1
|
Waliman M, Johnson RL, Natesan G, Peinado NA, Tan S, Santella A, Hong RL, Shah PK. Automated cell lineage reconstruction using label-free 4D microscopy. Genetics 2024; 228:iyae135. [PMID: 39139100 PMCID: PMC11457935 DOI: 10.1093/genetics/iyae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Patterns of lineal descent play a critical role in the development of metazoan embryos. In eutelic organisms that generate a fixed number of somatic cells, invariance in the topology of their cell lineage provides a powerful opportunity to interrogate developmental events with empirical repeatability across individuals. Studies of embryonic development using the nematode Caenorhabditis elegans have been drivers of discovery. These studies have depended heavily on high-throughput lineage tracing enabled by 4D fluorescence microscopy and robust computer vision pipelines. For a range of applications, computer-aided yet manual lineage tracing using 4D label-free microscopy remains an essential tool. Deep learning approaches to cell detection and tracking in fluorescence microscopy have advanced significantly in recent years, yet solutions for automating cell detection and tracking in 3D label-free imaging of dense tissues and embryos remain inaccessible. Here, we describe embGAN, a deep learning pipeline that addresses the challenge of automated cell detection and tracking in label-free 3D time-lapse imaging. embGAN requires no manual data annotation for training, learns robust detections that exhibits a high degree of scale invariance, and generalizes well to images acquired in multiple labs on multiple instruments. We characterize embGAN's performance using lineage tracing in the C. elegans embryo as a benchmark. embGAN achieves near-state-of-the-art performance in cell detection and tracking, enabling high-throughput studies of cell lineage without the need for fluorescent reporters or transgenics.
Collapse
Affiliation(s)
- Matthew Waliman
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ryan L Johnson
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gunalan Natesan
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Neil A Peinado
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shiqin Tan
- Department of Computational and Systems Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anthony Santella
- Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ray L Hong
- Department of Biology, California State University, Northridge, Northridge, CA 91325, USA
| | - Pavak K Shah
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Deng S, Gong H, Zhang D, Zhang M, He X. A statistical method for quantifying progenitor cells reveals incipient cell fate commitments. Nat Methods 2024; 21:597-608. [PMID: 38379073 DOI: 10.1038/s41592-024-02189-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 01/19/2024] [Indexed: 02/22/2024]
Abstract
Quantifying the number of progenitor cells that found an organ, tissue or cell population is of fundamental importance for understanding the development and homeostasis of a multicellular organism. Previous efforts rely on marker genes that are specifically expressed in progenitors. This strategy is, however, often hindered by the lack of ideal markers. Here we propose a general statistical method to quantify the progenitors of any tissues or cell populations in an organism, even in the absence of progenitor-specific markers, by exploring the cell phylogenetic tree that records the cell division history during development. The method, termed targeting coalescent analysis (TarCA), computes the probability that two randomly sampled cells of a tissue coalesce within the tissue-specific monophyletic clades. The inverse of this probability then serves as a measure of the progenitor number of the tissue. Both mathematic modeling and computer simulations demonstrated the high accuracy of TarCA, which was then validated using real data from nematode, fruit fly and mouse, all with related cell phylogenetic trees. We further showed that TarCA can be used to identify lineage-specific upregulated genes during embryogenesis, revealing incipient cell fate commitments in mouse embryos.
Collapse
Affiliation(s)
- Shanjun Deng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Han Gong
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Di Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Mengdong Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xionglei He
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
3
|
Guan G, Luo C, Tang LH, Tang C. Modulating cell proliferation by asymmetric division: A conserved pattern in the early embryogenesis of nematode species. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001006. [PMID: 38505394 PMCID: PMC10949086 DOI: 10.17912/micropub.biology.001006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/24/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024]
Abstract
In the early stage of the nematode Caenorhabditis elegans embryogenesis, the zygote divides asymmetrically into a symmetric fast lineage and an asymmetric slow lineage, producing 16 and 8 cells respectively almost at the same time, followed by the onset of gastrulation. It was recently reported that this cell division pattern is optimal for rapid cell proliferation. In this work, we compare the cell lineages of 9 nematode species, revealing that this pattern is conserved for >60 million years. It further suggests that such lineage design has an important functional role and it might speed up embryonic development in the nematode kingdom, not limited to C. elegans , and independent of the maternal-zygotic transition dynamics.
Collapse
Affiliation(s)
- Guoye Guan
- Center for Quantitative Biology, Peking University
- South Bay Interdisciplinary Science Center, Songshan Lake Materials Laboratory
- Department of Physics, Hong Kong Baptist University
- Current Address: Department of Systems Biology, Harvard Medical School
- Current Address: Department of Data Science, Dana-Farber Cancer Institute
| | - Ce Luo
- Center for Quantitative Biology, Peking University
| | - Lei-Han Tang
- South Bay Interdisciplinary Science Center, Songshan Lake Materials Laboratory
- Department of Physics, Hong Kong Baptist University
- Institute of Computational and Theoretical Studies, Hong Kong Baptist University
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University
| | - Chao Tang
- Center for Quantitative Biology, Peking University
- Peking-Tsinghua Center for Life Sciences, Peking University
- School of Physics, Peking University
| |
Collapse
|
4
|
Mullan TW, Felton T, Tam J, Kasem O, Yeung TJ, Memar N, Schnabel R, Poole RJ. Control of successive unequal cell divisions by neural cell fate regulators determines embryonic neuroblast cell size. Development 2024; 151:dev200981. [PMID: 38205939 PMCID: PMC10911278 DOI: 10.1242/dev.200981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Asymmetric cell divisions often generate daughter cells of unequal size in addition to different fates. In some contexts, daughter cell size asymmetry is thought to be a key input to specific binary cell fate decisions. An alternative possibility is that unequal division is a mechanism by which a variety of cells of different sizes are generated during embryonic development. We show here that two unequal cell divisions precede neuroblast formation in the C lineage of Caenorhabditis elegans. The equalisation of these divisions in a pig-1/MELK mutant background has little effect on neuroblast specification. Instead, we demonstrate that let-19/MDT13 is a regulator of the proneural basic helix-loop-helix transcription factor hlh-14/ASCL1 and find that both are required to concomitantly regulate the acquisition of neuroblast identity and neuroblast cell size. Thus, embryonic neuroblast cell size in this lineage is progressively regulated in parallel with identity by key neural cell fate regulators. We propose that key cell fate determinants have a previously unappreciated function in regulating unequal cleavage, and therefore cell size, of the progenitor cells whose daughter cell fates they then go on to specify.
