1
|
Hassan S, Ashraf N, Hanif K, Khan NU. Subcortical Maternal Complex in Female Infertility: A Transition from Animal Models to Human Studies. Mol Biol Rep 2025; 52:108. [PMID: 39775990 DOI: 10.1007/s11033-025-10220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Female infertility is a significant healthcare burden that is frequently encountered among couples globally. While environmental factors, comorbidities, and lifestyle determine reproductive health, certain genetic variants in key reproductive genes can potentially cause unsuccessful pregnancies. Such crucial proteins have been identified within the subcortical maternal complex (SCMC) and play an integral role in the early stages of embryogenesis before embryo implantation. SCMC proteins are associated with crucial pathways during embryogenesis, causing changes that are necessary for the transition of an oocyte to an embryo. These vital processes include the formation of cytoplasmic spindles and lattices, accurate positioning of meiotic spindles, regulatory roles in various gene translations, organelle redistribution, and zygotic genome reprogramming. While these genes are well studied in animal models, often mice, translation to clinical studies is comparatively less. The present study elucidates the transition in genetic studies from animal to human models of SCMC proteins. The present literature review shows that the expression of various SCMC proteins impairs embryo development at different stages. The clinical translation of SCMC occurs via various pathways. Therefore, females experiencing multiple unsuccessful pregnancies after natural or assisted conception techniques are candidates for underlying SCMC mutations. Although the phenotype of affected individuals has been identified, the molecular mechanisms that lead to impaired pathways still require investigation. Therefore, the present study paves the way for future research leading to the early diagnosis of lethal variants and possible subsequent management.
Collapse
Affiliation(s)
- Sibte Hassan
- Reproductive Medicine Physician SEHA Corniche Hospital, Abu Dhabi, UAE.
| | - Nomia Ashraf
- Department of obstetrics and gynaecology, Fatima Jinnah Medical University Lahore, Lahore, Pakistan
| | - Khola Hanif
- Genova Invitro Fertilization Clinic Lahore, Lahore, Pakistan
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan.
| |
Collapse
|
2
|
Williams JPC, Mouilleron S, Trapero RH, Bertran MT, Marsh JA, Walport LJ. Structural insight into the function of human peptidyl arginine deiminase 6. Comput Struct Biotechnol J 2024; 23:3258-3269. [PMID: 39286527 PMCID: PMC11402830 DOI: 10.1016/j.csbj.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Peptidyl arginine deiminase 6 (PADI6 or PAD6) is vital for early embryonic development in mice and humans, yet its function remains elusive. PADI6 is less conserved than other PADIs and it is currently unknown whether it has a catalytic function. Here we show that human PADI6 dimerises like hPADIs 2-4, however, does not bind Ca2+ and is inactive in in vitro assays against standard PADI substrates. By determining the crystal structure of hPADI6, we show that hPADI6 is structured in the absence of Ca2+ where hPADI2 and hPADI4 are not, and the Ca-binding sites are not conserved. Moreover, we show that whilst the key catalytic aspartic acid and histidine residues are structurally conserved, the cysteine is displaced far from the active site centre and the hPADI6 active site pocket appears closed through a unique evolved mechanism in hPADI6, not present in the other PADIs. Taken together, these findings provide insight into how the function of hPADI6 may differ from the other PADIs based on its structure and provides a resource for characterising the damaging effect of clinically significant PADI6 variants.
Collapse
Affiliation(s)
- Jack P C Williams
- Department of Chemistry, Imperial College London, London, United Kingdom
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Stephane Mouilleron
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Rolando Hernandez Trapero
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - M Teresa Bertran
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Louise J Walport
- Department of Chemistry, Imperial College London, London, United Kingdom
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
3
|
Zhou J, Mao R, Gao L, Wang M, Long R, Wang X, Li Z, Jin L, Zhu L. Novel variants in PADI6 genes cause female infertility due to early embryo arrest. J Assist Reprod Genet 2024; 41:3327-3336. [PMID: 39644447 PMCID: PMC11707103 DOI: 10.1007/s10815-024-03332-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/15/2024] [Indexed: 12/09/2024] Open
Abstract
PURPOSE Early embryo arrest is characterized by premature termination of development in preimplantation embryos. Human subcortical maternal complex (SCMC) is a protein complex that is specifically expressed in mammalian oocytes and early embryos and is essential for embryonic cell division. Peptidyl arginine deiminase 6 (PADI6) is proven to be a member of SCMC. Variants in the PADI6 gene have been shown to induce early embryo arrest. In this study, we performed genetic analysis in patients with female infertility due to early embryo arrest to identify the disease-causing gene variants. METHODS Whole-exome sequencing and Sanger sequencing were used to identify the variants in the patients and their families. Western blotting and immunofluorescence staining were used to check the effects of the variants on expression and function of PADI6. RESULTS We identified a novel homozygous variant (c.358A > C [p.Thr120Pro]) and novel compound-heterozygous variants (c.2044C > T [p.Arg682Trp] and c.707dupT [p.Leu237Alafs*24]) in PADI6 in two infertile individuals with early embryo arrest. We found that these variants resulted in a decrease in the expression level of PADI6, which may lead to abnormal protein function. Immunofluorescence staining also suggested that these variants affected the expression of PADI6. CONCLUSION Our study expands the spectrum of genetic defects in female early embryo arrest and further supports the causality between PADI6 variants and female infertility.
Collapse
Affiliation(s)
- Juepu Zhou
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Ruolin Mao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Limin Gao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Meng Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Rui Long
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Xiangfei Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Zhou Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China.
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China.
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China.
| |
Collapse
|
4
|
Mansouri P, Mansouri P, Behmard E, Najafipour S, Kouhpayeh SA, Farjadfar A. Peptidylarginine deiminase (PAD): A promising target for chronic diseases treatment. Int J Biol Macromol 2024; 278:134576. [PMID: 39127273 DOI: 10.1016/j.ijbiomac.2024.134576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
In 1958, the presence of citrulline in the structure of the proteins was discovered for the first time. Several years later they found that Arginine converted to citrulline during a post-translational modification process by PAD enzyme. Each PAD is expressed in a certain tissue developing a series of diseases such as inflammation and cancers. Among these, PAD2 and PAD4 play a role in the development of rheumatoid arthritis (RA) by producing citrullinated autoantigens and increasing the production of inflammatory cytokines. PAD4 is also associated with the formation of NET structures and thrombosis. In the crystallographic structure, PAD has several calcium binding sites, and the active site of the enzyme consists of different amino acids. Various PAD inhibitors have been developed divided into pan-PAD and selective PAD inhibitors. F-amidine, Cl-amidine, and BB-Cl-amidine are some of pan-PAD inhibitors. AFM-30a and JBI589 are selective for PAD2 and PAD4, respectively. There is a need to evaluate the effectiveness of existing inhibitors more accurately in the coming years, as well as design and production of novel inhibitors targeting highly specific isoforms.
Collapse
Affiliation(s)
- Pegah Mansouri
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Pardis Mansouri
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sohrab Najafipour
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Seyed Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Akbar Farjadfar
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
5
|
Gui L, Zhong Q, Yang J, Sun J, Lu J, Picton HM, Li C. Acquisition of 2C-like totipotency through defined maternal-effect factors. Stem Cells 2024; 42:581-592. [PMID: 38655883 DOI: 10.1093/stmcls/sxae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Fully grown oocytes have the natural ability to transform 2 terminally differentiated gametes into a totipotent zygote representing the acquisition of totipotency. This process wholly depends on maternal-effect factors (MFs). MFs stored in the eggs are therefore likely to be able to induce cellular reprogramming to a totipotency state. Here we report the generation of totipotent-like stem cells from mESCs using 4MFs Hsf1, Zar1, Padi6, and Npm2, designated as MFiTLSCs. MFiTLSCs exhibited a unique and inherent capability to differentiate into embryonic and extraembryonic derivatives. Transcriptomic analysis revealed that MFiTLSCs are enriched with 2-cell-specific genes that appear to synergistically induce a transcriptional repressive state, in that parental genomes are remodeled to a poised transcriptional repression state while totipotency is established following fertilization. This method to derive MFiTLSCs could help advance the understanding of fate determinations of totipotent stem cells in a physiological context and establish a foundation for the development of oocyte biology-based reprogramming technology.
Collapse
Affiliation(s)
- Liming Gui
- Institute of Obstetrics and Gynaecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province 518036, People's Republic of China
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province 518036, People's Republic of China
- Centre for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou Province 550004, People's Republic of China
| | - Qin Zhong
- Centre for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou Province 550004, People's Republic of China
| | - Jue Yang
- Centre for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou Province 550004, People's Republic of China
| | - Jiajia Sun
- Institute of Obstetrics and Gynaecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province 518036, People's Republic of China
| | - Jianping Lu
- Reproduction and Early Development Research Group, Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Helen M Picton
- Reproduction and Early Development Research Group, Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Changzhong Li
- Institute of Obstetrics and Gynaecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province 518036, People's Republic of China
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province 518036, People's Republic of China
| |
Collapse
|
6
|
Anvar Z, Jochum MD, Chakchouk I, Sharif M, Demond H, To AK, Kraushaar DC, Wan YW, Andrews S, Kelsey G, Veyver IB. Maternal loss-of-function of Nlrp2 results in failure of epigenetic reprogramming in mouse oocytes. RESEARCH SQUARE 2024:rs.3.rs-4457414. [PMID: 38883732 PMCID: PMC11177987 DOI: 10.21203/rs.3.rs-4457414/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Background NLRP2 belongs to the subcortical maternal complex (SCMC) of mammalian oocytes and preimplantation embryos. This multiprotein complex, encoded by maternal-effect genes, plays a pivotal role in the zygote-to-embryo transition, early embryogenesis, and epigenetic (re)programming. The maternal inactivation of genes encoding SCMC proteins has been linked to infertility and subfertility in mice and humans. However, the underlying molecular mechanisms for the diverse functions of the SCMC, particularly how this cytoplasmic structure influences DNA methylation, which is a nuclear process, are not fully understood. Results We undertook joint transcriptome and DNA methylome profiling of pre-ovulatory germinal-vesicle oocytes from Nlrp2-null, heterozygous (Het), and wild-type (WT) female mice. We identified numerous differentially expressed genes (DEGs) in Het and Nlrp2-null when compared to WT oocytes. The genes for several crucial factors involved in oocyte transcriptome modulation and epigenetic reprogramming, such as DNMT1, UHRF1, KDM1B and ZFP57 were overexpressed in Het and Nlrp2-null oocytes. Absence or reduction of Nlrp2, did not alter the distinctive global DNA methylation landscape of oocytes, including the bimodal pattern of the oocyte methylome. Additionally, although the methylation profile of germline differentially methylated regions (gDMRs) of imprinted genes was preserved in oocytes of Het and Nlrp2-null mice, we found altered methylation in oocytes of both genotypes at a small percentage of the oocyte-characteristic hyper- and hypomethylated domains. Through a tiling approach, we identified specific DNA methylation differences between the genotypes, with approximately 1.3% of examined tiles exhibiting differential methylation in Het and Nlrp2-null compared to WT oocytes. Conclusions Surprisingly, considering the well-known correlation between transcription and DNA methylation in developing oocytes, we observed no correlation between gene expression differences and gene-body DNA methylation differences in Nlrp2-null versus WT oocytes or Het versus WT oocytes. We therefore conclude that post-transcriptional changes in the stability of transcripts rather than altered transcription is primarily responsible for transcriptome differences in Nlrp2-null and Het oocytes.
