1
|
Ganguly A, Babu SS, Ghosh S, Velyutham R, Kapusetti G. Advances and future trends in the detection of beta-amyloid: A comprehensive review. Med Eng Phys 2025; 135:104269. [PMID: 39922648 DOI: 10.1016/j.medengphy.2024.104269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 02/10/2025]
Abstract
The neurodegenerative condition known as Alzheimer's disease is typified by the build-up of beta-amyloid plaques within the brain. The timely and precise identification of beta-amyloid is essential for understanding disease progression and developing effective therapeutic interventions. This comprehensive review explores the diverse landscape of beta-amyloid detection methods, ranging from traditional immunoassays to cutting-edge technologies. The review critically examines the strengths and limitations of established techniques such as ELISA, PET, and MRI, providing insights into their roles in research and clinical settings. Emerging technologies, including electrochemical methods, nanotechnology, fluorescence techniques, point-of-care devices, and machine learning integration, are thoroughly discussed, emphasizing recent breakthroughs and their potential for revolutionizing beta-amyloid detection. Furthermore, the review delves into the challenges associated with current detection methods, such as sensitivity, specificity, and accessibility. By amalgamating knowledge from multidisciplinary approaches, this review aims to guide researchers, clinicians, and policymakers in navigating the complex landscape of beta-amyloid detection, ultimately contributing to advancements in Alzheimer's disease diagnostics and therapeutics.
Collapse
Affiliation(s)
- Atri Ganguly
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research - Kolkata, -700054, India
| | - Srivalliputtur Sarath Babu
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research - Kolkata, -700054, India
| | - Sumanta Ghosh
- Divison of Applied Oral Science, The University of Hong Kong, SAR, Hong Kong
| | - Ravichandiran Velyutham
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research - Kolkata, -700054, India.
| | - Govinda Kapusetti
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research - Kolkata, -700054, India.
| |
Collapse
|
2
|
Duan S, Yong R, Yuan H, Cai T, Huang K, Hoettges K, Lim EG, Song P. Automated Offline Smartphone-Assisted Microfluidic Paper-Based Analytical Device for Biomarker Detection of Alzheimer's Disease. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-5. [PMID: 40039777 DOI: 10.1109/embc53108.2024.10781517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
This paper presents a smartphone-assisted microfluidic paper-based analytical device (μPAD), which was applied to detect Alzheimer's disease biomarkers, especially in resource-limited regions. This device implements deep learning (DL)-assisted offline smartphone detection, eliminating the requirement for large computing devices and cloud computing power. In addition, a smartphone-controlled rotary valve enables a fully automated colorimetric enzyme-linked immunosorbent assay (c-ELISA) on μPADs. It reduces detection errors caused by human operation and further increases the accuracy of μPAD c-ELISA. We realized a sandwich c-ELISA targeting β-amyloid peptide 1-42 (Aβ 1-42) in artificial plasma, and our device provided a detection limit of 15.07 pg/mL. We collected 750 images for the training of the DL YOLOv5 model. The training accuracy is 88.5%, which is 11.83% higher than the traditional curve-fitting result analysis method. Utilizing the YOLOv5 model with the NCNN framework facilitated offline detection directly on the smartphone. Furthermore, we developed a smartphone application to operate the experimental process, realizing user-friendly rapid sample detection.
Collapse
|
3
|
Duan S, Cai T, Liu F, Li Y, Yuan H, Yuan W, Huang K, Hoettges K, Chen M, Lim EG, Zhao C, Song P. Automatic offline-capable smartphone paper-based microfluidic device for efficient biomarker detection of Alzheimer's disease. Anal Chim Acta 2024; 1308:342575. [PMID: 38740448 DOI: 10.1016/j.aca.2024.342575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a prevalent neurodegenerative disease with no effective treatment. Efficient and rapid detection plays a crucial role in mitigating and managing AD progression. Deep learning-assisted smartphone-based microfluidic paper analysis devices (μPADs) offer the advantages of low cost, good sensitivity, and rapid detection, providing a strategic pathway to address large-scale disease screening in resource-limited areas. However, existing smartphone-based detection platforms usually rely on large devices or cloud servers for data transfer and processing. Additionally, the implementation of automated colorimetric enzyme-linked immunoassay (c-ELISA) on μPADs can further facilitate the realization of smartphone μPADs platforms for efficient disease detection. RESULTS This paper introduces a new deep learning-assisted offline smartphone platform for early AD screening, offering rapid disease detection in low-resource areas. The proposed platform features a simple mechanical rotating structure controlled by a smartphone, enabling fully automated c-ELISA on μPADs. Our platform successfully applied sandwich c-ELISA for detecting the β-amyloid peptide 1-42 (Aβ 1-42, a crucial AD biomarker) and demonstrated its efficacy in 38 artificial plasma samples (healthy: 19, unhealthy: 19, N = 6). Moreover, we employed the YOLOv5 deep learning model and achieved an impressive 97 % accuracy on a dataset of 1824 images, which is 10.16 % higher than the traditional method of curve-fitting results. The trained YOLOv5 model was seamlessly integrated into the smartphone using the NCNN (Tencent's Neural Network Inference Framework), enabling deep learning-assisted offline detection. A user-friendly smartphone application was developed to control the entire process, realizing a streamlined "samples in, answers out" approach. SIGNIFICANCE This deep learning-assisted, low-cost, user-friendly, highly stable, and rapid-response automated offline smartphone-based detection platform represents a good advancement in point-of-care testing (POCT). Moreover, our platform provides a feasible approach for efficient AD detection by examining the level of Aβ 1-42, particularly in areas with low resources and limited communication infrastructure.
Collapse
Affiliation(s)
- Sixuan Duan
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China; Department of Electrical and Electronic Engineering, University of Liverpool, Foundation Building, Brownlow Hill, Liverpool, L69 7ZX, UK; Key Laboratory of Bionic Engineering, Jilin University, 5988 Renmin Street, Changchun, 130022, China
| | - Tianyu Cai
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China
| | - Fuyuan Liu
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China; Department of Electrical and Electronic Engineering, University of Liverpool, Foundation Building, Brownlow Hill, Liverpool, L69 7ZX, UK
| | - Yifan Li
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China; Department of Electrical and Electronic Engineering, University of Liverpool, Foundation Building, Brownlow Hill, Liverpool, L69 7ZX, UK
| | - Hang Yuan
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China
| | - Wenwen Yuan
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China; Department of Electrical and Electronic Engineering, University of Liverpool, Foundation Building, Brownlow Hill, Liverpool, L69 7ZX, UK; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an, 710079, China
| | - Kaizhu Huang
- Department of Electrical and Computer Engineering, Duke Kunshan University, 8 Duke Avenue, Kunshan, 215316, China
| | - Kai Hoettges
- Department of Electrical and Electronic Engineering, University of Liverpool, Foundation Building, Brownlow Hill, Liverpool, L69 7ZX, UK
| | - Min Chen
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China; Department of Electrical and Electronic Engineering, University of Liverpool, Foundation Building, Brownlow Hill, Liverpool, L69 7ZX, UK
| | - Eng Gee Lim
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China; Department of Electrical and Electronic Engineering, University of Liverpool, Foundation Building, Brownlow Hill, Liverpool, L69 7ZX, UK
| | - Chun Zhao
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China; Department of Electrical and Electronic Engineering, University of Liverpool, Foundation Building, Brownlow Hill, Liverpool, L69 7ZX, UK
| | - Pengfei Song
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China; Department of Electrical and Electronic Engineering, University of Liverpool, Foundation Building, Brownlow Hill, Liverpool, L69 7ZX, UK.
