1
|
Paudel S, Yue M, Nalamalapu R, Saha MS. Deciphering the Calcium Code: A Review of Calcium Activity Analysis Methods Employed to Identify Meaningful Activity in Early Neural Development. Biomolecules 2024; 14:138. [PMID: 38275767 PMCID: PMC10813340 DOI: 10.3390/biom14010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The intracellular and intercellular flux of calcium ions represents an ancient and universal mode of signaling that regulates an extensive array of cellular processes. Evidence for the central role of calcium signaling includes various techniques that allow the visualization of calcium activity in living cells. While extensively investigated in mature cells, calcium activity is equally important in developing cells, particularly the embryonic nervous system where it has been implicated in a wide variety array of determinative events. However, unlike in mature cells, where the calcium dynamics display regular, predictable patterns, calcium activity in developing systems is far more sporadic, irregular, and diverse. This renders the ability to assess calcium activity in a consistent manner extremely challenging, challenges reflected in the diversity of methods employed to analyze calcium activity in neural development. Here we review the wide array of calcium detection and analysis methods used across studies, limiting the extent to which they can be comparatively analyzed. The goal is to provide investigators not only with an overview of calcium activity analysis techniques currently available, but also to offer suggestions for future work and standardization to enable informative comparative evaluations of this fundamental and important process in neural development.
Collapse
Affiliation(s)
- Sudip Paudel
- Wyss Institute, Harvard University, Boston, MA 02215, USA; (S.P.); (M.Y.)
| | - Michelle Yue
- Wyss Institute, Harvard University, Boston, MA 02215, USA; (S.P.); (M.Y.)
| | - Rithvik Nalamalapu
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | | |
Collapse
|
2
|
Concha ML, Reig G. Origin, form and function of extraembryonic structures in teleost fishes. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210264. [PMID: 36252221 PMCID: PMC9574637 DOI: 10.1098/rstb.2021.0264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022] Open
Abstract
Teleost eggs have evolved a highly derived early developmental pattern within vertebrates as a result of the meroblastic cleavage pattern, giving rise to a polar stratified architecture containing a large acellular yolk and a small cellular blastoderm on top. Besides the acellular yolk, the teleost-specific yolk syncytial layer (YSL) and the superficial epithelial enveloping layer are recognized as extraembryonic structures that play critical roles throughout embryonic development. They provide enriched microenvironments in which molecular feedback loops, cellular interactions and mechanical signals emerge to sculpt, among other things, embryonic patterning along the dorsoventral and left-right axes, mesendodermal specification and the execution of morphogenetic movements in the early embryo and during organogenesis. An emerging concept points to a critical role of extraembryonic structures in reinforcing early genetic and morphogenetic programmes in reciprocal coordination with the embryonic blastoderm, providing the necessary boundary conditions for development to proceed. In addition, the role of the enveloping cell layer in providing mechanical, osmotic and immunological protection during early stages of development, and the autonomous nutritional support provided by the yolk and YSL, have probably been key aspects that have enabled the massive radiation of teleosts to colonize every ecological niche on the Earth. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Miguel L. Concha
- Integrative Biology Program, Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Biomedical Neuroscience Institute (BNI), Santiago 8380453, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago 7800003, Chile
| | - Germán Reig
- Escuela de Tecnología Médica y del Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 7800003, Chile
| |
Collapse
|
3
|
Rothschild SC, Tombes RM. Widespread Roles of CaMK-II in Developmental Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:519-535. [DOI: 10.1007/978-3-030-12457-1_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
4
|
Functional analysis of new human Bardet-Biedl syndrome loci specific variants in the zebrafish model. Sci Rep 2019; 9:12936. [PMID: 31506453 PMCID: PMC6736949 DOI: 10.1038/s41598-019-49217-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 08/16/2019] [Indexed: 11/09/2022] Open
Abstract
The multiple genetic approaches available for molecular diagnosis of human diseases have made possible to identify an increasing number of pathogenic genetic changes, particularly with the advent of next generation sequencing (NGS) technologies. However, the main challenge lies in the interpretation of their functional impact, which has resulted in the widespread use of animal models. We describe here the functional modelling of seven BBS loci variants, most of them novel, in zebrafish embryos to validate their in silico prediction of pathogenicity. We show that target knockdown (KD) of known BBS (BBS1, BB5 or BBS6) loci leads to developmental defects commonly associated with ciliopathies, as previously described. These KD pleiotropic phenotypes were rescued by co-injecting human wild type (WT) loci sequence but not with the equivalent mutated mRNAs, providing evidence of the pathogenic effect of these BBS changes. Furthermore, direct assessment of cilia located in Kupffer's vesicle (KV) showed a reduction of ciliary length associated with all the studied variants, thus confirming a deleterious effect. Taken together, our results seem to prove the pathogenicity of the already classified and unclassified new BBS variants, as well as highlight the usefulness of zebrafish as an animal model for in vivo assays in human ciliopathies.
