked to their origin/source, molecular weight, and structural features. The molecular weight and structural/conformational features are in turn influenced by method of extraction and modification of the β-glucan. For example, whereas physical modification techniques influence only the spatial structures, modification by chemical agents, enzyme hydrolysis, mechanical treatment, and irradiation affect both spatial conformation and primary structures of β-glucan. Consequently, β-glucan can be modified (via one or more of the aforementioned techniques) into forms that have desired morphological, rheological, and (bio)functional properties. This review describes how various modification techniques affect the structure, properties, and applications of β-glucans in the food industry.
Collapse
|
12
|
Afshari R, Shaabani A. Materials Functionalization with Multicomponent Reactions: State of the Art. ACS COMBINATORIAL SCIENCE 2018; 20:499-528. [PMID: 30106275 DOI: 10.1021/acscombsci.8b00072] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The emergence of neoteric synthetic routes for materials functionalization is an interesting phenomenon in materials chemistry. In particular, the union of materials chemistry with multicomponent reactions (MCRs) opens a new avenue leading to the realm of highly innovative functionalized architectures with unique features. MCRs have recently been recognized as considerable part of the synthetic chemist's toolbox due to their great efficiency, inherent molecular diversity, atom and pot economy along with operational simplicity. Also, MCRs can improve E-factor and mass intensity as important green chemistry metrics. By rational tuning of the materials, as well as the MCRs, wide ranges of functionalized materials can be produced with tailorable properties that can play important roles in the plethora of applications. To date, there has not reported any exclusive review of a materials functionalization with MCRs. This critical review highlights the state-of-the-art on the one-pot functionalization of carbonaceous and siliceous materials, polysaccharides, proteins, enzymes, synthetic polymers, etc., via diverse kind of MCRs like Ugi, Passerini, Petasis, Khabachnik-Fields, Biginelli, and MALI reactions through covalent or noncovalent manners. Besides the complementary discussion of synthetic routes, superior properties and detailed applicability of each functionalized material in modern technologies are discussed. Our outlook also emphasizes future strategies for this unprecedented area and their use as materials for industrial implementation. With no doubt, MCRs-functionalization of materials bridges the gap between materials science domain and applied chemistry.
Collapse
Affiliation(s)
- Ronak Afshari
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 19396-4716, Tehran 1983963113, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 19396-4716, Tehran 1983963113, Iran
| |
Collapse
|
13
|
Morin-Crini N, Winterton P, Fourmentin S, Wilson LD, Fenyvesi É, Crini G. Water-insoluble β-cyclodextrin–epichlorohydrin polymers for removal of pollutants from aqueous solutions by sorption processes using batch studies: A review of inclusion mechanisms. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.07.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Bakhshi M, Ozeiri M, Sharif A, Aalaie J. Effect of hydrophobic modification on the structure and rheology of aqueous and brine solutions of scleroglucan polymer. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-016-0322-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Wu H, Wang Z, Tao L. The Hantzsch reaction in polymer chemistry: synthesis and tentative application. Polym Chem 2017. [DOI: 10.1039/c7py01718a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent utilization of the tetra-component Hantzsch reaction in polymer chemistry has been summarized.