Collapse
|
7
|
Ranaivoson FM, Bande R, Cardaun I, De Riso A, Gärtner A, Loke P, Reinisch C, Vogirala P, Beaumont E. Crystal structure of human peptidylarginine deiminase type VI (PAD6) provides insights into its inactivity. IUCRJ 2024; 11:395-404. [PMID: 38656308 PMCID: PMC11067741 DOI: 10.1107/s2052252524002549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
Human peptidylarginine deiminase isoform VI (PAD6), which is predominantly limited to cytoplasmic lattices in the mammalian oocytes in ovarian tissue, is essential for female fertility. It belongs to the peptidylarginine deiminase (PAD) enzyme family that catalyzes the conversion of arginine residues to citrulline in proteins. In contrast to other members of the family, recombinant PAD6 was previously found to be catalytically inactive. We sought to provide structural insight into the human homologue to shed light on this observation. We report here the first crystal structure of PAD6, determined at 1.7 Å resolution. PAD6 follows the same domain organization as other structurally known PAD isoenzymes. Further structural analysis and size-exclusion chromatography show that PAD6 behaves as a homodimer similar to PAD4. Differential scanning fluorimetry suggests that PAD6 does not coordinate Ca2+ which agrees with acidic residues found to coordinate Ca2+ in other PAD homologs not being conserved in PAD6. The crystal structure of PAD6 shows similarities with the inactive state of apo PAD2, in which the active site conformation is unsuitable for catalytic citrullination. The putative active site of PAD6 adopts a non-productive conformation that would not allow protein-substrate binding due to steric hindrance with rigid secondary structure elements. This observation is further supported by the lack of activity on the histone H3 and cytokeratin 5 substrates. These findings suggest a different mechanism for enzymatic activation compared with other PADs; alternatively, PAD6 may exert a non-enzymatic function in the cytoplasmic lattice of oocytes and early embryos.
Collapse
Affiliation(s)
- Fanomezana M. Ranaivoson
- Protein Sciences Department, Evotec (United Kingdom), 95 Park Drive, Abingdon OX14 4RY, United Kingdom
| | - Rieke Bande
- Assay Development Department, Manfred Eigen Campus, Evotec (Germany), Essener Bogen 7, 22419 Hamburg, Germany
| | - Isabell Cardaun
- In vitro Biology Department, Manfred Eigen Campus, Evotec SE, Essener Bogen 7, 22419 Hamburg, Germany
| | - Antonio De Riso
- Protein Sciences Department, Evotec (United Kingdom), 95 Park Drive, Abingdon OX14 4RY, United Kingdom
| | - Annette Gärtner
- In vitro Biology Department, Manfred Eigen Campus, Evotec SE, Essener Bogen 7, 22419 Hamburg, Germany
| | - Pui Loke
- Chemistry Department, Evotec (United Kingdom), 95 Park Drive, Abingdon OX14 4RY, United Kingdom
| | - Christina Reinisch
- Assay Development Department, Manfred Eigen Campus, Evotec (Germany), Essener Bogen 7, 22419 Hamburg, Germany
| | - Prasuna Vogirala
- Protein Sciences Department, Evotec (United Kingdom), 95 Park Drive, Abingdon OX14 4RY, United Kingdom
| | - Edward Beaumont
- Protein Sciences Department, Evotec (United Kingdom), 95 Park Drive, Abingdon OX14 4RY, United Kingdom
| |
Collapse
|
8
|
Jentoft IMA, Bäuerlein FJB, Welp LM, Cooper BH, Petrovic A, So C, Penir SM, Politi AZ, Horokhovskyi Y, Takala I, Eckel H, Moltrecht R, Lénárt P, Cavazza T, Liepe J, Brose N, Urlaub H, Fernández-Busnadiego R, Schuh M. Mammalian oocytes store proteins for the early embryo on cytoplasmic lattices. Cell 2023; 186:5308-5327.e25. [PMID: 37922900 DOI: 10.1016/j.cell.2023.10.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/01/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
Mammalian oocytes are filled with poorly understood structures called cytoplasmic lattices. First discovered in the 1960s and speculated to correspond to mammalian yolk, ribosomal arrays, or intermediate filaments, their function has remained enigmatic to date. Here, we show that cytoplasmic lattices are sites where oocytes store essential proteins for early embryonic development. Using super-resolution light microscopy and cryoelectron tomography, we show that cytoplasmic lattices are composed of filaments with a high surface area, which contain PADI6 and subcortical maternal complex proteins. The lattices associate with many proteins critical for embryonic development, including proteins that control epigenetic reprogramming of the preimplantation embryo. Loss of cytoplasmic lattices by knocking out PADI6 or the subcortical maternal complex prevents the accumulation of these proteins and results in early embryonic arrest. Our work suggests that cytoplasmic lattices enrich maternally provided proteins to prevent their premature degradation and cellular activity, thereby enabling early mammalian development.
Collapse
Affiliation(s)
- Ida M A Jentoft
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Felix J B Bäuerlein
- Institute for Neuropathology, University Medical Center Göttingen, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany
| | - Luisa M Welp
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| | - Arsen Petrovic
- Institute for Neuropathology, University Medical Center Göttingen, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany
| | - Chun So
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Sarah Mae Penir
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Antonio Z Politi
- Facility for Light Microscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Yehor Horokhovskyi
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Iina Takala
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Heike Eckel
- Kinderwunschzentrum Göttingen, 37081 Göttingen, Germany
| | | | - Peter Lénárt
- Facility for Light Microscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Tommaso Cavazza
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Juliane Liepe
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Nils Brose
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany; Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| | - Henning Urlaub
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany; Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Rubén Fernández-Busnadiego
- Institute for Neuropathology, University Medical Center Göttingen, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany; Faculty of Physics, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
9
|
Williams JPC, Walport LJ. PADI6: What we know about the elusive fifth member of the peptidyl arginine deiminase family. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220242. [PMID: 37778376 PMCID: PMC10542454 DOI: 10.1098/rstb.2022.0242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/05/2023] [Indexed: 10/03/2023] Open
Abstract
Peptidyl arginine deiminase 6 (PADI6) is a maternal factor that is vital for early embryonic development. Deletion and mutations of its encoding gene in female mice or women lead to early embryonic developmental arrest, female infertility, maternal imprinting defects and hyperproliferation of the trophoblast. PADI6 is the fifth and least well-characterized member of the peptidyl arginine deiminases (PADIs), which catalyse the post-translational conversion of arginine to citrulline. It is less conserved than the other PADIs, and currently has no reported catalytic activity. While there are many suggested functions of PADI6 in the early mouse embryo, including in embryonic genome activation, cytoplasmic lattice formation, maternal mRNA and ribosome regulation, and organelle distribution, the molecular mechanisms of its function remain unknown. In this review, we discuss what is known about the function of PADI6 and highlight key outstanding questions that must be answered if we are to understand the crucial role it plays in early embryo development and female fertility. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Collapse
Affiliation(s)
| | - Louise J. Walport
- Imperial College of Science Technology and Medicine, London, W12 0BZ, UK
| |
Collapse
|
10
|
Zhang S, Mu L, Wang H, Xu X, Jia L, Niu S, Wang Y, Wang P, Li L, Chai J, Li Z, Zhang Y, Zhang H. Quantitative proteomic analysis uncovers protein-expression profiles during gonadotropin-dependent folliculogenesis in mice†. Biol Reprod 2023; 108:479-491. [PMID: 36477298 DOI: 10.1093/biolre/ioac217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/14/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Ovarian follicle is the basic functional unit of female reproduction, and is composed of oocyte and surrounding granulosa cells. In mammals, folliculogenesis strictly rely on gonadotropin regulations to determine the ovulation and the quality of eggs. However, the dynamic changes of protein-expressing profiles in follicles at different developmental stages remain largely unknown. By performing mass-spectrometry-based quantitative proteomic analysis of mouse follicles, we provide a proteomic database (~3000 proteins) that covers three key stages of gonadotropin-dependent folliculogenesis. By combining bioinformatics analysis with in situ expression validation, we showed that our proteomic data well reflected physiological changes during folliculogenesis, which provided potential to predict unknown regulators of folliculogenesis. Additionally, by using the oocyte structural protein zona pellucida protein 2 as the internal control, we showed the possibility of our database to predict the expression dynamics of oocyte-expressing proteins during folliculogenesis. Taken together, we provide a high-coverage proteomic database to study protein-expression dynamics during gonadotropin-dependent folliculogenesis in mammals.
Collapse
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lu Mu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Haoran Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueqiang Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Longzhong Jia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shudong Niu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yibo Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Peike Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lingyu Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Junyi Chai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Ramirez-Diaz J, Cenadelli S, Bornaghi V, Bongioni G, Montedoro SM, Achilli A, Capelli C, Rincon JC, Milanesi M, Passamonti MM, Colli L, Barbato M, Williams JL, Marsan PA. Identification of genomic regions associated with total and progressive sperm motility in Italian Holstein bulls. J Dairy Sci 2023; 106:407-420. [PMID: 36400619 DOI: 10.3168/jds.2021-21700] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
Sperm motility is directly related to the ability of sperm to move through the female reproductive tract to reach the ovum. Sperm motility is a complex trait that is influenced by environmental and genetic factors and is associated with male fertility, oocyte penetration rate, and reproductive success of cattle. In this study we carried out a GWAS in Italian Holstein bulls to identify candidate regions and genes associated with variations in progressive and total motility (PM and TM, respectively). After quality control, the final data set consisted of 5,960 records from 949 bulls having semen collected in 10 artificial insemination stations and genotyped at 412,737 SNPs (call rate >95%; minor allele frequency >5%). (Co)variance components were estimated using single trait mixed models, and associations between SNPs and phenotypes were assessed using a genomic BLUP approach. Ten windows that explained the greatest percentage of genetic variance were located on Bos taurus autosomes 1, 2, 4, 6, 7, 23, and 26 for TM and Bos taurus autosomes 1, 2, 4, 6, 8, 16, 23, and 26 for PM. A total of 150 genes for TM and 72 genes for PM were identified within these genomic regions. Gene Ontology enrichment analyses identified significant Gene Ontology terms involved with energy homeostasis, membrane functions, sperm-egg interactions, protection against oxidative stress, olfactory receptors, and immune system. There was significant enrichment of quantitative trait loci for fertility, calving ease, immune response, feed intake, and carcass weight within the candidate windows. These results contribute to understanding the architecture of the genetic control of sperm motility and may aid in the development of strategies to identify subfertile bulls and improve reproductive success.