Collapse
|
5
|
The Expression of Key Guidance Genes at a Forebrain Axon Turning Point Is Maintained by Distinct Fgfr Isoforms but a Common Downstream Signal Transduction Mechanism. eNeuro 2019; 6:eN-NWR-0086-19. [PMID: 30993182 PMCID: PMC6464512 DOI: 10.1523/eneuro.0086-19.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/24/2022] Open
Abstract
During development the axons of neurons grow toward and locate their synaptic partners to form functional neural circuits. Axons do so by reading a map of guidance cues expressed by surrounding tissues. Guidance cues are expressed at a precise space and time, but how guidance cue expression is regulated, and in a coordinated manner, is poorly understood. Semaphorins (Semas) and Slits are families of molecular ligands that guide axons. We showed previously that fibroblast growth factor (Fgf) signaling maintains sema3a and slit1 forebrain expression in Xenopus laevis, and these two repellents cooperate to guide retinal ganglion cell (RGC) axons away from the mid-diencephalon and on towards the optic tectum. Here, we investigate whether there are common features of the regulatory pathways that control the expression of these two guidance cues at this single axon guidance decision point. We isolated the sema3a proximal promoter and confirmed its responsiveness to Fgf signaling. Through misexpression of truncated Fgf receptors (Fgfrs), we found that sema3a forebrain expression is dependent on Fgfr2-4 but not Fgfr1. This is in contrast to slit1, whose expression we showed previously depends on Fgfr1 but not Fgfr2-4. Using pharmacological inhibitors and misexpression of constitutively active (CA) and dominant negative (DN) signaling intermediates, we find that while distinct Fgfrs regulate these two guidance genes, intracellular signaling downstream of Fgfrs appears to converge along the phosphoinositol 3-kinase (PI3K)-Akt signaling pathway. A common PI3K-Akt signaling pathway may allow for the coordinated expression of guidance cues that cooperate to direct axons at a guidance choice point.
Collapse
|
6
|
Ermakov A, Daks A, Fedorova O, Shuvalov O, Barlev NA. Ca 2+ -depended signaling pathways regulate self-renewal and pluripotency of stem cells. Cell Biol Int 2018; 42:1086-1096. [PMID: 29851182 DOI: 10.1002/cbin.10998] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/25/2018] [Indexed: 12/15/2022]
Abstract
Ca2+ -mediated signaling is widely spread in nature and plays critical role in the individual development of various organisms ranging from microorganisms to mammals. In vertebrates, Ca2+ is involved in important developmental events: fertilization, body plan establishment, and organogenesis. The two later events are defined by embryonic stem cells (ESCs). ESCs are capable of self-renewal and are pluripotent by nature, that is, can give rise to all types of cells that make up the body. Given the paramount importance of Ca2+ signalization in the development, it is therefore not surprising this process also plays role in the biology of stem cells. In this review, we scrutinize the published experimental data on the role of Ca2+ ions in embryonic stem cells self-renewal and pluripotency. In line with this, we also discuss possible mechanisms of p53 inhibition as a major hindrance to self-renewal of ESCs. Finally, we argue about the role of G-protein-coupled receptors (GPCRs), the largest family of heteromeric transmembrane receptors, and GPCR-mediated signalization in stem cells, and propose the role for the GPCR-G-protein-PLC-Ca2+ -downstream signaling pathway in the regulation of pluripotency of both mouse and human ESCs.
Collapse
Affiliation(s)
| | - Alexandra Daks
- Institute of Cytology RAS, Saint-Petersburg 194064, Russia
| | - Olga Fedorova
- Institute of Cytology RAS, Saint-Petersburg 194064, Russia
| | - Oleg Shuvalov
- Institute of Cytology RAS, Saint-Petersburg 194064, Russia
| | | |
Collapse
|
7
|
Eno C, Gomez T, Slusarski DC, Pelegri F. Slow calcium waves mediate furrow microtubule reorganization and germ plasm compaction in the early zebrafish embryo. Development 2018; 145:dev156604. [PMID: 29632136 PMCID: PMC6001370 DOI: 10.1242/dev.156604] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 03/27/2018] [Indexed: 12/11/2022]
Abstract
Zebrafish germ plasm ribonucleoparticles (RNPs) become recruited to furrows of early zebrafish embryos through their association with astral microtubules ends. During the initiation of cytokinesis, microtubules are remodeled into a furrow microtubule array (FMA), which is thought to be analogous to the mammalian midbody involved in membrane abscission. During furrow maturation, RNPs and FMA tubules transition from their original distribution along the furrow to enrichments at the furrow distal ends, which facilitates germ plasm mass compaction. We show that nebel mutants exhibit reduced furrow-associated slow calcium waves (SCWs), caused at least in part by defective enrichment of calcium stores. RNP and FMA distal enrichment mirrors the medial-to-distal polarity of SCWs, and inhibition of calcium release or downstream mediators such as Calmodulin affects RNP and FMA distal enrichment. Blastomeres with reduced or lacking SCWs, such as early blastomeres in nebel mutants and wild-type blastomeres at later stages, exhibit medially bundling microtubules similar to midbodies in other cell types. Our data indicate that SCWs provide medial-to-distal directionality along the furrow to facilitate germ plasm RNP enrichment at the furrow ends.