Collapse
Affiliation(s)
- Thomas W. Mullan
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Terry Felton
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Janis Tam
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Osama Kasem
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Tim J. Yeung
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Nadin Memar
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
- Institut für Genetik, TU Braunschweig, D-38106 Braunschweig, Germany
| | - Ralf Schnabel
- Institut für Genetik, TU Braunschweig, D-38106 Braunschweig, Germany
| | - Richard J. Poole
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
5
|
Transcriptome Analysis of the Nematodes Caenorhabditis elegans and Litoditis marina in Different Food Environments. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10050580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diets regulate animal development, reproduction, and lifespan. However, the underlying molecular mechanisms remain elusive. We previously showed that a chemically defined CeMM diet attenuates the development and promotes the longevity of C. elegans, but whether it impacts other nematodes is unknown. Here, we studied the effects of the CeMM diet on the development and longevity of the marine nematode Litoditis marina, which belongs to the same family as C. elegans. We further investigated genome-wide transcriptional responses to the CeMM and OP50 diets for both nematodes, respectively. We observed that the CeMM diet attenuated L. marina development but did not extend its lifespan. Through KEEG enrichment analysis, we found that many of the FOXO DAF-16 signaling and lysosome and xenobiotic metabolism related genes were significantly increased in C. elegans on the CeMM diet, which might contribute to the lifespan extension of C. elegans. Notably, we found that the expression of lysosome and xenobiotic metabolism pathway genes was significantly down-regulated in L. marina on CeMM, which might explain why the CeMM diet could not promote the lifespan of L. marina compared to bacterial feeding. Additionally, the down-regulation of several RNA transcription and protein generation and related processes genes in C. elegans on CeMM might not only be involved in extending longevity, but also contribute to attenuating the development of C. elegans on the CeMM diet, while the down-regulation of unsaturated fatty acids synthesis genes in L. marina might contribute to slow down its growth while on CeMM. This study provided important insights into how different diets regulate development and lifespan, and further genetic analysis of the candidate gene(s) of development and longevity will facilitate exploring the molecular mechanisms underlying how diets regulate animal physiology and health in the context of variable nutritional environments.
Collapse
|
6
|
Barrière A, Bertrand V. Neuronal specification in C. elegans: combining lineage inheritance with intercellular signaling. J Neurogenet 2020; 34:273-281. [PMID: 32603241 DOI: 10.1080/01677063.2020.1781850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The nervous system is composed of a high diversity of neuronal types. How this diversity is generated during development is a key question in neurobiology. Addressing this question is one of the reasons that led Sydney Brenner to develop the nematode C. elegans as a model organism. While there was initially a debate on whether the neuronal specification follows a 'European' model (determined by ancestry) or an 'American' model (determined by intercellular communication), several decades of research have established that the truth lies somewhere in between. Neurons are specified by the combination of transcription factors inherited from the ancestor cells and signaling between neighboring cells (especially Wnt and Notch signaling). This converges to the activation in newly generated postmitotic neurons of a specific set of terminal selector transcription factors that initiate and maintain the differentiation of the neuron. In this review, we also discuss the evolution of these specification mechanisms in other nematodes and beyond.
Collapse
Affiliation(s)
- Antoine Barrière
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Vincent Bertrand
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
7
|
Yuan M, Yang X, Lin J, Cao X, Chen F, Zhang X, Li Z, Zheng G, Wang X, Chen X, Yang JR. Alignment of Cell Lineage Trees Elucidates Genetic Programs for the Development and Evolution of Cell Types. iScience 2020; 23:101273. [PMID: 32599560 PMCID: PMC7327887 DOI: 10.1016/j.isci.2020.101273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/12/2020] [Accepted: 06/10/2020] [Indexed: 12/21/2022] Open
Abstract
A full understanding of the developmental process requires fine-scale characterization of cell divisions and cell types, which are naturally organized as the developmental cell lineage tree (CLT). Technological breakthroughs facilitated determination of more CLTs, but complete comprehension of the data remains difficult without quantitative comparison among CLTs. We hereby quantified phenotypic similarity between CLTs using a novel computational method that exhaustively searches for optimal correspondence between individual cells meanwhile retaining their topological relationships. The revealed CLT similarities allowed us to infer functional similarity at the transcriptome level, identify cell fate transformations, predict functional relationships between mutants, and find evolutionary correspondence between cell types of different species. By allowing quantitative comparison between CLTs, our work is expected to greatly enhance the interpretability of relevant data and help answer the myriad of questions surrounding the developmental process. Align cell lineage trees (CLTs) to search/quantify their phenotypic similarities Aligning worm CLTs captured known genetic/developmental programs Similarities between knockdown CLTs revealed functional relationships between genes CLT alignments between species gave insight on the evolution of cell types
Collapse
Affiliation(s)
- Meng Yuan
- Department of Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xujiang Yang
- Department of Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinghua Lin
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaolong Cao
- Department of Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Feng Chen
- Department of Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoyu Zhang
- Department of Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zizhang Li
- Department of Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Guifeng Zheng
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Xueqin Wang
- Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoshu Chen
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Jian-Rong Yang
- Department of Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
8
|
Ewe CK, Torres Cleuren YN, Rothman JH. Evolution and Developmental System Drift in the Endoderm Gene Regulatory Network of Caenorhabditis and Other Nematodes. Front Cell Dev Biol 2020; 8:170. [PMID: 32258041 PMCID: PMC7093329 DOI: 10.3389/fcell.2020.00170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/02/2020] [Indexed: 01/17/2023] Open
Abstract
Developmental gene regulatory networks (GRNs) underpin metazoan embryogenesis and have undergone substantial modification to generate the tremendous variety of animal forms present on Earth today. The nematode Caenorhabditis elegans has been a central model for advancing many important discoveries in fundamental mechanistic biology and, more recently, has provided a strong base from which to explore the evolutionary diversification of GRN architecture and developmental processes in other species. In this short review, we will focus on evolutionary diversification of the GRN for the most ancient of the embryonic germ layers, the endoderm. Early embryogenesis diverges considerably across the phylum Nematoda. Notably, while some species deploy regulative development, more derived species, such as C. elegans, exhibit largely mosaic modes of embryogenesis. Despite the relatively similar morphology of the nematode gut across species, widespread variation has been observed in the signaling inputs that initiate the endoderm GRN, an exemplar of developmental system drift (DSD). We will explore how genetic variation in the endoderm GRN helps to drive DSD at both inter- and intraspecies levels, thereby resulting in a robust developmental system. Comparative studies using divergent nematodes promise to unveil the genetic mechanisms controlling developmental plasticity and provide a paradigm for the principles governing evolutionary modification of an embryonic GRN.
