1
|
López-Rodríguez JC, Manosalva J, Cabrera-García JD, Escribese MM, Villalba M, Barber D, Martínez-Ruiz A, Batanero E. Human glutathione-S-transferase pi potentiates the cysteine-protease activity of the Der p 1 allergen from house dust mite through a cysteine redox mechanism. Redox Biol 2019; 26:101256. [PMID: 31229842 PMCID: PMC6597738 DOI: 10.1016/j.redox.2019.101256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 11/30/2022] Open
Abstract
Environmental proteases have been widely associated to the pathogenesis of allergic disorders. Der p 1, a cysteine-protease from house dust mite (HDM) Dermatophagoides pteronyssinus, constitutes one of the most clinically relevant indoor aeroallergens worldwide. Der p 1 protease activity depends on the redox status of its catalytic cysteine residue, which has to be in the reduced state to be active. So far, it is unknown whether Der p 1-protease activity could be regulated by host redox microenvironment once it reaches the lung epithelial lining fluid in addition to endogenous mite components. In this sense, Glutathione-S-transferase pi (GSTpi), an enzyme traditionally linked to phase II detoxification, is highly expressed in human lung epithelial cells, which represent the first line of defence against aeroallergens. Moreover, GSTpi is a generalist catalyst of protein S-glutathionylation reactions, and some polymorphic variants of this enzyme has been associated to the development of allergic asthma. Here, we showed that human GSTpi increased the cysteine-protease activity of Der p 1, while GSTmu (the isoenzyme produced by the mite) did not alter it. GSTpi induces the reduction of Cys residues in Der p 1, probably by rearranging its disulphide bridges. Furthermore, GSTpi was detected in the apical medium collected from human bronchial epithelial cell cultures, and more interesting, it increased cysteine-protease activity of Der p 1. Our findings support the role of human GSTpi from airways in modulating of Der p 1 cysteine-protease activity, which may have important clinical implications for immune response to this aeroallergen in genetically susceptible individuals.
Collapse
Affiliation(s)
- Juan Carlos López-Rodríguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - Juliana Manosalva
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - J Daniel Cabrera-García
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - María M Escribese
- Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo CEU, Madrid, Spain
| | - Mayte Villalba
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - Domingo Barber
- Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo CEU, Madrid, Spain
| | - Antonio Martínez-Ruiz
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain.
| | - Eva Batanero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
2
|
Kumar A, Dhull DK, Gupta V, Channana P, Singh A, Bhardwaj M, Ruhal P, Mittal R. Role of Glutathione-S-transferases in neurological problems. Expert Opin Ther Pat 2016; 27:299-309. [PMID: 27785931 DOI: 10.1080/13543776.2017.1254192] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Role of Glutathione-S-transferases (GSTs) has been well explored in the cellular detoxification process, regulation of redox homeostasis and S-glutothionylation of target proteins like JNK, ASK1 etc. However, altered levels or functions of this enzyme or their subtypes have emerged in the development of several pathologies diseases such as Alzheimer's disease, Parkinson's disease, cancer and related conditions. Oxidative stress is one of the possible pathological events that contributes significantly to activation of degenerating cascades inside neuronal cells. The central nervous system is highly sensitive to oxidative stress because of low levels or capacities of antioxidant enzymes. The brain is highly metabolic in nature making it susceptible to oxidative stress. Areas covered: The present review provides a comprehensive overview of the multiple connections of GSTs within diverse neurological diseases including cancer. Furthermore, the authors have made significant efforts to discuss the regulation of different GST isoforms that have been associated with various pathological processes such as glioblastoma, Alzheimer's disease, Parkinson's disease, stroke and epilepsy. Expert opinion: Though GSTs have been one of the key areas of scientific research over the last few decades, much remains to be elucidated about their physiological functions as well as pathological involvement of GSTs and their polymorphic variants.
