1
|
Argaev-Frenkel L, Rosenzweig T. Redox Balance in Type 2 Diabetes: Therapeutic Potential and the Challenge of Antioxidant-Based Therapy. Antioxidants (Basel) 2023; 12:antiox12050994. [PMID: 37237860 DOI: 10.3390/antiox12050994] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Oxidative stress is an important factor in the development of type 2 diabetes (T2D) and associated complications. Unfortunately, most clinical studies have failed to provide sufficient evidence regarding the benefits of antioxidants (AOXs) in treating this disease. Based on the known complexity of reactive oxygen species (ROS) functions in both the physiology and pathophysiology of glucose homeostasis, it is suggested that inappropriate dosing leads to the failure of AOXs in T2D treatment. To support this hypothesis, the role of oxidative stress in the pathophysiology of T2D is described, together with a summary of the evidence for the failure of AOXs in the management of diabetes. A comparison of preclinical and clinical studies indicates that suboptimal dosing of AOXs might explain the lack of benefits of AOXs. Conversely, the possibility that glycemic control might be adversely affected by excess AOXs is also considered, based on the role of ROS in insulin signaling. We suggest that AOX therapy should be given in a personalized manner according to the need, which is the presence and severity of oxidative stress. With the development of gold-standard biomarkers for oxidative stress, optimization of AOX therapy may be achieved to maximize the therapeutic potential of these agents.
Collapse
Affiliation(s)
| | - Tovit Rosenzweig
- Department of Molecular Biology, Ariel University, Ariel 4070000, Israel
- Adison School of Medicine, Ariel University, Ariel 4070000, Israel
| |
Collapse
|
2
|
Issac PK, Karan R, Guru A, Pachaiappan R, Arasu MV, Al-Dhabi NA, Choi KC, Harikrishnan R, Raj JA. Insulin signaling pathway assessment by enhancing antioxidant activity due to morin using in vitro rat skeletal muscle L6 myotubes cells. Mol Biol Rep 2021; 48:5857-5872. [PMID: 34302266 DOI: 10.1007/s11033-021-06580-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Plant-derived phytochemicals such as flavonoids have been explored to be powerful antioxidants that protect against oxidative stress-related diseases. In the present study, Morin, a flavonoid compound was studied for its antioxidant and antidiabetic properties in relation to oxidative stress in insulin resistant models conducted in rat skeletal muscle L6 cell line model. METHODS Evaluation of antioxidant property of morin was assayed using in vitro methods such as cell viability by MTT assay, estimation of SOD and CAT activity and NO scavenging activity. The anti-oxidative nature of morin on L6 cell line was conducted by the DCF-DA fluorescent activity. Glucose uptake in morin treated L6 myotubes are accessed by 2-NBDG assay in the presence or absence of IRTK and PI3K inhibitors. Further glycogen content estimation due to the morin treatment in L6 myotubes was performed. Antioxidant and insulin signaling pathway gene expression was examined over RT-PCR analysis. RESULTS Morin has a negligible cytotoxic effect at doses of 20, 40, 60, 80, and 100 µM concentration according to cell viability assay. Morin revealed that the levels of the antioxidant enzymes SOD and CAT in L6 myotubes had increased. When the cells were subjected to the nitro blue tetrazolium assay, morin lowered reactive oxygen species (ROS) formation at 60 µM concentration displaying 39% ROS generation in oxidative stress condition. Lesser NO activity and a drop in green fluorescence emission in the DCFDA assay, demonstrating its anti-oxidative nature by reducing ROS formation in vitro. Glucose uptake by the L6 myotube cells using 2-NBDG, and with IRTK and PI3K inhibitors (genistein and wortmannin) showed a significant increase in glucose uptake by the cells which shows the up regulated GLUT-4 movement from intracellular pool to the plasma membrane. Morin (60 µM) significantly enhanced the expression of antioxidant genes GPx, GST and GCS as well as insulin signalling genes IRTK, IRS-1, PI3K, GLUT-4, GSK-3β and GS in L6 myotubes treated cells. CONCLUSION Morin has the ability to act as an anti-oxidant by lowering ROS levels and demonstrating insulin mimetic activity by reversing insulin resistance associated with oxidative stress.