Collapse
Affiliation(s)
- Chee Kiang Ewe
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | | | - Joel H. Rothman
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
9
|
Ortega A, Olivares-Bañuelos TN. Neurons and Glia Cells in Marine Invertebrates: An Update. Front Neurosci 2020; 14:121. [PMID: 32132895 PMCID: PMC7040184 DOI: 10.3389/fnins.2020.00121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
The nervous system (NS) of invertebrates and vertebrates is composed of two main types of cells: neurons and glia. In both types of organisms, nerve cells have similarities in biochemistry and functionality. The neurons are in charge of the synapse, and the glial cells are in charge of important functions of neuronal and homeostatic modulation. Knowing the mechanisms by which NS cells work is important in the biomedical area for the diagnosis and treatment of neurological disorders. For this reason, cellular and animal models to study the properties and characteristics of the NS are always sought. Marine invertebrates are strategic study models for the biological sciences. The sea slug Aplysia californica and the squid Loligo pealei are two examples of marine key organisms in the neurosciences field. The principal characteristic of marine invertebrates is that they have a simpler NS that consists of few and larger cells, which are well organized and have accessible structures. As well, the close phylogenetic relationship between Chordata and Echinodermata constitutes an additional advantage to use these organisms as a model for the functionality of neuronal cells and their cellular plasticity. Currently, there is great interest in analyzing the signaling processes between neurons and glial cells, both in vertebrates and in invertebrates. However, only few types of glial cells of invertebrates, mostly insects, have been studied, and it is important to consider marine organisms' research. For this reason, the objective of the review is to present an update of the most relevant information that exists around the physiology of marine invertebrate neuronal and glial cells.
Collapse
Affiliation(s)
- Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | | |
Collapse
|
10
|
Evolutionary Dynamics of the SKN-1 → MED → END-1,3 Regulatory Gene Cascade in Caenorhabditis Endoderm Specification. G3-GENES GENOMES GENETICS 2020; 10:333-356. [PMID: 31740453 PMCID: PMC6945043 DOI: 10.1534/g3.119.400724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gene regulatory networks and their evolution are important in the study of animal development. In the nematode, Caenorhabditis elegans, the endoderm (gut) is generated from a single embryonic precursor, E. Gut is specified by the maternal factor SKN-1, which activates the MED → END-1,3 → ELT-2,7 cascade of GATA transcription factors. In this work, genome sequences from over two dozen species within the Caenorhabditis genus are used to identify MED and END-1,3 orthologs. Predictions are validated by comparison of gene structure, protein conservation, and putative cis-regulatory sites. All three factors occur together, but only within the Elegans supergroup, suggesting they originated at its base. The MED factors are the most diverse and exhibit an unexpectedly extensive gene amplification. In contrast, the highly conserved END-1 orthologs are unique in nearly all species and share extended regions of conservation. The END-1,3 proteins share a region upstream of their zinc finger and an unusual amino-terminal poly-serine domain exhibiting high codon bias. Compared with END-1, the END-3 proteins are otherwise less conserved as a group and are typically found as paralogous duplicates. Hence, all three factors are under different evolutionary constraints. Promoter comparisons identify motifs that suggest the SKN-1, MED, and END factors function in a similar gut specification network across the Elegans supergroup that has been conserved for tens of millions of years. A model is proposed to account for the rapid origin of this essential kernel in the gut specification network, by the upstream intercalation of duplicate genes into a simpler ancestral network.
Collapse
|
11
|
Memar N, Schiemann S, Hennig C, Findeis D, Conradt B, Schnabel R. Twenty million years of evolution: The embryogenesis of four Caenorhabditis species are indistinguishable despite extensive genome divergence. Dev Biol 2019; 447:182-199. [DOI: 10.1016/j.ydbio.2018.12.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
|
12
|
Haag ES, Fitch DHA, Delattre M. From "the Worm" to "the Worms" and Back Again: The Evolutionary Developmental Biology of Nematodes. Genetics 2018; 210:397-433. [PMID: 30287515 PMCID: PMC6216592 DOI: 10.1534/genetics.118.300243] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Since the earliest days of research on nematodes, scientists have noted the developmental and morphological variation that exists within and between species. As various cellular and developmental processes were revealed through intense focus on Caenorhabditis elegans, these comparative studies have expanded. Within the genus Caenorhabditis, they include characterization of intraspecific polymorphisms and comparisons of distinct species, all generally amenable to the same laboratory culture methods and supported by robust genomic and experimental tools. The C. elegans paradigm has also motivated studies with more distantly related nematodes and animals. Combined with improved phylogenies, this work has led to important insights about the evolution of nematode development. First, while many aspects of C. elegans development are representative of Caenorhabditis, and of terrestrial nematodes more generally, others vary in ways both obvious and cryptic. Second, the system has revealed several clear examples of developmental flexibility in achieving a particular trait. This includes developmental system drift, in which the developmental control of homologous traits has diverged in different lineages, and cases of convergent evolution. Overall, the wealth of information and experimental techniques developed in C. elegans is being leveraged to make nematodes a powerful system for evolutionary cellular and developmental biology.
Collapse
Affiliation(s)
- Eric S Haag
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | | | - Marie Delattre
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS, INSERM, Ecole Normale Supérieure de Lyon, 69007, France
| |
Collapse
|
13
|
Schiffer PH, Polsky AL, Cole AG, Camps JIR, Kroiher M, Silver DH, Grishkevich V, Anavy L, Koutsovoulos G, Hashimshony T, Yanai I. The gene regulatory program of Acrobeloides nanus reveals conservation of phylum-specific expression. Proc Natl Acad Sci U S A 2018; 115:4459-4464. [PMID: 29626130 PMCID: PMC5924915 DOI: 10.1073/pnas.1720817115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolution of development has been studied through the lens of gene regulation by examining either closely related species or extremely distant animals of different phyla. In nematodes, detailed cell- and stage-specific expression analyses are focused on the model Caenorhabditis elegans, in part leading to the view that the developmental expression of gene cascades in this species is archetypic for the phylum. Here, we compared two species of an intermediate evolutionary distance: the nematodes C. elegans (clade V) and Acrobeloides nanus (clade IV). To examine A. nanus molecularly, we sequenced its genome and identified the expression profiles of all genes throughout embryogenesis. In comparison with C. elegans, A. nanus exhibits a much slower embryonic development and has a capacity for regulative compensation of missing early cells. We detected conserved stages between these species at the transcriptome level, as well as a prominent middevelopmental transition, at which point the two species converge in terms of their gene expression. Interestingly, we found that genes originating at the dawn of the Ecdysozoa supergroup show the least expression divergence between these two species. This led us to detect a correlation between the time of expression of a gene and its phylogenetic age: evolutionarily ancient and young genes are enriched for expression in early and late embryogenesis, respectively, whereas Ecdysozoa-specific genes are enriched for expression during the middevelopmental transition. Our results characterize the developmental constraints operating on each individual embryo in terms of developmental stages and genetic evolutionary history.