Collapse
Affiliation(s)
- Anil Kumar
- a Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS) , Panjab University , Chandigarh , India
| | - Dinesh K Dhull
- a Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS) , Panjab University , Chandigarh , India
| | - Varun Gupta
- a Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS) , Panjab University , Chandigarh , India
| | - Priyanka Channana
- a Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS) , Panjab University , Chandigarh , India
| | - Arti Singh
- a Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS) , Panjab University , Chandigarh , India
| | - Manveen Bhardwaj
- a Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS) , Panjab University , Chandigarh , India
| | - Poonam Ruhal
- b Pharmacology Division, Department of Pharmaceutical Sciences , Guru Jambheshwar University of Science & Technology , Hisar , India
| | - Ruchika Mittal
- a Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS) , Panjab University , Chandigarh , India
| |
Collapse
|
3
|
Zhang J, Grek C, Ye ZW, Manevich Y, Tew KD, Townsend DM. Pleiotropic functions of glutathione S-transferase P. Adv Cancer Res 2015; 122:143-75. [PMID: 24974181 DOI: 10.1016/b978-0-12-420117-0.00004-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glutathione S-transferase P (GSTP) is one member of the GST superfamily that is prevalently expressed in mammals. Known to possess catalytic activity through deprotonating glutathione allowing formation of thioether bonds with electrophilic substrates, more recent discoveries have broadened our understanding of the biological roles of this protein. In addition to catalytic detoxification, other properties so far ascribed to GSTP include chaperone functions, regulation of nitric oxide pathways, regulation of a variety of kinase signaling pathways, and participation in the forward reaction of protein S-glutathionylation. The expression of GSTP has been linked with cancer and other human pathologies and more recently even with drug addiction. With respect to human health, polymorphic variants of GSTP may determine individual susceptibility to oxidative stress and/or be critical in the design and development of drugs that have used redox pathways as a discovery platform.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Christina Grek
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yefim Manevich
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kenneth D Tew
- Professor and Chairman, Department of Cell and Molecular Pharmacology, John C. West Chair of Cancer Research, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Danyelle M Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
4
|
Tew KD, Townsend DM. Redox platforms in cancer drug discovery and development. Curr Opin Chem Biol 2011; 15:156-61. [PMID: 21075043 PMCID: PMC3073687 DOI: 10.1016/j.cbpa.2010.10.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 10/11/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
Abstract
Redox homeostasis is frequently dysregulated in human disease, particularly cancer. Recent and ongoing efforts seek to validate and extend this platform for the discovery/development of anticancer drugs. As the primary source of cellular redox buffer, thiols (in particular glutathione) have been therapeutically targeted in cancer treatment, myeloproliferation, hematopoietic progenitor cell mobilization and immune response. A number of 'redox modulating' drugs have been, or are, under development and the pipeline seems viable. Moreover, S-glutathionylation is a protein post-translational modification that influences a number of critical cell pathways and in the medium term, defining the 'glutathionome' has the possibility to provide opportunities for target identification for therapeutic intervention perhaps with a relevance that parallels ongoing efforts with the kinome.
Collapse
Affiliation(s)
- Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | |
Collapse
|
5
|
McManus G, Costa M, Canals A, Coll M, Mantle TJ. Site-directed mutagenesis of mouse glutathione transferase P1-1 unlocks masked cooperativity, introduces a novel mechanism for ‘ping pong’ kinetic behaviour, and provides further structural evidence for participation of a water molecule in proton abstract. FEBS J 2010; 278:273-81. [DOI: 10.1111/j.1742-4658.2010.07944.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Laborde E. Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death. Cell Death Differ 2010; 17:1373-80. [DOI: 10.1038/cdd.2010.80] [Citation(s) in RCA: 296] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
7
|
Yang LX, Razzaghi H, Hokanson JE, Kamboh MI. Identification and characterization of a novel 5 bp deletion in a putative insulin response element in the lipoprotein lipase gene. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1791:1057-65. [PMID: 19563912 PMCID: PMC2753688 DOI: 10.1016/j.bbalip.2009.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/18/2009] [Accepted: 06/22/2009] [Indexed: 11/17/2022]
Abstract
Our aim was to identify an insulin response element (IRE) in the lipoprotein lipase (LPL) gene. We identified a 19 bp sequence as a putative IRE in LPL non-coding exon 10 using bioinformatics. Upon sequencing the IRE region, a novel 5 bp deletion was identified in Hispanics (N=406) with a carrier frequency of 4.2% but not in non-Hispanic whites (N=604) or Africans. Electrophoretic mobility shift assay revealed binding sites for regulatory factor(s) in muscle cell nuclear extracts with putative IRE sequence. Antibody supershift assay using human aorta smooth muscle cell nuclear extract revealed that Elk-1 specifically binds to putative IRE. TaqMan real-time RT-PCR of the 5 bp deletion, the mutant and wild type cDNA expressed in COS-1 and human muscle cells revealed that the 5 bp deletion was associated with modest reduction in LPL expression. There was also a slight reduction in LPL translation in the deletion mutant. Our data suggest the presence of an IRE in the 3'UTR of the LPL gene.