Collapse
Affiliation(s)
- Haibo Wu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Zhiming Wang
- College of Pharmaceutical Science
- Zhejiang Chinese Medical University
- Hangzhou
- People's Republic of China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
16
|
Protective effect of carboxytmethylpachymaran on TNF-α-induced damage in Caco-2 cell monolayers. Int J Biol Macromol 2016; 93:506-511. [DOI: 10.1016/j.ijbiomac.2016.07.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/23/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022]
|
17
|
In vivo immunological activity of carboxymethylated-sulfated (1→3)-β-D-glucan from sclerotium of Poria cocos. Int J Biol Macromol 2015; 79:511-7. [PMID: 26014139 DOI: 10.1016/j.ijbiomac.2015.05.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/12/2015] [Accepted: 05/10/2015] [Indexed: 01/20/2023]
Abstract
β-Glucans are one of the polysaccharides known as biological response modifiers extracted from the sclerotium of Poria cocos which has been used for several decades as Traditional Chinese Medicine. Due to its ability to activate immune system, it can be applied in chemotherapy after being chemically modified. In this study, sulfated (1→3)-β-D-glucan (S-P), carboxymethyl (1→3)-β-D-glucan (CMP), and carboxymethylated-sulfated (1→3)-β-D-glucan (S-CMP), which are (1→3)-β-D-glucan derivatives were synthesized. The current study was aimed to investigate in vivo potential immunological activity of S-CMP in mice. In addition, mice were separately treated with S-P, CMP and S-CMP to evaluate the relationship between single and multiple functional groups. Interestingly, S-CMP exhibited the best in vivo immunological activities and the highest inhibition rate against the implanted HepG2 tumor in BALB/c mice, with significant increase in serum hemolysin antibody titer, spleen antibody production as well as delayed type hypersensitivity compared with S-P and CMP. Furthermore, it was assumed that simultaneous introduction of carboxymethyl and sulfate groups also had great potential effect on antioxidant activity, as substantial decrease in malondialdehyde (MDA) content was remarked. Therefore, it may suggest that S-CMP has better immunological and anti-tumor effects on mice in vivo.
Collapse
|
18
|
Wu GH, Hu T, Huang ZL, Jiang JG. Characterization of water and alkali-soluble polysaccharides from Pleurotus tuber-regium sclerotia. Carbohydr Polym 2013; 96:284-90. [DOI: 10.1016/j.carbpol.2013.03.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/25/2013] [Accepted: 03/07/2013] [Indexed: 10/27/2022]
|
19
|
Wei XJ, Hu WY, Hu TJ. Effects of carboxymethylpachymaran on signal molecules in chicken immunocytes. Int J Biol Macromol 2013; 59:357-62. [PMID: 23664932 DOI: 10.1016/j.ijbiomac.2013.04.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/20/2013] [Accepted: 04/27/2013] [Indexed: 12/09/2022]
Abstract
The study was carried out to investigate the immunomodulation mechanism of carboxymethylpachymaran (CMP). Chicken splenic lymphocytes were cultured in medium alone or with CMP at the final concentration of 50mg/L, 100mg/L, 200mg/L or 400mg/L in vitro for 4h, 8h, 12h or 24h, respectively. The supernatants at different culture periods were analyzed for changes in levels of 6-keto-prostaglandin F1α (6-keto-PGF1α), thromboxane B2 (TXB2) and nitric oxide (NO). The cells were collected to determine contents of oxidized glutathione (GSSG), reduced glutathione (GSH), cyclic AMP (cAMP) and cyclic GMP (cGMP). The results showed that CMP increase the values of NO, 6-keto-PGF1α, TXB2, and the ratio of 6-keto-PGF1α to TXB2 in supernatants. The contents of intracellular GSH, cAMP, cGMP and the ratio of cAMP to cGMP were increased in the cells treated with CMP. The results suggested that CMP enhanced immune functions by increasing the contents of GSH and by regulating arachidonic acid signal transduction systems in chicken splenic lymphocytes. The signal pathway of NO-cGMP plays an important role in CMP-induced activation of chicken splenic lymphocytes.