Collapse
Affiliation(s)
- Celeste Eno
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Timothy Gomez
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Diane C Slusarski
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, WI 53706, USA
| |
Collapse
|
8
|
Marsden AN, Derry SW, Schneider I, Scott CA, Westfall TA, Brastrom LK, Shea MA, Dawson DV, Slusarski DC. The Nkd EF-hand domain modulates divergent wnt signaling outputs in zebrafish. Dev Biol 2018; 434:63-73. [PMID: 29180104 DOI: 10.1016/j.ydbio.2017.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/29/2017] [Accepted: 11/20/2017] [Indexed: 12/25/2022]
Abstract
Wnt proteins regulate diverse biological responses by initiating two general outcomes: β-catenin-dependent transcription and β-catenin-independent activation of signaling cascades, the latter including modulation of calcium and regulation of cytoskeletal dynamics (Planar Cell Polarity, PCP). It has been difficult to elucidate the mechanisms by which Wnt signals are directed to effect one or the other outcome due to shared signaling proteins between the β-catenin-dependent and -independent pathways, such as the Dishevelled binding protein Naked. While all Naked paralogs contain a putative calcium-binding domain, the EF-Hand, Drosophila Naked does not bind calcium. Here we find a lineage-specific evolutionary change within the Drosophila Naked EF-hand that is not shared with other insects or vertebrates. We demonstrate the necessary role of the EF-hand for Nkd localization changes in calcium fluxing cells and using in vivo assays, we identify a role for the zebrafish Naked EF-hand in PCP but not in β-catenin antagonism. In contrast, Drosophila-like Nkd does not function in PCP, but is a robust antagonist of Wnt/β-catenin signaling. This work reveals that the zebrafish Nkd1 EF-hand is essential to balance Wnt signaling inputs and modulate the appropriate outputs, while the Drosophila-like EF-Hand primarily functions in β-catenin signaling.
Collapse
Affiliation(s)
- Autumn N Marsden
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Sarah W Derry
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA; Drake University, Des Moines, IA 50311, USA
| | - Igor Schneider
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA; Instituto de Ciencias Biologicas, Universidade Federal do Para, Belem 66075-110, Brazil
| | - C Anthony Scott
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Trudi A Westfall
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Lindy K Brastrom
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Madeline A Shea
- Department of Biochemistry, University of Iowa, UA 52242, USA
| | - Deborah V Dawson
- Departments of Pediatric Dentistry&Biostatistics, University of Iowa, Iowa City 52242, USA
| | - Diane C Slusarski
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
9
|
Chen J, Xia L, Bruchas MR, Solnica-Krezel L. Imaging early embryonic calcium activity with GCaMP6s transgenic zebrafish. Dev Biol 2017; 430:385-396. [PMID: 28322738 PMCID: PMC5835148 DOI: 10.1016/j.ydbio.2017.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/12/2017] [Accepted: 03/11/2017] [Indexed: 12/02/2022]
Abstract
Intracellular Ca2+ signaling regulates cellular activities during embryogenesis and in adult organisms. We generated stable Tg[βactin2:GCaMP6s]stl351 and Tg[ubi:GCaMP6s]stl352 transgenic lines that combine the ubiquitously-expressed Ca2+ indicator GCaMP6s with the transparent characteristics of zebrafish embryos to achieve superior in vivo Ca2+ imaging. Using the Tg[βactin2:GCaMP6s]stl351 line featuring strong GCaMP6s expression from cleavage through gastrula stages, we detected higher frequency of Ca2+ transients in the superficial blastomeres during the blastula stages preceding the midblastula transition. Additionally, GCaMP6s also revealed that dorsal-biased Ca2+ signaling that follows the midblastula transition persisted longer during gastrulation, compared with earlier studies. We observed that dorsal-biased Ca2+ signaling is diminished in ventralized ichabod/β-catenin2 mutant embryos and ectopically induced in embryos dorsalized by excess β-catenin. During gastrulation, we directly visualized Ca2+ signaling in the dorsal forerunner cells, which form in a Nodal signaling dependent manner and later give rise to the laterality organ. We found that excess Nodal increases the number and the duration of Ca2+ transients specifically in the dorsal forerunner cells. The GCaMP6s transgenic lines described here enable unprecedented visualization of dynamic Ca2+ events from embryogenesis through adulthood, augmenting the zebrafish toolbox.
Collapse
Affiliation(s)
- Jiakun Chen
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Li Xia
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, 63105, USA
| | - Michael R Bruchas
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, 63105, USA; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
10
|
Sørhus E, Incardona JP, Karlsen Ø, Linbo T, Sørensen L, Nordtug T, van der Meeren T, Thorsen A, Thorbjørnsen M, Jentoft S, Edvardsen RB, Meier S. Crude oil exposures reveal roles for intracellular calcium cycling in haddock craniofacial and cardiac development. Sci Rep 2016; 6:31058. [PMID: 27506155 PMCID: PMC4979050 DOI: 10.1038/srep31058] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/13/2016] [Indexed: 11/10/2022] Open
Abstract
Recent studies have shown that crude oil exposure affects cardiac development in fish by disrupting excitation-contraction (EC) coupling. We previously found that eggs of Atlantic haddock (Melanogrammus aeglefinus) bind dispersed oil droplets, potentially leading to more profound toxic effects from uptake of polycyclic aromatic hydrocarbons (PAHs). Using lower concentrations of dispersed crude oil (0.7-7 μg/L ∑PAH), here we exposed a broader range of developmental stages over both short and prolonged durations. We quantified effects on cardiac function and morphogenesis, characterized novel craniofacial defects, and examined the expression of genes encoding potential targets underlying cardiac and craniofacial defects. Because of oil droplet binding, a 24-hr exposure was sufficient to create severe cardiac and craniofacial abnormalities. The specific nature of the craniofacial abnormalities suggests that crude oil may target common craniofacial and cardiac precursor cells either directly or indirectly by affecting ion channels and intracellular calcium in particular. Furthermore, down-regulation of genes encoding specific components of the EC coupling machinery suggests that crude oil disrupts excitation-transcription coupling or normal feedback regulation of ion channels blocked by PAHs. These data support a unifying hypothesis whereby depletion of intracellular calcium pools by crude oil-derived PAHs disrupts several pathways critical for organogenesis in fish.