Collapse
Affiliation(s)
- J Ramirez-Diaz
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy 29122; Institute of Agricultural Biology and Biotechnology (IBBA), Consiglio Nazionale di Ricerca, Milano, Italy.
| | - S Cenadelli
- Institute Lazzaro Spallanzani, Rivolta d'Adda (CR), Cremona, Italy
| | - V Bornaghi
- Institute Lazzaro Spallanzani, Rivolta d'Adda (CR), Cremona, Italy
| | - G Bongioni
- Institute Lazzaro Spallanzani, Rivolta d'Adda (CR), Cremona, Italy
| | - S M Montedoro
- Institute Lazzaro Spallanzani, Rivolta d'Adda (CR), Cremona, Italy
| | - A Achilli
- Department of Biology and Biotechnology, Università degli Studi di Pavia, Pavia, Italy
| | - C Capelli
- Department of Chemical, Life and Environmental Sustainability Sciences, Università degli Studi di Parma, Parma, Italy
| | - J C Rincon
- Department of Animal Science, Universidad Nacional de Colombia, Palmira, Valle del Cauca, Colombia
| | - M Milanesi
- Department for Innovation in Biological, Agri-food and Forestry Systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - M M Passamonti
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy 29122
| | - L Colli
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy 29122
| | - M Barbato
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy 29122
| | - J L Williams
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy 29122
| | - P Ajmone Marsan
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy 29122
| |
Collapse
|
12
|
Christensen AO, Li G, Young CH, Snow B, Khan SA, DeVore SB, Edwards S, Bouma GJ, Navratil AM, Cherrington BD, Rothfuss HM. Peptidylarginine deiminase enzymes and citrullinated proteins in female reproductive physiology and associated diseases†. Biol Reprod 2022; 107:1395-1410. [PMID: 36087287 PMCID: PMC10248218 DOI: 10.1093/biolre/ioac173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 09/15/2023] Open
Abstract
Citrullination, the post-translational modification of arginine residues, is catalyzed by the four catalytically active peptidylarginine deiminase (PAD or PADI) isozymes and alters charge to affect target protein structure and function. PADs were initially characterized in rodent uteri and, since then, have been described in other female tissues including ovaries, breast, and the lactotrope and gonadotrope cells of the anterior pituitary gland. In these tissues and cells, estrogen robustly stimulates PAD expression resulting in changes in levels over the course of the female reproductive cycle. The best-characterized targets for PADs are arginine residues in histone tails, which, when citrullinated, alter chromatin structure and gene expression. Methodological advances have allowed for the identification of tissue-specific citrullinomes, which reveal that PADs citrullinate a wide range of enzymes and structural proteins to alter cell function. In contrast to their important physiological roles, PADs and citrullinated proteins are also involved in several female-specific diseases including autoimmune disorders and reproductive cancers. Herein, we review current knowledge regarding PAD expression and function and highlight the role of protein citrullination in both normal female reproductive tissues and associated diseases.
Collapse
Affiliation(s)
- Amanda O Christensen
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Guangyuan Li
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Coleman H Young
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Bryce Snow
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | | | - Stanley B DeVore
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Sydney Edwards
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Gerrit J Bouma
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Amy M Navratil
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Brian D Cherrington
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Heather M Rothfuss
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
13
|
Citrullination: A modification important in the pathogenesis of autoimmune diseases. Clin Immunol 2022; 245:109134. [DOI: 10.1016/j.clim.2022.109134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022]
|
14
|
Christophorou MA. The virtues and vices of protein citrullination. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220125. [PMID: 35706669 PMCID: PMC9174705 DOI: 10.1098/rsos.220125] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/16/2022] [Indexed: 05/03/2023]
Abstract
The post-translational modification of proteins expands the regulatory scope of the proteome far beyond what is achievable through genome regulation. The field of protein citrullination has seen significant progress in the last two decades. The small family of peptidylarginine deiminase (PADI or PAD) enzymes, which catalyse citrullination, have been implicated in virtually all facets of molecular and cell biology, from gene transcription and epigenetics to cell signalling and metabolism. We have learned about their association with a remarkable array of disease states and we are beginning to understand how they mediate normal physiological functions. However, while the biochemistry of PADI activation has been worked out in exquisite detail in vitro, we still lack a clear mechanistic understanding of the processes that regulate PADIs within cells, under physiological and pathophysiological conditions. This review summarizes and discusses the current knowledge, highlights some of the unanswered questions of immediate importance and gives a perspective on the outlook of the citrullination field.
Collapse
|
15
|
Xu Y, Wang R, Pang Z, Wei Z, Sun L, Li S, Wang G, Liu Y, Zhou Y, Ye H, Jin L, Xue S. Novel Homozygous PADI6 Variants in Infertile Females with Early Embryonic Arrest. Front Cell Dev Biol 2022; 10:819667. [PMID: 35433708 PMCID: PMC9010549 DOI: 10.3389/fcell.2022.819667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Early embryonic arrest denotes premature termination of development in preimplantation embryos, which is one of the major phenotypes of recurrent assisted reproduction failure. Padi6 is proven to be a member of the subcortical maternal complex (SCMC) in mice, which is essential in oocyte maturation and embryogenesis. We and other groups previously found that biallelic mutations in PADI6 caused female infertility manifesting as early embryonic arrest. In this study, we identified two novel homozygous variants (p.Cys163Arg, and p. Trp475*) of PADI6 in two infertile patients from a cohort of 75 females with the phenotype of early embryonic arrest. An in vitro expression study indicated severe decrease of PADI6, which might destruct the stability of SCMC. Our study expands the mutational spectrum of PADI6 and further supports the causality between PADI6 mutations and female infertility.
Collapse
Affiliation(s)
- Yao Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yao Xu, ; Liping Jin, ; Songguo Xue,
| | - Rongxiang Wang
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhi Pang
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Zhiyun Wei
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lihua Sun
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sa Li
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Beijing, China
| | - Guanghua Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Liu
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiwen Zhou
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongjuan Ye
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liping Jin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yao Xu, ; Liping Jin, ; Songguo Xue,
| | - Songguo Xue
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yao Xu, ; Liping Jin, ; Songguo Xue,
| |
Collapse
|
16
|
Thirugnanasambandham I, Radhakrishnan A, Kuppusamy G, Kumar Singh S, Dua K. PEPTIDYLARGININE DEIMINASE-4: MEDICO-FORMULATIVE STRATEGY TOWARDS MANAGEMENT OF RHEUMATOID ARTHRITIS. Biochem Pharmacol 2022; 200:115040. [DOI: 10.1016/j.bcp.2022.115040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 12/15/2022]
|
17
|
Wu YK, Fan HY. Revisiting ZAR proteins: the understudied regulator of female fertility and beyond. Cell Mol Life Sci 2022; 79:92. [PMID: 35072788 PMCID: PMC11071961 DOI: 10.1007/s00018-022-04141-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/02/2022] [Accepted: 01/10/2022] [Indexed: 11/25/2022]
Abstract
Putative RNA-binding proteins (RBPs), zygote arrested-1 (ZAR1), and ZAR2 (also known as ZAR1L), have been identified as maternal factors that mainly function in oogenesis and embryogenesis. Despite divergence in their spatio-temporal expression among species, the CxxC structure of the C-terminus of ZAR proteins is highly conserved and is reported to be the functional domain for the activity of the RBPs of ZAR proteins. In oocytes from Xenopus laevis and zebrafish, ZAR proteins have been reported to bind to maternal transcripts and inhibit translation in immature growing oocytes, whereas in fully grown mouse oocytes, they promote the translation during meiotic maturation. Thus, ZAR1 and ZAR2 may be required for the maternal-to-zygotic transition by stabilizing the maternal transcriptome in oocytes with partial functional redundancy. In addition, recent studies have suggested non-ovarian expression and function of ZAR proteins, particularly their involvement in tumorigenesis. ZAR proteins are potentially associated with tumor suppressors and can serve as epigenetically inactivated cancer biomarkers. In this review, studies on Zar1/2 are systematically summarized, and some issues that require discussion and further investigation are introduced as perspectives.
Collapse
Affiliation(s)
- Yu-Ke Wu
- Life Sciences Institute, Zhejiang University, 866 Yu Hang Tang Rd., Hangzhou, 310058, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, 866 Yu Hang Tang Rd., Hangzhou, 310058, China.
| |
Collapse
|
18
|
Wang L, Chen H, Tang J, Guo Z, Wang Y. Peptidylarginine Deiminase and Alzheimer's Disease. J Alzheimers Dis 2021; 85:473-484. [PMID: 34842193 DOI: 10.3233/jad-215302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peptidylarginine deiminases (PADs) are indispensable enzymes for post-translational modification of proteins, which can convert Arg residues on the surface of proteins to citrulline residues. The PAD family has five isozymes, PAD1, 2, 3, 4, and 6, which have been found in multiple tissues and organs. PAD2 and PAD4 were detected in cerebral cortex and hippocampus from human and rodent brain. In the central nervous system, abnormal expression and activation of PADs are involved in the pathological changes and pathogenesis of Alzheimer's disease (AD). This article reviews the classification, distribution, and function of PADs, with an emphasis on the relationship between the abnormal activation of PADs and AD pathogenesis, diagnosis, and the therapeutic potential of PADs as drug targets for AD.
Collapse
Affiliation(s)
- Lai Wang
- Epigenetics & Translational Medicine Laboratory, School of Life Sciences, Henan University, Kaifeng, Henan Province, P.R. China
| | - Hongyang Chen
- Epigenetics & Translational Medicine Laboratory, School of Life Sciences, Henan University, Kaifeng, Henan Province, P.R. China
| | - Jing Tang
- Epigenetics & Translational Medicine Laboratory, School of Life Sciences, Henan University, Kaifeng, Henan Province, P.R. China
| | - Zhengwei Guo
- Epigenetics & Translational Medicine Laboratory, School of Life Sciences, Henan University, Kaifeng, Henan Province, P.R. China
| | - Yanming Wang
- Epigenetics & Translational Medicine Laboratory, School of Life Sciences, Henan University, Kaifeng, Henan Province, P.R. China
| |
Collapse
|
19
|
Huang B, Zhao Y, Zhou L, Gong T, Feng J, Han P, Qian J. PADI6 Regulates Trophoblast Cell Migration-Invasion Through the Hippo/YAP1 Pathway in Hydatidiform Moles. J Inflamm Res 2021; 14:3489-3500. [PMID: 34326657 PMCID: PMC8314932 DOI: 10.2147/jir.s313422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose Peptidyl arginine deiminase, type VI (PADI6), a member of the subcortical maternal complex, plays an important role in oocyte growth and the development of fertilized oocytes. Human patients with PADI6 mutations can suffer from multiple reproductive deficiencies including hydatidiform moles and miscarriages. Recent studies have demonstrated that the Hippo signaling pathway plays a central role in the specification of the first cell fates and the maintenance of the human placental trophoblast epithelium. The present study aimed to verify the hypothesis that PADI6 regulates the biological functions of trophoblast cells by targeting YAP1 and to explore the mechanism by which PADI6 accomplishes this in trophoblast cells. Methods Villi from HMs and human trophoblast cell lines were used to identify the localization of PADI6 and YAP1 by immunohistochemistry and immunocytochemistry. PADI6 overexpression and knockdown were induced in human trophoblast cells. Co-immunoprecipitation was used to explore the interaction between PADI6 and YAP1. Wound healing, Transwell and EdU staining assays were used to detect migration, invasion and proliferation. Flow cytometric analysis was used to analyze the cell cycle and apoptosis. β-Tubulin and F-actin levels were determined by Western blot, quantitative real-time PCR and phalloidin staining. Results The results showed that PADI6 and YAP1 had the same expression pattern in villi and colocalized in the cytotrophoblast. An interaction between PADI6 and YAP1 was also confirmed in human trophoblast cell lines. We found that PADI6 positively regulated the expression of YAP1. Functionally, overexpression of PADI6 promoted cell cycle progression and enhanced migration, invasion, proliferation and apoptosis, whereas downregulation of PADI6 showed the opposite effects. Conclusion This study demonstrates that YAP1 is a novel target of PADI6 that serves as an important regulator of trophoblast dysfunction. The crosstalk between the Hippo/YAP1 pathway and the SCMC might be a new topic to explore to uncover the pathological mechanisms of HMs.