Collapse
Affiliation(s)
- Praveen Kumar Issac
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamil Nadu, India
| | - Rupmanjari Karan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamil Nadu, India
| | - Ajay Guru
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamil Nadu, India
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamil Nadu, India
| | - R Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si, Chungnam, 330801, Republic of Korea
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, Tamil Nadu, 631501, India
| | - Jesu Arockia Raj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamil Nadu, India.
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamil Nadu, India.
| |
Collapse
|
3
|
The effect of melatonin on lipid peroxide oxidation, oxidative modification of proteins and mitochondria swelling in the skeletal muscle tissue of rats under alloxan diabetes. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.03.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
4
|
Sun L, Li X, Li G, Dai B, Tan W. Actinidia chinensis Planch. Improves the Indices of Antioxidant and Anti-Inflammation Status of Type 2 Diabetes Mellitus by Activating Keap1 and Nrf2 via the Upregulation of MicroRNA-424. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7038789. [PMID: 28642811 PMCID: PMC5470031 DOI: 10.1155/2017/7038789] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/24/2017] [Accepted: 03/19/2017] [Indexed: 12/24/2022]
Abstract
The fruit juice of Actinidia chinensis Planch. has antioxidant and anti-inflammation properties on patients with type 2 diabetes mellitus (T2DM), but the molecular mechanism was unclear. The patients took the juice and the serum level of antioxidant miR-424, Kelch-like ECH-associated protein 1 (Keap1), erythroid-derived 2-like 2 (Nrf2), and biochemical indices were measured. The juice increased the levels of serum microRNA-424, Keap1, and Nrf2 and reduced the levels of interleukin-1 (IL-1) beta and IL-6 in T2DM patients. The levels of SOD and GSH were higher while the levels of ALT and AST were lower in the patients consuming the juice when compared to the patients without taking the juice. The Spearman rank correlation analysis showed that the serum levels of miR-424 were positively related to Keap1 and Nrf2 levels while Keap1 and Nrf2 levels were positively related to the levels of SOD and GSH and negatively related to IL-1 beta and IL-6. Thus, FJACP improves the indices of antioxidant and anti-inflammation status by activating Keap1 and Nrf2 via the upregulation of miR-424 in the patients with T2DM. This trial is registered with ChiCTR-ONC-17011087 on 04/07/2017.
Collapse
Affiliation(s)
- Longfeng Sun
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Xiaofei Li
- Department of Emergency Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Gang Li
- Department of Urology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Bing Dai
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Wei Tan
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
5
|
Fortes MAS, Pinheiro CHJ, Guimarães-Ferreira L, Vitzel KF, Vasconcelos DAA, Curi R. Overload-induced skeletal muscle hypertrophy is not impaired in STZ-diabetic rats. Physiol Rep 2015. [PMID: 26197932 PMCID: PMC4552534 DOI: 10.14814/phy2.12457] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to evaluate the effect of overload-induced hypertrophy on extensor digitorum longus (EDL) and soleus muscles of streptozotocin-induced diabetic rats. The overload-induced hypertrophy and absolute tetanic and twitch forces increases in EDL and soleus muscles were not different between diabetic and control rats. Phospho-Akt and rpS6 contents were increased in EDL muscle after 7 days of overload and returned to the pre-overload values after 30 days. In the soleus muscle, the contents of total and phospho-Akt and total rpS6 were increased in both groups after 7 days. The contents of total Akt in controls and total rpS6 and phospho-Akt in the diabetic rats remained increased after 30 days. mRNA expression after 7 days of overload in the EDL muscle of control and diabetic animals showed an increase in MGF and follistatin and a decrease in myostatin and Axin2. The expression of FAK was increased and of MuRF-1 and atrogin-1 decreased only in the control group, whereas Ankrd2 expression was enhanced only in diabetic rats. In the soleus muscle caused similar changes in both groups: increase in FAK and MGF and decrease in Wnt7a, MuRF-1, atrogin-1, and myostatin. Differences between groups were observed only in the increased expression of follistatin in diabetic animals and decreased Ankrd2 expression in the control group. So, insulin deficiency does not impair the overload-induced hypertrophic response in soleus and EDL muscles. However, different mechanisms seem to be involved in the comparable hypertrophic responses of skeletal muscle in control and diabetic animals.