Collapse
Affiliation(s)
- Elin Sørhus
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - John P. Incardona
- Northwest Fisheries Science Center (NOAA), 2725 Montlake Blvd. East, Seattle, WA 98112-2097, USA
| | - Ørjan Karlsen
- Institute of Marine Research (IMR), Austevoll Research Station, and Hjort Centre for Marine Ecosystem Dynamics, NO-5392 Storebø, Norway
| | - Tiffany Linbo
- Northwest Fisheries Science Center (NOAA), 2725 Montlake Blvd. East, Seattle, WA 98112-2097, USA
| | - Lisbet Sørensen
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
- University of Bergen, P.O. Box 7800, NO-5020 Bergen, Norway
| | - Trond Nordtug
- SINTEF Materials and Chemistry, P.O. Box 4760, Sluppen, NO-7465 Trondheim, Norway
| | - Terje van der Meeren
- Institute of Marine Research (IMR), Austevoll Research Station, and Hjort Centre for Marine Ecosystem Dynamics, NO-5392 Storebø, Norway
| | - Anders Thorsen
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | | | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
- Department of Natural Sciences, University of Agder, NO-4604 Kristiansand, Norway
| | - Rolf B. Edvardsen
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Sonnich Meier
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| |
Collapse
|
11
|
DeLuca AP, Whitmore SS, Barnes J, Sharma TP, Westfall TA, Scott CA, Weed MC, Wiley JS, Wiley LA, Johnston RM, Schnieders MJ, Lentz SR, Tucker BA, Mullins RF, Scheetz TE, Stone EM, Slusarski DC. Hypomorphic mutations in TRNT1 cause retinitis pigmentosa with erythrocytic microcytosis. Hum Mol Genet 2015; 25:44-56. [PMID: 26494905 DOI: 10.1093/hmg/ddv446] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023] Open
Abstract
Retinitis pigmentosa (RP) is a highly heterogeneous group of disorders characterized by degeneration of the retinal photoreceptor cells and progressive loss of vision. While hundreds of mutations in more than 100 genes have been reported to cause RP, discovering the causative mutations in many patients remains a significant challenge. Exome sequencing in an individual affected with non-syndromic RP revealed two plausibly disease-causing variants in TRNT1, a gene encoding a nucleotidyltransferase critical for tRNA processing. A total of 727 additional unrelated individuals with molecularly uncharacterized RP were completely screened for TRNT1 coding sequence variants, and a second family was identified with two members who exhibited a phenotype that was remarkably similar to the index patient. Inactivating mutations in TRNT1 have been previously shown to cause a severe congenital syndrome of sideroblastic anemia, B-cell immunodeficiency, recurrent fevers and developmental delay (SIFD). Complete blood counts of all three of our patients revealed red blood cell microcytosis and anisocytosis with only mild anemia. Characterization of TRNT1 in patient-derived cell lines revealed reduced but detectable TRNT1 protein, consistent with partial function. Suppression of trnt1 expression in zebrafish recapitulated several features of the human SIFD syndrome, including anemia and sensory organ defects. When levels of trnt1 were titrated, visual dysfunction was found in the absence of other phenotypes. The visual defects in the trnt1-knockdown zebrafish were ameliorated by the addition of exogenous human TRNT1 RNA. Our findings indicate that hypomorphic TRNT1 mutations can cause a recessive disease that is almost entirely limited to the retina.
Collapse
Affiliation(s)
- Adam P DeLuca
- The Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences
| | - S Scott Whitmore
- The Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences
| | | | - Tasneem P Sharma
- The Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences
| | | | | | - Matthew C Weed
- The Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences
| | - Jill S Wiley
- The Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences
| | - Luke A Wiley
- The Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences
| | - Rebecca M Johnston
- The Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences
| | - Michael J Schnieders
- The Stephen A. Wynn Institute for Vision Research, Department of Biomedical Engineering, Department of Biochemistry, and
| | - Steven R Lentz
- Department of Internal Medicine; The University of Iowa, Iowa City, IA, USA
| | - Budd A Tucker
- The Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences
| | - Robert F Mullins
- The Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences
| | - Todd E Scheetz
- The Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Department of Biomedical Engineering
| | - Edwin M Stone
- The Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences
| | - Diane C Slusarski
- The Stephen A. Wynn Institute for Vision Research, Department of Biology,
| |
Collapse
|
12
|
Lin KY, Kao SH, Lai CM, Chen CT, Wu CY, Hsu HJ, Wang WD. Tumor Suppressor Lzap Suppresses Wnt/β-Catenin Signaling to Promote Zebrafish Embryonic Ventral Cell Fates via the Suppression of Inhibitory Phosphorylation of Glycogen Synthase Kinase 3. J Biol Chem 2015; 290:29808-19. [PMID: 26475862 DOI: 10.1074/jbc.m115.669309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 11/06/2022] Open
Abstract
Wnt/β-catenin signaling controls various cell fates in metazoan development, and its dysregulation is often associated with cancer formation. However, regulations of this signaling pathway are not completely understood. Here, we report that Lzap, a tumor suppressor, controls nuclear translocation of β-catenin. In zebrafish embryos disruption of lzap increases the expression of chordin (chd), which encodes a bone morphogenetic protein (BMP) antagonist that is localized in prospective dorsal cells and promotes dorsal fates. Consistently, lzap-deficient embryos with attenuated BMP signaling are dorsalized, which can be rescued by overexpression of zebrafish lzap or bmp2b or human LZAP. The expansion of chd expression in embryos lacking lzap is due to the accumulation of nuclear β-catenin in ventral cells, in which β-catenin is usually degraded. Furthermore, the activity of GSK3, a master regulator of β-catenin degradation, is suppressed in lzap-deficient embryos via inhibitory phosphorylation. Finally, we also report that a similar regulatory axis is also likely to be present in a human tongue carcinoma cell line, SAS. Our results reveal that Lzap is a novel regulator of GSK3 for the maintenance of ventral cell properties and may prevent carcinogenesis via the regulation of β-catenin degradation.