Collapse
Affiliation(s)
- Xiao-Jie Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530005, PR China
| | | | | |
Collapse
|
20
|
Schizophyllan: A review on its structure, properties, bioactivities and recent developments. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.bcdf.2013.01.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Coseri S, Biliuta G. Bromide-free oxidizing system for carboxylic moiety formation in cellulose chain. Carbohydr Polym 2012; 90:1415-9. [DOI: 10.1016/j.carbpol.2012.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 06/25/2012] [Accepted: 07/02/2012] [Indexed: 11/15/2022]
|
22
|
Ding J, Wang Y, Xiong S, Zhao S, Huang Q. Optimised methodology for carboxymethylation of (1→3)-β-d-glucan from Yeast (Saccharomyces cerevisiae) and promotion of mechanical activation. Int J Food Sci Technol 2012. [DOI: 10.1111/j.1365-2621.2012.03181.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Junzhou Ding
- College of Food Sciences and Technology; Huazhong Agricultural University; Wuhan; 430070; China
| | - Yufang Wang
- College of Food Sciences and Technology; Huazhong Agricultural University; Wuhan; 430070; China
| | - Shanbai Xiong
- College of Food Sciences and Technology; Huazhong Agricultural University; Wuhan; 430070; China
| | - Siming Zhao
- College of Food Sciences and Technology; Huazhong Agricultural University; Wuhan; 430070; China
| | - Qilin Huang
- College of Food Sciences and Technology; Huazhong Agricultural University; Wuhan; 430070; China
| |
Collapse
|
23
|
Guazzaroni M, Bozzini T, Saladino R. Synthesis of Aldehydes by Layer-by-Layer Immobilized Laccases in the Presence of Redox Mediators. ChemCatChem 2012. [DOI: 10.1002/cctc.201200330] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Corrente F, Paolicelli P, Matricardi P, Tita B, Vitali F, Casadei MA. Novel pH-Sensitive Physical Hydrogels of Carboxymethyl Scleroglucan. J Pharm Sci 2012; 101:256-67. [DOI: 10.1002/jps.22766] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/04/2011] [Accepted: 09/01/2011] [Indexed: 02/03/2023]
|
25
|
Chen X, Zhang L, Cheung PCK. Immunopotentiation and anti-tumor activity of carboxymethylated-sulfated beta-(1-->3)-d-glucan from Poria cocos. Int Immunopharmacol 2010; 10:398-405. [PMID: 20093198 DOI: 10.1016/j.intimp.2010.01.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 11/26/2009] [Accepted: 01/05/2010] [Indexed: 11/25/2022]
Abstract
A carboxymethylated-sulfated derivative of (1-->3)-beta-d-glucan (PCS3-II) extracted from Poria cocos was synthesized and coded as CS-PCS3-II. Results of infrared (IR) and Carbon-13 nuclear magnetic resonance spectroscopy ((13)C NMR) indicated that CS-PCS3-II contained carboxymethyl and sulfate groups with a degree of substitution (DS) of 1.05 and 0.36 respectively. By using size exclusion chromatography (SEC) combined with laser light scatting (LLS), the dependence of radius of gyration (<S(2)>(z)(1/2)) on the molecular weight (M(w)) for CS-PCS3-II was established as <S(2)>(z)(1/2) = 6.92 x 10(-2)M(w)(0.59) in 0.15M NaCl solution at 25 degrees C, suggesting that CS-PCS3-II existed as an extended flexible chain. CS-PCS3-II exhibited significantly higher inhibition ratio to Sarcoma 180 tumor in BALB/c mice than PCS3-II. Histological examination of tumor cells treated with CS-PCS3-II had signs of necrosis and apoptosis. It is postulated that introduction of the carboxymethyl and sulfate groups to PCS3-II increased its possible contact with the receptors of immune cells through hydrogen binding and electrostatic attraction, leading to a stronger immunological responses that resulted in inhibition of tumor cell proliferation. Moreover, there were significant increases in phagocyte and thymus indexes, spleen index, hemolytic activity as well as spleen antibody production and delayed type hypersensitivity (DTH), suggesting that CS-PCS3-II could significantly enhance immunpotentiation in mice.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | | | | |
Collapse
|
26
|
Aalaie J, Rahmatpour A, Vasheghani-Farahani E. Rheological and swelling behavior of semi-interpenetrating networks of polyacrylamide and scleroglucan. POLYM ADVAN TECHNOL 2009. [DOI: 10.1002/pat.1369] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Corrente F, Matricardi P, Paolicelli P, Tita B, Vitali F, Casadei MA. Physical carboxymethylscleroglucan/calcium ion hydrogels as modified drug delivery systems in topical formulations. Molecules 2009; 14:2684-98. [PMID: 19701116 PMCID: PMC6255100 DOI: 10.3390/molecules14082684] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 07/16/2009] [Accepted: 07/21/2009] [Indexed: 11/16/2022] Open
Abstract
A carboxymethyl derivative of scleroglucan (Scl-CM) with a 65±5% carboxylic group degree of derivatization (DD) was recently synthesized and characterized. Aqueous solutions of the polymer underwent to a sharp transition toward a gel like behaviour in the presence of divalent ions such as Ca+2. Physical hydrogels with different Scl-CM/Ca+2 ratios were prepared and characterized for their rheological behaviour. Their potential as drug delivery systems was also evaluated. To this end three non steroidal anti-inflammatory drugs (NSAIDs) were loaded into the hydrogels obtained with 2% w/v solution of Scl-CM and 0.05 and 0.1 M CaCl2. The release rate of the drugs was critically related to the salt concentration. By an appropriate combination of the hydrogels prepared using different amounts of salt, it was possible to obtain a system able to release diclofenac with zero-order kinetics. Primary skin irritation tests showed a good biocompatibility of the new polymer, as well as of its hydrogels. These results suggest a potential of the new hydrogels for the development of modified delivery systems in topical formulations.
