1
|
Dinda R, Garribba E, Sanna D, Crans DC, Costa Pessoa J. Hydrolysis, Ligand Exchange, and Redox Properties of Vanadium Compounds: Implications of Solution Transformation on Biological, Therapeutic, and Environmental Applications. Chem Rev 2025; 125:1468-1603. [PMID: 39818783 DOI: 10.1021/acs.chemrev.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Vanadium is a transition metal with important industrial, technological, biological, and biomedical applications widespread in the environment and in living beings. The different reactions that vanadium compounds (VCs) undergo in the presence of proteins, nucleic acids, lipids and metabolites under mild physiological conditions are reviewed. In the environment vanadium is present naturally or through anthropogenic sources, the latter having an environmental impact caused by the dispersion of VCs in the atmosphere and aquifers. Vanadium has a versatile chemistry with interconvertible oxidation states, variable coordination number and geometry, and ability to form polyoxidovanadates with various nuclearity and structures. If a VC is added to a water-containing environment it can undergo hydrolysis, ligand-exchange, redox, and other types of changes, determined by the conditions and speciation chemistry of vanadium. Importantly, the solution is likely to differ from the VC introduced into the system and varies with concentration. Here, vanadium redox, hydrolytic and ligand-exchange chemical reactions, the influence of pH, concentration, salt, specific solutes, biomolecules, and VCs on the speciation are described. One of our goals with this work is highlight the need for assessment of the VC speciation, so that beneficial or toxic species might be identified and mechanisms of action be elucidated.
Collapse
Affiliation(s)
- Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Debbie C Crans
- Department Chemistry and Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
2
|
Yuliani D, Morishita F, Imamura T, Ueki T. Vanadium Accumulation and Reduction by Vanadium-Accumulating Bacteria Isolated from the Intestinal Contents of Ciona robusta. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:338-350. [PMID: 38451444 PMCID: PMC11043195 DOI: 10.1007/s10126-024-10300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
The sea squirt Ciona robusta (formerly Ciona intestinalis type A) has been the subject of many interdisciplinary studies. Known as a vanadium-rich ascidian, C. robusta is an ideal model for exploring microbes associated with the ascidian and the roles of these microbes in vanadium accumulation and reduction. In this study, we discovered two bacterial strains that accumulate large amounts of vanadium, CD2-88 and CD2-102, which belong to the genera Pseudoalteromonas and Vibrio, respectively. The growth medium composition impacted vanadium uptake. Furthermore, pH was also an important factor in the accumulation and localization of vanadium. Most of the vanadium(V) accumulated by these bacteria was converted to less toxic vanadium(IV). Our results provide insights into vanadium accumulation and reduction by bacteria isolated from the ascidian C. robusta to further study the relations between ascidians and microbes and their possible applications for bioremediation or biomineralization.
Collapse
Affiliation(s)
- Dewi Yuliani
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 1-3-1 Kagamiyama, Hiroshima, 739-8526, Japan
- Chemistry Department, Faculty of Mathematics and Natural Sciences, State Islamic University of Malang, Malang, 65145, Indonesia
| | - Fumihiro Morishita
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 1-3-1 Kagamiyama, Hiroshima, 739-8526, Japan
| | - Takuya Imamura
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 1-3-1 Kagamiyama, Hiroshima, 739-8526, Japan
| | - Tatsuya Ueki
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 1-3-1 Kagamiyama, Hiroshima, 739-8526, Japan.
| |
Collapse
|
3
|
Gao J, Chen G, Fu Q, Ren C, Tan C, Liu H, Wang Y, Liu J. Enhancing Aqueous Chlorate Reduction Using Vanadium Redox Cycles and pH Control. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20392-20399. [PMID: 37976223 DOI: 10.1021/acs.est.3c06519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Chlorate (ClO3-) is a toxic oxyanion pollutant from industrial wastes, agricultural applications, drinking water disinfection, and wastewater treatment. Catalytic reduction of ClO3- using palladium (Pd) nanoparticle catalysts exhibited sluggish kinetics. This work demonstrates an 18-fold activity enhancement by integrating earth-abundant vanadium (V) into the common Pd/C catalyst. X-ray photoelectron spectroscopy and electrochemical studies indicated that VV and VIV precursors are reduced to VIII in the aqueous phase (rather than immobilized on the carbon support) by Pd-activated H2. The VIII/IV redox cycle is the predominant mechanism for the ClO3- reduction. Further reduction of chlorine intermediates to Cl- could proceed via VIII/IV and VIV/V redox cycles or direct reduction by Pd/C. To capture the potentially toxic V metal from the treated solution, we adjusted the pH from 3 to 8 after the reaction, which completely immobilized VIII onto Pd/C for catalyst recycling. The enhanced performance of reductive catalysis using a Group 5 metal adds to the diversity of transition metals (e.g., Cr, Mo, Re, Fe, and Ru in Groups 6-8) for water pollutant treatment via various unique mechanisms.
Collapse
Affiliation(s)
- Jinyu Gao
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Gongde Chen
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Qi Fu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Changxu Ren
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Cheng Tan
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Haizhou Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Yin Wang
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - Jinyong Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
4
|
Dang DH, Wang W, Winkler G, Chatzis A. Rare earth element uptake mechanisms in plankton in the Estuary and Gulf of St. Lawrence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160394. [PMID: 36427738 DOI: 10.1016/j.scitotenv.2022.160394] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The global shift toward green energy alternatives escalates demands for new resources, including rare earth elements (REEs), as per their implications in various green innovations. However, our understanding of their environmental cycle, especially the interactions with aquatic organisms, remains deficient, ultimately hindering environmental protection efforts. Here, we investigate the accumulation of REEs and 18 other elements in bulk and sorted plankton collected with different net mesh sizes (30, 63, 200, 333, 500 μm) in the Estuary and Gulf of St. Lawrence in the summer and winter of 2020. We observed significant correlations between the concentrations of REEs and elements of different charge numbers and ionic radii (Ba, Co, Cs, Fe, Mn, Pb, Rb and V), indicating non-selective uptake of REEs into plankton. All these elements have their highest concentrations in the fluvial corridor and upper estuary, with more significant enrichment in phytoplankton ([La] = 26.4 ± 4.8 mg kg-1) than zooplankton ([La] = 11.6 ± 8.3 mg kg-1). Their concentrations decrease to the minimum in the Gulf of St. Lawrence, especially in zooplankton ([La] = 4.8 × 10-2 ± 3.2 × 10-2 mg kg-1). We also assessed REE patterns to identify differential REE fractionation processes and anomalies. The freshwater plankton exhibits enrichment of middle REEs (MREEs) relative to the light and heavy REEs (LREEs and HREEs), potentially because of the higher binding affinity of MREEs on cellular surface transporters and metal loading effects. In estuarine and marine settings, the REE patterns in biological samples align with suspended particles, exhibiting a linear trend with LREE enrichment. This process is more noticeable in sorted macrozooplankton, which have significant Eu anomalies (Eu/Eu* up to 2), indicating differential incorporation of REEs into the chitin shells. This study highlights the significant enrichment of REEs into freshwater primary producers and the accumulation pathway similar to other inorganic elements.