Collapse
Affiliation(s)
- Li-Xia Yang
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hamid Razzaghi
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - John E. Hokanson
- Department of Epidemiology, University of Colorado Denver, Colorado School of Public Health, Aurora, CO 80045, USA
| | - M. Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
8
|
Tew KD. Redox in redux: Emergent roles for glutathione S-transferase P (GSTP) in regulation of cell signaling and S-glutathionylation. Biochem Pharmacol 2007; 73:1257-69. [PMID: 17098212 DOI: 10.1016/j.bcp.2006.09.027] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 09/27/2006] [Accepted: 09/28/2006] [Indexed: 01/04/2023]
Abstract
Glutathione (GSH) provides a major source of thiol homeostasis critical to the maintenance of a reduced cellular environment that is conducive to cell survival. Mammals have accumulated a significant cadre of sulfur containing proteins, the interactive significance of which has become clear in recent times. Glutathione transferases (GST) are prevalent in eukaryotes and have been ascribed catalytic functions that involve detoxification of electrophiles through thioether bond formation with the cysteine thiol of GSH. The neutralizing impact of these reactions on products of reactive oxygen has contributed to the significant evolutionary conservation and adaptive functional redundancy of the multifaceted GSH system. Amongst the GSTs, GSTP has been implicated in tumorigenesis and in anticancer drug resistance. Emerging studies indicate that GSTP has ligand binding properties and contributes in the regulation of signaling kinases through direct protein:protein interactions. Furthermore, S-glutathionylation is a post-translational modification of low pK(a) cysteine residues in target proteins. The forward rate of the S-glutathionylation reaction can be influenced by GSTP, whereas the reverse rate is affected by a number of redox sensitive proteins including glutaredoxin, thioredoxin and sulfiredoxin. The functional importance of these reactions in governing how cells respond to oxidative or nitrosative stress exemplifies the broad importance of GSH/GST homeostasis in conditions such as cancer, ageing and neurodegenerative diseases. GSTP has also provided a platform for therapeutic drug development where some agents have completed preclinical testing and are in clinical trial for the management of cancer.
Collapse
Affiliation(s)
- Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, P.O. Box 250505, Charleston, SC 29425, United States.
| |
Collapse
|
9
|
Abstract
The super family of glutathione S-transferases (GSTs) is composed of multiple isozymes with significant evidence of functional polymorphic variation. Over the last three decades, data from cancer studies have linked aberrant expression of GST isozymes with the development and expression of resistance to a variety of chemicals, including cancer drugs. This review addresses how differences in the human GST isozyme expression patterns influence cancer susceptibility, prognosis and treatment. In addition to the well-characterized catalytic activity, recent evidence has shown that certain GST isozymes can regulate mitogen-activated protein kinases or can facilitate the addition of glutathione to cysteine residues in target proteins (S-glutathionylation). These multiple functionalities have contributed to the recent efforts to target GSTs with novel small molecule therapeutics. Presently, at least two drugs are in late-stage clinical testing. The evolving functions of GST and their divergent expression patterns in individuals make them an attractive target for drug discovery.