| |
Collapse
|
4
|
Ayaz M, Mosa OF, Nawaz A, Hamdoon AAE, Elkhalifa MEM, Sadiq A, Ullah F, Ahmed A, Kabra A, Khan H, Murthy HCA. Neuroprotective potentials of Lead phytochemicals against Alzheimer's disease with focus on oxidative stress-mediated signaling pathways: Pharmacokinetic challenges, target specificity, clinical trials and future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155272. [PMID: 38181530 DOI: 10.1016/j.phymed.2023.155272] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/05/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Alzheimer's diseases (AD) and dementia are among the highly prevalent neurological disorders characterized by deposition of beta amyloid (Aβ) plaques, dense deposits of highly phosphorylated tau proteins, insufficiency of acetylcholine (ACh) and imbalance in glutamatergic system. Patients typically experience cognitive, behavioral alterations and are unable to perform their routine activities. Evidence also suggests that inflammatory processes including excessive microglia activation, high expression of inflammatory cytokines and release of free radicals. Thus, targeting inflammatory pathways beside other targets might be the key factors to control- disease symptoms and progression. PURPOSE This review is aimed to highlight the mechanisms and pathways involved in the neuroprotective potentials of lead phytochemicals. Further to provide updates regarding challenges associated with their use and their progress into clinical trials as potential lead compounds. METHODS Most recent scientific literature on pre-clinical and clinical data published in quality journals especially on the lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin was collected using SciFinder, PubMed, Google Scholar, Web of Science, JSTOR, EBSCO, Scopus and other related web sources. RESULTS Literature review indicated that the drug discovery against AD is insufficient and only few drugs are clinically approved which have limited efficacy. Among the therapeutic options, natural products have got tremendous attraction owing to their molecular diversity, their safety and efficacy. Research suggest that natural products can delay the disease onset, reduce its progression and regenerate the damage via their anti-amyloid, anti-inflammatory and antioxidant potentials. These agents regulate the pathways involved in the release of neurotrophins which are implicated in neuronal survival and function. Highly potential lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin regulate neuroprotective signaling pathways implicated in neurotrophins-mediated activation of tropomyosin receptor kinase (Trk) and p75 neurotrophins receptor (p75NTR) family receptors. CONCLUSIONS Phytochemicals especially phenolic compounds were identified as highly potential molecules which ameliorate oxidative stress induced neurodegeneration, reduce Aβ load and inhibit vital enzymes. Yet their clinical efficacy and bioavailability are the major challenges which need further interventions for more effective therapeutic outcomes.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan.
| | - Osama F Mosa
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA
| | - Asif Nawaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Alashary Adam Eisa Hamdoon
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Modawy Elnour Modawy Elkhalifa
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Alshebli Ahmed
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Pakistan
| | - H C Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P O Box 1888, Adama, Ethiopia; Department of Prosthodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and technical science (SIMATS), Saveetha University, Chennai-600077, Tamil Nadu, India
| |
Collapse
|
5
|
Pathak N, Vimal SK, Tandon I, Agrawal L, Hongyi C, Bhattacharyya S. Neurodegenerative Disorders of Alzheimer, Parkinsonism, Amyotrophic Lateral Sclerosis and Multiple Sclerosis: An Early Diagnostic Approach for Precision Treatment. Metab Brain Dis 2022; 37:67-104. [PMID: 34719771 DOI: 10.1007/s11011-021-00800-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/11/2021] [Indexed: 12/21/2022]
Abstract
Neurodegenerative diseases (NDs) are characterised by progressive dysfunction of synapses, neurons, glial cells and their networks. Neurodegenerative diseases can be classified according to primary clinical features (e.g., dementia, parkinsonism, or motor neuron disease), anatomic distribution of neurodegeneration (e.g., frontotemporal degenerations, extrapyramidal disorders, or spinocerebellar degenerations), or principal molecular abnormalities. The most common neurodegenerative disorders are amyloidosis, tauopathies, a-synucleinopathy, and TAR DNA-binding protein 43 (TDP-43) proteopathy. The protein abnormalities in these disorders have abnormal conformational properties along with altered cellular mechanisms, and they exhibit motor deficit, mitochondrial malfunction, dysfunctions in autophagic-lysosomal pathways, synaptic toxicity, and more emerging mechanisms such as the roles of stress granule pathways and liquid-phase transitions. Finally, for each ND, microglial cells have been reported to be implicated in neurodegeneration, in particular, because the microglial responses can shift from neuroprotective to a deleterious role. Growing experimental evidence suggests that abnormal protein conformers act as seed material for oligomerization, spreading from cell to cell through anatomically connected neuronal pathways, which may in part explain the specific anatomical patterns observed in brain autopsy sample. In this review, we mention the human pathology of select neurodegenerative disorders, focusing on how neurodegenerative disorders (i.e., Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis) represent a great healthcare problem worldwide and are becoming prevalent because of the increasing aged population. Despite many studies have focused on their etiopathology, the exact cause of these diseases is still largely unknown and until now with the only available option of symptomatic treatments. In this review, we aim to report the systematic and clinically correlated potential biomarker candidates. Although future studies are necessary for their use in early detection and progression in humans affected by NDs, the promising results obtained by several groups leads us to this idea that biomarkers could be used to design a potential therapeutic approach and preclinical clinical trials for the treatments of NDs.
Collapse
Affiliation(s)
- Nishit Pathak
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, Chongqing, 400715, People's Republic of China
| | - Sunil Kumar Vimal
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, Chongqing, 400715, People's Republic of China
| | - Ishi Tandon
- Amity University Jaipur, Rajasthan, Jaipur, Rajasthan, India
| | - Lokesh Agrawal
- Graduate School of Comprehensive Human Sciences, Kansei Behavioural and Brain Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Cao Hongyi
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, Chongqing, 400715, People's Republic of China
| | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
6
|
Amor-Gutiérrez O, Costa-Rama E, Arce-Varas N, Martínez-Rodríguez C, Novelli A, Fernández-Sánchez MT, Costa-García A. Competitive electrochemical immunosensor for the detection of unfolded p53 protein in blood as biomarker for Alzheimer's disease. Anal Chim Acta 2019; 1093:28-34. [PMID: 31735212 DOI: 10.1016/j.aca.2019.09.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is one of the most common causes of dementia nowadays, and its prevalence increases over time. Because of this and the difficulty of its diagnosis, accurate methods for the analysis of specific biomarkers for an early diagnosis of this disease are much needed. Recently, the levels of unfolded isoform of the multifunctional protein p53 in plasma have been proved to increase selectively in Alzheimer's Disease patients in comparison with healthy subjects, thus entering the list of biomarkers that can be used for the diagnosis of this illness. We present here the development of an electrochemical immunosensor based on nanostructured screen-printed carbon electrodes for the quantification of unfolded p53 in plasma samples. The sensor shows a suitable linear range (from 2 to 50 nM) for its application in real blood samples and a very low limit of detection (0.05 nM). The concentration of unfolded p53 has been accurately detected in plasma of elderly people in healthy conditions, subjects with mild cognitive impairment (MCI) and Alzheimer's Disease (AD) subjects, obtaining results with no significant differences to those provided by an ELISA assay. These results support the possibility of measuring unfolded p53 levels with a cheap, simple and miniaturized device with a promising future for point-of-care applications in the early diagnosis of Alzheimer's dementia.