Collapse
Affiliation(s)
- Federica Corrente
- Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Pietro Matricardi
- Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Patrizia Paolicelli
- Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Beatrice Tita
- Dipartimento di Fisiologia e Farmacologia, “Sapienza” Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Federica Vitali
- Dipartimento di Fisiologia e Farmacologia, “Sapienza” Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Maria Antonietta Casadei
- Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Author to whom correspondence should be addressed; E-mail:
| |
Collapse
|
28
|
Thin films of xyloglucans for BSA adsorption. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2008.10.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Lucyszyn N, Lubambo A, Matos K, Marvilla I, Souza C, Sierakowski MR. Specific modification of xyloglucan from Hymenaea courbaril seeds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2008.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Marchetti F, Bergamin M, Bosi S, Khan R, Murano E, Norbedo S. Synthesis of 6-deoxy-6-chloro and 6-deoxy-6-bromo derivatives of scleroglucan as intermediates for conjugation with methotrexate and other carboxylate containing compounds. Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2008.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Lee CM, Jeong HJ, Kim DW, Lee KY. Alginate/carboxymethyl scleroglucan hydrogels for controlled release of protein drugs. Macromol Res 2008. [DOI: 10.1007/bf03218541] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Rinaudo M. Main properties and current applications of some polysaccharides as biomaterials. POLYM INT 2008. [DOI: 10.1002/pi.2378] [Citation(s) in RCA: 672] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Casadei MA, Matricardi P, Fabrizi G, Feeney M, Paolicelli P. Physical gels of a carboxymethyl derivative of scleroglucan: Synthesis and characterization. Eur J Pharm Biopharm 2007; 67:682-9. [PMID: 17537623 DOI: 10.1016/j.ejpb.2007.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 04/02/2007] [Accepted: 04/12/2007] [Indexed: 10/23/2022]
Abstract
A carboxymethyl derivative of scleroglucan (Scl-CM) was synthesized and characterized through FT-IR, 1H NMR and potentiometer titration. Rheological studies allowed evidencing the effect produced by the introduction of the carboxymethyl moiety on the native polymer. The mechanical spectrum of the scleroglucan solution showed a weak gel behaviour, while the derivative one looked like a system near the gel point, that evolved to a gel state depending on the concentration. This difference could be related to conformational changes due to the introduction of the negative charges on the chains. Different concentrations of Ca2+, added to the aqueous solutions of Scl-CM, were able to deeply modify the resulting system, showing a sharp transition toward a gel like behaviour. Acyclovir was loaded into the hydrogels obtained with different amounts of polymer and salt. The release rate of the drug from these systems was strictly related to both concentrations of salt and polymer. The obtained results suggest a possible employment of these new hydrogels for topical formulations or in situ implantation.