Collapse
Affiliation(s)
- Duc Huy Dang
- School of the Environment, Trent University, Peterborough, Canada; Department of Chemistry and Water Quality Center, Trent University, Peterborough, Canada.
| | - Wei Wang
- School of the Environment, Trent University, Peterborough, Canada
| | - Gesche Winkler
- Institut des Sciences de la Mer, Université du Québec à Rimouski, Rimouski, Canada
| | - Anique Chatzis
- School of the Environment, Trent University, Peterborough, Canada
| |
Collapse
|
5
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|
6
|
Adi TK, Fujie M, Satoh N, Ueki T. The acidic amino acid-rich C-terminal domain of VanabinX enhances reductase activity, attaining 1.3- to 1.7-fold vanadium reduction. Biochem Biophys Rep 2022; 32:101349. [PMID: 36147050 PMCID: PMC9486056 DOI: 10.1016/j.bbrep.2022.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/20/2022] Open
Abstract
Ascidians accumulate extremely high levels of vanadium (V) in their blood cells. Several V-related proteins, including V-binding proteins (vanabins), have been isolated from V-accumulating ascidians. In this study, to obtain a deeper understanding of vanabins, we performed de novo transcriptome analysis of blood cells from a V-rich ascidian, Ascidia sydneiensis samea, and constructed a database containing 8532 predicted proteins. We found a novel vanabin with a unique acidic amino acid–rich C-terminal domain, designated VanabinX, in the database and studied it in detail. Reverse-transcription polymerase chain reaction analysis revealed that VanabinX was detected in all adult tissues examined, and was most prominent in blood cells and muscle tissue. We prepared recombinant proteins and performed immobilized metal ion affinity chromatography and a NADPH-coupled V(V)-reductase assay. VanabinX bound to metal ions, with increasing affinity for Cu(II) > Zn(II) > Co(II), but not to V(IV). VanabinX reduced V(V) to V(IV) at a rate of 0.170 μM per micoromolar protein within 30 min. The C-terminal acidic domain enhanced the reduction of V(V) by Vanabin2 to 1.3-fold and of VanabinX itself to 1.7-fold in trans mode. In summary, we constructed a protein database containing 8532 predicted proteins expressed in blood cells; among them, we discovered a novel vanabin, VanabinX, which enhances V reduction by vanabins. A novel vanadium-binding protein was identified from a vanadium-rich ascidian. This protein named VanabinX does not bind strongly to V(IV). VanabinX can reduce V(V) to V(IV) in a NADPH/GR/GSH cascade. The acidic C-terminal domain of vanabinX enhances V(V)-reduction of vanabins in trans mode.
Collapse
|
7
|
Shit M, Mukherjee S, Maity S, Bera S, Ghosh P. Oxo transfer reaction: Dioxido and monooxidovanadium(V) complexes. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Majumder M, Das T, Sepay N, Rajak KK. A study of DNA/BSA interaction and catalytic potential of oxidovanadium(V, IV) complexes incorporating dibenzofuran based O^N^O ligand. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Frank P, Carlson RMK, Carlson EJ, Hedman B, Hodgson KO. Biological sulfur in the blood cells of Ascidia ceratodes: XAS spectroscopy and a cellular-enzymatic hypothesis for vanadium reduction in the ascidians. J Inorg Biochem 2020; 205:110991. [PMID: 31945647 PMCID: PMC7033024 DOI: 10.1016/j.jinorgbio.2019.110991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/12/2019] [Accepted: 12/31/2019] [Indexed: 10/25/2022]
Abstract
Two samples of living blood cells and of cleared blood plasma from the Phlebobranch tunicate Ascidia ceratodes from Bodega Bay, California, and one of fresh Henze solution from A. ceratodes of Monterey Bay, California, have been examined using sulfur K-edge x-ray absorption spectroscopy (XAS). Biological sulfur included sulfate esters, sulfate and bisulfate ions, benzothiazole, thianthrene, epi-sulfide, thiol and disulfide. Glutathione dominated reduced sulfur, from which an average intracellular Voltage of -0.21 V was calculated. Sulfate-bisulfate ratios yielded blood cell pH values of 2.0 and 2.8. Total blood cell [sulfur] was 373±9 mM or 296±73 mM from BaSO4 gravimetry. Two plasma samples (pH 6.9 or 7.0; [S] = 33±6 mM or 26±4 mM) were dominated by sulfate and disulfide. Fresh Henze solution evidenced a sulfur inventory similar to blood cells, with calculated pH = 2.7. A V(III)-sulfonate fraction varied systematically with intracellular pH across six independent blood cell samples, implying a vanadium mobilization pathway. Bodega Bay and Monterey Bay A. ceratodes appear to maintain alternative suites of low-valent sulfur. The significance of the vanabins to vanadium metabolism is critically examined in terms of known protein - V(IV) biochemistry. Finally, a detailed hypothesis for the reduction of [VO4]3- to V(III) in ascidians is introduced. A vanadium oxido-reductase is proposed to span the signet ring membrane and to release V(III) into the inner acidic vacuole. The V(V) to V(III) reduction is predicted require an inner-sphere mechanism, a thiol reductant, 7-coordinate V(III), a biologically accessible Voltage, and proton-facilitated release of V(III).
Collapse
Affiliation(s)
- Patrick Frank
- Stanford Synchrotron Radiation laboratory, SLAC, Stanford University, Menlo Park, CA 94025, United States of America; Department of Chemistry, Stanford University, Stanford, CA 94305, United States of America.
| | - Robert M K Carlson
- Institute for Materials and Energy Sciences, SLAC, Stanford University, Menlo Park, CA 94025, United States of America
| | - Elaine J Carlson
- University of California, San Francisco, CA 94143, United States of America
| | - Britt Hedman
- Stanford Synchrotron Radiation laboratory, SLAC, Stanford University, Menlo Park, CA 94025, United States of America
| | - Keith O Hodgson
- Stanford Synchrotron Radiation laboratory, SLAC, Stanford University, Menlo Park, CA 94025, United States of America; Department of Chemistry, Stanford University, Stanford, CA 94305, United States of America
| |
Collapse
|
10
|
Boukhobza I, Crans DC. Application of HPLC to measure vanadium in environmental, biological and clinical matrices. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
11
|
Maurya MR, Jangra N, Avecilla F, Correia I. 4,6‐Diacetyl Resorcinol Based Vanadium(V) Complexes: Reactivity and Catalytic Applications. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mannar R. Maurya
- Department of Chemistry Indian Institute of Technology Roorkee 247667 Roorkee India
| | - Nancy Jangra
- Department of Chemistry Indian Institute of Technology Roorkee 247667 Roorkee India
| | - Fernando Avecilla
- Grupo Xenomar Centro de Investigacións Científicas Avanzadas (CICA) Facultade de Ciencias Universidade da Coruña Campus de A Coruña 15071A Coruña Spain
| | - Isabel Correia
- Centro de Química Estrutural Instituto Superior Técnico Universidade Lisboa 1049‐ 001 Lisboa Portugal
| |
Collapse
|
12
|
Del Carpio E, Hernández L, Ciangherotti C, Villalobos Coa V, Jiménez L, Lubes V, Lubes G. Vanadium: History, chemistry, interactions with α-amino acids and potential therapeutic applications. Coord Chem Rev 2018; 372:117-140. [PMID: 32226092 PMCID: PMC7094547 DOI: 10.1016/j.ccr.2018.06.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 06/03/2018] [Indexed: 12/11/2022]
Abstract
In the last 30 years, since the discovery that vanadium is a cofactor found in certain enzymes of tunicates and possibly in mammals, different vanadium-based drugs have been developed targeting to treat different pathologies. So far, the in vitro studies of the insulin mimetic, antitumor and antiparasitic activity of certain compounds of vanadium have resulted in a great boom of its inorganic and bioinorganic chemistry. Chemical speciation studies of vanadium with amino acids under controlled conditions or, even in blood plasma, are essential for the understanding of the biotransformation of e.g. vanadium antidiabetic complexes at the physiological level, providing clues of their mechanism of action. The present article carries out a bibliographical research emphaticizing the chemical speciation of the vanadium with different amino acids and reviewing also some other important aspects such as its chemistry and therapeutical applications of several vanadium complexes.