Collapse
Affiliation(s)
- Philipp H Schiffer
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Avital L Polsky
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Alison G Cole
- Department of Molecular Evolution and Development, University of Vienna, 1090 Vienna, Austria
| | - Julia I R Camps
- Molecular Cell Biology, Institute I for Anatomy University Clinic Cologne, University of Cologne, 50937 Cologne, Germany
| | - Michael Kroiher
- Zoological Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany
| | - David H Silver
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | | | - Leon Anavy
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Georgios Koutsovoulos
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JW, United Kingdom
| | - Tamar Hashimshony
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Itai Yanai
- Institute for Computational Medicine, NYU School of Medicine, New York, NY 10016
| |
Collapse
|
14
|
Erives AJ. Genes conserved in bilaterians but jointly lost with Myc during nematode evolution are enriched in cell proliferation and cell migration functions. Dev Genes Evol 2015; 225:259-73. [PMID: 26173873 PMCID: PMC4568025 DOI: 10.1007/s00427-015-0508-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/24/2015] [Indexed: 12/11/2022]
Abstract
Animals use a stereotypical set of developmental genes to build body architectures of varying sizes and organizational complexity. Some genes are critical to developmental patterning, while other genes are important to physiological control of growth. However, growth regulator genes may not be as important in small-bodied “micro-metazoans” such as nematodes. Nematodes use a simplified developmental strategy of lineage-based cell fate specifications to produce an adult bilaterian body composed of a few hundreds of cells. Nematodes also lost the MYC proto-oncogenic regulator of cell proliferation. To identify additional regulators of cell proliferation that were lost with MYC, we computationally screened and determined 839 high-confidence genes that are conserved in bilaterians/lost in nematodes (CIBLIN genes). We find that 30 % of all CIBLIN genes encode transcriptional regulators of cell proliferation, epithelial-to-mesenchyme transitions, and other processes. Over 50 % of CIBLIN genes are unnamed genes in Drosophila, suggesting that there are many understudied genes. Interestingly, CIBLIN genes include many Myc synthetic lethal (MycSL) hits from recent screens. CIBLIN genes include key regulators of heparan sulfate proteoglycan (HSPG) sulfation patterns, and lysyl oxidases involved in cross-linking and modification of the extracellular matrix (ECM). These genes and others suggest the CIBLIN repertoire services critical functions in ECM remodeling and cell migration in large-bodied bilaterians. Correspondingly, CIBLIN genes are co-expressed with Myc in cancer transcriptomes, and include a preponderance of known determinants of cancer progression and tumor aggression. We propose that CIBLIN gene research can improve our understanding of regulatory control of cellular growth in metazoans.
Collapse
Affiliation(s)
- Albert J Erives
- Department of Biology, University of Iowa, Iowa City, IA, 52242-1324, USA.
| |
Collapse
|
15
|
Yang JR, Ruan S, Zhang J. Determinative developmental cell lineages are robust to cell deaths. PLoS Genet 2014; 10:e1004501. [PMID: 25058586 PMCID: PMC4110091 DOI: 10.1371/journal.pgen.1004501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/24/2014] [Indexed: 11/18/2022] Open
Abstract
All forms of life are confronted with environmental and genetic perturbations, making phenotypic robustness an important characteristic of life. Although development has long been viewed as a key component of phenotypic robustness, the underlying mechanism is unclear. Here we report that the determinative developmental cell lineages of two protostomes and one deuterostome are structured such that the resulting cellular compositions of the organisms are only modestly affected by cell deaths. Several features of the cell lineages, including their shallowness, topology, early ontogenic appearances of rare cells, and non-clonality of most cell types, underlie the robustness. Simple simulations of cell lineage evolution demonstrate the possibility that the observed robustness arose as an adaptation in the face of random cell deaths in development. These results reveal general organizing principles of determinative developmental cell lineages and a conceptually new mechanism of phenotypic robustness, both of which have important implications for development and evolution.
Collapse
Affiliation(s)
- Jian-Rong Yang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Shuxiang Ruan
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
16
|
Rizzi B, Peyrieras N. Towards 3D in silico modeling of the sea urchin embryonic development. J Chem Biol 2013; 7:17-28. [PMID: 24386014 PMCID: PMC3877407 DOI: 10.1007/s12154-013-0101-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/22/2013] [Indexed: 11/29/2022] Open
Abstract
Embryogenesis is a dynamic process with an intrinsic variability whose understanding requires the integration of molecular, genetic, and cellular dynamics. Biological circuits function over time at the level of single cells and require a precise analysis of the topology, temporality, and probability of events. Integrative developmental biology is currently looking for the appropriate strategies to capture the intrinsic properties of biological systems. The "-omic" approaches require disruption of the function of the biological circuit; they provide static information, with low temporal resolution and usually with population averaging that masks fast or variable features at the cellular scale and in a single individual. This data should be correlated with cell behavior as cells are the integrators of biological activity. Cellular dynamics are captured by the in vivo microscopy observation of live organisms. This can be used to reconstruct the 3D + time cell lineage tree to serve as the basis for modeling the organism's multiscale dynamics. We discuss here the progress that has been made in this direction, starting with the reconstruction over time of three-dimensional digital embryos from in toto time-lapse imaging. Digital specimens provide the means for a quantitative description of the development of model organisms that can be stored, shared, and compared. They open the way to in silico experimentation and to a more theoretical approach to biological processes. We show, with some unpublished results, how the proposed methodology can be applied to sea urchin species that have been model organisms in the field of classical embryology and modern developmental biology for over a century.
Collapse
Affiliation(s)
- Barbara Rizzi
- CNRS-MDAM, UPR 3294 and BioEmergences-IBiSA, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
- Institut des Systèmes Complexes, 57-59 rue Lhomond, Paris, France
| | - Nadine Peyrieras
- CNRS-MDAM, UPR 3294 and BioEmergences-IBiSA, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
- Institut des Systèmes Complexes, 57-59 rue Lhomond, Paris, France
| |
Collapse
|
17
|
Schulze J, Houthoofd W, Uenk J, Vangestel S, Schierenberg E. Plectus - a stepping stone in embryonic cell lineage evolution of nematodes. EvoDevo 2012; 3:13. [PMID: 22748136 PMCID: PMC3464786 DOI: 10.1186/2041-9139-3-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/24/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent studies have challenged the widespread view that the pattern of embryogenesis found in Caenorhabditis elegans (clade 9) is characteristic of nematodes in general. To understand this still largely unexplored landscape of developmental events, we set out to examine more distantly related nematodes in detail for temporospatial differences in pattern formation and cell specification. Members of the genus Plectus (clade 6) seem to be suitable candidates to show variety, with certain idiosyncratic features during early development and the convenient availability of cultivatable species. METHODS The study was conducted using 4-D lineage analysis, 3-D modeling of developing embryos and laser-induced ablation of individual blastomeres. RESULTS Detailed cell lineage studies of several Plectus species reveal that pattern formation and cell fate assignment differ markedly from C. elegans. Descendants of the first somatic founder cell S1 (AB) - but not the progeny of other founder cells - demonstrate extremely variable spatial arrangements illustrating that here distinct early cell-cell interactions between invariant partners, as found in C. elegans, cannot take place. Different from C. elegans, in Plectus alternative positional variations among early S1 blastomeres resulting in a 'situs inversus' pattern, nevertheless give rise to adults with normal left-right asymmetries. In addition, laser ablations of early blastomeres uncover inductions between variable cell partners. CONCLUSIONS Our results suggest that embryonic cell specification in Plectus is not correlated with cell lineage but with position. With this peculiarity, Plectus appears to occupy an intermediate position between basal nematodes displaying a variable early development and the C. elegans-like invariant pattern. We suggest that indeterminate pattern formation associated with late, position-dependent fate assignment represents a plesiomorphic character among nematodes predominant in certain basal clades but lost in derived clades. Thus, the behavior of S1 cells in Plectus can be considered an evolutionary relict in a transition phase between two different developmental strategies.