Collapse
Affiliation(s)
- Bo Huang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310003, Zhejiang Province, People's Republic of China
| | - Yating Zhao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310003, Zhejiang Province, People's Republic of China
| | - Lin Zhou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310003, Zhejiang Province, People's Republic of China
| | - Tingyu Gong
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310003, Zhejiang Province, People's Republic of China
| | - Jiawen Feng
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310003, Zhejiang Province, People's Republic of China
| | - Peilin Han
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310003, Zhejiang Province, People's Republic of China
| | - Jianhua Qian
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310003, Zhejiang Province, People's Republic of China
| |
Collapse
|
20
|
Abstract
As the main protein components of chromatin, histones play central roles in gene regulation as spools of winding DNA. Histones are subject to various modifications, including phosphorylation, acetylation, glycosylation, methylation, ubiquitination and citrullination, which affect gene transcription. Histone citrullination, a posttranscriptional modification catalyzed by peptidyl arginine deiminase (PAD) enzymes, is involved in human carcinogenesis. In this study, we highlighted the functions of histone citrullination in physiological regulation and tumors. Additionally, because histone citrullination involves forming neutrophil extracellular traps (NETs), the relationship between NETs and tumors was illustrated. Finally, the clinical application of histone citrullination and PAD inhibitors was discussed.
Collapse
Affiliation(s)
- Dongwei Zhu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Zhang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
21
|
Yang ML, Sodré FMC, Mamula MJ, Overbergh L. Citrullination and PAD Enzyme Biology in Type 1 Diabetes - Regulators of Inflammation, Autoimmunity, and Pathology. Front Immunol 2021; 12:678953. [PMID: 34140951 PMCID: PMC8204103 DOI: 10.3389/fimmu.2021.678953] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
The generation of post-translational modifications (PTMs) in human proteins is a physiological process leading to structural and immunologic variety in proteins, with potentially altered biological functions. PTMs often arise through normal responses to cellular stress, including general oxidative changes in the tissue microenvironment and intracellular stress to the endoplasmic reticulum or immune-mediated inflammatory stresses. Many studies have now illustrated the presence of 'neoepitopes' consisting of PTM self-proteins that induce robust autoimmune responses. These pathways of inflammatory neoepitope generation are commonly observed in many autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and type 1 diabetes (T1D), among others. This review will focus on one specific PTM to self-proteins known as citrullination. Citrullination is mediated by calcium-dependent peptidylarginine deiminase (PAD) enzymes, which catalyze deimination, the conversion of arginine into the non-classical amino acid citrulline. PADs and citrullinated peptides have been associated with different autoimmune diseases, notably with a prominent role in the diagnosis and pathology of rheumatoid arthritis. More recently, an important role for PADs and citrullinated self-proteins has emerged in T1D. In this review we will provide a comprehensive overview on the pathogenic role for PADs and citrullination in inflammation and autoimmunity, with specific focus on evidence for their role in T1D. The general role of PADs in epigenetic and transcriptional processes, as well as their crucial role in histone citrullination, neutrophil biology and neutrophil extracellular trap (NET) formation will be discussed. The latter is important in view of increasing evidence for a role of neutrophils and NETosis in the pathogenesis of T1D. Further, we will discuss the underlying processes leading to citrullination, the genetic susceptibility factors for increased recognition of citrullinated epitopes by T1D HLA-susceptibility types and provide an overview of reported autoreactive responses against citrullinated epitopes, both of T cells and autoantibodies in T1D patients. Finally, we will discuss recent observations obtained in NOD mice, pointing to prevention of diabetes development through PAD inhibition, and the potential role of PAD inhibitors as novel therapeutic strategy in autoimmunity and in T1D in particular.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Fernanda M C Sodré
- Department of Chronic Diseases, Metabolism and Ageing, Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, Leuven, Belgium
| | - Mark J Mamula
- Section of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Lut Overbergh
- Department of Chronic Diseases, Metabolism and Ageing, Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Two novel mutations in PADI6 and TLE6 genes cause female infertility due to arrest in embryonic development. J Assist Reprod Genet 2021; 38:1551-1559. [PMID: 34036456 PMCID: PMC8266952 DOI: 10.1007/s10815-021-02194-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose This study aims to identify genetic causes of female infertility associated with recurrent failure of assisted reproductive technology (ART) characterized by embryonic developmental arrest. Methods We recruited infertile patients from two consanguineous families from the Reproductive Medicine Center of Guizhou Provincial People’s Hospital. Peripheral blood was collected for genomic DNA extraction. Two affected individuals and their family members were performed with whole-exome sequencing and Sanger validation in order to identify possible causative genes. For further analyzing the effect of splicing mutation on mRNA integrity in vivo, TLE6 cDNA from the peripheral blood lymphocyte of the affected individual was sequenced. In addition, the possible impact of the pathogenic mutation on the structure and function of the protein were also assessed. Results Two novel homozygous mutations in the peptidylarginine deiminase type VI (PADI6) and the transducin-like enhancer of split 6 (TLE6) genes were identified in the two families. One patient carried the frameshift deletion mutation c.831_832del:p.S278Pfs*59 of the PADI6 gene and the other patient carried the splicing mutation c.1245-2 A>G of the TLE6 gene. The analysis of the mRNA from the proband’s peripheral blood leukocytes confirmed aberrant splicing. Conclusions Our findings expand the mutational spectrum of PADI6 and TLE6 associated with embryonic developmental arrest and deepen our understanding of the genetic causes of infertility with recurrent ART failure.
Collapse
|
23
|
Kristmundsson Á, Erlingsdóttir Á, Lange S. Peptidylarginine Deiminase (PAD) and Post-Translational Protein Deimination-Novel Insights into Alveolata Metabolism, Epigenetic Regulation and Host-Pathogen Interactions. BIOLOGY 2021; 10:biology10030177. [PMID: 33653015 PMCID: PMC7996758 DOI: 10.3390/biology10030177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/23/2022]
Abstract
The alveolates (Superphylum Alveolata) comprise a group of primarily single-celled eukaryotes that have adopted extremely diverse modes of nutrition, such as predation, photoautotrophy and parasitism. The alveolates consists of several major phyla including the apicomplexans, a large group of unicellular, spore forming obligate intracellular parasites, and chromerids, which are believed to be the phototrophic ancestors of the parasitic apicomplexans. Molecular pathways involved in Alveolata host-pathogen interactions, epigenetic regulation and metabolism in parasite development remain to be fully understood. Peptidylarginine deiminases (PADs) are a phylogenetically conserved enzyme family which causes post-translational protein deimination, affecting protein function through the conversion of arginine to citrulline in a wide range of target proteins, contributing to protein moonlighting in physiological and pathological processes. The identification of deiminated protein targets in alveolate parasites may therefore provide novel insight into pathogen survival and host-pathogen interactions. The current study assessed PAD homologues and deiminated protein profiles of two alveolate parasites, Piridium sociabile (Chromerida) and Merocystis kathae (Apicomplexa). Histological analysis verified strong cytoplasmic PAD expression in both Alveolates, detected deiminated proteins in nuclear and cytoplasmic compartments of the alveolate parasites and verified the presence of citrullinated histone H3 in Alveolata nucleus, indicating roles in epigenetic regulation. Histone H3 citrullination was also found significantly elevated in the host tissue, indicative of neutrophil extracellular trap formation, a host-defence mechanism against a range of pathogens, particularly those that are too large for phagocytosis. Proteomic analysis of deiminated proteins from both Alveolata identified GO and KEGG pathways strongly relating to metabolic and genetic regulation, with some species-specific differences between the apicomplexan and the chromerid. Our findings provide novel insights into roles for the conserved PAD/ADI enzyme family in the regulation of metabolic and epigenetic pathways in alveolate parasites, possibly also relating to their life cycle and host-pathogen interactions.
Collapse
Affiliation(s)
- Árni Kristmundsson
- Institute for Experimental Pathology at Keldur, University of Iceland, Keldnavegur 3, 112 Reykjavik, Iceland;
- Correspondence: (Á.K.); (S.L.)
| | - Ásthildur Erlingsdóttir
- Institute for Experimental Pathology at Keldur, University of Iceland, Keldnavegur 3, 112 Reykjavik, Iceland;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
- Correspondence: (Á.K.); (S.L.)
| |
Collapse
|
24
|
Dragoni G, De Hertogh G, Vermeire S. The Role of Citrullination in Inflammatory Bowel Disease: A Neglected Player in Triggering Inflammation and Fibrosis? Inflamm Bowel Dis 2021; 27:134-144. [PMID: 32426830 DOI: 10.1093/ibd/izaa095] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 02/07/2023]
Abstract
Citrullination is a posttranslational modification of proteins mediated by a specific family of enzymes called peptidylarginine deiminases (PAD). Dysregulation of these enzymes is involved in the etiology of various diseases, from cancer to autoimmune disorders. In inflammatory bowel disease (IBD), data for a role of citrullination in the disease process are starting to accumulate at different experimental levels including gene expression analyses, RNA, and protein quantifications. Most data have been generated in ulcerative colitis, but data in Crohn disease are lacking so far. In addition, the citrullination of histones is the fundamental process promoting inflammation through the formation of neutrophil extracellular traps (NETs). Interestingly, NETs have also been shown to activate fibroblasts into myofibroblasts in fibrotic interstitial lung disease. Therefore, citrullination merits more thorough study in the bowel to determine its role in driving disease complications such as fibrosis. In this review we describe the process of citrullination and the different players in this pathway, the role of citrullination in autoimmunity with a special focus on IBD, the emerging role for citrullination and NETs in triggering fibrosis, and, finally, how this process could be therapeutically targeted.
Collapse
Affiliation(s)
- Gabriele Dragoni
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, Leuven, Belgium.,Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy.,Department of Medical Biotechnologies, University of Siena, Italy
| | - Gert De Hertogh
- KU Leuven, Department of Imaging and Pathology, Translational Cell & Tissue Research, Leuven, Belgium
| | - Séverine Vermeire
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Briot J, Simon M, Méchin MC. Deimination, Intermediate Filaments and Associated Proteins. Int J Mol Sci 2020; 21:E8746. [PMID: 33228136 PMCID: PMC7699402 DOI: 10.3390/ijms21228746] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Deimination (or citrullination) is a post-translational modification catalyzed by a calcium-dependent enzyme family of five peptidylarginine deiminases (PADs). Deimination is involved in physiological processes (cell differentiation, embryogenesis, innate and adaptive immunity, etc.) and in autoimmune diseases (rheumatoid arthritis, multiple sclerosis and lupus), cancers and neurodegenerative diseases. Intermediate filaments (IF) and associated proteins (IFAP) are major substrates of PADs. Here, we focus on the effects of deimination on the polymerization and solubility properties of IF proteins and on the proteolysis and cross-linking of IFAP, to finally expose some features of interest and some limitations of citrullinomes.