Collapse
Affiliation(s)
- Marco Aurélio S Fortes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos Hermano J Pinheiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lucas Guimarães-Ferreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil Exercise Metabolism Research Group, Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória, Brazil
| | - Kaio F Vitzel
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Diogo A A Vasconcelos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Nonaka K, Une S, Tatsuta N, Ito K, Akiyama J. Changes in antioxidant enzymes and lipid peroxidation in extensor digitorum longus muscles of streptozotocin-diabetic rats may contribute to muscle atrophy. ACTA ACUST UNITED AC 2015; 101:421-8. [PMID: 25201710 DOI: 10.1556/aphysiol.101.2014.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We investigated muscle atrophy, major antioxidant enzymes and lipid peroxidation in the extensor digitorum longus (EDL, predominantly fast fibers) and soleus (predominantly slow fibers) muscle of streptozotocin-diabetic rats. Female Wistar rats were divided into a control (n = 5) and streptozotocin-induced diabetic group (n = 5). Eight weeks after diabetes induction the EDL and soleus muscles were removed and catalase (CAT), glutathione peroxidase (GPX) and superoxide dismutase activity (SOD), and thiobarbituric acid reactive substances (TBARS) levels measured. The CAT activity increased in both the EDL and soleus muscles of the diabetic rats (p < 0.01), whereas the GPX and SOD activities were increased only in the EDL muscle (p < 0.01 and p < 0.05). The TBARS levels were only increased in the EDL muscle of the diabetic rats (p < 0.01). Both muscles showed significant atrophy but the EDL muscle elicited the greatest atrophy. In conclusion, it appears that adaptive responses to oxidative stress were adequate in the soleus muscle, but not in the EDL muscle, of diabetic rats. Thus fast twitch muscle fibers may be more susceptible to oxidative stress than slow twitch muscle fibers and this may contribute to muscle atrophy under diabetic conditions.
Collapse
Affiliation(s)
- Koji Nonaka
- Osaka Prefecture University Department of Physical Therapy 6-7-30 Habikino, Habikino Osaka 583-8555 Japan
| | - S Une
- Shujitsu Junior College Department of Living Science Okayama Japan
| | - N Tatsuta
- Kibi International University Research Institute of Health Welfare Takahashi Japan
| | - K Ito
- Osaka Prefecture University Department of Physical Therapy 6-7-30 Habikino, Habikino Osaka 583-8555 Japan
| | - J Akiyama
- Kibi International University Research Institute of Health Welfare Takahashi Japan
| |
Collapse
|
7
|
Yu SH, Huang CY, Lee SD, Hsu MF, Wang RY, Kao CL, Kuo CH. Decreased eccentric exercise-induced macrophage infiltration in skeletal muscle after supplementation with a class of ginseng-derived steroids. PLoS One 2014; 9:e114649. [PMID: 25500579 PMCID: PMC4263678 DOI: 10.1371/journal.pone.0114649] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/12/2014] [Indexed: 11/19/2022] Open
Abstract
Dammarane steroids (DS) are a class of chemical compounds present in Panax ginseng. Here, we evaluated the effect of 10 weeks of DS supplementation on inflammatory modulation in the soleus muscle following eccentric exercise (EE)-induced muscle damage (downhill running). Eighty rats were randomized into 4 groups of DS supplementation (saline, 20, 60, 120 mg/kg body weight). Inflammatory markers were measured at rest and again 1 h after EE. At rest, NFκB signaling, TNF-alpha and IL-6 mRNAs, 3-nitrotyrosine, glutathione peroxidase, and GCS (glutamylcysteine synthetase) levels were significantly elevated in the skeletal muscle of DS-treated rats in a dose-dependent manner. Additionally, there were no detectable increases in the number of necrotic muscle fibers or CD68+ M1 macrophages. However, muscle strength, centronucleation, IL-10 mRNA expression, and the number of CD163+ M2 macrophages increased significantly over controls with DS treatment in rat soleus muscle. Under EE-challenged conditions, significant increases in muscle fiber necrosis, CD68+ M1 macrophage distribution, and 3-nitrotyrosine were absent in rats that received low and medium doses (20 and 60 mg/kg) of DS treatment, suggesting that DS possess anti-inflammatory action protecting against a muscle-damaging challenge. However, this protective activity was diminished when a high dose of DS (120 mg/kg) was administered, suggesting that DS possess hormetic properties. In conclusion, our study provides new evidence suggesting that DS is an ergogenic component of ginseng that potentiate inflammation at baseline but that produce anti-inflammatory effects on skeletal muscle following muscle-damaging exercise. Furthermore, high doses should be avoided in formulating ginseng-based products.