Collapse
Key Words
- 2,2′-bipy, 2,2-bipyridine
- 6-mepic, 6-methylpicolinic acid
- Ad, adenosine
- Ala, alanine
- Ala-Gly, alanylglycine
- Ala-His, alanylhistidine
- Ala-Ser, alanylserine
- Amino acids
- Antidiabetics
- Antitumors
- Asp, aspartic acid
- BEOV, bis(ethylmaltolate)oxovanadium(IV)
- Chemical speciation
- Cys, cysteine
- Cyt, citrate
- DMF, N,N-dimethylformamide
- DNA, deoxyribonucleic acid
- EPR, Electron Paramagnetic Resonance
- G, Gauss
- Glu, glutamic acid
- Gly, glycine
- GlyAla, glycylalanine
- GlyGly, glycylglycine
- GlyGlyCys, glycylglycylcysteine
- GlyGlyGly, glycylglycylglycine
- GlyGlyHis, glycylglycylhistidine
- GlyPhe, glycylphenylalanine
- GlyTyr, glycyltyrosine
- GlyVal, glycylvaline
- HIV, human immunodeficiency virus
- HSA, albumin
- Hb, hemoglobin
- His, histidine
- HisGlyGly, histidylglycylglycine
- Ig, immunoglobulins
- Im, imidazole
- L-Glu(γ)HXM, l-glutamic acid γ-monohydroxamate
- LD50, the amount of a toxic agent (such as a poison, virus, or radiation) that is sufficient to kill 50 percent of population of animals
- Lac, lactate
- MeCN, acetonitrile
- NADH and NAD+, nicotinamide adenine dinucleotide
- NEP, neutral endopeptidas
- NMR, Nuclear Magnetic Resonance
- Ox, oxalate
- PI3K, phosphoinositide 3-kinase
- PTP1B, protein tyrosine phosphatase 1B
- Pic, picolinic acid
- Pro, proline
- Pro-Ala, prolylalanine
- RNA, ribonucleic acid
- SARS, severe acute respiratory syndrome
- Sal-Ala, N-salicylidene-l-alaninate
- SalGly, salicylglycine
- SalGlyAla, salicylglycylalanine
- Ser, serine
- T, Tesla
- THF, tetrahydrofuran
- Thr, threonine
- VBPO, vanadium bromoperoxidases
- VanSer, Schiff base formed from o-vanillin and l-serine
- Vanadium complexes
- acac, acetylacetone
- dhp, 1,2-dimethyl-3-hydroxy-4(1H)-pyridinone
- dipic, dipicolinic acid
- dmpp, 1,2-dimethyl-3-hydroxy-4-pyridinonate
- hTf, transferring
- hpno, 2-hydroxypyridine-N-oxide
- l.m.m., low molecular mass
- mal, maltol
- py, pyridine
- sal-l-Phe, N-salicylidene-l-tryptophanate
- salGlyGly, N-salicylideneglycylglycinate
- salSer, N-salicylideneserinate
- salTrp, N-salicylidene-L tryptophanate
- salVal, N-salicylidene-l-valinate
- salophen, N,N′-bis(salicylidene)-o-phenylenediamine
- saltrp, N-salicylidene-l-tryptophanate
- γ-PGA, poly-γ-glutamic acid
Collapse
Affiliation(s)
- Edgar Del Carpio
- Laboratorio de Equilibrios en Solución, Universidad Simón Bolívar (USB), Apartado 89000, Caracas 1080 A, Venezuela
- Unidad de Química Medicinal, Facultad de Farmacia, Escuela “Dr. Jesús María Bianco”, Universidad Central de Venezuela, Venezuela
| | - Lino Hernández
- Laboratorio de Equilibrios en Solución, Universidad Simón Bolívar (USB), Apartado 89000, Caracas 1080 A, Venezuela
- Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, Venezuela
| | - Carlos Ciangherotti
- Laboratorio de Neuropéptidos, Facultad de Farmacia, Escuela “Dr. Jesús María Bianco”, Universidad Central de Venezuela, Venezuela
- Laboratorio de Bioquímica, Facultad de Farmacia, Escuela “Dr. Jesús María Bianco”, Universidad Central de Venezuela, Venezuela
| | - Valentina Villalobos Coa
- Laboratorio de Equilibrios en Solución, Universidad Simón Bolívar (USB), Apartado 89000, Caracas 1080 A, Venezuela
| | - Lissette Jiménez
- Facultad de ingeniería Química, Universidad de Carabobo, Venezuela
| | - Vito Lubes
- Laboratorio de Equilibrios en Solución, Universidad Simón Bolívar (USB), Apartado 89000, Caracas 1080 A, Venezuela
| | - Giuseppe Lubes
- Laboratorio de Equilibrios en Solución, Universidad Simón Bolívar (USB), Apartado 89000, Caracas 1080 A, Venezuela
| |
Collapse
|
13
|
Yin S, Bernstein ER. Fe-V sulfur clusters studied through photoelectron spectroscopy and density functional theory. Phys Chem Chem Phys 2018; 20:22610-22622. [PMID: 30123901 DOI: 10.1039/c8cp03157f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron-vanadium sulfur cluster anions are studied by photoelectron spectroscopy (PES) at 3.492 eV (355 nm) and 4.661 eV (266 nm) photon energies, and by density functional theory (DFT) calculations. The structural properties, relative energies of different structural isomers, and the calculated first vertical detachment energies (VDEs) of different structural isomers for cluster anions FeVS1-3- and FemVnSm+n- (m + n = 3, 4; m > 0, n > 0) are investigated at a BPW91/TZVP theory level. The experimental first VDEs for these Fe-V sulfur clusters are reported. The most probable ground state structures and spin multiplicities for these clusters are tentatively assigned by comparing their theoretical and experiment first VDE values. For FeVS1-3- clusters, their first VDEs are generally observed to increase with the number of sulfur atoms from 1.45 eV to 2.86 eV. The NBO/HOMOs of the ground state of FeVS1-3- clusters are localized in a p orbital on a S atom; the partial charge distribution on the NBO/HOMO localized site of each cluster anion is responsible for the trend of their first VDEs. A less negative localized charge distribution is correlated with a higher first VDE. Structure and steric effect differences for FemVnSm+n- (m + n = 3, m > 0, n > 0) clusters are suggested to be responsible for their different first VDEs and properties. Two types of structural isomers are identified for FemVnSm+n- (m + n = 4, m > 0, n > 0) clusters: a tower structure isomer and a cubic structure isomer. The first VDEs for tower like isomers are generally higher than those for cubic like isomers of FemVnSm+n- (m + n = 4, m > 0, n > 0) clusters. Their first VDEs are can be understood through: (1) NBO/HOMO distributions, (2) structures (steric effects), and (3) partial charge numbers on the NBO/HOMO's localized sites. EBEs for excited state transitions for all Fe-V sulfur clusters are calculated employing OVGF and TDDFT approaches at the TZVP level. The OVGF approach for these Fe/V/S cluster anions is better for the higher transition energies than the TDDTF approach. The experimental and theoretical results for these Fe/V/S cluster anions are compared with their related pure iron sulfur cluster anions. Properties of the NBO/HOMO are essential for understanding and estimating the different first VDEs for Fe/V/S, and comparing them to those of the pure Fe/S cluster anions.