Collapse
Affiliation(s)
- Olaya Amor-Gutiérrez
- Nanobioanalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - Estefanía Costa-Rama
- Nanobioanalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain; REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, Porto, Portugal
| | | | | | - Antonello Novelli
- Department of Psychology, University of Oviedo, Oviedo, Spain; University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain; Institute for Sanitary Research of the Princedom of Asturias (ISPA), Oviedo, Spain
| | - María Teresa Fernández-Sánchez
- Department of Biochemistry and Molecular Biology, University of Oviedo, Oviedo, Spain; University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Agustín Costa-García
- Nanobioanalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain.
| |
Collapse
|
7
|
Dursun E, Gezen-Ak D. Vitamin D basis of Alzheimer's disease: from genetics to biomarkers. Hormones (Athens) 2019; 18:7-15. [PMID: 30484096 DOI: 10.1007/s42000-018-0086-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder seen mostly in the elderly population. While to date AD research has focused on either neurochemical disruptions, genetic studies, or the pathological hallmarks, little has been done to establish a novel approach that would encompass all three aspects, one that would overcome the current barriers in AD research and determine the cause of AD and, eventually, discover a treatment. Meanwhile, there have been strong indications in recent years that vitamin D, a secosteroid hormone, and its receptors are fundamentally involved in neurodegenerative mechanisms. Observational studies have pointed to vitamin D deficiency as a genetic risk factor for AD, Parkinson's disease (PD), vascular dementia, and multiple sclerosis (MS), as well as other neurological disorders, brought about by alterations in genes involved in metabolism, transportation, and actions of vitamin D. Molecular studies have demonstrated that vitamin D treatments prevent amyloid production while also increasing its clearance from the brain in AD. Finally, recent vitamin D intervention studies have reported significant improvement in cognitive performance in subjects with senile dementia, mild cognitive impairment, and AD. This review aims to describe how a vitamin D research strategy, fully integrating all aspects of present-day AD research, would elucidate the genetic, molecular, and biochemical background of the disease.
Collapse
Affiliation(s)
- Erdinç Dursun
- Brain and Neurodegenerative Disorders Research Laboratory, Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, 34098, Istanbul, Turkey.
| | - Duygu Gezen-Ak
- Brain and Neurodegenerative Disorders Research Laboratory, Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, 34098, Istanbul, Turkey
| |
Collapse
|
8
|
Singh S, Gupta SK, Seth PK. Biomarkers for detection, prognosis and therapeutic assessment of neurological disorders. Rev Neurosci 2018; 29:771-789. [PMID: 29466244 DOI: 10.1515/revneuro-2017-0097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/17/2017] [Indexed: 10/24/2023]
Abstract
Neurological disorders have aroused a significant concern among the health scientists globally, as diseases such as Parkinson's, Alzheimer's and dementia lead to disability and people have to live with them throughout the life. Recent evidence suggests that a number of environmental chemicals such as pesticides (paraquat) and metals (lead and aluminum) are also the cause of these diseases and other neurological disorders. Biomarkers can help in detecting the disorder at the preclinical stage, progression of the disease and key metabolomic alterations permitting identification of potential targets for intervention. A number of biomarkers have been proposed for some neurological disorders based on laboratory and clinical studies. In silico approaches have also been used by some investigators. Yet the ideal biomarker, which can help in early detection and follow-up on treatment and identifying the susceptible populations, is not available. An attempt has therefore been made to review the recent advancements of in silico approaches for discovery of biomarkers and their validation. In silico techniques implemented with multi-omics approaches have potential to provide a fast and accurate approach to identify novel biomarkers.
Collapse
Affiliation(s)
- Sarita Singh
- Distinguished Scientist Laboratory, Biotech Park, Sector-G Jankipram, Kursi Road, Lucknow 226021, Uttar Pradesh, India
| | - Sunil Kumar Gupta
- Distinguished Scientist Laboratory, Biotech Park, Lucknow 226021, Uttar Pradesh, India
| | - Prahlad Kishore Seth
- Distinguished Scientist Laboratory, Biotech Park, Lucknow 226021, Uttar Pradesh, India
| |
Collapse
|
9
|
Mattsson N, Lönneborg A, Boccardi M, Blennow K, Hansson O. Clinical validity of cerebrospinal fluid Aβ42, tau, and phospho-tau as biomarkers for Alzheimer's disease in the context of a structured 5-phase development framework. Neurobiol Aging 2017; 52:196-213. [DOI: 10.1016/j.neurobiolaging.2016.02.034] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/01/2023]
|
10
|
Sengupta U, Portelius E, Hansson O, Farmer K, Castillo‐Carranza D, Woltjer R, Zetterberg H, Galasko D, Blennow K, Kayed R. Tau oligomers in cerebrospinal fluid in Alzheimer's disease. Ann Clin Transl Neurol 2017; 4:226-235. [PMID: 28382304 PMCID: PMC5376754 DOI: 10.1002/acn3.382] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/26/2016] [Accepted: 11/18/2016] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE With an increasing incidence of Alzheimer's disease (AD) and neurodegenerative tauopathies, there is an urgent need to develop reliable biomarkers for the diagnosis and monitoring of the disease, such as the recently discovered toxic tau oligomers. Here, we aimed to demonstrate the presence of tau oligomers in the cerebrospinal fluid (CSF) of patients with cognitive deficits, and to determine whether tau oligomers could serve as a potential biomarker for AD. METHODS A multicentric collaborative study involving a double-blinded analysis with a total of 98 subjects with moderate to severe AD (N = 41), mild AD (N = 31), and nondemented control subjects (N = 26), and two pilot studies of 33 total patients with AD (N = 19) and control (N = 14) subjects were performed. We carried out biochemical assays to measure oligomeric tau from CSF of these patients with various degrees of cognitive impairment as well as cognitively normal controls. RESULTS Using a highly reproducible indirect ELISA method, we found elevated levels of tau oligomers in AD patients compared to age-matched controls. Western blot analysis confirmed the presence of oligomeric forms of tau in CSF. In addition, the ratio of oligomeric to total tau increased in the order: moderate to severe AD, mild AD, and controls. CONCLUSION These assays are suitable for the analysis of human CSF samples. These results here suggest that CSF tau oligomer measurements could be optimized and added to the panel of CSF biomarkers for the accurate and early detection of AD.