Collapse
Affiliation(s)
- Szu-Hsien Yu
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei City, Taiwan, Republic of China
- Department of Leisure Industry and Health Promotion, National Ilan University, Yilan County, Taiwan, Republic of China
| | - Chih-Yang Huang
- Institute of Basic Medical Science, China Medical University, Taichung City, Taiwan, Republic of China
- Department of Health and Biotechnology, Asia University, Taichung City, Taiwan, Republic of China
| | - Shin-Da Lee
- Institute of Basic Medical Science, China Medical University, Taichung City, Taiwan, Republic of China
- Department of Health and Biotechnology, Asia University, Taichung City, Taiwan, Republic of China
| | - Ming-Fen Hsu
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei City, Taiwan, Republic of China
| | - Ray-Yau Wang
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei City, Taiwan, Republic of China
| | - Chung-Lan Kao
- Institute of Basic Medical Science, China Medical University, Taichung City, Taiwan, Republic of China
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei City, Taiwan, Republic of China
| |
Collapse
|
8
|
Lima VBDS, Sampaio FDA, Bezerra DLC, Moita Neto JM, Marreiro DDN. Parameters of glycemic control and their relationship with zinc concentrations in blood and with superoxide dismutase enzyme activity in type 2 diabetes patients. ACTA ACUST UNITED AC 2012; 55:701-7. [PMID: 22231973 DOI: 10.1590/s0004-27302011000900006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 11/04/2011] [Indexed: 02/04/2023]
Abstract
OBJECTIVE This study assessed the relationship between the parameters of glycemic control, and zinc concentrations in blood and superoxide dismutase enzyme activity in type 2 diabetes patients. SUBJECTS AND METHODS Seventy-three individuals, aged between 25 and 59 years, were divided into the experimental group (type 2 diabetes patients, n = 36) and control group (n = 37). Plasma and erythrocyte zinc concentrations, superoxide dismutase activity, and parameters of glycemic control were analyzed. RESULTS Mean plasma zinc concentration was 74.1 ± 10.7 µg/dL and 68.8 ± 9.6 µg/dL, erythrocyte zinc concentration was 48.1 ± 9.5 µg/gHb and 41.2 ± 8.0 µg/gHb, and superoxide dismutase activity was 2248.9 ± 300.0 U/gHb and 2059.6 ± 285.4 U/gHb, in the experimental group and the control group, respectively (p < 0.05). CONCLUSION Type 2 diabetes patients showed a positive response to oxidative stress due to adequate zinc concentration in blood and increased activity of superoxide dismutase, and the enzyme was influenced by serum insulin.