Collapse
Affiliation(s)
- Kun-Yang Lin
- From the Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan, Department of BioAgricultural Science, National Chiayi University, Chiayi 60004, Taiwan, and
| | - Shih-Han Kao
- From the Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Chun-Ming Lai
- From the Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan, Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei 11529, Taiwan
| | - Ciao-Ting Chen
- Department of BioAgricultural Science, National Chiayi University, Chiayi 60004, Taiwan, and
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung City 80424, Taiwan
| | - Hwei-Jan Hsu
- From the Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan,
| | - Wen-Der Wang
- Department of BioAgricultural Science, National Chiayi University, Chiayi 60004, Taiwan, and
| |
Collapse
|
13
|
Valenti F, Ibetti J, Komiya Y, Baxter M, Lucchese AM, Derstine L, Covaciu C, Rizzo V, Vento R, Russo G, Macaluso M, Cotelli F, Castiglia D, Gottardi CJ, Habas R, Giordano A, Bellipanni G. The increase in maternal expression of axin1 and axin2 contribute to the zebrafish mutant ichabod ventralized phenotype. J Cell Biochem 2015; 116:418-30. [PMID: 25335865 DOI: 10.1002/jcb.24993] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 11/11/2022]
Abstract
β-Catenin is a central effector of the Wnt pathway and one of the players in Ca(+)-dependent cell-cell adhesion. While many wnts are present and expressed in vertebrates, only one β-catenin exists in the majority of the organisms. One intriguing exception is zebrafish that carries two genes for β-catenin. The maternal recessive mutation ichabod presents very low levels of β-catenin2 that in turn affects dorsal axis formation, suggesting that β-catenin1 is incapable to compensate for β-catenin2 loss and raising the question of whether these two β-catenins may have differential roles during early axis specification. Here we identify a specific antibody that can discriminate selectively for β-catenin1. By confocal co-immunofluorescent analysis and low concentration gain-of-function experiments, we show that β-catenin1 and 2 behave in similar modes in dorsal axis induction and cellular localization. Surprisingly, we also found that in the ich embryo the mRNAs of the components of β-catenin regulatory pathway, including β-catenin1, are more abundant than in the Wt embryo. Increased levels of β-catenin1 are found at the membrane level but not in the nuclei till high stage. Finally, we present evidence that β-catenin1 cannot revert the ich phenotype because it may be under the control of a GSK3β-independent mechanism that required Axin's RGS domain function.
Collapse
Affiliation(s)
- Fabio Valenti
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, 19122, Pennsylvania; Department of Biology, College of Science and Technology, Temple University, Philadelphia, 19122, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ge X, Grotjahn D, Welch E, Lyman-Gingerich J, Holguin C, Dimitrova E, Abrams EW, Gupta T, Marlow FL, Yabe T, Adler A, Mullins MC, Pelegri F. Hecate/Grip2a acts to reorganize the cytoskeleton in the symmetry-breaking event of embryonic axis induction. PLoS Genet 2014; 10:e1004422. [PMID: 24967891 PMCID: PMC4072529 DOI: 10.1371/journal.pgen.1004422] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 04/20/2014] [Indexed: 11/18/2022] Open
Abstract
Maternal homozygosity for three independent mutant hecate alleles results in embryos with reduced expression of dorsal organizer genes and defects in the formation of dorsoanterior structures. A positional cloning approach identified all hecate mutations as stop codons affecting the same gene, revealing that hecate encodes the Glutamate receptor interacting protein 2a (Grip2a), a protein containing multiple PDZ domains known to interact with membrane-associated factors including components of the Wnt signaling pathway. We find that grip2a mRNA is localized to the vegetal pole of the oocyte and early embryo, and that during egg activation this mRNA shifts to an off-center vegetal position corresponding to the previously proposed teleost cortical rotation. hecate mutants show defects in the alignment and bundling of microtubules at the vegetal cortex, which result in defects in the asymmetric movement of wnt8a mRNA as well as anchoring of the kinesin-associated cargo adaptor Syntabulin. We also find that, although short-range shifts in vegetal signals are affected in hecate mutant embryos, these mutants exhibit normal long-range, animally directed translocation of cortically injected dorsal beads that occurs in lateral regions of the yolk cortex. Furthermore, we show that such animally-directed movement along the lateral cortex is not restricted to a single arc corresponding to the prospective dorsal region, but occur in multiple meridional arcs even in opposite regions of the embryo. Together, our results reveal a role for Grip2a function in the reorganization and bundling of microtubules at the vegetal cortex to mediate a symmetry-breaking short-range shift corresponding to the teleost cortical rotation. The slight asymmetry achieved by this directed process is subsequently amplified by a general cortical animally-directed transport mechanism that is neither dependent on hecate function nor restricted to the prospective dorsal axis. One of the earliest and most crucial events in animal development is the establishment of the embryonic dorsal axis. In amphibians and fish, this event depends on the transport of so-called “dorsal determinants” from one region of the egg, at the pole opposite from the site where the oocyte nucleus lies, towards the site of axis induction. There, the dorsal determinant activates the Wnt signaling pathway, which in turn triggers dorsal gene expression. Dorsal determinant transport is mediated by the reorganization of a cellular network composed of microtubules. We determine that hecate, a zebrafish gene active during egg formation that is essential for embryonic axis induction, is required for an early step in this microtubule reorganization. We find that hecate corresponds to glutamate receptor interacting protein 2a, which participates in other animal systems in Wnt-based pathways. We also show that the microtubule reorganization dependent on hecate results in a subtle symmetry-breaking event that subsequently becomes amplified by a more general transport process independent of hecate function. Our data reveal new links between glutamate receptor interacting protein 2a, Wnt signaling and axis induction, and highlights basic mechanisms by which small changes early in development translate into global changes in the embryo.