Collapse
Affiliation(s)
| | | | - Marie-Claire Méchin
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Université Fédérale de Toulouse Midi-Pyrénées, U1056, 31059 Toulouse, France; (J.B.); (M.S.)
| |
Collapse
|
26
|
Curran AM, Naik P, Giles JT, Darrah E. PAD enzymes in rheumatoid arthritis: pathogenic effectors and autoimmune targets. Nat Rev Rheumatol 2020; 16:301-315. [PMID: 32341463 DOI: 10.1038/s41584-020-0409-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
Abstract
Peptidylarginine deiminases (PADs) have an important role in the pathogenesis of rheumatoid arthritis (RA) owing to their ability to generate citrullinated proteins - the hallmark autoantigens of RA. Of the five PAD enzyme isoforms, PAD2 and PAD4 are the most strongly implicated in RA at both genetic and cellular levels, and PAD inhibitors have shown therapeutic efficacy in mouse models of inflammatory arthritis. PAD2 and PAD4 are additionally targeted by autoantibodies in distinct clinical subsets of patients with RA, suggesting anti-PAD antibodies as possible biomarkers for RA diagnosis and prognosis. This Review weighs the evidence that supports a pathogenic role for PAD enzymes in RA as both promoters and targets of the autoimmune response, as well as discussing the mechanistic and therapeutic implications of these findings in the wider context of RA pathogenesis. Understanding the origin and consequences of dysregulated PAD enzyme activity and immune responses against PAD enzymes will be important to fully comprehend the pathogenic mechanisms involved in this disease and for the development of novel strategies to treat and prevent RA.
Collapse
Affiliation(s)
- Ashley M Curran
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pooja Naik
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jon T Giles
- Division of Rheumatology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Erika Darrah
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
27
|
Larsen DN, Mikkelsen CE, Kierkegaard M, Bereta GP, Nowakowska Z, Kaczmarek JZ, Potempa J, Højrup P. Citrullinome of Porphyromonas gingivalis Outer Membrane Vesicles: Confident Identification of Citrullinated Peptides. Mol Cell Proteomics 2020; 19:167-180. [PMID: 31754044 PMCID: PMC6944236 DOI: 10.1074/mcp.ra119.001700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/12/2019] [Indexed: 12/20/2022] Open
Abstract
Porphyromonas gingivalis is a key pathogen in chronic periodontitis and has recently been mechanistically linked to the development of rheumatoid arthritis via the activity of peptidyl arginine deiminase generating citrullinated epitopes in the periodontium. In this project the outer membrane vesicles (OMV) from P. gingivalis W83 wild-type (WT), a W83 knock-out mutant of peptidyl arginine deiminase (ΔPPAD), and a mutant strain expressing PPAD with the active site cysteine mutated to alanine (C351A), have been analyzed using a two-dimensional HFBA-based separation system combined with LC-MS. For optimal and positive identification and validation of citrullinated peptides and proteins, high resolution mass spectrometers and strict MS search criteria were utilized. This may have compromised the total number of identified citrullinations but increased the confidence of the validation. A new two-dimensional separation system proved to increase the strength of validation, and along with the use of an in-house build program, Citrullia, we establish a fast and easy semi-automatic (manual) validation of citrullinated peptides. For the WT OMV we identified 78 citrullinated proteins having a total of 161 citrullination sites. Notably, in keeping with the mechanism of OMV formation, the majority (51 out of 78) of citrullinated proteins were predicted to be exported via the inner membrane and to reside in the periplasm or being translocated to the bacterial surface. Citrullinated surface proteins may contribute to the pathogenesis of rheumatoid arthritis. For the C351A-OMV a single citrullination site was found and no citrullinations were identified for the ΔPPAD-OMV, thus validating the unbiased character of our method of citrullinated peptide identification.
Collapse
Affiliation(s)
| | | | | | - Grzegorz P Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Zuzanna Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Malopolska Center of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jakub Z Kaczmarek
- Research and Development Department, Ovodan Biotech A/S, 5000 Odense, Denmark
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, 501 S. Preston St., Louisville, Kentucky
| | - Peter Højrup
- University of Southern Denmark, Campusvej 55, Odense M, Denmark.
| |
Collapse
|
28
|
Alghamdi M, Al Ghamdi KA, Khan RH, Uversky VN, Redwan EM. An interplay of structure and intrinsic disorder in the functionality of peptidylarginine deiminases, a family of key autoimmunity-related enzymes. Cell Mol Life Sci 2019; 76:4635-4662. [PMID: 31342121 PMCID: PMC11105357 DOI: 10.1007/s00018-019-03237-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022]
Abstract
Citrullination is a post-translation modification of proteins, where the proteinaceous arginine residues are converted to non-coded citrulline residues. The immune tolerance to such citrullinated protein can be lost, leading to inflammatory and autoimmune diseases. Citrullination is a chemical reaction mediated by peptidylarginine deiminase enzymes (PADs), which are a family of calcium-dependent cysteine hydrolase enzymes that includes five isotypes: PAD1, PAD2, PAD3, PAD4, and PAD6. Each PAD has specific substrates and tissue distribution, where it modifies the arginine to produce a citrullinated protein with altered structure and function. All mammalian PADs have a sequence similarity of about 70-95%, whereas in humans, they are 50-55% homologous in their structure and amino acid sequences. Being calcium-dependent hydrolases, PADs are inactive under the physiological level of calcium, but could be activated due to distortions in calcium homeostasis, or when the cellular calcium levels are increased. In this article, we analyze some of the currently available data on the structural properties of human PADs, the mechanisms of their calcium-induced activation, and show that these proteins contain functionally important regions of intrinsic disorder. Citrullination represents an important trigger of multiple physiological and pathological processes, and as a result, PADs are recognized to play a number of important roles in autoimmune diseases, cancer, and neurodegeneration. Therefore, we also review the current state of the art in the development of PAD inhibitors with good potency and selectivity.
Collapse
Affiliation(s)
- Mohammed Alghamdi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Laboratory Department, University Medical Services Center, King Abdulaziz University, P.O. Box 80200, Jeddah, 21589, Saudi Arabia
| | - Khaled A Al Ghamdi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Rizwan H Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP, India
| | - Vladimir N Uversky
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, 7 Institutskaya Str., 142290, Pushchino, Moscow region, Russia.
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, 21934, Egypt.
| |
Collapse
|
29
|
An Overview of the Intrinsic Role of Citrullination in Autoimmune Disorders. J Immunol Res 2019; 2019:7592851. [PMID: 31886309 PMCID: PMC6899306 DOI: 10.1155/2019/7592851] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/03/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023] Open
Abstract
A protein undergoes many types of posttranslation modification. Citrullination is one of these modifications, where an arginine amino acid is converted to a citrulline amino acid. This process depends on catalytic enzymes such as peptidylarginine deiminase enzymes (PADs). This modification leads to a charge shift, which affects the protein structure, protein-protein interactions, and hydrogen bond formation, and it may cause protein denaturation. The irreversible citrullination reaction is not limited to a specific protein, cell, or tissue. It can target a wide range of proteins in the cell membrane, cytoplasm, nucleus, and mitochondria. Citrullination is a normal reaction during cell death. Apoptosis is normally accompanied with a clearance process via scavenger cells. A defect in the clearance system either in terms of efficiency or capacity may occur due to massive cell death, which may result in the accumulation and leakage of PAD enzymes and the citrullinated peptide from the necrotized cell which could be recognized by the immune system, where the immunological tolerance will be avoided and the autoimmune disorders will be subsequently triggered. The induction of autoimmune responses, autoantibody production, and cytokines involved in the major autoimmune diseases will be discussed.
Collapse
|
30
|
Xiong J, Wu M, Zhang Q, Zhang C, Xiong G, Ma L, Lu Z, Wang S. Proteomic analysis of mouse ovaries during the prepubertal stages. Exp Cell Res 2019; 377:36-46. [PMID: 30797753 DOI: 10.1016/j.yexcr.2019.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 12/01/2022]
Abstract
Postnatal folliculogenesis, primordial follicle activation and follicular development at early stage are important for normal ovarian function and fertility, and a comprehensive understanding of this process under physiological condition is necessary. To observe the regulation and mechanism of ovarian follicle development during the prepubertal stages, we collected the mouse ovaries from three time points, including 1 day, 7 days, and 4 weeks after birth. We then performed a proteomic analysis using tandem mass tags (TMT) labeling combined with a two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) technique. A total of 706 proteins were determined to be significant differential abundance (P-SDA). Sixty upregulated proteins and 12 downregulated proteins that were P-SDA and 3 significant KEGG pathways (P < 0.05) were found at 7 days vs. 1 day after birth, while 237 upregulated proteins, 271 downregulated proteins and 42 significant KEGG pathways were found for 4 weeks vs. 7 days after birth. Some vital genes (Figla, Ooep, Padi6, Zp3, Hsd3b1, cyp11a1), key pathways (ECM-receptor interaction, focal adhesion, ovarian steroidogenesis, complement and coagulation cascades, PI3K/Akt/mTOR), and metabolic regulation (energy metabolism, lipid metabolism, metal ion metabolism) were found to be related to the postnatal folliculogenesis, primordial follicle activation and follicular development. Finally, qRT-PCR and western blotting verified some vital genes and further elucidated the developmental process of follicles, and the results may contribute to the understanding of the formation and activation of primordial follicle and follicular development. Significance: This study offers the first proteomic insights into mechanisms of follicle development under physiological condition during the prepubertal stages. By comparing P-SDA of mouse ovaries during various period of age, our data reveals that the regulation of primordial follicle formation and activation is significantly different from that of follicular development. These findings demonstrate that many unique molecular mechanisms underlie ovarian development could be used for ovarian disease research.
Collapse
Affiliation(s)
- Jiaqiang Xiong
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qinghua Zhang
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chun Zhang
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guoping Xiong
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lingwei Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiyong Lu
- Hubei Key Laboratory of Embryonic Stem Cell Research, Tai-He Hospital, Hubei University of Medicine, Shiyan, Hubei, China,Centre for Reproductive Medicine, Puren Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
31
|
Qin D, Gao Z, Xiao Y, Zhang X, Ma H, Yu X, Nie X, Fan N, Wang X, Ouyang Y, Sun QY, Yi Z, Li L. The subcortical maternal complex protein Nlrp4f is involved in cytoplasmic lattice formation and organelle distribution. Development 2019; 146:dev.183616. [DOI: 10.1242/dev.183616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/13/2019] [Indexed: 01/09/2023]
Abstract
In mammalian oocytes and embryos, the subcortical maternal complex (SCMC) and cytoplasmic lattices (CPLs) are two closely related structures. Their detailed compositions and functions remain largely unclear. Here, we characterized Nlrp4f as a novel component associated with the SCMC and CPLs. Disruption of maternal Nlrp4f leads to decreased fecundity and delayed preimplantation development in the mouse. Lack of Nlrp4f affects organelle distribution in mouse oocytes and early embryos. Depletion of Nlrp4f disrupts CPL formation but does not affect the interactions of other SCMC proteins. Interestingly, the loss of Filia or Tle6, two other SCMC proteins, also disrupts CPL formation in mouse oocytes. Thus, the absence of CPLs and aberrant distribution of organelles in the oocytes disrupted the examined SCMC genes, including previously reported Zbed3, Mater, Floped and Padi6, indicate that the SCMC is required for CPL formation and organelle distribution. Consistent with the SCMC's role in CPL formation, the SCMC forms before CPLs during oogenesis. Together, our results suggest that SCMC protein Nlrp4f is involved in CPL formation and organelle distribution in mouse oocytes.