Collapse
Affiliation(s)
- Jens Schulze
- Biocenter, University of Cologne, Zülpicher Strasse 47b, Cologne, 50674, Germany
| | - Wouter Houthoofd
- Department of Biology, Ghent University, Ledeganckstraat 35, Ghent, 9000, Belgium
| | - Jana Uenk
- Biocenter, University of Cologne, Zülpicher Strasse 47b, Cologne, 50674, Germany
| | - Sandra Vangestel
- Department of Biology, Ghent University, Ledeganckstraat 35, Ghent, 9000, Belgium
| | - Einhard Schierenberg
- Biocenter, University of Cologne, Zülpicher Strasse 47b, Cologne, 50674, Germany
| |
Collapse
|
18
|
Chisholm AD, Hsiao TI. The Caenorhabditis elegans epidermis as a model skin. I: development, patterning, and growth. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:861-78. [PMID: 23539299 DOI: 10.1002/wdev.79] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The skin of the nematode Caenorhabditis elegans is composed of a simple epidermal epithelium and overlying cuticle. The skin encloses the animal and plays central roles in body morphology and physiology; its simplicity and accessibility make it a tractable genetic model for several aspects of skin biology. Epidermal precursors are specified by a hierarchy of transcriptional regulators. Epidermal cells form on the dorsal surface of the embryo and differentiate to form the epidermal primordium, which then spreads out in a process of epiboly to enclose internal tissues. Subsequent elongation of the embryo into a vermiform larva is driven by cell shape changes and cell fusions in the epidermis. Most epidermal cells fuse in mid-embryogenesis to form a small number of multinucleate syncytia. During mid-embryogenesis the epidermis also becomes intimately associated with underlying muscles, performing a tendon-like role in transmitting muscle force. Post-embryonic development of the epidermis involves growth by addition of new cells to the syncytia from stem cell-like epidermal seam cells and by an increase in cell size driven by endoreplication of the chromosomes in epidermal nuclei.
Collapse
Affiliation(s)
- Andrew D Chisholm
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
19
|
Snell-Rood EC. Selective Processes in Development: Implications for the Costs and Benefits of Phenotypic Plasticity. Integr Comp Biol 2012; 52:31-42. [DOI: 10.1093/icb/ics067] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Derycke S, Sheibani Tezerji R, Rigaux A, Moens T. Investigating the ecology and evolution of cryptic marine nematode species through quantitative real-time PCR of the ribosomal ITS region. Mol Ecol Resour 2012; 12:607-19. [PMID: 22385909 DOI: 10.1111/j.1755-0998.2012.03128.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The presence of morphologically similar but genetically distinct species has impacted biogeographical and ecological paradigms. In marine sediments, free-living nematodes form one of the most abundant and diverse faunal groups. Inferring the importance of nematode diversity for ecosystem functioning requires species-level identification, which is hampered by the lack of easily observable diagnostic characters and the presence of cryptic species. New techniques are urgently needed to adequately study the ecology and evolution of cryptic species. The aim of the present study was to evaluate the potential of a quantitative real-time PCR (qPCR) assay using the internal transcribed spacer (ITS) region of the ribosomal DNA to detect and quantify cryptic species of the R. (P.) marina complex. All primer pairs proved to be highly specific, and each primer pair was able to detect a single juvenile in a pool of 100 nematodes. C(t) values were significantly different between developmental stages for all species except for PmIII. Despite differences between developmental stages, a strong correlation was observed between the amount of extracted DNA and the number of nematodes present. Relative and absolute quantification estimates were comparable and resulted in strong positive correlations between the qPCR estimate and the actual number of nematodes present in the samples. The qPCR assay developed here provides the ability to quickly identify and quantify cryptic nematode species and will facilitate their study in laboratory and field settings.
Collapse
Affiliation(s)
- S Derycke
- Department of Biology, Marine Biology section, Ghent University, Krijgslaan 281, S8, 9000 Ghent, Belgium.
| | | | | | | |
Collapse
|
21
|
Schulze J, Schierenberg E. Evolution of embryonic development in nematodes. EvoDevo 2011; 2:18. [PMID: 21929824 PMCID: PMC3195109 DOI: 10.1186/2041-9139-2-18] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/20/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Nematodes can be subdivided into basal Enoplea (clades 1 and 2) and more derived Chromadorea (clades 3 to 12). Embryogenesis of Caenorhabditis elegans (clade 9) has been analyzed in most detail. Their establishment of polarity and asymmetric cleavage requires the differential localization of PAR proteins. Earlier studies on selected other nematodes revealed that embryonic development of nematodes is more diverse than the essentially invariant development of C. elegans and the classic study object Ascaris had suggested. To obtain a more detailed picture of variations and evolutionary trends we compared embryonic cell lineages and pattern formation in embryos of all 12 nematode clades. METHODS The study was conducted using 4-D microscopy and 3-D modeling of developing embryos. RESULTS We found dramatic differences compared to C. elegans in Enoplea but also considerable variations among Chromadorea. We discovered 'Polarity Organizing Centers' (POCs) that orient cleavage spindles along the anterior-posterior axis in distinct cells over consecutive cell generations. The resulting lineally arranged blastomeres represent a starting point for the establishment of bilateral symmetry within individual lineages. We can discern six different early cleavage types and suggest that these variations are due to modifications in the activity of the POCs in conjunction with changes in the distribution of PAR proteins. In addition, our studies indicate that lineage complexity advanced considerably during evolution, that is we observe trends towards an increase of somatic founder cells, from monoclonal to polyclonal lineages and from a variable (position-dependent) to an invariable (lineage-dependent) way of cell fate specification. In contrast to the early phase of embryogenesis, the second half ('morphogenesis') appears similar in all studied nematodes. Comparison of early cleavage between the basal nematode Tobrilus stefanskii and the tardigrade Hypsibius dujardini revealed surprising similarities indicating that the presence of POCs is not restricted to nematode embryos. CONCLUSIONS The pattern of cleavage, spatial arrangement and differentiation of cells diverged dramatically during the history of the phylum Nematoda without corresponding changes in the phenotype. While in all studied representatives the same distinctive developmental steps need to be taken, cell behavior leading to these is not conserved.