Collapse
Affiliation(s)
- Xiaoyan Ge
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Danielle Grotjahn
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Elaine Welch
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Jamie Lyman-Gingerich
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Christiana Holguin
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Eva Dimitrova
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Elliot W. Abrams
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tripti Gupta
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Florence L. Marlow
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Taijiro Yabe
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Anna Adler
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Mary C. Mullins
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
15
|
Mei X, Westfall TA, Zhang Q, Sheffield VC, Bassuk AG, Slusarski DC. Functional characterization of Prickle2 and BBS7 identify overlapping phenotypes yet distinct mechanisms. Dev Biol 2014; 392:245-55. [PMID: 24938409 DOI: 10.1016/j.ydbio.2014.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/14/2014] [Accepted: 05/24/2014] [Indexed: 01/04/2023]
Abstract
Ciliopathies are genetic disorders that are caused by dysfunctional cilia and affect multiple organs. One type of ciliopathy, Bardet-Biedl syndrome, is a rare disorder characterized by obesity, retinitis pigmentosa, polydactyly, mental retardation and susceptibility to cardiovascular diseases. The Wnt/Planar cell polarity (PCP) has been associated with cilia function and ciliogenesis in directing the orientation of cilia and basal bodies. Yet the exact relationship between PCP and ciliopathy is not well understood. Here, we examine interactions between a core PCP component, Prickle2 (Pk2), and a central BBS gene, Bbs7, using gene knockdown in the zebrafish. pk2 and bbs7 knockdown both disrupt the formation of a ciliated organ, the Kupffer׳s vesicle (KV), but do not display a synergistic interaction. By measuring cell polarity in the neural tube, we find that bbs7 activity is not required for Pk asymmetric localization. Moreover, BBS protein complex formation is preserved in the Pk2-deficient (Pk2(-/-)) mouse. Previously we reported an intracellular melanosome transport delay as a cardinal feature of reduced bbs gene activity. We find that pk2 knockdown suppresses bbs7-related retrograde transport delay. Similarly, knockdown of ift22, an anterograde intraflagellar transport component, also suppresses the bbs7-related retrograde delay. Notably, we find that pk2 knockdown larvae show a delay in anterograde transport. These data suggest a novel role for Pk2 in directional intracellular transport and our analyses show that PCP and BBS function independently, yet result in overlapping phenotypes when knocked down in zebrafish.
Collapse
Affiliation(s)
- Xue Mei
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Trudi A Westfall
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Qihong Zhang
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Howard Hughes Medical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Val C Sheffield
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Howard Hughes Medical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Alexander G Bassuk
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Diane C Slusarski
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
16
|
Webb SE, Miller AL. Calcium signaling in extraembryonic domains during early teleost development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 304:369-418. [PMID: 23809440 DOI: 10.1016/b978-0-12-407696-9.00007-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
It is becoming recognized that the extraembryonic domains of developing vertebrates, that is, those that make no cellular contribution to the embryo proper, act as important signaling centers that induce and pattern the germ layers and help establish the key embryonic axes. In the embryos of teleost fish, in particular, significant progress has been made in understanding how signaling activity in extraembryonic domains, such as the enveloping layer, the yolk syncytial layer, and the yolk cell, might help regulate development via a combination of inductive interactions, cellular dynamics, and localized gene expression. Ca(2+) signaling in a variety of forms that include propagating waves and standing gradients is a feature found in all three teleostean extraembryonic domains. This leads us to propose that in addition to their other well-characterized signaling activities, extraembryonic domains are well suited (due to their relative stability and continuity) to act as Ca(2+) signaling centers and conduits.