Collapse
Affiliation(s)
- Urmi Sengupta
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas
- Department of Neurology, and Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexas
| | - Erik Portelius
- Clinical Neurochemistry LaboratoryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at University of GothenburgMölndalSweden
| | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Memory ClinicSkåne University HospitalLund Sweden
| | - Kathleen Farmer
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas
- Department of Neurology, and Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexas
| | - Diana Castillo‐Carranza
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas
- Department of Neurology, and Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexas
| | - Randall Woltjer
- Department of Department of PathologyOregon Health & Science UniversityPortlandOregon
| | - Henrik Zetterberg
- Clinical Neurochemistry LaboratoryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at University of GothenburgMölndalSweden
- Department of Molecular NeuroscienceUCL Institute of NeurologyQueen SquareLondonWC1N 3BGUnited Kingdom
| | - Douglas Galasko
- Department of NeuroscienceUniversity of California San DiegoSan DiagoCalifornia
| | - Kaj Blennow
- Clinical Neurochemistry LaboratoryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at University of GothenburgMölndalSweden
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas
- Department of Neurology, and Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexas
| |
Collapse
|
11
|
Athari Nik Azm S, Vafa M, Sharifzadeh M, Safa M, Barati A, Mirshafiey A. Effects of M2000 (D-Mannuronic Acid) on Learning, Memory Retrieval, and Associated Determinants in a Rat Model of Alzheimer's Disease. Am J Alzheimers Dis Other Demen 2017; 32:12-21. [PMID: 28100077 PMCID: PMC10852923 DOI: 10.1177/1533317516678086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
The d-mannuronic acid (M2000) is a novel nonsteroidal anti-inflammatory drug that has immunosuppressive effects together with antioxidant property. M2000 has shown a notable efficacy in experimental models of multiple sclerosis, rheumatoid arthritis, and nephrotic syndrome. In this work, the effect of M2000 on the treatment of Alzheimer's disease (AD) was performed by Morris water maze experiment, and the immunological assessments were carried out by Western blot, apoptosis (procaspase-3, Bax/Bcl2, P53), enzymatic (superoxide dismutase [SOD]), and nonenzymatic oxidative stress (malondialdehyde [MDA]) tests. We found that pretreatment of AD in the rat model by M2000 had a potent efficacy on rat behavior and also it led to a significant inhibition of amyloid plaque production. Moreover, our data showed that M2000 can reduce the amount of Bax/Bcl2, P53, MDA, and SOD, as well as it normalized the level of procaspase-3. Our results suggest M2000 is a potential therapeutic agent for the treatment of AD.
Collapse
Affiliation(s)
- Somayeh Athari Nik Azm
- Department of Cellular and Molecular Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Majid Safa
- Cellular and Molecular Research Centre, School of Allied Medical Science, Iran University of Medical Science, Tehran, Iran
| | - Anis Barati
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
The Role of Chromatography in Alzheimer’s Disease Drug Discovery. ADVANCES IN CHROMATOGRAPHY 2016. [DOI: 10.1201/9781315370385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Kaushik A, Jayant RD, Tiwari S, Vashist A, Nair M. Nano-biosensors to detect beta-amyloid for Alzheimer's disease management. Biosens Bioelectron 2016; 80:273-287. [PMID: 26851586 PMCID: PMC4786026 DOI: 10.1016/j.bios.2016.01.065] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/21/2016] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
Abstract
Beta-amyloid (β-A) peptides are potential biomarkers to monitor Alzheimer's diseases (AD) for diagnostic purposes. Increased β-A level is neurotoxic and induces oxidative stress in brain resulting in neurodegeneration and causes dementia. As of now, no sensitive and inexpensive method is available for β-A detection under physiological and pathological conditions. Although, available methods such as neuroimaging, enzyme-linked immunosorbent assay (ELISA), and polymerase chain reaction (PCR) detect β-A, but they are not yet extended at point-of-care (POC) due to sophisticated equipments, need of high expertize, complicated operations, and challenge of low detection limit. Recently, β-A antibody based electrochemical immuno-sensing approach has been explored to detect β-A at pM levels within 30-40 min compared to 6-8h of ELISA test. The introduction of nano-enabling electrochemical sensing technology could enable rapid detection of β-A at POC and may facilitate fast personalized health care delivery. This review explores recent advancements in nano-enabling electrochemical β-A sensing technologies towards POC application to AD management. These analytical tools can serve as an analytical tool for AD management program to obtain bio-informatics needed to optimize therapeutics for neurodegenerative diseases diagnosis management.
Collapse
Affiliation(s)
- Ajeet Kaushik
- Center for Personalized Nanomedicine, Institute of Neuro immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| | - Rahul Dev Jayant
- Center for Personalized Nanomedicine, Institute of Neuro immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Sneham Tiwari
- Center for Personalized Nanomedicine, Institute of Neuro immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Arti Vashist
- Center for Personalized Nanomedicine, Institute of Neuro immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Institute of Neuro immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| |
Collapse
|
14
|
Trebeschi S, Riederer I, Preibisch C, Bohn KP, Förster S, Alexopoulos P, Zimmer C, Kirschke JS, Valentinitsch A. Diagnostic Potential of Pulsed Arterial Spin Labeling in Alzheimer's Disease. Front Neurosci 2016; 10:154. [PMID: 27147946 PMCID: PMC4835490 DOI: 10.3389/fnins.2016.00154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/23/2016] [Indexed: 11/13/2022] Open
Abstract
Alzheimers disease (AD) is the most common cause of dementia. Although the underlying pathology is still not completely understood, several diagnostic methods are available. Frequently, the most accurate methods are also the most invasive. The present work investigates the diagnostic potential of Pulsed Arterial Spin Labeling (PASL) for AD: a non-invasive, MRI-based technique for the quantification of regional cerebral blood flow (rCBF). In particular, we propose a pilot computer aided diagnostic (CAD) procedure able to discriminate between healthy and diseased subjects, and at the same time, providing visual informative results. This method encompasses the creation of a healthy model, the computation of a voxel-wise likelihood function as comparison between the healthy model and the subject under examination, and the correction of the likelihood function via prior distributions. The discriminant analysis is carried out to maximize the accuracy of the classification. The algorithm has been trained on a dataset of 81 subjects and achieved a sensitivity of 0.750 and a specificity of 0.875. Moreover, in accordance with the current pathological knowledge, the parietal lobe, and limbic system are shown to be the main discriminant factors.
Collapse
Affiliation(s)
- Stefano Trebeschi
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München Munich, Germany
| | - Isabelle Riederer
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München Munich, Germany
| | - Christine Preibisch
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München Munich, Germany
| | - Karl P Bohn
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität MünchenMunich, Germany; Department of Nuclear Medicine, Ulm UniversityUlm, Germany
| | - Stefan Förster
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität MünchenMunich, Germany; TUM Neuroimaging Center, Klinikum rechts der Isar, Technische Universität MünchenMunich, Germany
| | - Panagiotis Alexopoulos
- Departments of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität MünchenMunich, Germany; Department of Psychiatry, University Hospital of Rion, University of PatrasPatras, Greece
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München Munich, Germany
| | - Jan S Kirschke
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München Munich, Germany
| | - Alexander Valentinitsch
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München Munich, Germany
| |
Collapse
|
15
|
Agrawal M, Biswas A. Molecular diagnostics of neurodegenerative disorders. Front Mol Biosci 2015; 2:54. [PMID: 26442283 PMCID: PMC4585189 DOI: 10.3389/fmolb.2015.00054] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/04/2015] [Indexed: 12/12/2022] Open
Abstract
Molecular diagnostics provide a powerful method to detect and diagnose various neurological diseases such as Alzheimer's and Parkinson's disease. The confirmation of such diagnosis allows early detection and subsequent medical counseling that help specific patients to undergo clinically important drug trials. This provides a medical pathway to have better insight of neurogenesis and eventual cure of the neurodegenerative diseases. In this short review, we present recent advances in molecular diagnostics especially biomarkers and imaging spectroscopy for neurological diseases. We describe advances made in Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), and finally present a perspective on the future directions to provide a framework for further developments and refinements of molecular diagnostics to combat neurodegenerative disorders.