Collapse
Affiliation(s)
- Shi Yin
- Department of Chemistry, NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
14
|
Van Stappen C, Maganas D, DeBeer S, Bill E, Neese F. Investigations of the Magnetic and Spectroscopic Properties of V(III) and V(IV) Complexes. Inorg Chem 2018; 57:6421-6438. [DOI: 10.1021/acs.inorgchem.8b00486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Casey Van Stappen
- Max-Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr, 45470 North Rhine-Westphalia, Germany
| | - Dimitrios Maganas
- Max-Planck-Institüt für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470 North Rhine-Westphalia, Germany
| | - Serena DeBeer
- Max-Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr, 45470 North Rhine-Westphalia, Germany
| | - Eckhard Bill
- Max-Planck-Institüt für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470 North Rhine-Westphalia, Germany
| | - Frank Neese
- Max-Planck-Institüt für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470 North Rhine-Westphalia, Germany
| |
Collapse
|
15
|
Patel R, Singh YP. Synthesis, structural characterization, DFT studies and in-vitro antidiabetic activity of new mixed ligand oxovanadium(IV) complex with tridentate Schiff base. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Ivanov AS, Leggett CJ, Parker BF, Zhang Z, Arnold J, Dai S, Abney CW, Bryantsev VS, Rao L. Origin of the unusually strong and selective binding of vanadium by polyamidoximes in seawater. Nat Commun 2017; 8:1560. [PMID: 29146970 PMCID: PMC5691157 DOI: 10.1038/s41467-017-01443-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/19/2017] [Indexed: 11/09/2022] Open
Abstract
Amidoxime-functionalized polymeric adsorbents are the current state-of-the-art materials for collecting uranium (U) from seawater. However, marine tests show that vanadium (V) is preferentially extracted over U and many other cations. Herein, we report a complementary and comprehensive investigation integrating ab initio simulations with thermochemical titrations and XAFS spectroscopy to understand the unusually strong and selective binding of V by polyamidoximes. While the open-chain amidoxime functionalities do not bind V, the cyclic imide-dioxime group of the adsorbent forms a peculiar non-oxido V5+ complex, exhibiting the highest stability constant value ever observed for the V5+ species. XAFS analysis of adsorbents following deployment in environmental seawater confirms V binding solely by the imide-dioximes. Our fundamental findings offer not only guidance for future optimization of selectivity in amidoxime-based sorbent materials, but may also afford insight to understanding the extensive accumulation of V in some marine organisms.
Collapse
Affiliation(s)
| | - Christina J Leggett
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,U. S. Nuclear Regulatory Commission, Rockville, MD, 20852, USA
| | - Bernard F Parker
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Zhicheng Zhang
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - John Arnold
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Sheng Dai
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Carter W Abney
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | | | - Linfeng Rao
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
17
|
Yan JA, Chen YS, Chang YH, Tsai CY, Lyu CL, Luo CG, Lee GH, Hsu HF. Redox Interconversion of Non-Oxido Vanadium Complexes Accompanied by Acid–Base Chemistry of Thiol and Thiolate. Inorg Chem 2017; 56:9055-9063. [DOI: 10.1021/acs.inorgchem.7b01040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jyun-An Yan
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Sen Chen
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Ya-Ho Chang
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Cheng-Yun Tsai
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Chiao-Ling Lyu
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Chun-Gang Luo
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Gene-Hsiang Lee
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Hua-Fen Hsu
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
18
|
Maurya MR, Sarkar B, Avecilla F, Correia I. Vanadium Complexes Derived from Acetyl Pyrazolone and Hydrazides: Structure, Reactivity, Peroxidase Mimicry and Efficient Catalytic Activity for the Oxidation of 1-Phenylethanol. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Mannar R. Maurya
- Department of Chemistry; Indian Institute of Technology Roorkee; 247667 Roorkee India
| | - Bithika Sarkar
- Department of Chemistry; Indian Institute of Technology Roorkee; 247667 Roorkee India
| | - Fernando Avecilla
- Departamento de Química Fundamental; Universidade da Coruña; Campus de A Zapateira 15071 A Coruña Spain
| | - Isabel Correia
- Centro de Química Estrutural; Instituto Superior Técnico; Universidade de Lisboa; Av. Rovisco Pais 1 1049-001 Lisbon Portugal
| |
Collapse
|
19
|
Yamaguchi N, Yoshinaga M, Kamino K, Ueki T. Vanadium-Binding Ability of Nucleoside Diphosphate Kinase from the Vanadium-Rich Fan Worm, Pseudopotamilla occelata. Zoolog Sci 2016; 33:266-71. [PMID: 27268980 DOI: 10.2108/zs150188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polychaete fan worms and ascidians accumulate high levels of vanadium ions. Several vanadiumbinding proteins, known as vanabins, have been found in ascidians. However, no vanadium-binding factors have been isolated from the fan worm. In the present study, we sought to identify vanadiumbinding proteins in the branchial crown of the fan worm using immobilized metal ion affinity chromatography. A nucleoside diphosphate kinase (NDK) homolog was isolated and determined to be a vanadium-binding protein. Kinase activity of the NDK homologue, PoNDK, was suppressed by the addition of V(IV), but was unaffected by V(V). The effect of V(IV) on PoNDK precedes its activation by Mg(II). This is the first report to describe the relationship between NDK and V(IV). PoNDK is located in the epidermis of the branchial crown, and its distribution is very similar to that of vanadium. These results suggest that PoNDK is associated with vanadium accumulation and metabolism in P. occelata.
Collapse
Affiliation(s)
- Nobuo Yamaguchi
- 1 Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Mukaishima-cho 2445, Onomichi city, Hiroshima 722-0073, Japan
| | - Masafumi Yoshinaga
- 2 Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Japan
| | - Kei Kamino
- 3 National Institute of Technology and Evaluation, Kazusa-Kamatari 2-5-8, Kisarazu city, Chiba 292-0818, Japan
| | - Tatsuya Ueki
- 1 Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Mukaishima-cho 2445, Onomichi city, Hiroshima 722-0073, Japan.,4 Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
20
|
Wu HM, Chang YH, Su CL, Lee GH, Hsu HF. A non-oxo methanolate-bridged divanadium(IV) complex with tris(2-sulfanidylphenyl)phosphane ligands: synthesis, structural characterization and magnetic investigation. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2016; 72:416-20. [PMID: 27146571 DOI: 10.1107/s2053229616005222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/28/2016] [Indexed: 11/11/2022]
Abstract
Vanadium chemistry is of interest due its biological relevance and medical applications. In particular, the interactions of high-valent vanadium ions with sulfur-containing biologically important molecules, such as cysteine and glutathione, might be related to the redox conversion of vanadium in ascidians, the function of amavadin (a vanadium-containing anion) and the antidiabetic behaviour of vanadium compounds. A mechanistic understanding of these aspects is important. In an effort to investigate high-valent vanadium-sulfur chemistry, we have synthesized and characterized the non-oxo divanadium(IV) complex salt tetraphenylphosphonium tri-μ-<!?tlsb=-0.11pt>methanolato-κ(6)O:O-bis({tris[2-sulfanidyl-3-(trimethylsilyl)phenyl]phosphane-κ(4)P,S,S',S''}vanadium(IV)) methanol disolvate, (C24H20P)[V(IV)2(μ-OCH3)3(C27H36PS3)2]·2CH3OH. Two V(IV) metal centres are bridged by three methanolate ligands, giving a C2-symmetric V2(μ-OMe)3 core structure. Each V(IV) centre adopts a monocapped trigonal antiprismatic geometry, with the P atom situated in the capping position and the three S atoms and three O atoms forming two triangular faces of the trigonal antiprism. The magnetic data indicate a paramagnetic nature of the salt, with an S = 1 spin state.