Collapse
|
9
|
Ibuki FK, Simões A, Nicolau J, Nogueira FN. Laser irradiation affects enzymatic antioxidant system of streptozotocin-induced diabetic rats. Lasers Med Sci 2012; 28:911-8. [PMID: 22869159 DOI: 10.1007/s10103-012-1173-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 07/16/2012] [Indexed: 12/26/2022]
Abstract
The aim of the present study was to analyze the effect of low-power laser irradiation in the antioxidant enzymatic system of submandibular (SMG) and parotid (PG) salivary glands of streptozotocin-induced diabetic rats. The animals were randomly divided into six groups: three diabetic groups (D0, D5, and D20) and three non-diabetic groups (C0, C5, and C20), according to laser dose received (0, 5, and 20 J/cm(2), respectively). Areas of approximately 1 cm(2) were demarcated in the salivary glands (each parotid and both submandibular glands) and after irradiated according to Simões et.al. (Lasers Med Sci 24:202-208, 2009). A diode laser (660 nm/100 mW) was used, with laser beam spot of 0.0177 cm(2). The group treated with 5 J/cm(2) laser dose was subjected to irradiation for 1 min and 4 s (total irradiation time) and the group treated with 20 J/cm(2) laser dose was subjected to irradiation for 4 min and 16 s. Twenty-four hours after irradiation the animals were euthanized and the salivary glands were removed for biochemical analysis. The total antioxidant values (TA), the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase enzymes were determined. SOD and CAT activities, as well as TA were higher in SMG of irradiated diabetic rats. However, in SMG of non-diabetic rats, laser irradiation decreased TA values and led to an increase in the CAT activity. In addition, there was a decrease in the activity of CAT in PG of diabetic and non-diabetic animals after laser irradiation. According to the results of the present study, low-power laser irradiation can affect the enzymatic antioxidant system of salivary glands of streptozotocin-induced diabetic rats.
Collapse
Affiliation(s)
- Flavia Kazue Ibuki
- Departamento de Biomateriais e Biologia Oral, Faculdade de Odontologia, Universidade de São Paulo (USP), São Paulo, Brazil, 05508-000
| | | | | | | |
Collapse
|
10
|
Deconte SR, Oliveira RJDS, Calábria LK, Oliveira VND, Gouveia NMD, Moraes ADS, Espindola FS. Alterations of antioxidant biomarkers and type I collagen deposition in the parotid gland of streptozotocin-induced diabetic rats. Arch Oral Biol 2011; 56:744-51. [DOI: 10.1016/j.archoralbio.2011.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 12/21/2010] [Accepted: 01/11/2011] [Indexed: 10/18/2022]
|
11
|
Ibuki FK, Simões A, Nogueira FN. Antioxidant enzymatic defense in salivary glands of streptozotocin-induced diabetic rats: a temporal study. Cell Biochem Funct 2010; 28:503-8. [PMID: 20669150 DOI: 10.1002/cbf.1683] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hyperglycemia induces overproduction of superoxide and it is related to diabetic complications. In this study, we analyzed the antioxidant enzymatic defense and the lipid peroxidation of rat salivary glands in six different periods of diabetic condition. Ninety-six rats were divided into 12 groups: C7/14/21/28/45/60 (non-diabetic animals) and D7/14/21/28/45/60 (diabetic animals). Diabetes was induced by streptozotocin and the rats were euthanized after 7, 14, 21, 28, 45, or 60 days. Their parotid (PA) and submandibular (SM) glands were removed soon after the sacrifice and the total protein and malondialdehyde (MDA) concentrations, as well as, the superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities were determined. Twenty-one days after the diabetes induction, the SM glands showed an increase in SOD, CAT, and GPx activities, as well as, MDA concentration. Concerning the PA glands, an increase in the CAT activity and MDA content was observed throughout the observation period. The results suggest that diabetes can cause alterations on the salivary glands and that PA and SM glands react differently when exposed to diabetes condition. However, no impairment of antioxidant system was observed in the group whose diabetic condition had been induced 60 days earlier, herein named 60-day group.