Collapse
Affiliation(s)
- Megha Agrawal
- Department of Biology, University of Arkansas at Little Rock Little Rock, AR, USA
| | - Abhijit Biswas
- Department of Electrical Engineering, Center for Nano Science and Technology, University of Notre Dame Notre Dame, IN, USA
| |
Collapse
|
16
|
Meijs AP, Claassen JAHR, Rikkert MGMO, Schalk BWM, Meulenbroek O, Kessels RPC, Melis RJF. How does additional diagnostic testing influence the initial diagnosis in patients with cognitive complaints in a memory clinic setting? Age Ageing 2015; 44:72-7. [PMID: 24847028 DOI: 10.1093/ageing/afu053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND patients suspected of dementia frequently undergo additional diagnostic testing (e.g. brain imaging or neuropsychological assessment) after standard clinical assessment at a memory clinic. This study investigates the use of additional testing in an academic outpatient memory clinic and how it influences the initial diagnosis. METHODS the initial diagnosis after standard clinical assessment (history, laboratory tests, cognitive screening and physical and neurological examination) and the final diagnosis after additional testing of 752 memory clinic patients were collected. We specifically registered if, and what type of, additional testing was requested. RESULTS additional testing was performed in 518 patients (69%), 67% of whom underwent magnetic resonance imaging, 45% had neuropsychological assessment, 14% had cerebrospinal fluid analysis and 49% had (combinations of) other tests. This led to a modification of the initial diagnosis in 17% of the patients. The frequency of change was highest in patients with an initial non-Alzheimer's disease (AD) dementia diagnosis (54%, compared with 11 and 14% in patients with AD and 'no dementia'; P < 0.01). Finally, after additional testing 44% was diagnosed with AD, 9% with non-AD dementia and 47% with 'no dementia'. CONCLUSION additional testing should especially be considered in non-AD patients. In the large group of patients with an initial AD or 'no dementia' diagnosis, additional tests have little diagnostic impact and may perhaps be used with more restraint.
Collapse
Affiliation(s)
- Anouk P Meijs
- Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jurgen A H R Claassen
- Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen, Netherlands Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, Netherlands Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marcel G M Olde Rikkert
- Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen, Netherlands Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, Netherlands Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bianca W M Schalk
- Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen, Netherlands Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, Netherlands
| | - Olga Meulenbroek
- Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen, Netherlands Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, Netherlands
| | - Roy P C Kessels
- Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen, Netherlands Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, Netherlands Department of Medical Psychology, Radboud University Medical Center, Nijmegen, Netherlands
| | - René J F Melis
- Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen, Netherlands Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, Netherlands Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
17
|
Gaugler JE, Kane RL, Johnston JA, Sarsour K. Sensitivity and specificity of diagnostic accuracy in Alzheimer's disease: a synthesis of existing evidence. Am J Alzheimers Dis Other Demen 2013; 28:337-47. [PMID: 23687179 PMCID: PMC10852625 DOI: 10.1177/1533317513488910] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
PURPOSE OF THE STUDY This report synthesizes existing evidence to compare the accuracy of various Alzheimer's disease (AD) diagnostic approaches. DESIGN AND METHODS Meta-analyses and reviews of diagnostic accuracy of AD were identified through a search of the PubMed and Cochrane Library databases using the keyword combinations of "sensitivity specificity Alzheimer's disease diagnosis" and "accuracy of Alzheimer's disease diagnosis." RESULTS From 507 abstracts initially identified, 41 systematic reviews or meta-analyses were selected. Cerebrospinal fluid-tau demonstrated variable sensitivity (range 73.3%-100%) and specificity (range 70.0%-92.4%) in diagnosing AD when compared to neuropathological verification of clinical criteria for AD. Various positron emission tomography approaches showed a similar range of sensitivity (range 80.0%-100%) and specificity (range 62.0%-90%) as diagnostic protocols. IMPLICATIONS Issues that remain in the study of AD diagnosis include the need to determine the comparative effectiveness of diagnostic approaches. Variations in study quality make empirically derived conclusions about the diagnostic accuracy of existing approaches tenuous.
Collapse
Affiliation(s)
- Joseph E Gaugler
- School of Nursing & Center on Aging, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
18
|
Szymański P, Lázničková A, Lázniček M, Bajda M, Malawska B, Markowicz M, Mikiciuk-Olasik E. 2,3-dihydro-1H-cyclopenta[b]quinoline derivatives as acetylcholinesterase inhibitors-synthesis, radiolabeling and biodistribution. Int J Mol Sci 2012; 13:10067-10090. [PMID: 22949848 PMCID: PMC3431846 DOI: 10.3390/ijms130810067] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/07/2012] [Accepted: 08/06/2012] [Indexed: 12/24/2022] Open
Abstract
In the present study we describe the synthesis and biological assessment of new tacrine analogs in the course of inhibition of acetylcholinesterase. The obtained molecules were synthesized in a condensation reaction between activated 6-BOC-hydrazinopyridine-3-carboxylic acid and 8-aminoalkyl derivatives of 2,3-dihydro-1H-cyclopenta[b]quinoline. Activities of the newly synthesized compounds were estimated by means of Ellman’s method. Compound 6h (IC50 = 3.65 nM) was found to be most active. All obtained novel compounds present comparable activity to that of tacrine towards acetylcholinesterase (AChE) and, simultaneously, lower activity towards butyrylcholinesterase (BChE). Apart from 6a, all synthesized compounds are characterized by a higher affinity for AChE and a lower affinity for BChE in comparison with tacrine. Among all obtained molecules, compound 6h presented the highest selectivity towards inhibition of acetylcholinesterase. Molecular modeling showed that all compounds demonstrated a similar binding mode with AChE and interacted with catalytic and peripheral sites of AChE. Also, a biodistribution study of compound 6a radiolabeled with 99mTc was performed.
Collapse
Affiliation(s)
- Paweł Szymański
- Department of Pharmaceutical Chemistry and Drug Analyses, Medical University, ul. Muszyńskiego 1, Lodz 90-151, Poland; E-Mails: (M.M.); (E.M.-O.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +48-42-677-9250
| | - Alice Lázničková
- Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, Hradec Kralove CZ-50005, Czech Republic; E-Mails: (A.L.); (M.L.)
| | - Milan Lázniček
- Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, Hradec Kralove CZ-50005, Czech Republic; E-Mails: (A.L.); (M.L.)
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland; E-Mails: (M.B.); (B.M.)
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland; E-Mails: (M.B.); (B.M.)
| | - Magdalena Markowicz
- Department of Pharmaceutical Chemistry and Drug Analyses, Medical University, ul. Muszyńskiego 1, Lodz 90-151, Poland; E-Mails: (M.M.); (E.M.-O.)
| | - Elżbieta Mikiciuk-Olasik
- Department of Pharmaceutical Chemistry and Drug Analyses, Medical University, ul. Muszyńskiego 1, Lodz 90-151, Poland; E-Mails: (M.M.); (E.M.-O.)
| |
Collapse
|
19
|
Takahashi E, Howe A, Vesterqvist O, Lin Z. Quantitation of amyloid beta peptides in CSF by surface enhanced MALDI-TOF. Methods Mol Biol 2012; 818:227-236. [PMID: 22083827 DOI: 10.1007/978-1-61779-418-6_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Alzheimer's disease is characterized by the deposition of amyloid plaques in the brain. The major components of these plaques are β-amyloid (Aβ) peptides. The CSF concentration of these peptides can therefore provide a valuable biomarker for potentially predicting the state of disease and/or monitoring the efficacy of a drug aiming to inhibit the formation of amyloid plaques. Although the concentration of a given peptide in CSF can easily be measured by ELISA methods, few methods are able to simultaneously observe and distinguish between various peptides of similar yet slightly different amino acid composition. The Surface Enhanced Laser Desorption/Ionization-Time Of Flight mass spectrometry (SELDI-TOF) technology, a platform combining the use of an antibody and MALDI-TOF, can be used to simultaneously detect and quantitate various Aβ peptides with sensitivities in the picomolar range.