Collapse
Affiliation(s)
- Hong Ming Wu
- Department of Chemistry, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan
| | - Ya Ho Chang
- Department of Chemistry, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan
| | - Chia Lin Su
- Department of Chemistry, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan
| | - Gene Hsiang Lee
- Department of Chemistry, National Taiwan University, Taipei City 116, Taiwan
| | - Hua Fen Hsu
- Department of Chemistry, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan
| |
Collapse
|
21
|
Maltman C, Walter G, Yurkov V. A Diverse Community of Metal(loid) Oxide Respiring Bacteria Is Associated with Tube Worms in the Vicinity of the Juan de Fuca Ridge Black Smoker Field. PLoS One 2016; 11:e0149812. [PMID: 26914590 PMCID: PMC4767881 DOI: 10.1371/journal.pone.0149812] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/04/2016] [Indexed: 01/24/2023] Open
Abstract
Epibiotic bacteria associated with tube worms living in the vicinity of deep sea hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean were investigated for the ability to respire anaerobically on tellurite, tellurate, selenite, selenate, metavanadate and orthovanadate as terminal electron acceptors. Out of 107 isolates tested, 106 were capable of respiration on one or more of these oxides, indicating that metal(loid) oxide based respiration is not only much more prevalent in nature than is generally believed, but also is an important mode of energy generation in the habitat. Partial 16S rRNA gene sequencing revealed the bacterial community to be rich and highly diverse, containing many potentially new species. Furthermore, it appears that the worms not only possess a close symbiotic relationship with chemolithotrophic sulfide-oxidizing bacteria, but also with the metal(loid) oxide transformers. Possibly they protect the worms through reduction of the toxic compounds that would otherwise be harmful to the host.
Collapse
Affiliation(s)
- Chris Maltman
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Graham Walter
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Vladimir Yurkov
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
- * E-mail:
| |
Collapse
|
22
|
Gajera SB, Mehta JV, Patel MN. Metal-based biologically active compounds: design, synthesis, medicinal, toxicity and DNA interaction assay. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1503-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Abdul Jaffar Ali H, Tamilselvi M, Akram AS, Kaleem Arshan ML, Sivakumar V. Comparative study on bioremediation of heavy metals by solitary ascidian, Phallusia nigra, between Thoothukudi and Vizhinjam ports of India. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 121:93-9. [PMID: 26026676 DOI: 10.1016/j.ecoenv.2015.04.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 04/26/2015] [Accepted: 04/28/2015] [Indexed: 05/06/2023]
Abstract
Ascidians belonging to the sub-phylum Uro-chordata are used as potential model organisms in various parts of the world for biosorption of metals. The sedentary nature, filter feeding habits, presence of vanadocytes and the absence of kidneys cause them to accumulate metals. The present study was aimed to compare biosorption of metals such as cadmium, copper, lead, mercury and vanadium in test and mantle body of solitary ascidian Phallusia nigra between two ecologically significant stations such as Thoothukudi (Station 1) and Vizhinjam (Station 2) ports of India. Monthly samplings of water and P. nigra were done for a period of one year from September 2010 to August 2011 and subjected to analysis of metal accumulation. The average metal concentrations except mercury in the Thoothukudi water were found to be higher of comparable magnitudes than the Vizhinjam water. One-way ANOVA showed significant differences between the stations. A comparison of average metal concentrations in the test and mantle body of P. nigra between two stations showed that the enrichment of V, Cd, Pb, Cu and Hg in the Thoothukudi samples may be due to high bioaccumulation factors of these elements as compared to other species of ascidians. The bioaccumulation factors were in the order of V>Pb>Cd>Cu> Hg for the test and mantle body in stations 1 and 2. Application of one-way ANOVA for the concentration of these metals between test and mantle body showed significant differences in both stations. Similarly, ANOVA for biosorption of these trace metals by P. nigra showed significant difference between stations. Metal concentrations recorded in this ascidian could effectively be used as good reference material for monitoring metal contamination in Indian sea waters.
Collapse
Affiliation(s)
- H Abdul Jaffar Ali
- Department of Biotechnology, Islamiah College (Autonomous), Vaniyambadi 635752, Tamilnadu, India.
| | - M Tamilselvi
- Department of Zoology, V.V. Vanniaperumal College for Women, Virudhunagar 626001, Tamilnadu, India
| | - A Soban Akram
- Department of Biotechnology, Islamiah College (Autonomous), Vaniyambadi 635752, Tamilnadu, India
| | - M L Kaleem Arshan
- Department of Biotechnology, Islamiah College (Autonomous), Vaniyambadi 635752, Tamilnadu, India
| | - V Sivakumar
- Director of Research and Conservation, 4e India NGO (Reg. 188/2010), Thoothukudi 628008, Tamilnadu, India
| |
Collapse
|
24
|
Ueki T, Yamaguchi N, Romaidi, Isago Y, Tanahashi H. Vanadium accumulation in ascidians: A system overview. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
25
|
Thirty years through vanadium chemistry. J Inorg Biochem 2015; 147:4-24. [PMID: 25843361 DOI: 10.1016/j.jinorgbio.2015.03.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 11/23/2022]
Abstract
The relevance of vanadium in biological systems is known for many years and vanadium-based catalysts have important industrial applications, however, till the beginning of the 80s research on vanadium chemistry and biochemistry did not receive much attention from the scientific community. The understanding of the broad bioinorganic implications resulting from the similarities between phosphate and vanadate(V) and the discovery of vanadium dependent enzymes gave rise to an enormous increase in interest in the chemistry and biological relevance of vanadium. Thereupon the last 30years corresponded to a period of enormous research effort in these fields, as well as in medicinal applications of vanadium and in the development of catalysts for use in fine-chemical synthesis, some of these inspired by enzymatic active sites. Since the 80s my group in collaboration with others made contributions, described throughout this text, namely in the understanding of the speciation of vanadium compounds in aqueous solution and in biological fluids, and to the transport of vanadium compounds in blood plasma and their uptake by cells. Several new types of vanadium compounds were also synthesized and characterized, with applications either as prospective therapeutic drugs or as homogeneous or heterogenized catalysts for the production of fine chemicals. The developments made are described also considering the international context of the evolution of the knowledge in the chemistry and bioinorganic chemistry of vanadium compounds during the last 30years. This article was compiled based on the Vanadis Award presentation at the 9th International Vanadium Symposium.
Collapse
|
26
|
Structural variations of the adducts of insulin-enhancing VO(pic)2 compound with neutral O- and N-ligands: X-ray and DFT quantum-mechanical study. MONATSHEFTE FUR CHEMIE 2014. [DOI: 10.1007/s00706-014-1215-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Alvarado-Gámez AL, Alonso-Lomillo MA, Domínguez-Renedo O, Arcos-Martínez MJ. A disposable alkaline phosphatase-based biosensor for vanadium chronoamperometric determination. SENSORS (BASEL, SWITZERLAND) 2014; 14:3756-67. [PMID: 24569772 PMCID: PMC3958235 DOI: 10.3390/s140203756] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/24/2014] [Accepted: 02/08/2014] [Indexed: 11/17/2022]
Abstract
A chronoamperometric method for vanadium ion determination, based on the inhibition of the enzyme alkaline phosphatase, is reported. Screen-printed carbon electrodes modified with gold nanoparticles were used as transducers for the immobilization of the enzyme. The enzymatic activity over 4-nitrophenyl phosphate sodium salt is affected by vanadium ions, which results in a decrease in the chronoamperometric current registered. The developed method has a detection limit of 0.39 ± 0.06 µM, a repeatability of 7.7% (n = 4) and a reproducibility of 8% (n = 3). A study of the possible interferences shows that the presence of Mo(VI), Cr(III), Ca(II) and W(VI), may affect vanadium determination at concentration higher than 1.0 mM. The method was successfully applied to the determination of vanadium in spiked tap water.