Collapse
Affiliation(s)
- Flavia Kazue Ibuki
- Centro de Pesquisa em Biologia Oral, Departamento de Materiais Dentários, Faculdade de Odontologia, Universidade de São Paulo (USP), São Paulo, Brazil
| | | | | |
Collapse
|
12
|
Simões A, Nogueira FN, de Paula Eduardo C, Nicolau J. Diode laser decreases the activity of catalase on submandibular glands of diabetic rats. Photomed Laser Surg 2010; 28:91-5. [PMID: 19803717 DOI: 10.1089/pho.2009.2495] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the effect of laser irradiation on the amylase and the antioxidant enzyme activities, as well as on the total protein concentration of submandibular glands (SMG) of diabetic and non-diabetic rats. BACKGROUND Laser has been used aiming to improve some biochemical alterations observed in salivary glands of streptozotocin-induced diabetic rats. MATERIALS AND METHODS Ninety-six female rats were divided into eight groups: D0, D5, D10, and D20 (diabetic animals), and C0, C5, C10, and C20 (non-diabetic animals), respectively. Diabetes was induced by administering streptozotocin and confirmed later by the glycemia results. Twenty-nine days after diabetes induction, the SMG of groups D5 and C5, D10 and C10, and D20 and C20 were irradiated with 5, 10, and 20 J/cm(2), respectively. A diode laser (660 nm/100 mW) was used. On the day after irradiation, the rats were euthanized and the SMG were removed. Catalase, peroxidase, and amylase activities, as well as protein concentration, were assayed. RESULTS Diabetic rats without irradiation (D0) showed higher catalase activity (p < 0.05) when compared to C0 (0.16 +/- 0.05 and 0.07 +/- 0.01 U/mg protein, respectively). However, laser irradiation of 5, 10, and 20 J/cm(2) reduced the catalase activity of diabetic groups (D5 and D20) to non-diabetic values (p > 0.05). CONCLUSION Based on the results of this study, laser irradiation decreased catalase activity in diabetic rats' SMG.
Collapse
Affiliation(s)
- Alyne Simões
- Division of Oral Biology, Dental Materials Department, Faculty of Dentistry, University of São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
13
|
Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev 2009; 89:27-71. [PMID: 19126754 DOI: 10.1152/physrev.00014.2008] [Citation(s) in RCA: 371] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Regulated production of reactive oxygen species (ROS)/reactive nitrogen species (RNS) adequately balanced by antioxidant systems is a prerequisite for the participation of these active substances in physiological processes, including insulin action. Yet, increasing evidence implicates ROS and RNS as negative regulators of insulin signaling, rendering them putative mediators in the development of insulin resistance, a common endocrine abnormality that accompanies obesity and is a risk factor of type 2 diabetes. This review deals with this dual, seemingly contradictory, function of ROS and RNS in regulating insulin action: the major processes for ROS and RNS generation and detoxification are presented, and a critical review of the evidence that they participate in the positive and negative regulation of insulin action is provided. The cellular and molecular mechanisms by which ROS and RNS are thought to participate in normal insulin action and in the induction of insulin resistance are then described. Finally, we explore the potential usefulness and the challenges in modulating the oxidant-antioxidant balance as a potentially promising, but currently disappointing, means of improving insulin action in insulin resistance-associated conditions, leading causes of human morbidity and mortality of our era.
Collapse
Affiliation(s)
- Nava Bashan
- Department of Clinical Biochemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | |
Collapse
|
14
|
Effect of diode laser on enzymatic activity of parotid glands of diabetic rats. Lasers Med Sci 2008; 24:591-6. [DOI: 10.1007/s10103-008-0619-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 09/22/2008] [Indexed: 10/21/2022]
|
15
|
Franco R, Schoneveld OJ, Pappa A, Panayiotidis MI. The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem 2007; 113:234-58. [PMID: 18158646 DOI: 10.1080/13813450701661198] [Citation(s) in RCA: 373] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reduced glutathione (L-gamma-glutamyl-L-cysteinyl-glycine, GSH) is the prevalent low-molecular-weight thiol in mammalian cells. It is formed in a two-step enzymatic process including, first, the formation of gamma-glutamylcysteine from glutamate and cysteine, by the activity of the gamma-glutamylcysteine synthetase; and second, the formation of GSH by the activity of GSH synthetase which uses gamma-glutamylcysteine and glycine as substrates. While its synthesis and metabolism occur intracellularly, its catabolism occurs extracellularly by a series of enzymatic and plasma membrane transport steps. Glutathione metabolism and transport participates in many cellular reactions including: antioxidant defense of the cell, drug detoxification and cell signaling (involved in the regulation of gene expression, apoptosis and cell proliferation). Alterations in its concentration have also been demonstrated to be a common feature of many pathological conditions including diabetes, cancer, AIDS, neurodegenerative and liver diseases. Additionally, GSH catabolism has been recently reported to modulate redox-sensitive components of signal transduction cascades. In this manuscript, we review the current state of knowledge on the role of GSH in the pathogenesis of human diseases with the aim to underscore its relevance in translational research for future therapeutic treatment design.