Collapse
Affiliation(s)
- Jens Schulze
- University of Cologne, Biocenter, Zuelpicher Str. 47b 50967 Köln, Germany
| | | |
Collapse
|
22
|
Abstract
Caenorhabditis elegans is uniquely suited to the analysis of cell lineage patterns. C. elegans has a small number of somatic cells whose position and morphology are almost invariant from animal to animal. Because C. elegans is virtually transparent, cells can be identified in live animals using a simple bright-field microscopy technique, Nomarski differential interference contrast (DIC), or by expression of transgenic fluorescent reporter genes. The small size and rapid development of C. elegans mean that animals can develop while under continuous observation, allowing cell lineages to be analyzed throughout embryonic and postembryonic development. Embryonic cell lineages can also be traced semiautomatically using timelapse imaging of GFP-labeled nuclei. Analysis of mutant cell lineages remains important for defining the roles of developmental control genes.
Collapse
Affiliation(s)
- Claudiu A Giurumescu
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
23
|
Ragsdale EJ, Baldwin JG. Resolving phylogenetic incongruence to articulate homology and phenotypic evolution: a case study from Nematoda. Proc Biol Sci 2010; 277:1299-307. [PMID: 20106846 PMCID: PMC2871949 DOI: 10.1098/rspb.2009.2195] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 01/06/2010] [Indexed: 11/12/2022] Open
Abstract
Modern morphology-based systematics, including questions of incongruence with molecular data, emphasizes analysis over similarity criteria to assess homology. Yet detailed examination of a few key characters, using new tools and processes such as computerized, three-dimensional ultrastructural reconstruction of cell complexes, can resolve apparent incongruence by re-examining primary homologies. In nematodes of Tylenchomorpha, a parasitic feeding phenotype is thus reconciled with immediate free-living outgroups. Closer inspection of morphology reveals phenotypes congruent with molecular-based phylogeny and points to a new locus of homology in mouthparts. In nematode models, the study of individually homologous cells reveals a conserved modality of evolution among dissimilar feeding apparati adapted to divergent lifestyles. Conservatism of cellular components, consistent with that of other body systems, allows meaningful comparative morphology in difficult groups of microscopic organisms. The advent of phylogenomics is synergistic with morphology in systematics, providing an honest test of homology in the evolution of phenotype.
Collapse
Affiliation(s)
- Erik J Ragsdale
- Department of Nematology, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
24
|
Willems M, Egger B, Wolff C, Mouton S, Houthoofd W, Fonderie P, Couvreur M, Artois T, Borgonie G. Embryonic origins of hull cells in the flatworm Macrostomum lignano through cell lineage analysis: developmental and phylogenetic implications. Dev Genes Evol 2009; 219:409-17. [PMID: 19834735 DOI: 10.1007/s00427-009-0304-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/28/2009] [Indexed: 11/28/2022]
Abstract
The development of macrostomid flatworms is of interest for evolutionary developmental biology research because these taxa combine characteristics of the canonical spiral cleavage pattern with significant deviations from this pattern. One such deviation is the formation of hull cells, which surround the remaining embryonic primordium during early development. Using live observations with a 4D microscope system, histology, and 3D reconstructions, we analyzed the ontogeny of these hull cells in the macrostomid model organism Macrostomum lignano. Our cell lineage analysis allowed us to find the precursors of the hull cells in this species. We discuss the relation between macrostomid development and the development of other spiralians and the question of whether hull cells are homologous within rhabditophoran flatworms.
Collapse
Affiliation(s)
- Maxime Willems
- Department of Biology, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hench J, Henriksson J, Lüppert M, Bürglin TR. Spatio-temporal reference model of Caenorhabditis elegans embryogenesis with cell contact maps. Dev Biol 2009; 333:1-13. [PMID: 19527702 DOI: 10.1016/j.ydbio.2009.06.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 05/29/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
The nematode Caenorhabditis elegans has been used as a model for developmental biology for decades. Still, the few publicly available spatio-temporal (4D) data sets have conflicting information regarding variability of cell positions and are not well-suited for a standard 4D embryonic model, due to compression. We have recorded six uncompressed embryos, and determined their lineage and 4D coordinates, including nuclear radii, until the end of gastrulation. We find a remarkable degree of stability in the cell positions, as well as little rotational movement, which allowed us to combine the data into a single reference model of C. elegans embryogenesis. Using Voronoi decomposition we generated the list of all predicted cell contacts during early embryogenesis and calculated these contacts up to the approximately 150 cell stage, and find that about 1500 contacts last 2.5 min or longer. The cell contact map allows for comparison of multiple 4D data sets, e.g., mutants or related species, at the cellular level. A comparison of our uncompressed 4D model with a compressed embryo shows that up to 40% of the cell contacts can be different. To visualize the 4D model interactively we developed a software utility. Our model provides an anatomical resource and can serve as foundation to display 4D expression data, a basis for developmental systems biology.
Collapse
Affiliation(s)
- Jürgen Hench
- Department of Biosciences and Nutrition, Karolinska Institutet, and School of Life Sciences, Södertörn University, Hälsovägen 7, Huddinge 141 57, Sweden
| | | | | | | |
Collapse
|
26
|
Schulze J, Schierenberg E. Embryogenesis of Romanomermis culicivorax: an alternative way to construct a nematode. Dev Biol 2009; 334:10-21. [PMID: 19523940 DOI: 10.1016/j.ydbio.2009.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/03/2009] [Accepted: 06/06/2009] [Indexed: 11/17/2022]
Abstract
The current picture of embryonic development in nematodes is essentially shaped by Caenorhabditis elegans and its close relatives. As their pattern of embryogenesis is rather similar, it is often considered to be representative for the taxon Nematoda as a whole. Here we give for the first time a comprehensive description of embryonic development in an ancestrally diverged nematode. Romanomermis culicivorax differs strikingly from C. elegans with respect to cell division pattern, spatial arrangement of blastomeres and tissue formation. Our study reveals a number of unexpected phenomena. These include (i) unique polar interphase microtubule caps forming in early blastomeres destined to undergo asymmetric cleavages, suggesting the presence of a so far undescribed MTOC; (ii) embryonic cell lineages of reduced complexity with predominantly monoclonal sublineages, generating just a single tissue type; (iii) construction of major parts of the body from duplicating building blocks consisting of rings of cells, a pattern showing some resemblance to segmentation; (iv) prominent differences in cell fate assignment which can be best explained with a global shift affecting all somatic founder cells. In summary, our data indicate that during nematode evolution massive alterations in the developmental program took place of how to generate a juvenile.