Collapse
Affiliation(s)
- Maria Antonietta Casadei
- Dipartimento di Studi di Chimica e Tecnologia delle Sostanze Biologicamente Attive, Sapienza Università di Roma, Rome, Italy.
| | | | | | | | | |
Collapse
|
34
|
François NJ, Allo S, Jacobo SE, Daraio ME. Composites of polymeric gels and magnetic nanoparticles: Preparation and drug release behavior. J Appl Polym Sci 2007. [DOI: 10.1002/app.26321] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Pardini OR, Amalvy JI, François N, Daraio ME. Properties of pH-dependent tertiary amine-based gels as potential drug delivery matrices. J Appl Polym Sci 2007. [DOI: 10.1002/app.26037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
In search for practical advantages from the immobilisation of an enzyme: the case of laccase. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.molcatb.2006.04.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Makuška R, Gorochovceva N. Regioselective grafting of poly(ethylene glycol) onto chitosan through C-6 position of glucosamine units. Carbohydr Polym 2006. [DOI: 10.1016/j.carbpol.2005.12.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Dömling A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 2006; 106:17-89. [PMID: 16402771 DOI: 10.1021/cr0505728] [Citation(s) in RCA: 3408] [Impact Index Per Article: 179.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
François NJ, Rojas AM, Daraio ME. Rheological and drug-release behaviour of a scleroglucan gel matrix at different drug loadings. POLYM INT 2005. [DOI: 10.1002/pi.1889] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Astolfi P, Brandi P, Galli C, Gentili P, Gerini MF, Greci L, Lanzalunga O. New mediators for the enzyme laccase: mechanistic features and selectivity in the oxidation of non-phenolic substrates. NEW J CHEM 2005. [DOI: 10.1039/b507657a] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Casadei M, Pitarresi G, Benvenuti F, Giannuzzo M. Chemical gels of scleroglucan obtained by cross-linking with 1,ω-dicarboxylic acids: synthesis and characterization. J Drug Deliv Sci Technol 2005. [DOI: 10.1016/s1773-2247(05)50019-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Jamois F, Ferrières V, Guégan JP, Yvin JC, Plusquellec D, Vetvicka V. Glucan-like synthetic oligosaccharides: iterative synthesis of linear oligo-beta-(1,3)-glucans and immunostimulatory effects. Glycobiology 2004; 15:393-407. [PMID: 15590774 DOI: 10.1093/glycob/cwi020] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Small reducing and linear oligo-beta-(1,3)-glucans, which are able to act as phytoallexin elicitors or as immunostimulating agents in anticancer therapy, were synthesized according to an iterative strategy that involved a unique key monosaccharidic donor. To avoid anomeric mixtures, the reducing entity of the target oligomers was first locked with benzyl alcohol and further selective deprotection of the 3-OH with DDQ afforded the desired building block as an acceptor. The latter was then used in a second cycle of glycosylation/deprotection to afford the desired disaccharide, and successive reiterations of this process provided the desired oligomers. Unusual conformational behaviors were observed by standard NMR sequences and supported by NOESY studies. Finally, removal of protecting groups afforded free tri-, tetra-, and pentaglucosides in good overall yields. Two oligosaccharides representing linear laminaritetraose and laminaripentaose were compared to the recently described beta-(1,3)-glucan phycarine. Following an intraperitoneal injection, the influx of monocytes and granulocytes into the blood and macrophages into the peritoneal cavity was comparable to that caused by phycarine. Similarly, both oligosaccharides stimulated phagocytic activity of granulocytes and macrophages. Using ELISA, we also demonstrated a significant stimulation of secretion of IL-1beta. Together these results suggest that the synthetic oligosaccharides have similar stimulatory effects as natural beta-(1,3)-glucans.