Collapse
Affiliation(s)
- Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | | |
Collapse
|
17
|
Ando H, Kawaai K, Mikoshiba K. IRBIT: a regulator of ion channels and ion transporters. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2195-204. [PMID: 24518248 DOI: 10.1016/j.bbamcr.2014.01.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 12/20/2022]
Abstract
IRBIT (also called AHCYL1) was originally identified as a binding protein of the intracellular Ca(2+) channel inositol 1,4,5-trisphosphate (IP3) receptor and functions as an inhibitory regulator of this receptor. Unexpectedly, many functions have subsequently been identified for IRBIT including the activation of multiple ion channels and ion transporters, such as the Na(+)/HCO3(-) co-transporter NBCe1-B, the Na(+)/H(+) exchanger NHE3, the Cl(-) channel cystic fibrosis transmembrane conductance regulator (CFTR), and the Cl(-)/HCO3(-) exchanger Slc26a6. The characteristic serine-rich region in IRBIT plays a critical role in the functions of this protein. In this review, we describe the evolution, domain structure, expression pattern, and physiological roles of IRBIT and discuss the potential molecular mechanisms underlying the coordinated regulation of these diverse ion channels/transporters through IRBIT. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Hideaki Ando
- Laboratories for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Katsuhiro Kawaai
- Laboratories for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Katsuhiko Mikoshiba
- Laboratories for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
18
|
Range RC, Angerer RC, Angerer LM. Integration of canonical and noncanonical Wnt signaling pathways patterns the neuroectoderm along the anterior-posterior axis of sea urchin embryos. PLoS Biol 2013; 11:e1001467. [PMID: 23335859 PMCID: PMC3545869 DOI: 10.1371/journal.pbio.1001467] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/29/2012] [Indexed: 11/29/2022] Open
Abstract
Three different Wnt signaling pathways function to restrict the anterior neuroectoderm state to the anterior end of the sea urchin embryo, a mechanism of anterior fate restriction that could be conserved among deuterostomes. Patterning the neuroectoderm along the anterior–posterior (AP) axis is a critical event in the early development of deuterostome embryos. However, the mechanisms that regulate the specification and patterning of the neuroectoderm are incompletely understood. Remarkably, the anterior neuroectoderm (ANE) of the deuterostome sea urchin embryo expresses many of the same transcription factors and secreted modulators of Wnt signaling, as does the early vertebrate ANE (forebrain/eye field). Moreover, as is the case in vertebrate embryos, confining the ANE to the anterior end of the embryo requires a Wnt/β-catenin-dependent signaling mechanism. Here we use morpholino- or dominant negative-mediated interference to demonstrate that the early sea urchin embryo integrates information not only from Wnt/β-catenin but also from Wnt/Fzl5/8-JNK and Fzl1/2/7-PKC pathways to provide precise spatiotemporal control of neuroectoderm patterning along its AP axis. Together, through the Wnt1 and Wnt8 ligands, they orchestrate a progressive posterior-to-anterior wave of re-specification that restricts the initial, ubiquitous, maternally specified, ANE regulatory state to the most anterior blastomeres. There, the Wnt receptor antagonist, Dkk1, protects this state through a negative feedback mechanism. Because these different Wnt pathways converge on the same cell fate specification process, our data suggest they may function as integrated components of an interactive Wnt signaling network. Our findings provide strong support for the idea that the sea urchin ANE regulatory state and the mechanisms that position and define its borders represent an ancient regulatory patterning system that was present in the common echinoderm/vertebrate ancestor. The initial regulatory state of most cells in many deuterostome embryos, including those of vertebrates and sea urchins, supports anterior neural fate specification. It is important to restrict this neurogenic potential to the anterior end of the embryo during early embryogenesis, but the molecular mechanisms by which this re-specification of posterior fate occurs are incompletely understood in any embryo. The sea urchin embryo is ideally suited to study this process because, in contrast to vertebrates, anterior–posterior neuroectoderm patterning occurs independently of dorsal-ventral axis patterning and takes place before the complex cell movements of gastrulation. In this study, we show that a linked, three-step process involving at least three different Wnt signaling pathways provides precise spatiotemporal restriction of the anterior neuroectoderm regulatory state to the anterior end of the sea urchin embryo. Because these three pathways impinge on the same developmental process, they could be functioning as an integrated Wnt signaling network. Moreover, striking parallels among gene expression patterns and functional studies suggest that this mechanism of anterior fate restriction could be highly conserved among deuterostomes.
Collapse
Affiliation(s)
- Ryan C. Range
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert C. Angerer
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lynne M. Angerer
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
19
|
Tran LD, Hino H, Quach H, Lim S, Shindo A, Mimori-Kiyosue Y, Mione M, Ueno N, Winkler C, Hibi M, Sampath K. Dynamic microtubules at the vegetal cortex predict the embryonic axis in zebrafish. Development 2012; 139:3644-52. [PMID: 22949618 DOI: 10.1242/dev.082362] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In zebrafish, as in many animals, maternal dorsal determinants are vegetally localized in the egg and are transported after fertilization in a microtubule-dependent manner. However, the organization of early microtubules, their dynamics and their contribution to axis formation are not fully understood. Using live imaging, we identified two populations of microtubules, perpendicular bundles and parallel arrays, which are directionally oriented and detected exclusively at the vegetal cortex before the first cell division. Perpendicular bundles emanate from the vegetal cortex, extend towards the blastoderm, and orient along the animal-vegetal axis. Parallel arrays become asymmetric on the vegetal cortex, and orient towards dorsal. We show that the orientation of microtubules at 20 minutes post-fertilization can predict where the embryonic dorsal structures in zebrafish will form. Furthermore, we find that parallel microtubule arrays colocalize with wnt8a RNA, the candidate maternal dorsal factor. Vegetal cytoplasmic granules are displaced with parallel arrays by ~20°, providing in vivo evidence of a cortical rotation-like process in zebrafish. Cortical displacement requires parallel microtubule arrays, and probably contributes to asymmetric transport of maternal determinants. Formation of parallel arrays depends on Ca(2+) signaling. Thus, microtubule polarity and organization predicts the zebrafish embryonic axis. In addition, our results suggest that cortical rotation-like processes might be more common in early development than previously thought.