Collapse
Affiliation(s)
- Jens Schulze
- Zoological Institute, University of Cologne, 50923 Köln, Germany
| | | |
Collapse
|
27
|
Stach T, Winter J, Bouquet JM, Chourrout D, Schnabel R. Embryology of a planktonic tunicate reveals traces of sessility. Proc Natl Acad Sci U S A 2008; 105:7229-34. [PMID: 18490654 PMCID: PMC2438232 DOI: 10.1073/pnas.0710196105] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Indexed: 11/18/2022] Open
Abstract
A key problem in understanding deuterostome evolution has been the origin of the chordate body plan. A biphasic life cycle with a sessile adult and a free-swimming larva is traditionally considered ancestral in chordates with subsequent neotenic loss of the sessile adult stage. Molecular phylogenies challenged this view, suggesting that the primitive life cycle in chordates was entirely free-living as in modern day larvaceans. Here, we report the precise cell lineage and fate map in the normal embryo of the larvacean Oikopleura dioica, using 4D microscopy technique and transmission electron microscopy. We document the extraordinary rapidity of cleavage and morphogenetic events until hatching and demonstrate that--compared with ascidians--fate restriction occurs considerably earlier in O. dioica and that clonal organization of the cell lineage is more tightly coupled to tissue fate. We show that epidermal cells in the trunk migrate through 90 degrees, reminiscent of events in ascidian metamorphosis and that the axis of bilateral symmetry in the tail rotates in relation to the trunk. We argue that part of the tail muscle cells are ectomesodermal, because they are more closely associated with prospective epidermis than with other tissues in the cell lineage. Cladistic comparison with other deuterostomes suggests that these traits are derived within tunicates strengthening the hypothesis that the last common ancestor of tunicates had a sessile adult and thus support traditional morphology-derived scenarios. Our results allow hypothesizing that molecular developmental mechanisms known from ascidian models are restricted to fewer, yet identifiable, cells in O. dioica.
Collapse
Affiliation(s)
- Thomas Stach
- Institut für Biologie, Chemie, Pharmazie, Zoologie, Evolution, und Systematik der Tiere, Freie Universität Berlin, Königin-Luise-Strasse 1-3, 14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
28
|
Abstract
There is increasing interest in the use of the free-living nematode Caenorhabditis elegans as a tool for parasitic nematode research and there are now a number of compelling examples of its successful application. C. elegans has the potential to become a standard tool for molecular helminthology researchers, just as yeast is routinely used by molecular biologists to study vertebrate biology. However, in order to exploit C. elegans in a meaningful manner, we need a detailed understanding of the extent to which different aspects of C. elegans biology have been conserved with particular groups of parasitic nematodes. This review first considers the current state of knowledge regarding the conservation of genome organisation across the nematode phylum and then discusses some recent evolutionary development studies in free-living nematodes. The aim is to provide some important concepts that are relevant to the extrapolation of information from C. elegans to parasitic nematodes and also to the interpretation of experiments that use C. elegans as a surrogate expression system. In general, examples have been specifically chosen because they highlight the importance of careful experimentation and interpretation of data. Consequently, the focus is on the differences that have been found between nematode species rather than the similarities. Finally, there is a detailed discussion of the current status of C. elegans as a heterologous expression system to study parasite gene function and regulation using successful examples from the literature.
Collapse
Affiliation(s)
- J S Gilleard
- Department of Veterinary Parasitology, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Glasgow, UK.
| |
Collapse
|
29
|
Zhao Z, Boyle TJ, Bao Z, Murray JI, Mericle B, Waterston RH. Comparative analysis of embryonic cell lineage between Caenorhabditis briggsae and Caenorhabditis elegans. Dev Biol 2008; 314:93-9. [PMID: 18164284 PMCID: PMC2696483 DOI: 10.1016/j.ydbio.2007.11.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 11/08/2007] [Accepted: 11/10/2007] [Indexed: 12/18/2022]
Abstract
Comparative genomic analysis of important signaling pathways in Caenorhabditis briggsae and Caenorhabditis elegans reveals both conserved features and also differences. To build a framework to address the significance of these features we determined the C. briggsae embryonic cell lineage, using the tools StarryNite and AceTree. We traced both cell divisions and cell positions for all cells through all but the last round of cell division and for selected cells through the final round. We found the lineage to be remarkably similar to that of C. elegans. Not only did the founder cells give rise to similar numbers of progeny, the relative cell division timing and positions were largely maintained. These lineage similarities appear to give rise to similar cell fates as judged both by the positions of lineally equivalent cells and by the patterns of cell deaths in both species. However, some reproducible differences were seen, e.g., the P4 cell cycle length is more than 40% longer in C. briggsae than that in C. elegans (p<0.01). The extensive conservation of embryonic development between such divergent species suggests that substantial evolutionary distance between these two species has not altered these early developmental cellular events, although the developmental defects of transpecies hybrids suggest that the details of the underlying molecular pathways have diverged sufficiently so as to not be interchangeable.
Collapse
Affiliation(s)
- Zhongying Zhao
- Department of Genome Sciences, Box 355065, University of Washington, 1705 NE Pacific St, Seattle, WA 98195-5065, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Schulze J, Schierenberg E. Cellular pattern formation, establishment of polarity and segregation of colored cytoplasm in embryos of the nematode Romanomermis culicivorax. Dev Biol 2008; 315:426-36. [PMID: 18275948 DOI: 10.1016/j.ydbio.2007.12.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 12/17/2007] [Accepted: 12/31/2007] [Indexed: 01/04/2023]
Abstract
We have begun to analyze the early embryogenesis of Romanomermis culicivorax, an insect-parasitic nematode phylogenetically distant to Caenorhabditis elegans. Development of R. culicivorax differs from C. elegans in many aspects including establishment of polarity, formation of embryonic axes and the pattern of asymmetric cleavages. Here, a polarity reversal in the germline takes place already in P(1) rather than P(2), the dorsal-ventral axis appears to be inverted and gut fate is derived from the AB rather than from the EMS blastomere. So far unique for nematodes is the presence of colored cytoplasm and its segregation into one specific founder cell. Normal development observed after experimentally induced abnormal partitioning of pigment indicates that it is not involved in cell specification. Another typical feature is prominent midbodies (MB). We investigated the role of the MB region in the establishment of asymmetry. After its irradiation the potential for unequal cleavage in somatic and germline cells as well as differential distribution of pigment are lost. This indicates a crucial involvement of this region for spindle orientation, positioning, and cytoplasmic segregation. A scenario is sketched suggesting why and how during evolution the observed differences between R. culicivorax and C. elegans may have evolved.
Collapse
Affiliation(s)
- Jens Schulze
- Zoological Institute, University of Cologne, Germany
| | | |
Collapse
|
31
|
Houthoofd W, Willems M, Vangestel S, Mertens C, Bert W, Borgonie G. Different roads to form the same gut in nematodes. Evol Dev 2007; 8:362-9. [PMID: 16805900 DOI: 10.1111/j.1525-142x.2006.00108.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The morphogenesis of a gut from the endoderm has been well studied among the animal kingdom and is also well described in the nematode Caenorhabditis elegans. But are there other ways to build a nematode intestine? Sulston et al. (1983) described a different intestinal cell lineage in the species Panagrellus redivivus and Turbatrix aceti that includes two programmed cell deaths. However, no details are known about the three-dimensional (3D) configuration and the role of the cell deaths. Here, we describe the intestinal morphogenesis of P. redivivus and five other nematode species by means of four-dimensional microscopy, which gives us a 3D representation of gut formation at the cellular level. The morphological pathway of gut formation is highly conserved among these distantly related species. However, we found the P. redivivus pattern in another related species Halicephalobus gingivalis. In this pattern, the intestinal precursors migrate inward in concert with the mesoderm precursors. Based on the observations, we propose a hypothesis that could explain the differences. The positions of the mesoderm precursors create a possible spatial constraint, by which the establishment of bilateral symmetry in the intestine is delayed. This symmetry is corrected by cell migrations; other cells are eliminated and compensated by supplementary cell divisions. This pattern leads to the same result as in the other nematodes: a bilateral symmetrical intestine with nine rings. This illustrates how conserved body plans can be achieved by different developmental mechanisms.