Collapse
Affiliation(s)
- C C McIlwain
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
10
|
Lo HW, Ali-Osman F. Cyclic AMP mediated GSTP1 gene activation in tumor cells involves the interaction of activated CREB-1 with the GSTP1 CRE: a novel mechanism of cellular GSTP1 gene regulation. J Cell Biochem 2003; 87:103-16. [PMID: 12210727 DOI: 10.1002/jcb.10275] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The human GSTP1 gene is frequently over-expressed in many human cancers and the expression increases with tumor progression and is associated with a more aggressive biology, poor patient survival, and resistance to therapy. The molecular regulation of the human GSTP1 gene during malignancy is, however, still not well understood. Recently, we reported the presence of a cAMP response element (CRE) in the 5'-region of the human GSTP1 gene, raising the possibility that the cAMP signaling pathway, frequently aberrant in human cancers, may play an important role in the transcriptional activation of the GSTP1 gene in human tumors. In this study, we report that the GSTP1 gene is an early cAMP response gene. Treatment of cells of the human lung carcinoma cell line, Calu-6, with 25 microM forskolin to activate the cAMP pathway resulted in a rapid and significant (sevenfold after 30 min) increase in GSTP1 gene transcripts, which peaked at 12-fold after 4 h. The forskolin-activated GSTP1 transcription in Calu-6 cells was suppressed dose-dependently by a 2-h pre-treatment with 0.1, 1.0, and 10 microM of the adenylate cyclase inhibitor, 2', 5'-dideoxyadenosine. Western blot analysis showed a rapid, fivefold increase, in GSTP1 protein levels after treatment with 25 microM forskolin, with a peak at 2 h post-treatment. The levels of phosphorylated CRE (Ser133) binding protein-1 (CREB-1) increased rapidly, sevenfold at 30 min, and reached 10-fold at 4 h following forskolin treatment. Intracellular cAMP levels also increased rapidly reaching 12-fold at 30 min. Gel mobility shift and supershift assays and DNase/footprinting analyses demonstrated that CREB-1 bZIP and CREB-containing nuclear extracts recognized the GSTP1 CRE with high affinity and specificity. Binding of CREB-1 bZIP to the GSTP1 CRE was abolished when the GSTP1 CRE sequence 5'-CGTCA-3', was mutated at the core nucleotides. Finally, transfection studies using luciferase plasmid constructs showed the GSTP1 CRE to be required for the cAMP-activated gene expression. Together, these findings describe a novel cAMP- and CREB-1-mediated mechanism of transcriptional regulation of the GSTP1 gene and suggest that this may be an important mechanism underlying the increased GSTP1 expression observed in tumors with an aberrant cAMP signaling pathway and in normal cells under conditions of stress, associated with increased intracellular cAMP.
Collapse
Affiliation(s)
- Hui-Wen Lo
- Section of Molecular Therapeutics, Department of Neurosurgery, Brain Tumor Center, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
11
|
Abstract
Reduced glutathione (GSH) is the most prevalent non-protein thiol in animal cells. Its de novo and salvage synthesis serves to maintain a reduced cellular environment and the tripeptide is a co-factor for many cytoplasmic enzymes and may also act as an important post-translational modification in a number of cellular proteins. The cysteine thiol acts as a nucleophile in reactions with both exogenous and endogenous electrophilic species. As a consequence, reactive oxygen species (ROS) are frequently targeted by GSH in both spontaneous and catalytic reactions. Since ROS have defined roles in cell signaling events as well as in human disease pathologies, an imbalance in expression of GSH and associated enzymes has been implicated in a variety of circumstances. Cause and effect links between GSH metabolism and diseases such as cancer, neurodegenerative diseases, cystic fibrosis (CF), HIV, and aging have been shown. Polymorphic expression of enzymes involved in GSH homeostasis influences susceptibility and progression of these conditions. This review provides an overview of the biological importance of GSH at the level of the cell and organism.
Collapse
Affiliation(s)
- Danyelle M Townsend
- Department of Pharmacology, Fox Chase Cancer Center, 7701 Burholme Ave., Philadelphia, PA 19111, USA.
| | | | | |
Collapse
|
12
|
Bredel M. Anticancer drug resistance in primary human brain tumors. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 35:161-204. [PMID: 11336781 DOI: 10.1016/s0165-0173(01)00045-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The difficult clinical situation still associated with most types of primary human brain tumors has fostered significant interest in defining novel therapeutic modalities for this heterogeneous group of neoplasms. Beginning in the 1980s chemotherapy has been incorporated into the treatment protocol of a number of intractable brain tumors. However, it has predominantly failed to improve patient outcome. The unsatisfactory results with chemotherapeutic intervention have chiefly been attributed to tumor cell resistance. In recent years, there has been a literal explosion in our understanding about the mechanisms by which cancer cells become chemoresistant. During the course of their evolution (intrinsic resistance) or in response to chemotherapy (acquired resistance) these cells may follow a number of pathways of genetic alterations to possess a common (multidrug) or drug-specific (individual drug) resistant phenotype. Genomic aberrations, deregulation of membrane transporting proteins and cellular enzymes, and an altered susceptibility to commit to apoptosis are among the steps on the way that contribute to the genesis of chemotherapeutic treatment failure. Although, through the years we have come to yield information and inferences as to the roles that different molecular events may have in the resistance phenotype of cancer cells, the actual involvement of single genetic alterations in conferring drug resistance in primary brain tumors remains debatable. This uncertainty and, besides, the lack of proper drug resistance diagnostics, in a vicious circle, hinder the development of effective resistance-modulation strategies. Clinical non-responsiveness to chemotherapy remains a formidable obstacle to the successful treatment of brain tumors and one of the most serious problems to be solved in the therapy of these lesions. Future advances in the chemotherapeutic management of these neoplasms will come with an improved understanding of the significance and interrelationship of the multiple biological systems operative in promoting resistance to this treatment modality. The focus of this review is to summarize current knowledge concerning major drug resistance-related markers, to describe their functional interaction en route to chemoresistance, and to discuss their implication in rendering human brain tumor cells resistant to chemotherapy.