Collapse
|
20
|
Standardization of preanalytical aspects of cerebrospinal fluid biomarker testing for Alzheimer's disease diagnosis: a consensus paper from the Alzheimer's Biomarkers Standardization Initiative. Alzheimers Dement 2011; 8:65-73. [PMID: 22047631 DOI: 10.1016/j.jalz.2011.07.004] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 07/28/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND Numerous studies show that the cerebrospinal fluid biomarkers total tau (T-tau), tau phosphorylated at threonine 181 (P-tau(181P)), and amyloid-β (1-42) (Aβ(1-42)) have high diagnostic accuracy for Alzheimer's disease. Variability in concentrations for Aβ(1-42), T-tau, and P-tau(181P) drives the need for standardization. METHODS Key issues were identified and discussed before the first meeting of the members of the Alzheimer's Biomarkers Standardization Initiative (ABSI). Subsequent ABSI consensus meetings focused on preanalytical issues. RESULTS Consensus was reached on preanalytical issues such as the effects of fasting, different tube types, centrifugation, time and temperature before storage, storage temperature, repeated freeze/thaw cycles, and length of storage on concentrations of Aβ(1-42), T-tau, and P-tau(181P) in cerebrospinal fluid. CONCLUSIONS The consensus reached on preanalytical issues and the recommendations put forward during the ABSI consensus meetings are presented in this paper.
Collapse
|
21
|
Szymański P, Markowicz M, Mikiciuk-Olasik E. Synthesis and biological activity of derivatives of tetrahydroacridine as acetylcholinesterase inhibitors. Bioorg Chem 2011; 39:138-42. [PMID: 21621811 DOI: 10.1016/j.bioorg.2011.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 11/30/2022]
Abstract
Current state of medical sciences does not allow to treatment neurodegenerative diseases such as Alzheimer's disease (AD). At present treatment of AD is severely restricted. The main class of medicines which are applied in AD is acetylcholinesterase inhibitors (AChEIs) like tacrine, donepezil, galantamine and rivastigmine that do not contribute to significant and long-term improvement in cognitive and behavioural functions. In this work, we report synthesis and biological evaluation of new hybrids of tacrine-6-hydrazinonicotinamide. The synthesis was based on the condensation reaction between tacrine derivatives and the hydrazine nicotinate moiety (HYNIC). All obtained compounds present affinity for both cholinesterases and are characterized by high selectivity in relation to butyrylcholinesterase (BChE).
Collapse
Affiliation(s)
- Paweł Szymański
- Department Pharmaceutical Chemistry and Drug Analyses, Medical University, ul. Muszyńskiego 1, 90-151 Lodz, Poland.
| | | | | |
Collapse
|
22
|
Humpel C. Identifying and validating biomarkers for Alzheimer's disease. Trends Biotechnol 2011; 29:26-32. [PMID: 20971518 PMCID: PMC3016495 DOI: 10.1016/j.tibtech.2010.09.007] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/28/2010] [Accepted: 09/28/2010] [Indexed: 12/13/2022]
Abstract
The identification and validation of biomarkers for diagnosing Alzheimer's disease (AD) and other forms of dementia are increasingly important. To date, ELISA measurement of β-amyloid(1-42), total tau and phospho-tau-181 in cerebrospinal fluid (CSF) is the most advanced and accepted method to diagnose probable AD with high specificity and sensitivity. However, it is a great challenge to search for novel biomarkers in CSF and blood by using modern potent methods, such as microarrays and mass spectrometry, and to optimize the handling of samples (e.g. collection, transport, processing, and storage), as well as the interpretation using bioinformatics. It seems likely that only a combined analysis of several biomarkers will define a patient-specific signature to diagnose AD in the future.
Collapse
Affiliation(s)
- Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Innsbruck Medical University, Anichstr. 35, A-6020 Innsbruck, Austria.
| |
Collapse
|
23
|
Schipper HM. Biological markers and Alzheimer disease: a canadian perspective. Int J Alzheimers Dis 2010; 2010. [PMID: 20811568 PMCID: PMC2929634 DOI: 10.4061/2010/978182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 07/11/2010] [Indexed: 01/14/2023] Open
Abstract
Decreased β-amyloid1-42 and increased phospho-tau protein levels in the cerebrospinal fluid (CSF) are currently the most accurate chemical neurodiagnostics of sporadic Alzheimer disease (AD). A report (2007) of the Third Canadian Consensus Conference on the Diagnosis and Treatment of Dementia (2006) recommended that biological markers should not be currently requisitioned by primary care physicians in the routine investigation of subjects with memory complaints. Consideration for such testing should prompt patient referral to a specialist engaged in dementia evaluations or a Memory Clinic. The specialist should consider having CSF biomarkers (β-amyloid1-42 and phospho-tau) measured at a reputable facility in restricted cases presenting with atypical features and diagnostic confusion, but not as a routine procedure in all individuals with typical sporadic AD phenotypes. We submit that developments in the field of AD biomarker discovery since publication of the 3rd CCCDTD consensus data do not warrant revision of the 2007 recommendations.
Collapse
Affiliation(s)
- Hyman M Schipper
- Department of Neurology and Neurosurgery, Centre for Neurotranslational Research, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, 3755 Cote St. Catherine Rd. Montreal, QC, Canada H3T 1E2
| |
Collapse
|
24
|
Abstract
Alzheimer's disease (AD) is the most common age-related dementia. Unfortunately due to a lack of validated biomarkers definitive diagnosis relies on the histological demonstration of amyloid-beta (Abeta) plaques and tau neurofibrillary tangles. Abeta processing is implicated in AD progression and many therapeutic strategies target various aspects of this biology. While Abeta deposition is the most prominent feature of AD, oligomeric forms of Abeta have been implicated as the toxic species inducing the neuronal dysfunction. Currently there are no methods allowing routine monitoring of levels of such species in living populations. We have used surface enhanced laser desorption ionization time of flight (SELDI-TOF) mass spectrometry incorporating antibody capture to investigate whether the cellular membrane-containing fraction of blood provides a new source of biomarkers. There are significant differences in the mass spectra profiles of AD compared with HC subjects, with significantly higher levels of Abeta monomer and dimer in the blood of AD subjects. Furthermore, levels of these species correlated with clinical markers of AD including brain Abeta burden, cognitive impairment and brain atrophy. These results indicate that fundamental biochemical events relevant to AD can be monitored in blood, and that the species detected may be useful clinical biomarkers for AD.
Collapse
|
25
|
Abstract
Alzheimer disease is the most common cause of dementia, yet its clinical diagnosis remains uncertain until an eventual postmortem histopathology examination. Currently, therapy for patients with Alzheimer disease only treats the symptoms; however, it is anticipated that new disease-modifying drugs will soon become available.Diagnostic tools for detecting Alzheimer disease at an incipient stage that can reliably differentiate the disease from other forms of dementia are of key importance for optimal treatment. Biomarkers have the potential to aid in a correct diagnosis, and great progress has been made in the discovery and development of potentially useful biomarkers in recent years. This includes single protein biomarkers in the cerebrospinal fluid, as well as multi-component biomarkers, and biomarkers based on gene expression. Novel biomarkers that use blood and urine, the more easily available clinical samples, are also being discovered and developed. The plethora of potential biomarkers currently being investigated may soon provide biomarkers that fulfill different functions, not only for diagnostic purposes but also for drug development and to follow disease progression.