Collapse
Affiliation(s)
- Wouter Houthoofd
- Department of Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
32
|
The tardigrade Hypsibius dujardini, a new model for studying the evolution of development. Dev Biol 2007; 312:545-59. [PMID: 17996863 DOI: 10.1016/j.ydbio.2007.09.055] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 09/12/2007] [Accepted: 09/28/2007] [Indexed: 01/01/2023]
Abstract
Studying development in diverse taxa can address a central issue in evolutionary biology: how morphological diversity arises through the evolution of developmental mechanisms. Two of the best-studied developmental model organisms, the arthropod Drosophila and the nematode Caenorhabditis elegans, have been found to belong to a single protostome superclade, the Ecdysozoa. This finding suggests that a closely related ecdysozoan phylum could serve as a valuable model for studying how developmental mechanisms evolve in ways that can produce diverse body plans. Tardigrades, also called water bears, make up a phylum of microscopic ecdysozoan animals. Tardigrades share many characteristics with C. elegans and Drosophila that could make them useful laboratory models, but long-term culturing of tardigrades historically has been a challenge, and there have been few studies of tardigrade development. Here, we show that the tardigrade Hypsibius dujardini can be cultured continuously for decades and can be cryopreserved. We report that H. dujardini has a compact genome, a little smaller than that of C. elegans or Drosophila, and that sequence evolution has occurred at a typical rate. H. dujardini has a short generation time, 13-14 days at room temperature. We have found that the embryos of H. dujardini have a stereotyped cleavage pattern with asymmetric cell divisions, nuclear migrations, and cell migrations occurring in reproducible patterns. We present a cell lineage of the early embryo and an embryonic staging series. We expect that these data can serve as a platform for using H. dujardini as a model for studying the evolution of developmental mechanisms.
Collapse
|
33
|
Abstract
The endomesoderm gene regulatory network (GRN) of C. elegans is a rich resource for studying the properties of cell-fate-specification pathways. This GRN contains both cell-autonomous and cell non-autonomous mechanisms, includes network motifs found in other GRNs, and ties maternal factors to terminal differentiation genes through a regulatory cascade. In most cases, upstream regulators and their direct downstream targets are known. With the availability of resources to study close and distant relatives of C. elegans, the molecular evolution of this network can now be examined. Within Caenorhabditis, components of the endomesoderm GRN are well conserved. A cursory examination of the preliminary genome sequences of two parasitic nematodes, Haemonchus contortus and Brugia malayi, suggests that evolution in this GRN is occurring most rapidly for the zygotic genes that specify blastomere identity.
Collapse
Affiliation(s)
- Morris F Maduro
- Department of Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
34
|
Hejnol A, Schnabel R. The eutardigrade Thulinia stephaniae has an indeterminate development and the potential to regulate early blastomere ablations. Development 2005; 132:1349-61. [PMID: 15716338 DOI: 10.1242/dev.01701] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We present a detailed analysis of the cell lineage of the tardigrade Thulinia stephaniae with a 4D-microscopy system (3D time-lapse recording). The recording, of the entire development from embryogenesis until hatching, allowed us to analyze the fate of single descendants from early blastomeres up to germ layer formation and tissue development. The embryo undergoes an irregular indeterminate cleavage pattern without early fate restriction. During gastrulation, mesodermal and endodermal precursors, and a pair of primordial germ cells migrate through a blastopore at the prospective position of the mouth. Our results are not consistent with earlier descriptions of mesoderm formation by enterocoely in tardigrades. The mesoderm in Thulinia stephaniae originates from a variable number of blastomeres, which form mesodermal bands that later produce the serial somites. The nervous system is formed by neural progenitor cells, which delaminate from the neurogenic ectoderm. Early embryogenesis of Thulinia stephaniae is highly regulative, even after laser ablations of blastomeres at the two- and four-cell stages 'normal' juveniles are formed. This has never been observed before for a protostome. Germ cell specification occurs late during development between the sixth and seventh cell generation. Comparing the development of other protostomes with that of the Tardigrada, which occupy a basal position within the Arthropoda, suggests that an indeterminate cleavage and regulatory development is not only part of the ground pattern of the Arthropoda, but probably of the entire Ecdysozoa.
Collapse
Affiliation(s)
- Andreas Hejnol
- Technische Universität Braunschweig, Institut für Genetik, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| | | |
Collapse
|
35
|
Azevedo RBR, Lohaus R, Braun V, Gumbel M, Umamaheshwar M, Agapow PM, Houthoofd W, Platzer U, Borgonie G, Meinzer HP, Leroi AM. The simplicity of metazoan cell lineages. Nature 2005; 433:152-6. [PMID: 15650738 DOI: 10.1038/nature03178] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 11/09/2004] [Indexed: 11/09/2022]
Abstract
Developmental processes are thought to be highly complex, but there have been few attempts to measure and compare such complexity across different groups of organisms. Here we introduce a measure of biological complexity based on the similarity between developmental and computer programs. We define the algorithmic complexity of a cell lineage as the length of the shortest description of the lineage based on its constituent sublineages. We then use this measure to estimate the complexity of the embryonic lineages of four metazoan species from two different phyla. We find that these cell lineages are significantly simpler than would be expected by chance. Furthermore, evolutionary simulations show that the complexity of the embryonic lineages surveyed is near that of the simplest lineages evolvable, assuming strong developmental constraints on the spatial positions of cells and stabilizing selection on cell number. We propose that selection for decreased complexity has played a major role in moulding metazoan cell lineages.
Collapse
Affiliation(s)
- Ricardo B R Azevedo
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The conserved homeobox (Hox) gene cluster is neither conserved nor clustered in the nematode Caenorhabditis elegans. Instead, C. elegans has a reduced and dispersed gene complement that is the result the loss of Hox genes in stages throughout its evolutionary history. The roles of Hox genes in patterning the nematode body axis are also divergent, although there are tantalising remnants of ancient regulatory systems. Hox patterning also differs greatly between C. elegans and a second 'model' nematode, Pristionchus pacificus. The pattern of Hox gene evolution may be indicative of the move to deterministic developmental modes in nematodes.
Collapse
Affiliation(s)
- Aziz Aboobaker
- Institute of Cell, Animal and Population Biology, University of Edingburgh, Edingburgh, UK.
| | | |
Collapse
|