Collapse
Affiliation(s)
- Frank Jamois
- Laboratoire Goëmar, ZAC La Madeleine, Avenue du Général Patton, 35400 Saint Malo, France
| | | | | | | | | | | |
Collapse
|
43
|
Silva DA, de Paula RC, Feitosa JP, de Brito AC, Maciel JS, Paula HC. Carboxymethylation of cashew tree exudate polysaccharide. Carbohydr Polym 2004. [DOI: 10.1016/j.carbpol.2004.06.034] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Hydrogels Based on Pullulan Crosslinked with sodium trimetaphosphate (STMP): Rheological study. Polym Bull (Berl) 2004. [DOI: 10.1007/s00289-004-0299-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
François NJ, Rojas AM, Daraio ME, Bernik DL. Dynamic rheological measurements and drug release kinetics in swollen scleroglucan matrices. J Control Release 2003; 90:355-62. [PMID: 12880702 DOI: 10.1016/s0168-3659(03)00204-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structure of scleroglucan gel matrices was characterized by dynamic rheological studies. The results were compared with the release kinetics of theophylline in analogous samples using a Franz diffusion cell, fitting the drug release data with a semi-empirical power law. Dynamic rheology gave information about the viscous and elastic components (loss and storage moduli, respectively) of the gel which could influence the drug-release profiles. Scleroglucan gels showed two structural transitions within the gel regime that coincided with changes in the release pattern. It was found that the introduction of 0.4% (w/w) of theophylline decreased the loss and storage moduli in the 2% (w/w) scleroglucan gels by 50%. The influence of the same wt.% theophylline in other gels was strongly dependent on the gel concentration. These results demonstrated the value of rheological studies to detect matrix structural changes produced by the inclusion of drugs which may modify the drug-release profile.
Collapse
Affiliation(s)
- Nora J François
- Laboratorio de Química de Sistemas Heterogéneos, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, C1063ACV Buenos Aires, Argentina
| | | | | | | |
Collapse
|
46
|
Zhang M, Zhang L, Cheung PCK. Molecular mass and chain conformation of carboxymethylated derivatives of beta-glucan from sclerotia of Pleurotus tuber-regium. Biopolymers 2003; 68:150-9. [PMID: 12548620 DOI: 10.1002/bip.10277] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Seven water-insoluble (1 --> 3)-beta-D-glucan fractions TM8-1 to TM8-7 with weight-average molecular mass M(w) ranged from 2.22 to 77.4 x 10(4) obtained from the sclerotia of Pleurotus tuber-regium were carboxymethylated to produce the water-soluble fractions CTM8-1 to CTM8-7 with M(w) ranged from 3.87 to 87.8 x 10(4). The degree of substitution (DS) of CTM8 fractions was analyzed by ir and elemental analysis (EA) to be 0.3-0.68. The M(w) and the intrinsic viscosity [eta] of the CTM8 fractions were measured by size-exclusion chromatography combined with multiangle laser light scattering (SEC-MALLS), MALLS, and viscometry in phosphate buffer solution (PBS) at 37 degrees C. The dependencies of [eta] and radius of gyration <s(2)>(z) (1/2) on M(w) for the CTM8 samples were found to be [eta] = (8.82 +/- 0.03) x 10(-3) M(w)(0.78 +/- 0.04) (cm(3) g(-1)) and <s(2)>(z) (1/2) = (3.09 +/- 0.05) x 10(-3) M(w)(0.75 +/- 0.06) (nm) in the M(w) range from 3.87 x 10(4) to 53.2 x 10(4). Based on current theories for wormlike chain model, the conformational parameters of the CTM8 were obtained to be 790 (nm(-1)) for M(L), 9.6 (nm) for q, which were higher than those of the native TM8 fractions, suggesting a more extended flexible chain of CTM8 in PBS. On the whole, the CTM8 fractions showed higher antitumor activity than their corresponding TM8 fractions. In view of data from molecular parameters and bioactivity, the antitumor activity of the CTM8 fractions may be correlated to its water solubility and relatively extended chain.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | | | | |
Collapse
|
47
|
Gonera A, Goclik V, Baum M, Mischnick P. Preparation and structural characterisation of O-aminopropyl starch and amylose. Carbohydr Res 2002; 337:2263-72. [PMID: 12433491 DOI: 10.1016/s0008-6215(02)00115-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
O-aminopropyl starch was prepared by Michael addition of acrylonitrile and subsequent reduction with freshly prepared cobalt boride and sodium borohydride. In a second approach, the aminopropyl group was introduced via Williamson etherification with N-phthalyl-protected 3-bromo-1-propylamine. The protecting group was removed by borohydride reduction and subsequent hydrolysis in acetic acid. The DS of all samples and the degree of reduction of the cyanoethyl groups were estimated from the 1H NMR spectra. Total monomer composition was determined after methanolysis or hydrolysis and trimethylsilylation by GLC and GCMS. While the regioselectivity in the thermodynamically controlled reaction was O-6 > O-2 > O-3 (50:37:13), the kinetically controlled process showed strongly preferred O-2-etherification (up to 94%) followed by O-6- and O-3-substitution. It could be influenced by choice of solvent (water, Me(2)SO) and base (NaOH, Li-dimsyl).