Collapse
|
26
|
Verbeek MM, Olde Rikkert MGM. Cerebrospinal fluid biomarkers in the evaluation of Alzheimer disease. Clin Chem 2008; 54:1589-91. [PMID: 18824570 DOI: 10.1373/clinchem.2008.113027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
CSF β-amyloid 1–42 and tau in Tunisian patients with Alzheimer's disease: The effect of APOE ɛ4 allele. Neurosci Lett 2008; 440:145-9. [DOI: 10.1016/j.neulet.2008.05.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 05/06/2008] [Accepted: 05/21/2008] [Indexed: 11/19/2022]
|
28
|
Tang BL, Kumar R. Biomarkers of Mild Cognitive Impairment and Alzheimer’s Disease. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2008. [DOI: 10.47102/annals-acadmedsg.v37n5p406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Alzheimer’s disease (AD) is currently diagnosed only via clinical assessments and confirmed by postmortem brain pathology. Biochemical and neuroimaging markers could facilitate diagnosis, predict AD progression from a pre-AD state of mild cognitive impairment (MCI), and be used to monitor efficacies of disease-modifying therapies. It is now clear that cerebrospinal fluid (CSF) levels of Aβ40, Aβ42, total tau and phosphorylated tau have diagnostic values in AD. Measurements of the above CSF markers in combination are useful in predicting the risk of progression from MCI to AD. Recent advances further support a notion that plasma Aβ levels, expressed as an Aβ42/Aβ40 ratio, could also be of value. New potential biomarkers are emerging, and CSF or plasma marker profiles may eventually become part of the clinician’s toolkit for accurate AD diagnosis and management. These biomarkers, along with clinical assessment, neuropsychological testing and neuroimaging could achieve a much higher diagnostic accuracy for AD and related disorders in the future.
Key words: Alzheimer’s disease, b-amyloid (Ab), Biomarkers, Mild cognitive impairment (MCI), Tau
Collapse
|
29
|
|
30
|
de Jong D, Kremer BPH, Olde Rikkert MGM, Verbeek MM. Current state and future directions of neurochemical biomarkers for Alzheimer's disease. Clin Chem Lab Med 2008; 45:1421-34. [PMID: 17970699 DOI: 10.1515/cclm.2007.320] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this comprehensive review, we summarize the current state-of-the-art of neurochemical biomarkers for Alzheimer's disease. Predominantly, these biomarkers comprise cerebrospinal fluid biomarkers directly related to the pathophysiology of this disorder (such as amyloid beta protein, tau protein). We particularly pay attention to the innovations in this area that have been made in technological aspects during the past 5 years (e.g., multiplex analysis of biomarkers, proteomics), to the discovery of novel, potential biomarkers (e.g., amyloid beta oligomers, isoprostanes), and to the extension of this research towards identification of biomarkers in plasma.
Collapse
Affiliation(s)
- Daniëlle de Jong
- Department of Neurology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
31
|
Schipper HM. The role of biologic markers in the diagnosis of Alzheimer's disease. Alzheimers Dement 2007; 3:325-32. [PMID: 19595953 DOI: 10.1016/j.jalz.2007.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 07/12/2007] [Indexed: 11/28/2022]
Affiliation(s)
- Hyman M Schipper
- Centre for Neurotranslational Research and Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
32
|
Huang YF, Huang CC, Hu CC, Chang HT. Capillary electrophoresis-based separation techniques for the analysis of proteins. Electrophoresis 2006; 27:3503-22. [PMID: 16927348 DOI: 10.1002/elps.200600100] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
CE offers the advantages of high speed, great efficiency, as well as the requirement of minimum amounts of sample and buffer for the analysis of proteins. In this review, we summarize the CE-based techniques coupled with absorption, LIF, and MS detection systems for the analysis of proteins mostly within the past 5 years. The basic principle of each technique and its advantages and disadvantages for protein analysis are discussed in brief. Advanced CE techniques, including on-column concentration techniques and high-efficiency multidimensional separation techniques, for high-throughput protein profiling of complex biological samples and/or of single cells are emphasized. Although the developed techniques provide improved peak capacity, they have not become practical tools for proteomics, mainly because of poor reproducibility, low-sample lading capacity, and low throughput due to ineffective interfaces between two separation dimensions and that between separation and MS systems. In order to identify the complexities and dynamics of the proteomes expressed by cells, tissues, or organisms, techniques providing improved analytical sensitivity, throughput, and dynamic ranges are still demanded.
Collapse
Affiliation(s)
- Yu-Fen Huang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
33
|
Borroni B, Di Luca M, Padovani A. Predicting Alzheimer dementia in mild cognitive impairment patients. Are biomarkers useful? Eur J Pharmacol 2006; 545:73-80. [PMID: 16831417 DOI: 10.1016/j.ejphar.2006.06.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 03/19/2006] [Accepted: 06/13/2006] [Indexed: 11/22/2022]
Abstract
A correct clinical diagnosis in the early stage of Alzheimer disease is not only of importance given the current available treatment with acetylcholine esterase inhibitors, but would be the basis for disease-modifying therapy slowing down or arresting the degenerative process. Moreover, in the last years, several efforts have been made to determine if a patient with mild cognitive impairment has incipient Alzheimer disease, i.e. will progress to Alzheimer disease with dementia, or have a benign form of mild cognitive impairment. In this review, the recent published reports regarding progress in early and preclinical Alzheimer disease diagnosis are discussed and the role of peripheral and cerebrospinal fluid biomarkers highlighted. Approaches combining panels of different biomarkers show promise for discovering profiles that are characteristic of Alzheimer disease, even in the pre-symptomatic stage. More work is needed but available novel perspectives offered by recent introduced technologies shed some lights in identifying incipient Alzheimer disease in mild cognitive impairment subjects.
Collapse
Affiliation(s)
- Barbara Borroni
- Department of Medical Sciences, University of Brescia, Italy.
| | | | | |
Collapse
|
34
|
Solfrizzi V, D'Introno A, Colacicco AM, Capurso C, Todarello O, Pellicani V, Capurso SA, Pietrarossa G, Santamato V, Capurso A, Panza F. Circulating biomarkers of cognitive decline and dementia. Clin Chim Acta 2006; 364:91-112. [PMID: 16139826 DOI: 10.1016/j.cca.2005.06.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 06/16/2005] [Accepted: 06/17/2005] [Indexed: 11/24/2022]
Abstract
Plasma and serum biochemical markers proposed for cognitive decline of degenerative (Alzheimer's disease, AD) or vascular origin and predementia syndromes (mild cognitive impairment and other related entities) are based on pathophysiologic processes such as lipoprotein metabolism (total cholesterol, apolipoprotein E, 24S-hydroxy-cholesterol), and vascular disease (homocysteine, lipoprotein(a)); SP formation (amyloid beta(Abeta)-protein, Abeta autoantibodies, platelet APP isoforms), oxidative stress (isoprostanes, vitamin E), and inflammation (cytokines). This review will focus on the current knowledge on circulating serum and plasma biomarkers of cognitive decline and dementia that are linked to cholesterol homeostasis and lipoprotein abnormalities, senile plaque formation and amyloid precursor protein (APP) metabolism, oxidative stress, and inflammatory reactions. Special emphasis will, however, be placed on biomarkers related to lipoprotein metabolism and vascular disease. Analytically, most plasma and serum proteins or metabolites lack reproducibility, sensitivity, or specificity for the diagnosis, risk and progression assessment, or therapeutic monitoring of AD and other dementing disorders. Measures linked to lipoprotein metabolism and vascular disease, APP metabolism, oxidative stress, or inflammation appear altered in AD relative to controls, but lack sufficient discriminatory power. Measures combining several biomarkers or incorporating a range of proteins in plasma and small molecule metabolites are promising approaches for the development of plasma or serum-based diagnostic tests for AD and other dementing disorders, as well as for predementia syndromes.