Collapse
Affiliation(s)
- Ana Lorena Alvarado-Gámez
- CELEQ and School of Chemistry, University of Costa Rica, San Pedro de Montes de Oca, San José P.O. Box 11500-2060, Costa Rica.
| | | | - Olga Domínguez-Renedo
- Department of Chemistry, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos s/n, Burgos 09001, Spain.
| | - María Julia Arcos-Martínez
- Department of Chemistry, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos s/n, Burgos 09001, Spain.
| |
Collapse
|
28
|
|
29
|
Parihar S, Jadeja RN, Gupta VK. C 3 symmetric vanadium( iii) complexes with O,N-chelating hexadentate tripodal ligands of pyrazolone. RSC Adv 2014. [DOI: 10.1039/c4ra04021j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel C3 symmetric vanadium(iii) complexes of tripodal ligands of pyrazolones were synthesized and characterized by various spectroscopic and analytical techniques including single crystal XRD.
Collapse
Affiliation(s)
- Sanjay Parihar
- Department of Chemistry
- Faculty of Science
- The Maharaja Sayajirao University of Baroda
- Vadodara 390 002, India
| | - R. N. Jadeja
- Department of Chemistry
- Faculty of Science
- The Maharaja Sayajirao University of Baroda
- Vadodara 390 002, India
| | - Vivek K. Gupta
- Post-Graduate Department of Physics
- University of Jammu
- Jammutawi 180 006, India
| |
Collapse
|
30
|
Kundu S, Maity S, Weyhermüller T, Ghosh P. Oxidovanadium Catechol Complexes: Radical versus Non-Radical States and Redox Series. Inorg Chem 2013; 52:7417-30. [DOI: 10.1021/ic400166z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Suman Kundu
- Department
of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-103, India
| | - Suvendu Maity
- Department
of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-103, India
| | - Thomas Weyhermüller
- Max-Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Muelheim an der Ruhr, Germany
| | - Prasanta Ghosh
- Department
of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-103, India
| |
Collapse
|
31
|
Kundu S, Maity S, Maity AN, Ke SC, Ghosh P. Stabilization of oxidovanadium(iv) by organic radicals. Dalton Trans 2013; 42:4586-601. [DOI: 10.1039/c2dt32693k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Krakowiak J, Lundberg D, Persson I. A coordination chemistry study of hydrated and solvated cationic vanadium ions in oxidation states +III, +IV, and +V in solution and solid state. Inorg Chem 2012; 51:9598-609. [PMID: 22950803 PMCID: PMC3490104 DOI: 10.1021/ic300202f] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The coordination chemistry of hydrated and solvated vanadium(III), oxovanadium(IV), and dioxovanadium(V) ions in the oxygen-donor solvents water, dimethyl sulfoxide (DMSO), and N,N'-dimethylpropyleneurea (DMPU) has been studied in solution by extended X-ray absorption fine structure (EXAFS) and large-angle X-ray scattering (LAXS) and in the solid state by single-crystal X-ray diffraction and EXAFS. The hydrated vanadium(III) ion has a regular octahedral configuration with a mean V-O bond distance of 1.99 Å. In the hydrated and DMSO-solvated oxovanadium(IV) ions, vanadium binds strongly to an oxo group at ca. 1.6 Å. The solvent molecule trans to the oxo group is very weakly bound, at ca. 2.2 Å, while the remaining four solvent molecules, with a mean V-O bond distance of 2.0 Å, form a plane slightly below the vanadium atom; the mean O═V-O(perp) bond angle is ca. 98°. In the DMPU-solvated oxovanadium(IV) ion, the space-demanding properties of the DMPU molecule leave no solvent molecule in the trans position to the oxo group, which reduces the coordination number to 5. The O═V-O bond angle is consequently much larger, 107°, and the mean V═O and V-O bond distances decrease to 1.58 and 1.97 Å, respectively. The hydrated and DMSO-solvated dioxovanadium(V) ions display a very distorted octahedral configuration with the oxo groups in the cis position with a mean V═O bond distance of 1.6 Å and a O═V═O bond angle of ca. 105°. The solvent molecules trans to the oxo groups are weakly bound, at ca. 2.2 Å, while the remaining two have bond distances of 2.02 Å. The experimental studies of the coordination chemistry of hydrated and solvated vanadium(III,IV,V) ions are complemented by summarizing previously reported crystal structures to yield a comprehensive description of the coordination chemistry of vanadium with oxygen-donor ligands.
Collapse
Affiliation(s)
- Joanna Krakowiak
- Department of Chemistry, Uppsala Biocenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-75007 Uppsala, Sweden
| | | | | |
Collapse
|
33
|
Chi Z, Zhu L, Lu X, Yu H, Liu B. Comparative Study of three Mononuclear Vanadium-Aromatic 1, 2-Diol Complexes: Structure, Characterization and Anti-Proliferating Effects Against Cancer Cells. Z Anorg Allg Chem 2012. [DOI: 10.1002/zaac.201200097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Samino S, Michibata H, Ueki T. Identification of a novel vanadium-binding protein by EST analysis on the most vanadium-rich ascidian, Ascidia gemmata. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:143-154. [PMID: 21748343 DOI: 10.1007/s10126-011-9396-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 06/22/2011] [Indexed: 05/31/2023]
Abstract
Ascidians are known to accumulate extremely high levels of vanadium in their blood cells (up to 350 mM). The branchial sac and the intestine are thought to be the first tissues to contact the outer environment and absorb vanadium ions. The concentration of vanadium in the branchial sac and the intestine of the most vanadium-rich ascidian Ascidia gemmata were determined to be 32.4 and 11.9 mM, respectively. Using an expressed sequence tag (EST) analysis of a cDNA library from the intestine of A. gemmata, we determined 960 ESTs and found 55 clones of metal-related gene orthologs, 6 redox-related orthologs, and 18 membrane transporter orthologs. Among them, two genes, which exhibited significant similarity to the vanadium-binding proteins of other vanadium-rich ascidian species, were designated AgVanabin1 and AgVanabin2. Immobilized metal ion affinity chromatography revealed that recombinant AgVanabin1 bound to metal ions with an increasing affinity for Cu(II) > Zn(II) > Co(II) and AgVanabin2 bound to metal ions with an increasing affinity for Cu(II) > Fe(III) > V(IV). To examine the use of AgVanabins for a metal absorption system, we constructed Escherichia coli strains that expressed AgVanabin1 or AgVanabin2 fused to maltose-binding protein and secreted into the periplasmic space. We found that the strain expressing AgVanabin2 accumulated about 13.5 times more Cu(II) ions than the control TB1 strain. Significant accumulation of vanadium was also observed in the AgVanabin2-expressing strain as seen by a 1.5-fold increase.