Collapse
Affiliation(s)
- R Franco
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
16
|
Bulduk E, Gönül B, Ozer C. Effects of vitamin C on muscle glycogen and oxidative events in experimental diabetes. Mol Cell Biochem 2006; 292:131-7. [PMID: 16758299 DOI: 10.1007/s11010-006-9226-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 05/01/2006] [Indexed: 11/22/2022]
Abstract
UNLABELLED Streptozotocin (STZ) is an agent used in creating experimental diabetes. Varying findings have been reported about the striated muscle glycogen levels in diabetes. In this study, it was planned to observe interaction of vitamin C (AA), of which deficiency has been shown in diabetics, with soleus muscle glycogen levels and oxidative events on STZ-diabetic subjects. MATERIAL AND METHOD In the study, 38 male adult Wistar Albino rats with weights 200 +/- 20 g were used by separating them into four groups: Control, Vitamin C, Diabetes, Diabetes + Vitamin C. Body weights and fasting blood glucose were measured at the beginning and end of the experiment. AA, TBARS, GSH, NOx and glycogen levels of soleus muscles, and AA level of blood were measured. The results were compared using Anova variance and Mann-Whitney U tests. Results showed that AA levels in blood increased with vitamin C administration; AA, GSH and NOx levels in the muscle were low and MDA and glycogen levels were high in diabetics; and that vitamin C in the given dosage partially corrected these values. These results indicate that higher dosage than daily 20 mg/kg Vitamin C is required for being effective on metabolic and oxidizing events in diabetic rats.
Collapse
Affiliation(s)
- E Bulduk
- Gazi University Medicine School Physiology Department, Ankara, 06500, Turkey
| | | | | |
Collapse
|
17
|
Pomaro DR, Ihara SSM, Pinto LESA, Ueda I, Casarini DE, Ebihara F, Santos AO, Izar MCO, Fonseca FAH. High glucose levels abolish antiatherosclerotic benefits of ACE inhibition in alloxan-induced diabetes in rabbits. J Cardiovasc Pharmacol 2005; 45:295-300. [PMID: 15772516 DOI: 10.1097/01.fjc.0000155384.64350.45] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Renin-angiotensin system activation is recognized to play an important role in atherosclerosis. This study aimed to verify the antiatherosclerotic effects of ACE inhibition on an experimental model of diabetes and hypercholesterolemia. Diabetes was induced in New Zealand male rabbits with a single dose of alloxan (100 mg/kg, i.v.), and, according to plasma glucose levels obtained after 1 week, the animals were divided into 2 groups (> or =250 mg/dL or <250 mg/dL). Each group was randomly assigned to receive or not quinapril (30 mg/d) added to a 0.5% cholesterol-enriched diet. Animals with high glucose levels at 1 week and that remained high after 12 weeks presented higher triglyceride levels (P < 0.02 versus basal). Those initially hyperglycemic but presenting <250 mg/dL glucose at the end of study formed an additional group. Plasma ACE activity was lower in quinapril-treated animals (P < 0.01 versus untreated groups). However, aorta intima/media ratio and intima area were lower only in the subgroups of quinapril-treated animals with low glucose levels (P < 0.05). Our results support the hypothesis that high plasma glucose may abolish the antiatherosclerotic effect of ACE inhibitors.