Collapse
Affiliation(s)
- Dandan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Reproductive Medicine Center of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yi Xiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoxin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haixia Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xingjiang Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoqing Nie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Fan
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaoqing Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yingchun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhaohong Yi
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, 102206, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
32
|
Cau L, Méchin MC, Simon M. Peptidylarginine deiminases and deiminated proteins at the epidermal barrier. Exp Dermatol 2018; 27:852-858. [PMID: 29756256 DOI: 10.1111/exd.13684] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2018] [Indexed: 12/13/2022]
Abstract
Deimination or citrullination is a post-translational modification catalysed by a family of calcium-dependent enzymes called peptidylarginine deiminases (PADs). It corresponds to the transformation of arginine residues within a peptide sequence into citrulline residues. Deimination induces a decreased net charge of targeted proteins; therefore, it alters their folding and changes intra- and intermolecular ionic interactions. Deimination is involved in several physiological processes (inflammation, gene regulation, etc.) and human diseases (rheumatoid arthritis, neurodegenerative diseases, cancer, etc.). Here, we describe the PADs expressed in the epidermis and their known substrates, focusing on their role in the epidermal barrier function.
Collapse
Affiliation(s)
- Laura Cau
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université Paul Sabatier, Université de Toulouse Midi-Pyrénées, Toulouse, France
| | - Marie-Claire Méchin
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université Paul Sabatier, Université de Toulouse Midi-Pyrénées, Toulouse, France
| | - Michel Simon
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université Paul Sabatier, Université de Toulouse Midi-Pyrénées, Toulouse, France
| |
Collapse
|
33
|
Anastácio A, Rodriguez-Wallberg KA, Chardonnet S, Pionneau C, Fédérici C, Almeida Santos T, Poirot C. Protein profile of mouse ovarian follicles grown in vitro. Mol Hum Reprod 2017; 23:827-841. [PMID: 29069483 PMCID: PMC5909860 DOI: 10.1093/molehr/gax056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 08/28/2017] [Accepted: 10/16/2017] [Indexed: 02/02/2023] Open
Abstract
STUDY QUESTION Could the follicle proteome be mapped by identifying specific proteins that are common or differ between three developmental stages from the secondary follicle (SF) to the antrum-like stage? SUMMARY ANSWER From a total of 1401 proteins identified in the follicles, 609 were common to the three developmental stages investigated and 444 were found uniquely at one of the stages. WHAT IS KNOWN ALREADY The importance of the follicle as a functional structure has been recognized; however, up-to-date the proteome of the whole follicle has not been described. A few studies using proteomics have previously reported on either isolated fully-grown oocytes before or after meiosis resumption or cumulus cells. STUDY DESIGN, SIZE, DURATION The experimental design included a validated mice model for isolation and individual culture of SFs. The system was chosen as it allows continuous evaluation of follicle growth and selection of follicles for analysis at pre-determined developmental stages: SF, complete Slavjanski membrane rupture (SMR) and antrum-like cavity (AF). The experiments were repeated 13 times independently to acquire the material that was analyzed by proteomics. PARTICIPANTS/MATERIALS, SETTING, METHODS SFs (n = 2166) were isolated from B6CBA/F1 female mice (n = 42), 12 days old, from 15 l. About half of the follicles isolated as SF were analyzed as such (n = 1143) and pooled to obtain 139 μg of extracted protein. Both SMR (n = 359) and AF (n = 124) were obtained after individual culture of 1023 follicles in a microdrop system under oil, selected for analysis and pooled, to obtain 339 μg and 170 μg of protein, respectively. The follicle proteome was analyzed combining isoelectric focusing (IEF) fractionation with 1D and 2D LC-MS/MS analysis to enhance protein identification. The three protein lists were submitted to the 'Compare gene list' tool in the PANTHER website to gain insights on the Gene Ontology Biological processes present and to Ingenuity Pathway Analysis to highlight protein networks. A label-free quantification was performed with 1D LC-MS/MS analyses to emphasize proteins with different expression profiles between the three follicular stages. Supplementary western blot analysis (using new biological replicates) was performed to confirm the expression variations of three proteins during follicle development in vitro. MAIN RESULTS AND THE ROLE OF CHANCE It was found that 609 out of 1401 identified proteins were common to the three follicle developmental stages investigated. Some proteins were identified uniquely at one stage: 71 of the 775 identified proteins in SF, 181 of 1092 in SMR and 192 of 1100 in AF. Additional qualitative and quantitative analysis highlighted 44 biological processes over-represented in our samples compared to the Mus musculus gene database. In particular, it was possible to identify proteins implicated in the cell cycle, calcium ion binding and glycolysis, with specific expressions and abundance, throughout in vitro follicle development. LARGE SCALE DATA Data are available via ProteomeXchange with identifier PXD006227. LIMITATIONS, REASONS FOR CAUTION The proteome analyses described in this study were performed after in vitro development. Despite fractionation of the samples before LC-MS/MS, proteomic approaches are not exhaustive, thus proteins that are not identified in a group are not necessarily absent from that group, although they are likely to be less abundant. WIDER IMPLICATIONS OF THE FINDINGS This study allowed a general view of proteins implicated in follicle development in vitro and it represents the most complete catalog of the whole follicle proteome available so far. Not only were well known proteins of the oocyte identified but also proteins that are probably expressed only in granulosa cells. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Portuguese Foundation for Science and Technology, FCT (PhD fellowship SFRH/BD/65299/2009 to A.A.), the Swedish Childhood Cancer Foundation (PR 2014-0144 to K.A.R-.W.) and Stockholm County Council to K.A.R-.W. The authors of the study have no conflict of interest to report.
Collapse
Affiliation(s)
- Amandine Anastácio
- Université Paris VI (UPMC), Paris, France
- Department of Oncology-Pathology, Karolinska Institutet and Laboratory of Translational Fertility Preservation, Cancer Center Karolinska (CCK), Stockholm, Sweden
| | - Kenny A Rodriguez-Wallberg
- Department of Oncology-Pathology, Karolinska Institutet and Laboratory of Translational Fertility Preservation, Cancer Center Karolinska (CCK), Stockholm, Sweden
- Reproductive Medicine, Department of Gynecology and Reproduction, Karolinska University Hospital, Stockholm, Sweden
| | - Solenne Chardonnet
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, UMS Omique, Plateforme P3S, Paris, France
| | - Cédric Pionneau
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, UMS Omique, Plateforme P3S, Paris, France
| | | | - Teresa Almeida Santos
- Department of Human Reproduction, University Hospital of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Catherine Poirot
- Université Paris VI (UPMC), Paris, France
- Service d’Hématologie-Unité AJA, Hôpital Saint Louis, Paris, France
| |
Collapse
|
34
|
Lu X, Gao Z, Qin D, Li L. A Maternal Functional Module in the Mammalian Oocyte-To-Embryo Transition. Trends Mol Med 2017; 23:1014-1023. [DOI: 10.1016/j.molmed.2017.09.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/05/2017] [Accepted: 09/14/2017] [Indexed: 01/21/2023]
|
35
|
Probing the Roles of Calcium-Binding Sites during the Folding of Human Peptidylarginine Deiminase 4. Sci Rep 2017; 7:2429. [PMID: 28546558 PMCID: PMC5445078 DOI: 10.1038/s41598-017-02677-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 04/18/2017] [Indexed: 11/24/2022] Open
Abstract
Our recent studies of peptidylarginine deiminase 4 (PAD4) demonstrate that its non-catalytic Ca2+-binding sites play a crucial role in the assembly of the correct geometry of the enzyme. Here, we examined the folding mechanism of PAD4 and the role of Ca2+ ions in the folding pathway. Multiple mutations were introduced into the calcium-binding sites, and these mutants were termed the Ca1_site, Ca2_site, Ca3_site, Ca4_site and Ca5_site mutants. Our data indicate that during the unfolding process, the PAD4 dimer first dissociates into monomers, and the monomers then undergo a three-state denaturation process via an intermediate state formation. In addition, Ca2+ ions assist in stabilizing the folding intermediate, particularly through binding to the Ca3_site and Ca4_site to ensure the correct and active conformation of PAD4. The binding of calcium ions to the Ca1_site and Ca2_site is directly involved in the catalytic action of the enzyme. Finally, this study proposes a model for the folding of PAD4. The nascent polypeptide chains of PAD4 are first folded into monomeric intermediate states, then continue to fold into monomers, and ultimately assemble into a functional and dimeric PAD4 enzyme, and cellular Ca2+ ions may be the critical factor governing the interchange.
Collapse
|
36
|
Expression of peptidylarginine deiminase 4 in an alkali injury model of retinal gliosis. Biochem Biophys Res Commun 2017; 487:134-139. [PMID: 28400047 DOI: 10.1016/j.bbrc.2017.04.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/07/2017] [Indexed: 11/20/2022]
Abstract
Citrullination is an important posttranslational modification that occurs during retinal gliosis. We examined the expression of peptidyl arginine deiminases (PADs) to identify the PADs that mediate citrullination in a model of alkali-induced retinal gliosis. Mouse corneas were exposed to 1.0 N NaOH and posterior eye tissue from injured and control uninjured eyes was evaluated for transcript levels of various PADs by reverse-transcription polymerase chain reaction (RT-PCR), and quantitative RT-PCR (qPCR). Retinas were also subjected to immunohistochemistry (IHC) for glial fibrillary acidic protein (GFAP), citrullinated species, PAD2, and PAD4 and tissue levels of GFAP, citrullinated species, and PAD4 were measured by western blots. In other experiments, the PAD4 inhibitor streptonigrin was injected intravitreally into injured eyes ex vivo to test inhibitory activity in an organ culture system. We found that uninjured retina and choroid expressed Pad2 and Pad4 transcripts. Pad4 transcript levels increased by day 7 post-injury (p < 0.05), whereas Pad2 levels did not change significantly (p > 0.05) by qPCR. By IHC, PAD2 was expressed in uninjured eyes along ganglion cell astrocytes, but in injured retina PAD2 was downregulated at 7 days. On the other hand, PAD4 showed increased staining in the retina upon injury revealing a pattern that overlapped with filamentous GFAP staining in Müller glial processes by 7 days. Injury-induced citrullination and soluble GFAP protein levels were reduced by PAD4 inhibition in western blot experiments of organ cultures. Together, our findings for the first time identify PAD4 as a novel injury-inducible druggable target for retinal gliosis.
Collapse
|
37
|
Koushik S, Joshi N, Nagaraju S, Mahmood S, Mudeenahally K, Padmavathy R, Jegatheesan SK, Mullangi R, Rajagopal S. PAD4: pathophysiology, current therapeutics and future perspective in rheumatoid arthritis. Expert Opin Ther Targets 2017; 21:433-447. [PMID: 28281906 DOI: 10.1080/14728222.2017.1294160] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Peptidyl arginine deiminase 4 (PAD4) is an enzyme that plays an important role in gene expression, turning out genetic code into functional products in the body. It is involved in a key post translational modification, which involves the conversion of arginine to citrulline. It regulates various processes such as apoptosis, innate immunity and pluripotency, while its dysregulation has a great impact on the genesis of various diseases. Over the last few years PAD4 has emerged as a potential therapeutic target for the treatment of rheumatoid arthritis (RA). Areas covered: In this review, we discuss the basic structure and function of PAD4, along with the role of altered PAD4 activity in the onset of RA and other maladies. We also elucidate the role of PAD4 variants in etiology of RA among several ethnic groups and the current pre-clinical inhibitors to regulate PAD4. Expert opinion: Citrullination has a crucial role in RA and several other disorders. Since PAD4 is an initiator of the citrullination, it is an important therapeutic target for inflammatory diseases. Therefore, an in depth knowledge of the roles and activity of PAD4 is required to explore more effective ways to conquer PAD4 related ailments, especially RA.