Collapse
Affiliation(s)
- Setijono Samino
- Molecular Physiology Laboratory, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | | | | |
Collapse
|
35
|
Chang YH, Su CL, Wu RR, Liao JH, Liu YH, Hsu HF. An Eight-Coordinate Vanadium Thiolate Complex with Charge Delocalization between V(V)−Thiolate and V(IV)−Thiyl Radical Forms. J Am Chem Soc 2011; 133:5708-11. [DOI: 10.1021/ja2004208] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Roy AS, Saha P, Adhikary ND, Ghosh P. o-Iminobenzosemiquinonate and o-imino-p-methylbenzosemiquinonate anion radicals coupled VO2+ stabilization. Inorg Chem 2011; 50:2488-500. [PMID: 21348449 DOI: 10.1021/ic102296p] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The diamagnetic VO(2+)-iminobenzosemiquinonate anion radical (L(R)(IS)(•-), R = H, Me) complexes, (L(-))(VO(2+))(L(R)(IS)(•-)): (L(1)(-))(VO(2+))(L(H)(IS)(•-))•3/2MeOH (1•3/2MeOH), (L(2)(-))(VO(2+))(L(H)(IS)(•-)) (2), and (L(2)(-))(VO(2+))(L(Me)(IS)(•-))•1/2 L(Me)(AP) (3•1/2 L(Me)(AP)), incorporating tridentate monoanionic NNO-donor ligands {L = L(1)(-) or L(2)(-), L(1)H = (2-[(phenylpyridin-2-yl-methylene)amino]phenol; L(2)H = 1-(2-pyridylazo)-2-naphthol; L(H)(IS)(•-) = o-iminobenzosemiquinonate anion radical; L(Me)(IS)(•-) = o-imino-p-methylbenzosemiquinonate anion radical; and L(Me)(AP) = o-amino-p-methylphenol} have been isolated and characterized by elemental analyses, IR, mass, NMR, and UV-vis spectra, including the single-crystal X-ray structure determinations of 1•3/2MeOH and 3•1/2 L(Me)(AP). Complexes 1•3/2MeOH, 2, and 3•1/2 L(Me)(AP) absorb strongly in the visible region because of intraligand (IL) and ligand-to-metal charge transfers (LMCT). 1•3/2MeOH is luminescent (λ(ext), 333 nm; λ(em), 522, 553 nm) in frozen dichloromethane-toluene glass at 77 K due to π(diimine→)π(diimine)* transition. The V-O(phenolato) (cis to the V═O) lengths, 1.940(2) and 1.984(2) Å, respectively, in 1•3/2MeOH and 3•1/2 L(Me)(AP) are consistent with the VO(2+) description. The V-O(iminosemiquinonate) (trans to the V═O) lengths, 2.1324(19) in 1•3/2MeOH and 2.083(2) Å in 3•1/2 L(Me)(AP), are expectedly ∼0.20 Å longer due to the trans influence of the V═O bond. Because of the stronger affinity of the paramagnetic VO(2+) ion to the L(H)(IS)(•-) or L(Me)(IS)(•-), the V-N(iminosemiquinonate) lengths, 1.908(2) and 1.921(2) Å, respectively, in 1•3/2MeOH and 3•1/2 L(Me)(AP), are unexpectedly shorter. Density functional theory (DFT) calculations using B3LYP, B3PW91, and PBE1PBE functionals on 1 and 2 have established that the closed shell singlet (CSS) solutions (VO(3+)-amidophenolato (L(R)(AP)(2-)) coordination) of these complexes are unstable with respect to triplet perturbations. But BS (1,1) M(s) = 0 (VO(2+)-iminobenzosemiquinonate anion radical (L(R)(IS)(•-)) coordination) solutions of these species are stable and reproduce the experimental bond parameters well. Spin density distributions of one electron oxidized cations are consistent with the [(L(-))(VO(2+))(L(R)(IQ))](+) descriptions [VO(2+)-o-iminobenzoquinone (L(R)(IQ)) coordination], and one electron reduced anions are consistent with the [(L(•2-))(VO(3+))(L(R)(AP)(2-))](-) descriptions [VO(3+)-amidophenolato (L(R)(AP)(2-)) coordination], incorporating the diimine anion radical (L(1)(•2-)) or azo anion radical (L(2)(3-)). Although, cations and anions are not isolable, but electro-and spectro-electrochemical experiments have shown that 3(+) and 3(-) ions are more stable than 1(+), 2(+) and 1(-), 2(-) ions. In all cases, the reductions occur with simultaneous two electron transfer, may be due to formation of coupled diimine/azo anion radical-VO(2+) species as in [(L(•2-))(VO(2+))(L(R)(AP)(2-))](2-).
Collapse
Affiliation(s)
- Amit Saha Roy
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-103, India
| | | | | | | |
Collapse
|
37
|
Ueki T, Furuno N, Michibata H. A novel vanadium transporter of the Nramp family expressed at the vacuole of vanadium-accumulating cells of the ascidian Ascidia sydneiensis samea. Biochim Biophys Acta Gen Subj 2011; 1810:457-64. [PMID: 21236319 DOI: 10.1016/j.bbagen.2010.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/16/2010] [Accepted: 12/22/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND Vanadium is an essential transition metal in biological systems. Several key proteins related to vanadium accumulation and its physiological function have been isolated, but no vanadium ion transporter has yet been identified. METHODS We identified and cloned a member of the Nramp/DCT family of membrane metal transporters (AsNramp) from the ascidian Ascidia sydneiensis samea, which can accumulate extremely high levels of vanadium in the vacuoles of a type of blood cell called signet ring cells (also called vanadocytes). We performed immunological and biochemical experiments to examine its expression and transport function. RESULTS Western blotting analysis showed that AsNramp was localized at the vacuolar membrane of vanadocytes. Using the Xenopus oocyte expression system, we showed that AsNramp transported VO(2+) into the oocyte as pH-dependent manner above pH 6, while no significant activity was observed below pH 6. Kinetic parameters (K(m) and V(max)) of AsNramp-mediated VO(2+) transport at pH 8.5 were 90nM and 9.1pmol/oocyte/h, respectively. A rat homolog, DCT1, did not transport VO(2+) under the same conditions. Excess Fe(2+), Cu(2+), Mn(2+), or Zn(2+) inhibited the transport of VO(2+). AsNramp was revealed to be a novel VO(2+)/H(+) antiporter, and we propose that AsNramp mediates vanadium accumulation coupled with the electrochemical gradient generated by vacuolar H(+)-ATPase in vanadocytes. GENERAL SIGNIFICANCE This is the first report of identification and functional analysis on a membrane transporter for vanadium ions.