Collapse
Affiliation(s)
- Vincenzo Solfrizzi
- Department of Geriatrics, Center for Aging Brain, Memory Unit, University of Bari, Policlinico, Piazza Giulio Cesare, 11-70124 Bari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Inoue K, Garner C, Ackermann BL, Oe T, Blair IA. Liquid chromatography/tandem mass spectrometry characterization of oxidized amyloid beta peptides as potential biomarkers of Alzheimer's disease. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:911-8. [PMID: 16470704 DOI: 10.1002/rcm.2395] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Alzheimer's disease is characterized by the deposition of senile plaques that consist primarily of amyloid beta peptides. There is substantial evidence that amyloid beta is oxidized in vivo, which has led to the suggestion that oxidative stress is an important mediator of Alzheimer's disease. Metal-catalyzed oxidation can mimic in vivo oxidation of amyloid beta because the metal ion binds to the amino acid residues at the site of oxidation, which then deliver reactive oxygen species to that site. Based on electrospray mass spectrometry, it has been suggested that metal-catalyzed oxidation occurs on histidines-13 and -14. Unfortunately, the amyloid beta peptides provide complex spectra, so it is difficult to definitively characterize the sites of oxidation. Trypsin digestion of both native and oxidized amyloid beta1-16 and amyloid beta1-40 resulted in the formation of tryptic peptides corresponding to amyloid beta6-16, which could be separated by liquid chromatography (LC). Sites of oxidation were then unequivocally characterized as histidine-13 and histidine-14 by LC/tandem mass spectrometric (MS/MS) analysis of the tryptic peptides. The ability to analyze the specific amyloid beta6-16 tryptic fragments derived from full-length amyloid beta peptides will make it possible to determine whether oxidation in vivo occurs at specific histidine residues and/or at other amino acid residues such as methionine-35. Using methodology based on LC/MS/MS it will also be possible to analyze the relative amounts of oxidized peptides and native peptide in cerebrospinal fluid from patients with Alzheimer's disease as biomarkers of oxidative stress.
Collapse
Affiliation(s)
- Koichi Inoue
- Center for Cancer Pharmacology, University of Pennsylvania School of Medicine, 854 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | | | | | | | | |
Collapse
|
36
|
Fischer DF, Hol EM, Hobo B, van Leeuwen FW. Alzheimer-associated APP+1 transgenic mice: frameshift beta-amyloid precursor protein is secreted in cerebrospinal fluid without inducing neuropathology. Neurobiol Aging 2005; 27:1445-50. [PMID: 16214267 DOI: 10.1016/j.neurobiolaging.2005.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 07/15/2005] [Accepted: 09/03/2005] [Indexed: 11/26/2022]
Abstract
Biomarkers present in the cerebrospinal fluid (CSF) of Alzheimer Disease patients could be instrumental in guiding diagnosis and monitoring of progression of the disease. We have previously reported on the secretion of a frameshifted form of amyloid-beta precursor protein, APP+1, into the CSF of Alzheimer patients and controls. APP+1 is secreted efficiently in controls, but during the progression of Alzheimer Disease, its secretion is reduced and APP+1 accumulates in tangle-bearing neurons. Here we describe the generation of a transgenic mouse line expressing APP+1 in the brain. These mice do not suffer from overt pathology or neurodegeneration, suggesting that APP+1 is not neurotoxic. To measure APP+1 levels in the CSF, we serially sampled CSF from the cisterna magna in the same mouse over a period of months. Indeed, APP+1 is secreted into the CSF of the transgenic mice, and APP+1 levels are stable over 1 year. This mouse model may guide the study of secretion deficits as found in Alzheimer Disease.
Collapse
Affiliation(s)
- David F Fischer
- Netherlands Institute for Brain Research, Graduate School for Neurosciences Amsterdam, Meibergdreef 33, 1105 AZ, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
37
|
Padovani A, Borroni B, Di Luca M. Advances on biological markers in early diagnosis of Alzheimer disease. Adv Clin Chem 2005; 39:107-29. [PMID: 16013669 DOI: 10.1016/s0065-2423(04)39004-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Alessandro Padovani
- Department of Neurological Sciences, University of Brescia, 25100 Brescia, Italy
| | | | | |
Collapse
|
38
|
Abstract
Biomarkers are very important indicators of normal and abnormal biological processes. Specific changes in pathologies, biochemistries and genetics can give us comprehensive information regarding the nature of any particular disease. A good biomarker should be precise and reliable, distinguishable between normal and interested disease, and differential between different diseases. It is believed that biomarkers have great potential in predicting chances for diseases, aiding in early diagnosis, and setting standards for the development of new remedies to treat diseases. New technologies have enabled scientists to identify biomarkers of several different neurodegenerative diseases. The followings, for instance, are only a few of the many new biomarkers that have been recently identified: the phosphorylated tau protein and aggregated Beta-amyloid peptide for Alzheimer's disease (AD), Alpha-synuclein contained Lewy bodies and altered dopamine transporter (DAT) imaging for Parkinson's disease (PD), SOD mutations for familial amyotrophic lateral sclerosis (ALS), and CAG repeats resulted from Huntington's gene mutations in Huntington's disease (HD). This article will focus on the most-recent findings of biomarkers belonging to the four mentioned neurodegenerative diseases.
Collapse
Affiliation(s)
- Varun Rachakonda
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
39
|
Wenner BR, Lovell MA, Lynn BC. Proteomic Analysis of Human Ventricular Cerebrospinal Fluid from Neurologically Normal, Elderly Subjects Using Two-Dimensional LC−MS/MS. J Proteome Res 2003; 3:97-103. [PMID: 14998169 DOI: 10.1021/pr034070r] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A two-dimensional liquid chromatography separation scheme coupled to tandem mass spectrometry (2-D LC-MS/MS) was utilized to profile the proteome of human CSF. Ventricular CSF samples acquired post-mortem from 10 cognitively normal elderly subjects (mean +/- SEM Braak stage = 1.7 +/- 0.2) were analyzed to determine their protein composition. Raw CSF samples were subjected to an immunobased processing method to remove highly abundant albumin and immunoglobulin (Ig), allowing better detection of lower-abundance proteins. Samples were subjected to trypsin proteolysis followed by C18 solid-phase extraction. Tryptic CSF peptides were separated using a 2-D LC column, in which both strong cation exchange (SCX) and C18 phases were packed into a single capillary. MS/MS spectra of CSF peptides were searched against a human sub-database of the NBCI nonredundant database using the SEQUEST algorithm. Search results were further filtered using DTAselect, and individual samples were compared to one another using Contrast. Using this method, we were able to unambiguously identify 249 CSF proteins from 10 subjects. Of these proteins, 38% were unique to individual subjects, whereas only 6% were common to all 10 subjects. These results suggest considerable subject-to-subject variability in the CSF proteome.
Collapse
Affiliation(s)
- Brett R Wenner
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | | | | |
Collapse
|
40
|
Current awareness in geriatric psychiatry. Int J Geriatr Psychiatry 2003; 18:1067-74. [PMID: 14661646 DOI: 10.1002/gps.793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|