Collapse
Affiliation(s)
- Antje Gonera
- TU Braunschweig, Institut für Lebensmittelchemie, Schleinitzstrasse 20, D-38106 Braunschweig, Germany
| | | | | | | |
Collapse
|
48
|
Benincasa MA, Cartoni G, Delle Fratte C. Flow field-flow fractionation and characterization of ionic and neutral polysaccharides of vegetable and microbial origin. J Chromatogr A 2002; 967:219-34. [PMID: 12685569 DOI: 10.1016/s0021-9673(02)00756-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The flow field-flow fractionation (FlFFF) analysis of a variety of neutral as well as ionic polysaccharides from plants and micro-organisms shows the generally broad distribution in molecular size of these polymers. This result is also obtained on a commercial sample of pullulan whose size distribution appears much wider than that of any of five standard fractions of the same polymer. Clear evidence of some physico-chemical properties of the polysaccharides is given by the study of the effect of the carrier ionic strength on salep, oxidized salep and konjac, carboxymethylcellulose and hyaluronic acid. While neutral polysaccharides, regardless of their origin, only slightly change size distribution in the presence of a simple electrolyte in solution, charged polymers, either naturally charged or chemically ionized, consistently exhibit very low retention levels in water which dramatically increase even at low salt concentrations. Exclusion mechanisms, including steric effects, are shown to be responsible for the anticipated retention times in water of these species that assume the expected statistical coil behavior only when electric charges are screened by the added electrolyte. Under these conditions, higher retention levels are obtained because the volume adjacent to the accumulation wall becomes more accessible to the sample during relaxation. On the basis of these findings, the elution behavior of a number of polysaccharide samples in-laboratory obtained from the fungus Aureobasidium pullulans under different incubation conditions is attributed to the presence of species varying in physico-chemical properties and molecular size.
Collapse
Affiliation(s)
- Maria-Anna Benincasa
- Department of Chemistry, University of Roma La Sapienza, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | | | | |
Collapse
|
49
|
Liu WG, Zhang JR, De Yao K. DNA/lipid complex organogel with shape-memory behavior. J Appl Polym Sci 2002. [DOI: 10.1002/app.10919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Crescenzi V, Dentini M, Bemalda MS, Masci G, Rori V, Skjåk-Braek G. Enzymatic epimerization of bacterial mannuronan and of C-6 oxidized, galactose-depleted guar: a circular dichroism and 1H NMR study. Biomacromolecules 2002; 2:958-64. [PMID: 11710056 DOI: 10.1021/bm010065+] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Attention has been focused on two uronans, namely, mannuronan and galactose-depleted C-6 oxidized guar, the former of microbial origin and the latter of artificial nature, to provide original data on the extent of epimerization they can undergo in dilute aqueous solution using two C-5 mannuronic acid epimerizing enzymes, that is, AlgE-4 and AlgE-6, alone or in admixture. Original circular dichroism data coupled with 1H NMR spectra clearly point out that both uronans can be epimerized, depending on the enzyme or enzyme mixture used, to high levels yielding guluronic-rich alginate samples and guluronic-rich heteropolysaccharides, respectively. Mannuronan and its epimerization products can easily form clear, firm aqueous gels when an excess of HCl is added or when mixed with aqueous CaCl2, respectively. Depleted-guarox does not gel upon addition of excess HCl, while the heterouronan derived from it having a percent of epimerization nearly identical to that of epimerized mannuronan, that is, ca. 70%, can form gel in the presence of Ca(II) only at higher polymer and Ca(II) concentrations. With the latter, heterouronan alpha-D-galacturonic side groups exert hindrance to "junction zone" formation.
Collapse
Affiliation(s)
- V Crescenzi
- Department of Chemistry, University La Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|