Collapse
Affiliation(s)
- Tatsuya Ueki
- Molecular Physiology Laboratory, Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| | | | | |
Collapse
|
38
|
|
39
|
Romanowski G, Wera M. Mononuclear and dinuclear chiral vanadium(V) complexes with tridentate Schiff bases derived from R(−)-1,2-diaminopropane: Synthesis, structure, characterization and catalytic properties. Polyhedron 2010. [DOI: 10.1016/j.poly.2010.06.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Islam MN, Kumbhar AA, Kumbhar AS, Zeller M, Butcher RJ, Dusane MB, Joshi BN. Bis(maltolato)vanadium(III)-Polypyridyl Complexes: Synthesis, Characterization, DNA Cleavage, and Insulin Mimetic Activity. Inorg Chem 2010; 49:8237-46. [DOI: 10.1021/ic9025359] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Matthias Zeller
- Department of Chemistry, Youngstown State University, Youngstown, Ohio 44555
| | | | - Menakshi Bhat Dusane
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune-411007, India
| | - Bimba N. Joshi
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune-411007, India
| |
Collapse
|
41
|
Ye S, Neese F, Ozarowski A, Smirnov D, Krzystek J, Telser J, Liao JH, Hung CH, Chu WC, Tsai YF, Wang RC, Chen KY, Hsu HF. Family of V(III)-Tristhiolato Complexes Relevant to Functional Models of Vanadium Nitrogenase: Synthesis and Electronic Structure Investigations by Means of High-Frequency and -Field Electron Paramagnetic Resonance Coupled to Quantum Chemical Computations. Inorg Chem 2009; 49:977-88. [DOI: 10.1021/ic9017745] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shengfa Ye
- Institut für Physikalische und Theoretische Chemie, Universität Bonn, D-53115 Bonn, Germany
| | - Frank Neese
- Institut für Physikalische und Theoretische Chemie, Universität Bonn, D-53115 Bonn, Germany
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310
| | - Dmitry Smirnov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310
| | - J. Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, Illinois 60605
| | - Ju-Hsiou Liao
- Department of Chemistry, National Chung Cheng University, Chia-Yi 621, Taiwan
| | | | - Wei-Chen Chu
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Feng Tsai
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Rong-Chin Wang
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Kun-Yuan Chen
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Hua-Fen Hsu
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
42
|
Characterization of vanadium-binding sites of the vanadium-binding protein Vanabin2 by site-directed mutagenesis. Biochim Biophys Acta Gen Subj 2009; 1790:1327-33. [DOI: 10.1016/j.bbagen.2009.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 05/26/2009] [Accepted: 05/29/2009] [Indexed: 11/21/2022]
|
43
|
Ueki T, Furuno N, Xu Q, Nitta Y, Kanamori K, Michibata H. Identification and biochemical analysis of a homolog of a sulfate transporter from a vanadium-rich ascidian Ascidia sydneiensis samea. Biochim Biophys Acta Gen Subj 2009; 1790:1295-300. [DOI: 10.1016/j.bbagen.2009.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 03/31/2009] [Accepted: 04/01/2009] [Indexed: 10/20/2022]
|
44
|
Telser J, Wu CC, Chen KY, Hsu HF, Smirnov D, Ozarowski A, Krzystek J. Aminocarboxylate complexes of vanadium(III): Electronic structure investigation by high-frequency and -field electron paramagnetic resonance spectroscopy. J Inorg Biochem 2009; 103:487-95. [DOI: 10.1016/j.jinorgbio.2009.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 01/05/2009] [Accepted: 01/07/2009] [Indexed: 10/21/2022]
|
45
|
Chatterjee PB, Bhattacharya K, Kundu N, Choi KY, Clérac R, Chaudhury M. Vanadium-Induced Nucleophilic IPSO Substitutions in a Coordinated Tetrachlorosemiquinone Ring: Formation of the Chloranilate Anion as a Bridging Ligand. Inorg Chem 2009; 48:804-6. [DOI: 10.1021/ic801985g] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pabitra Baran Chatterjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700 032, India, Department of Chemistry Education, Kongju National University, Kongju 314-701, South Korea, CNRS, UPR 8641, Centre de Recherche Paul Pascal (CRPP), Equipe “Matériaux Moléculaires Magnétiques”, 115 avenue du Dr. Albert Schweitzer, Pessac, F-33600, France, and Université de Bordeaux, UPR 8641, Pessac, F-33600, France
| | - Kisholoy Bhattacharya
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700 032, India, Department of Chemistry Education, Kongju National University, Kongju 314-701, South Korea, CNRS, UPR 8641, Centre de Recherche Paul Pascal (CRPP), Equipe “Matériaux Moléculaires Magnétiques”, 115 avenue du Dr. Albert Schweitzer, Pessac, F-33600, France, and Université de Bordeaux, UPR 8641, Pessac, F-33600, France
| | - Nabanita Kundu
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700 032, India, Department of Chemistry Education, Kongju National University, Kongju 314-701, South Korea, CNRS, UPR 8641, Centre de Recherche Paul Pascal (CRPP), Equipe “Matériaux Moléculaires Magnétiques”, 115 avenue du Dr. Albert Schweitzer, Pessac, F-33600, France, and Université de Bordeaux, UPR 8641, Pessac, F-33600, France
| | - Ki-Young Choi
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700 032, India, Department of Chemistry Education, Kongju National University, Kongju 314-701, South Korea, CNRS, UPR 8641, Centre de Recherche Paul Pascal (CRPP), Equipe “Matériaux Moléculaires Magnétiques”, 115 avenue du Dr. Albert Schweitzer, Pessac, F-33600, France, and Université de Bordeaux, UPR 8641, Pessac, F-33600, France
| | - Rodolphe Clérac
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700 032, India, Department of Chemistry Education, Kongju National University, Kongju 314-701, South Korea, CNRS, UPR 8641, Centre de Recherche Paul Pascal (CRPP), Equipe “Matériaux Moléculaires Magnétiques”, 115 avenue du Dr. Albert Schweitzer, Pessac, F-33600, France, and Université de Bordeaux, UPR 8641, Pessac, F-33600, France
| | - Muktimoy Chaudhury
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700 032, India, Department of Chemistry Education, Kongju National University, Kongju 314-701, South Korea, CNRS, UPR 8641, Centre de Recherche Paul Pascal (CRPP), Equipe “Matériaux Moléculaires Magnétiques”, 115 avenue du Dr. Albert Schweitzer, Pessac, F-33600, France, and Université de Bordeaux, UPR 8641, Pessac, F-33600, France
| |
Collapse
|
46
|
UEKI T, SATAKE M, KAMINO K, MICHIBATA H. Sequence variation of Vanabin2-like vanadium-binding proteins in blood cells of the vanadium-accumulating ascidian Ascidia sydneiensis samea. Biochim Biophys Acta Gen Subj 2008; 1780:1010-5. [DOI: 10.1016/j.bbagen.2008.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 04/08/2008] [Accepted: 04/09/2008] [Indexed: 11/16/2022]
|
47
|
Roberts DA, Johnston EL, Poore AGB. Contamination of marine biogenic habitats and effects upon associated epifauna. MARINE POLLUTION BULLETIN 2008; 56:1057-1065. [PMID: 18405924 DOI: 10.1016/j.marpolbul.2008.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 03/02/2008] [Indexed: 05/26/2023]
Abstract
Habitat-forming organisms are frequently used as biomonitors in marine environments due to a widespread ability to accumulate toxic contaminants. Few studies, however, have considered the consequences of these accumulated contaminants on the abundant and diverse fauna associated with these habitats. In this review, we summarize research which has investigated the contamination of biogenic habitats (including seagrasses, macroalgae, ascidians, sponges and bivalve reefs) and the impact of this contamination on the habitat use, feeding behaviour and survival of associated epifauna. In many cases, ecological impacts upon epifauna are not simply predicted by levels of contamination in their habitat, but are determined by the foraging, feeding and reproductive behaviours of the inhabiting organisms. Thus, a thorough understanding of these ecological processes is essential in order to understand the effects of contaminants upon epifaunal communities. The scope of biomonitoring studies which assess the contamination of biogenic habitats should be expanded to include an assessment of potential effects upon associated epifauna. When combined with manipulative field experiments such an approach would greatly assist in our understanding of indirect effects of contaminants in these important benthic habitats.
Collapse
Affiliation(s)
- David A Roberts
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia.
| | | | | |
Collapse
|
48
|
The trigonal-bipyramidal NO4 ligand set in biologically relevant vanadium compounds and their inorganic models. J Inorg Biochem 2008; 102:1152-8. [DOI: 10.1016/j.jinorgbio.2007.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 12/06/2007] [Accepted: 12/07/2007] [Indexed: 11/24/2022]
|
49
|
Nica S, Buchholz A, Rudolph M, Schweitzer A, Wächtler M, Breitzke H, Buntkowsky G, Plass W. Mixed-Ligand Oxidovanadium(V) Complexes withN′-Salicylidenehydrazides: Synthesis, Structure, and51V Solid-State MAS NMR Investigation. Eur J Inorg Chem 2008. [DOI: 10.1002/ejic.200800063] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Yoshihara M, Ueki T, Yamaguchi N, Kamino K, Michibata H. Characterization of a novel vanadium-binding protein (VBP-129) from blood plasma of the vanadium-rich ascidian Ascidia sydneiensis samea. Biochim Biophys Acta Gen Subj 2008; 1780:256-63. [DOI: 10.1016/j.bbagen.2007.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 10/29/2007] [Accepted: 11/02/2007] [Indexed: 10/22/2022]
|