Collapse
Affiliation(s)
- Daniel R Pomaro
- Department of Pathology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nogueira FN, Carvalho AM, Yamaguti PM, Nicolau J. Antioxidant parameters and lipid peroxidation in salivary glands of streptozotocin-induced diabetic rats. Clin Chim Acta 2005; 353:133-9. [PMID: 15698600 DOI: 10.1016/j.cccn.2004.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 10/25/2004] [Accepted: 10/26/2004] [Indexed: 02/02/2023]
Abstract
BACKGROUND There is evidence suggesting an unbalance between oxidant and antioxidant status associated with diabetes. Considering that salivary function is essential for the maintenance of oral and systemic health, this study was designed to examine the levels of reduced and oxidized glutathione and the activities of the antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, in salivary gland of streptozotocin-induced diabetic rats. METHODS The content of malondialdehyde was determined in the blood and in the salivary glands. The antioxidant status was investigated in the submandibular and parotid salivary glands. RESULTS Diabetic rats showed an increase in the content of malonaldehyde in the blood and in the submandibular salivary gland, but not in the parotid gland. Both forms, reduced and oxidized glutathione content present higher values in the diabetic submandibular gland compared with controls. No difference in the activity of superoxide dismutase between the diabetic and control glands was observed in either gland. Catalase showed higher specific activity in the parotid gland of the diabetic rats than control; however, in the submandibular gland, only when expressed as unit per gland was it higher than control. The specific activity of glutathione peroxidase was higher in the diabetic parotid gland than control; however, in the submandibular gland, its activity per gland was lower than controls. CONCLUSION The streptozotocin-induced diabetes in rats caused different results comparing the submandibular and parotid salivary glands.
Collapse
Affiliation(s)
- Fernando N Nogueira
- Oral Biology Research Center, Faculty of Dentistry, University of São Paulo, Av. Prof Lineu Prestes, 2227 CEP 05508-000 São Paulo, Brasil
| | | | | | | |
Collapse
|
19
|
Serra JA, Marschoff ER, Domínguez RO, Guareschi EM, Famulari AL, Pagano MA, de Lustig ES. Oxidative stress in Alzheimer's and vascular dementias: masking of the antioxidant profiles by a concomitant Type II diabetes mellitus condition. J Neurol Sci 2004; 218:17-24. [PMID: 14759628 DOI: 10.1016/j.jns.2003.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Revised: 09/19/2003] [Accepted: 10/01/2003] [Indexed: 11/24/2022]
Abstract
Oxidative stress is associated with Alzheimer's (DAT) and vascular (VD) dementias, as well as Type II diabetes mellitus (DIAB) and affected by hypoglycemic therapy. The population (n = 122; males = 60; mean age = 72.57 +/- 7.06) consisted of controls (CTR), DAT and VD patients, with (DAT + DIAB, VD + DIAB) and without concomitant DIAB, resulting in six groups where the antioxidant profile was determined: copper-zinc superoxide dismutase (SOD), thiobarbituric acid reactive substances (TBARS), and total antioxidant capacity (TRAP). The results were analyzed using a two-way ANOVA design and Bonferroni statistic. The ANOVAs yielded significant differences between groups for all components of the profile: SOD, p = 0.00000006; TBARS, p = 0.0000012; TRAP, p = 0.0000003. The significance level for comparisons between groups was set at alpha = 0.05. The comparisons DIAB vs. CTR, DAT+DIAB vs. DAT, and DIAB demented vs. DIAB non-demented resulted significant for all variables. VD + DIAB vs. VD resulted significant for all variables except TRAP. The antioxidant profiles of DIAB and CTR are different. The differences cannot be directly related with what is observed in dementias. The differences in profiles of demented and non-demented are somewhat hidden when demented patients are affected by a concomitant DIAB condition and/or hypoglycemic treatment, thus conditioning the diagnostic value for dementias of the profiles.
Collapse
Affiliation(s)
- Jorge A Serra
- Collaborative Group for the Study of the Oxidative Stress, Argentina
| | | | | | | | | | | | | |
Collapse
|