Collapse
Affiliation(s)
- Sindhu Koushik
- a Bioinformatics , Jubilant Biosys Ltd ., Bangalore , India
| | - Nivedita Joshi
- a Bioinformatics , Jubilant Biosys Ltd ., Bangalore , India
| | | | - Sameer Mahmood
- a Bioinformatics , Jubilant Biosys Ltd ., Bangalore , India
| | | | | | | | | | | |
Collapse
|
38
|
Amin B, Voelter W. Human Deiminases: Isoforms, Substrate Specificities, Kinetics, and Detection. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2017; 106:203-240. [PMID: 28762090 DOI: 10.1007/978-3-319-59542-9_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Peptidylarginine deiminase (PAD) enzymes are of enormous interest in biomedicine. They catalyze the conversion of a positively-charged guanidinium at an arginine side chain into a neutral ureido group. As a result of this conversion, proteins acquire the non-ribosomally encoded amino acid "citrulline". This imposes critical influences on the structure and function of the target molecules. In multiple sclerosis, myelin hyper-citrullination promotes demyelination by reducing its compaction and triggers auto-antibody production. Immune responses to citrulline-containing proteins play a central role in the pathogenesis of autoimmune diseases. Moreover, auto-antibodies, specific to citrullinated proteins, such as collagen type I and II and filaggrin, are early detectable in rheumatoid arthritis, serving as diagnostic markers of the disease. Despite their significance, little is understood about the role in demyelinating disorders, diversified cancers, and auto-immune diseases. To impart their biological and pathological effects, it is crucial to better understand the reaction mechanism, kinetic properties, substrate selection, and specificities of peptidylarginine deiminase isoforms.Many aspects of PAD biochemistry and physiology have been ignored in past, but, herein is presented a comprehensive survey to improve our current understandings of the underlying mechanism and regulation of PAD enzymes.
Collapse
Affiliation(s)
- Bushra Amin
- Department of Chemistry, University of Pittsburgh, Pittsburgh, 15260, PA, USA.
| | - Wolfgang Voelter
- Interfacultary Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076, Tübingen, BW, Germany
| |
Collapse
|
39
|
Liu X, Morency E, Li T, Qin H, Zhang X, Zhang X, Coonrod S. Role for PADI6 in securing the mRNA-MSY2 complex to the oocyte cytoplasmic lattices. Cell Cycle 2016; 16:360-366. [PMID: 27929740 DOI: 10.1080/15384101.2016.1261225] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The oocyte cytoplasmic lattices (CPLs) have long been predicted to function as a storage form for the maternal contribution of ribosomes to the early embryo. Our previous studies have demonstrated that ribosomal component S6 is stored in the oocyte CPLs and peptidylarginine deiminase 6 (PADI6) is critical for CPLs formation. Additionally, we found that depletion of PADI6 reduced de novo protein synthesis prior to the maternal-to-embryonic transition, therefore causing embryos to arrest at the 2-cell stage. Here, we present evidence further supporting the association of ribosomes with the CPLs by demonstrating that rRNAs are dramatically decreased in Padi6 KO oocytes. We also show that the abundance and localization of mRNAs is affected upon PADI6 depletion, suggesting that mRNAs are very possibly associated with CPLs. Consistent with this observation, the amount of the major RNA binding protein, MSY2, that is associated with the insoluble fraction of the oocytes after Triton X-100 extraction is also markedly decreased in the Padi6 KO oocytes. Furthermore, treatment of the oocytes with RNase A followed by Triton X-100 extraction severely impairs the localization of PADI6 and MSY2 in oocytes. These results indicate that mRNAs, possibly in a complex with MSY2 and PADI6, are bound in the CPLs and may play a role in securing the mRNA-MSY2 complex to the CPLs.
Collapse
Affiliation(s)
- Xiaoqiu Liu
- a Key Laboratory of Pathogen Biology of Jiangsu Province , Nanjing Medical University , Nanjing , China.,b Department of Microbiology , Nanjing Medical University , Nanjing , China
| | - Eric Morency
- c Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University , Ithaca , NY USA
| | - Tingting Li
- d State Key Laboratory of Reproductive Medicine , Nanjing Medical University , Nanjing , China
| | - Hao Qin
- d State Key Laboratory of Reproductive Medicine , Nanjing Medical University , Nanjing , China
| | - Xiaoqian Zhang
- d State Key Laboratory of Reproductive Medicine , Nanjing Medical University , Nanjing , China
| | - Xuesen Zhang
- d State Key Laboratory of Reproductive Medicine , Nanjing Medical University , Nanjing , China
| | - Scott Coonrod
- c Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University , Ithaca , NY USA
| |
Collapse
|
40
|
Hypoxia-induced production of peptidylarginine deiminases and citrullinated proteins in malignant glioma cells. Biochem Biophys Res Commun 2016; 482:50-56. [PMID: 27818200 DOI: 10.1016/j.bbrc.2016.10.154] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 10/25/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Recently, it has been reported that hypoxia highly enhances expression of peptidylarginine deiminase (PAD) 4 and production of citrullinated proteins in some tumor cells. However, little is known about malignant gliomas on this issue. Therefore, we here investigated whether expression of PADs was induced by hypoxia and whether PADs citrullinated intracellular proteins if induced using U-251 MG cells of a human malignant glioma cell line. METHODS Expression of PADs in U-251 MG cells, cultured under hypoxia or normoxia for 24 h, was investigated by quantitative polymerase chain reaction (qPCR). Citrullination of proteins in the cells and the cell lysates incubated for 48 h with or without Ca2+ was detected by western blotting. Citrullinated proteins were identified by mass spectrometry. RESULTS The mRNA levels of PAD1, 2, 3, and 4 were up-regulated by hypoxia in a hypoxia-inducible factor-1-dependent manner in U-251 MG cells. In spite of the increased expression, intracellular proteins were not citrullinated. However, the induced PADs citrullinated U-251 MG cell-derived proteins when the cells were lysed. Multiple proteins citrullinated by hypoxia-induced PADs were identified. In addition, the extracellular domain of vascular endothelial growth factor receptor 2 was citrullinated by human PAD2 in vitro. CONCLUSION Our data may contribute to understanding of pathophysiology of malignant gliomas from the aspects of protein citrullination.
Collapse
|
41
|
Young CH, Rothfuss HM, Gard PF, Muth A, Thompson PR, Ashley RL, Cherrington BD. Citrullination regulates the expression of insulin-like growth factor-binding protein 1 (IGFBP1) in ovine uterine luminal epithelial cells. Reproduction 2016; 153:1-10. [PMID: 29565015 DOI: 10.1530/rep-16-0494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 01/19/2023]
Abstract
There are five peptidylarginine deiminase (PAD) isozymes designated as PADs 1, 2, 3, 4 and 6, and many are expressed in female reproductive tissues. These enzymes post-translationally convert positively charged arginine amino acids into neutral citrulline residues. Targets for PAD-catalyzed citrullination include arginine residues on histone tails, which results in chromatin decondensation and changes in gene expression. Some of the first studies examining PADs found that they are localized to rodent uterine epithelial cells. Despite these findings, the function of PAD-catalyzed citrullination in uterine epithelial cells is still unknown. To address this, we first examined PAD expression in uterine cross-sections from pregnant ewes on gestation day 25 (d25). Immunohistochemistry revealed that the levels of PADs 2 and 4 are robust in luminal and glandular epithelia compared with those of PADs 1 and 3. As PADs 2 and 4 have well-characterized roles in histone citrullination, we next hypothesized that PADs citrullinate histones in these uterine cells. Examination of caruncle lysates from pregnant ewes on gestation d25 and an ovine luminal epithelial (OLE) cell line shows that histone H3 arginine residues 2, 8, 17 and 26 are citrullinated, but histone H4 arginine 3 is not. Using a pan-PAD inhibitor, we next attenuated histone citrullination in OLE cells, which resulted in a significant decrease in the expression of insulin-like growth factor-binding protein 1 (IGFBP1) mRNA. As IGFBP1 is important for the migration and attachment of the trophectoderm to uterine endometrium, our results suggest that PAD-catalyzed citrullination may be an important post-translational mechanism for the establishment of pregnancy in ewes.
Collapse
Affiliation(s)
- Coleman H Young
- Department of Zoology and PhysiologyUniversity of Wyoming, Laramie, Wyoming, USA
| | - Heather M Rothfuss
- Department of Zoology and PhysiologyUniversity of Wyoming, Laramie, Wyoming, USA
| | - Philip F Gard
- Department of Zoology and PhysiologyUniversity of Wyoming, Laramie, Wyoming, USA
| | - Aaron Muth
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Paul R Thompson
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ryan L Ashley
- Department of Animal and Range SciencesNew Mexico State University, Las Cruces, New Mexico, USA
| | - Brian D Cherrington
- Department of Zoology and PhysiologyUniversity of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
42
|
Khan SA, Edwards BS, Muth A, Thompson PR, Cherrington BD, Navratil AM. GnRH Stimulates Peptidylarginine Deiminase Catalyzed Histone Citrullination in Gonadotrope Cells. Mol Endocrinol 2016; 30:1081-1091. [PMID: 27603413 DOI: 10.1210/me.2016-1085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Peptidylarginine deiminase (PAD) enzymes convert histone tail arginine residues to citrulline resulting in chromatin decondensation. Our previous work found that PAD isoforms are expressed in female reproductive tissues in an estrous cycle-dependent fashion, but their role in the anterior pituitary gland is unknown. Thus, we investigated PAD expression and function in gonadotrope cells. The gonadotrope-derived LβT2 cell line strongly expresses PAD2 at the protein level compared with other PAD isoforms. Consistent with this, PAD2 protein expression is highest during the estrous phase of the estrous cycle and colocalizes with the LH β-subunit in the mouse pituitary. Using the GnRH agonist buserelin (GnRHa), studies in LβT2 and mouse primary gonadotrope cells revealed that 30 minutes of stimulation caused distinct puncta of PAD2 to localize in the nucleus. Once in the nucleus, GnRHa stimulated PAD2 citrullinates histone H3 tail arginine residues at sites 2, 8, and 17 within 30 minutes; however, this effect and PAD2 nuclear localization was blunted by incubation of the cells with the pan-PAD inhibitor, biphenyl-benzimidazole-Cl-amidine. Given that PAD2 citrullinates histones in gonadotropes, we next analyzed the functional consequence of PAD2 inhibition on gene expression. Our results show that GnRHa stimulates an increase in LHβ and FSHβ mRNA and that this response is significantly reduced in the presence of the PAD inhibitor biphenyl-benzimidazole-Cl-amidine. Overall, our data suggest that GnRHa stimulates PAD2-catalyzed histone citrullination in gonadotropes to epigenetically regulate gonadotropin gene expression.