Collapse
Affiliation(s)
- M Bredel
- Department of General Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
McCaffery P, Dräger UC. Regulation of retinoic acid signaling in the embryonic nervous system: a master differentiation factor. Cytokine Growth Factor Rev 2000; 11:233-49. [PMID: 10817966 DOI: 10.1016/s1359-6101(00)00002-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes some of the properties of retinoic acid (RA) in its functions as a locally synthesized differentiation factor for the developing nervous system. The emphasis is on the characterization of the metabolic enzymes that synthesize and inactivate RA, and which determine local RA concentrations. These enzymes create regions of autocrine and paracrine RA signaling in the embryo. One mechanism by which RA can act as a differentiation agent is through the induction of growth factors and their receptors. Induction of growth factor receptors in neural progenitor cells can lead to growth factor dependency, and the consequent developmental fate of the cell will depend on the local availability of growth factors. Because RA activates the early events of cell differentiation, which then induce context-specific differentiation programs, RA may be called a master differentiation factor.
Collapse
Affiliation(s)
- P McCaffery
- E. Kennedy Shriver Center, Waltham, MA 02452, USA.
| | | |
Collapse
|
14
|
Coles B, Yang M, Lang NP, Kadlubar FF. Expression of hGSTP1 alleles in human lung and catalytic activity of the native protein variants towards 1-chloro-2,4-dinitrobenzene, 4-vinylpyridine and (+)-anti benzo[a]pyrene-7,8-diol-9,10-oxide. Cancer Lett 2000; 156:167-75. [PMID: 10880766 DOI: 10.1016/s0304-3835(00)00458-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The human glutathione S-transferase (GST) P1 alleles coding for Val(105) (hGSTP1*B and/or P1*C) are over- represented in lung cancer patients. However, the corresponding recombinant Val(105) protein variants tend to show higher catalytic activity than the Ile(105) variants towards bay-region diol epoxides that are thought to be etiological agents in lung cancer. We have examined 29 normal human lung samples with respect to several factors that could confound relationships between hGSTP1 allele type and cancer susceptibility, namely, inter-individual and allele-specific variation of hGSTP1 expression, and differences between the catalytic properties of the native and recombinant hGSTP1-1 variant protein products. hGSTP1 expression varied 7-fold among individuals but was independent of hGSTP1*A, P1*B or P1*C allele type. hGST subunits A1, A2, M1 and M3 were minor components, similarly variable in expression. Despite this variability of expression, the levels of hGSTP1 expression linearly correlated with those of the next most highly expressed GST, hGSTM3, even though the genes for these GSTs are on different chromosomes. Differences between the native protein variants, using 1-chloro-2,4-dinitrobenzene and (+)-anti-benzo[a]pyrene diolepoxide as substrates, were more marked than those between the recombinant variants. However, the order of differential catalytic specificity was the same for native and recombinant variants. Neither the expression of the hGSTP1 alleles nor the catalytic properties of the protein variants appears to provide a simple mechanistic rationale for the observed over-representation of the hGSTP1*B and/or 1*C alleles in lung cancer.
Collapse
Affiliation(s)
- B Coles
- Division of Molecular Epidemiology, National Center for Toxicological Research, 3900 NCTR Rd., Jefferson, AR 72079, USA.
| | | | | | | |
Collapse
|