Collapse
Affiliation(s)
- Shaihla A Khan
- Department of Zoology and Physiology (S.A.K., B.S.E., B.D.C., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Biochemistry and Molecular Pharmacology (A.M., P.R.T.), University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Brian S Edwards
- Department of Zoology and Physiology (S.A.K., B.S.E., B.D.C., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Biochemistry and Molecular Pharmacology (A.M., P.R.T.), University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Aaron Muth
- Department of Zoology and Physiology (S.A.K., B.S.E., B.D.C., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Biochemistry and Molecular Pharmacology (A.M., P.R.T.), University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Paul R Thompson
- Department of Zoology and Physiology (S.A.K., B.S.E., B.D.C., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Biochemistry and Molecular Pharmacology (A.M., P.R.T.), University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Brian D Cherrington
- Department of Zoology and Physiology (S.A.K., B.S.E., B.D.C., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Biochemistry and Molecular Pharmacology (A.M., P.R.T.), University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Amy M Navratil
- Department of Zoology and Physiology (S.A.K., B.S.E., B.D.C., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Biochemistry and Molecular Pharmacology (A.M., P.R.T.), University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
43
|
Xu Y, Shi Y, Fu J, Yu M, Feng R, Sang Q, Liang B, Chen B, Qu R, Li B, Yan Z, Mao X, Kuang Y, Jin L, He L, Sun X, Wang L. Mutations in PADI6 Cause Female Infertility Characterized by Early Embryonic Arrest. Am J Hum Genet 2016; 99:744-752. [PMID: 27545678 DOI: 10.1016/j.ajhg.2016.06.024] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/27/2016] [Indexed: 11/15/2022] Open
Abstract
Early embryonic arrest is one of the major causes of female infertility. However, because of difficulties in phenotypic evaluation, genetic determinants of human early embryonic arrest are largely unknown. With the development of assisted reproductive technology, the phenotype of early human embryonic arrest can now be carefully evaluated. Here, we describe a consanguineous family with a recessive inheritance pattern of female infertility characterized by recurrent early embryonic arrest in cycles of in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). We have identified a homozygous PADI6 nonsense mutation (c.1141C>T [p.Gln381(∗)]) that is responsible for the phenotype. Mutational analysis of PADI6 in a cohort of 36 individuals whose embryos displayed developmental arrest identified two affected individuals with compound-heterozygous mutations (c.2009_2010del [p.Glu670Glyfs(∗)48] and c.633T>A [p.His211Gln]; c.1618G>A [p.Gly540Arg] and c.970C>T [p.Gln324(∗)]). Immunostaining indicated a lack of PADI6 in affected individuals' oocytes. In addition, the amount of phosphorylated RNA polymerase II and expression levels of seven genes involved in zygotic genome activation were reduced in the affected individuals' embryos. This phenotype is consistent with Padi6 knockout mice. These findings deepen our understanding of the genetic basis of human early embryonic arrest, which has been a largely ignored Mendelian phenotype. Our findings lay the foundation for uncovering other genetic causes of infertility resulting from early embryonic arrest.
Collapse
Affiliation(s)
- Yao Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yingli Shi
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai Ji Ai Genetics and IVF Institute, Shanghai 200011, China
| | - Jing Fu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai Ji Ai Genetics and IVF Institute, Shanghai 200011, China
| | - Min Yu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai Ji Ai Genetics and IVF Institute, Shanghai 200011, China
| | - Ruizhi Feng
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Qing Sang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Bo Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Biaobang Chen
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ronggui Qu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Bin Li
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Zheng Yan
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Xiaoyan Mao
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yanping Kuang
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lin He
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaoxi Sun
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai Ji Ai Genetics and IVF Institute, Shanghai 200011, China.
| | - Lei Wang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
44
|
Bebbere D, Masala L, Albertini DF, Ledda S. The subcortical maternal complex: multiple functions for one biological structure? J Assist Reprod Genet 2016; 33:1431-1438. [PMID: 27525657 DOI: 10.1007/s10815-016-0788-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
The subcortical maternal complex (SCMC) is a multiprotein complex uniquely expressed in mammalian oocytes and early embryos, essential for zygote progression beyond the first embryonic cell divisions. Similiar to other factors encoded by maternal effect genes, the physiological role of SCMC remains unclear, although recent evidence has provided important molecular insights into different possible functions. Its potential involvement in human fertility is attracting increasing attention; however, the complete story is far from being told. The present mini review provides an overview of recent findings related to the SCMC and discusses its potential physiological role/s with the aim of inspiring new directions for future research.
Collapse
Affiliation(s)
- D Bebbere
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy.
| | - L Masala
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy
| | - D F Albertini
- The Center for Human Reproduction, New York, NY, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - S Ledda
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy
| |
Collapse
|
45
|
Xia X, Yan C, Wu W, Zhou Y, Hou L, Zuo B, Xu D, Ren Z, Xiong Y. Characterization of the porcine peptidylarginine deiminase type VI gene (PADI6) promoter: Sp1 regulates basal transcription of the porcine PADI6. Gene 2015; 575:551-558. [PMID: 26403316 DOI: 10.1016/j.gene.2015.09.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/13/2015] [Accepted: 09/16/2015] [Indexed: 11/19/2022]
Abstract
It is a general consensus that oocyte quality is the key to embryo survival in pig reproduction. Thus, study on regulation of the ovary-associated gene is of great significance in pig breeding. Peptidylarginine deiminases (PADs) are a family of enzymes which catalyze the conversion of arginine to citrulline in proteins. The peptidylarginine deiminases type VI gene (PADI6) is mainly expressed in the ovary, and plays an important role in oocyte growth, fertilization and early embryo development. However, until now, little is known about its transcriptional regulation mechanism. Here, we firstly isolated and characterized the 5'-flanking region of porcine PADI6 gene. We determined the transcription start site using 5'-rapid amplification of cDNA ends (RACE) analysis, and identified the minimal promoter (-85/+68) that drove the basal expression of PADI6 by constructing various progressive deletions. Mutational analysis and electrophoretic mobility shift assays demonstrated Sp1 bound to the -56/-47 region of the PADI6 promoter. Furthermore, overexpression of Sp1 significantly increased the promoter activity and promoted PADI6 gene expression, and accordingly, inhibition of Sp1 expression with specific siRNA significantly reduced the promoter activity and suppressed the PADI6 expression. In addition, inhibition of Sp1 binding by Mithramycin A treatment reduced the transcriptional activity of PADI6 in a dose-dependent manner. Taken together, these data indicate that Sp1 is essential for the transcriptional regulation of PADI6.
Collapse
Affiliation(s)
- Xiaoliang Xia
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chi Yan
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ying Zhou
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Liming Hou
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dequan Xu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhuqing Ren
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yuanzhu Xiong
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
46
|
Lim AK, Knowles BB. Controlling Endogenous Retroviruses and Their Chimeric Transcripts During Natural Reprogramming in the Oocyte. J Infect Dis 2015; 212 Suppl 1:S47-51. [DOI: 10.1093/infdis/jiu567] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
47
|
Benkhalifa M, Madkour A, Louanjli N, Bouamoud N, Saadani B, Kaarouch I, Chahine H, Sefrioui O, Merviel P, Copin H. From global proteome profiling to single targeted molecules of follicular fluid and oocyte: contribution to embryo development and IVF outcome. Expert Rev Proteomics 2015; 12:407-23. [DOI: 10.1586/14789450.2015.1056782] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Fuhrmann J, Clancy K, Thompson PR. Chemical biology of protein arginine modifications in epigenetic regulation. Chem Rev 2015; 115:5413-61. [PMID: 25970731 PMCID: PMC4463550 DOI: 10.1021/acs.chemrev.5b00003] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Jakob Fuhrmann
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Kathleen
W. Clancy
- Department of Biochemistry and Molecular Pharmacology and Program in Chemical
Biology, University of Massachusetts Medical
School, 364 Plantation
Street, Worcester, Massachusetts 01605, United States
| | - Paul R. Thompson
- Department of Biochemistry and Molecular Pharmacology and Program in Chemical
Biology, University of Massachusetts Medical
School, 364 Plantation
Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
49
|
Akoury E, Zhang L, Ao A, Slim R. NLRP7 and KHDC3L, the two maternal-effect proteins responsible for recurrent hydatidiform moles, co-localize to the oocyte cytoskeleton. Hum Reprod 2014; 30:159-69. [PMID: 25358348 DOI: 10.1093/humrep/deu291] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
STUDY QUESTION What is the subcellular localization in human oocytes and preimplantation embryos, of the two maternal-effect proteins, NLRP7 and KHDC3L, responsible for recurrent hydatidiform moles (RHMs)? SUMMARY ANSWER NLRP7 and KHDC3L localize to the oocyte cytoskeleton and are polar and absent from the cell-to-cell contact region in early preimplantation embryos. WHAT IS KNOWN ALREADY NLRP7 and KHDC3L expression has been described at the RNA level in some stages of human oocytes and preimplantation embryos and at the protein level by immunohistochemistry in human and bovine ovaries. NLRP7 and KHDC3L co-localize to the microtubule organizing center and/or the Golgi apparatus in human hematopoietic cells. STUDY DESIGN, SIZE, DURATION A total of 164 spare human oocytes and embryos from patients undergoing in vitro fertilization were used. PARTICIPANTS/MATERIALS, SETTING, METHODS Oocytes and early cleavage-stage embryos were fixed, immunostained with NLRP7 and/or KHDC3L antibodies, and analyzed using high-resolution confocal immunofluorescence and electron microscopies. MAIN RESULTS AND THE ROLE OF CHANCE NLRP7 and KHDC3L localize to the cytoskeleton and are predominant at the cortical region in growing oocytes. After the first cellular division, these two maternal-effect proteins become asymmetrically confined to the outer cortical region and excluded from the cell-to-cell contact region until the blastocyst stage where NLRP7 and KHDC3L homogeneously redistribute to the cytoplasm and the nucleus, respectively. LIMITATIONS, REASONS FOR CAUTION We could not analyze fresh human oocytes and embryos. The analyzed materials were donated by patients undergoing assisted reproductive technologies and released for research 1-3 days after their collection and the transfer of embryos to the patients. WIDER IMPLICATIONS OF THE FINDINGS Our study is the first comprehensive and high-resolution localization of the only two known maternal-effect proteins, NLRP7 and KHDC3L, in human oocytes and preimplantation embryos. Our data contribute to a better understanding of the roles of these two proteins in the integrity of the oocytes, post-zygotic divisions, and cell-lineage differentiation. STUDY FUNDING/COMPETING INTERESTS This work was supported by the Canadian Institute of Health Research (86546 to R.S.); E.A. was supported by fellowships from the Research Institute of the McGill University Health Centre and a CREATE award from the Réseau Québécois en Reproduction. All authors declare no conflict of interest.
Collapse
Affiliation(s)
- Elie Akoury
- Department of Human Genetics, McGill University Health Center, Montreal, QC, Canada Department of Obstetrics and Gynecology, McGill University Health Center, Montreal, QC, Canada
| | - Li Zhang
- Department of Obstetrics and Gynecology, McGill University Health Center, Montreal, QC, Canada
| | - Asangla Ao
- Department of Obstetrics and Gynecology, McGill University Health Center, Montreal, QC, Canada
| | - Rima Slim
- Department of Human Genetics, McGill University Health Center, Montreal, QC, Canada Department of Obstetrics and Gynecology, McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
50
|
Trabocchi A, Pala N, Krimmelbein I, Menchi G, Guarna A, Sechi M, Dreker T, Scozzafava A, Supuran CT, Carta F. Peptidomimetics as protein arginine deiminase 4 (PAD4) inhibitors. J Enzyme Inhib Med Chem 2014; 30:466-71. [DOI: 10.3109/14756366.2014.947976] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|