Collapse
Affiliation(s)
- Long Duc Tran
- Temasek Life Sciences Laboratory, 1 Research Link, 117604 Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Characterization of Ca(2+) signaling in the external yolk syncytial layer during the late blastula and early gastrula periods of zebrafish development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:1641-56. [PMID: 23142640 DOI: 10.1016/j.bbamcr.2012.10.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/26/2012] [Accepted: 10/30/2012] [Indexed: 11/24/2022]
Abstract
Preferential loading of the complementary bioluminescent (f-aequorin) and fluorescent (Calcium Green-1 dextran) Ca(2+) reporters into the yolk syncytial layer (YSL) of zebrafish embryos, revealed the generation of stochastic patterns of fast, short-range, and slow, long-range Ca(2+) waves that propagate exclusively through the external YSL (E-YSL). Starting abruptly just after doming (~4.5h post-fertilization: hpf), and ending at the shield stage (~6.0hpf) these distinct classes of waves propagated at mean velocities of ~50 and ~4μm/s, respectively. Although the number and pattern of these waves varied between embryos, their initiation site and arcs of propagation displayed a distinct dorsal bias, suggesting an association with the formation and maintenance of the nascent dorsal-ventral axis. Wave initiation coincided with a characteristic clustering of YSL nuclei (YSN), and their associated perinuclear ER, in the E-YSL. Furthermore, the inter-YSN distance (IND) appeared to be critical such that Ca(2+) wave propagation occurred only when this was <~8μm; an IND >~8μm was coincidental with wave termination at shield stage. Treatment with the IP3R antagonist, 2-APB, the Ca(2+) buffer, 5,5'-dibromo BAPTA, and the SERCA-pump inhibitor, thapsigargin, resulted in a significant disruption of the E-YSL Ca(2+) waves, whereas exposure to the RyR antagonists, ryanodine and dantrolene, had no significant effect. These findings led us to propose that the E-YSL Ca(2+) waves are generated mainly via Ca(2+) release from IP3Rs located in the perinuclear ER, and that the clustering of the YSN is an essential step in providing a CICR pathway required for wave propagation. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
|
21
|
GSK-3 activity is critical for the orientation of the cortical microtubules and the dorsoventral axis determination in zebrafish embryos. PLoS One 2012; 7:e36655. [PMID: 22574208 PMCID: PMC3345025 DOI: 10.1371/journal.pone.0036655] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 04/04/2012] [Indexed: 12/14/2022] Open
Abstract
The formation of dorsal-ventral (D–V) axis is the earliest event that breaks the radial symmetry and determines the bilateral body plan of a vertebrate embryo, however, the maternal control of this process is not fully understood. Here, we discovered a new dorsalizing window of acute lithium treatment, which covers only less than 10 minutes after fertilization. Lithium treatment in this window was not able to reverse the ventralized phenotype in tokkeabi (tkk) mutant embryos, and its dorsalizing activity on wild-type embryos was inhibited by nocodazole co-treatment. These evidences indicate that the underlying mechanism is independent of a direct activation of Wnt/β-catenin signaling, but depends on the upstream level of the microtubule mediated dorsal determinant transport. In order to identify the target of lithium in this newly discovered sensitive window, GSK-3 inhibitor IX as well as the IMPase inhibitor L690, 330 treatments were performed. We found that only GSK-3 inhibitor IX treatment mimicked the lithium treatment in the dorsalizing activity. Further study showed that the parallel pattern of cortical microtubules in the vegetal pole region and the directed migration of the Wnt8a mRNA were randomized by either lithium or GSK-3 inhibitor IX treatment. These results thus revealed an early and critical role of GSK-3 activity that regulates the orientation of the cortical microtubules and the directed transport of the dorsal determinants in zebrafish embryos.
Collapse
|
22
|
Markova O, Lenne PF. Calcium signaling in developing embryos: focus on the regulation of cell shape changes and collective movements. Semin Cell Dev Biol 2012; 23:298-307. [PMID: 22414534 DOI: 10.1016/j.semcdb.2012.03.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/31/2012] [Accepted: 03/04/2012] [Indexed: 10/28/2022]
Abstract
During morphogenesis tissues significantly remodel by coordinated cell migrations and cell rearrangements. Central to this problem are cell shape changes that are driven by distinct cytoskeletal reorganization responsible for force generation. Calcium is a versatile and universal messenger that is implicated in the regulation of embryonic development. Although calcium transients accrue clearly and more intensely in tissues undergoing rearrangement/migration, it is far from clear what the role of these calcium signals is. Here we summarize the evidence implicating calcium participation in tissue movements, cell shape changes and the reorganization of contractile cytoskeletal elements in developing embryos. We also discuss a novel hypothesis that short-lived calcium spikes are required in cells and tissues undergoing migration and rearrangements as a fine tuning response mechanism to prevent local, abnormally high fluctuations in cytoskeletal activities.
Collapse
Affiliation(s)
- Olga Markova
- IBDML, UMR7288 CNRS-Aix-Marseille Université, Campus de Luminy, Marseille, France.
| | | |
Collapse
|
23
|
Webb SE, Fluck RA, Miller AL. Calcium signaling during the early development of medaka and zebrafish. Biochimie 2011; 93:2112-25. [DOI: 10.1016/j.biochi.2011.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/09/2011] [Indexed: 10/18/2022]
|
24
|
Zhang J, Webb SE, Ma LH, Chan CM, Miller AL. Necessary role for intracellular Ca2+ transients in initiating the apical-basolateral thinning of enveloping layer cells during the early blastula period of zebrafish development. Dev Growth Differ 2011; 53:679-96. [PMID: 21671916 DOI: 10.1111/j.1440-169x.2011.01275.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During the early blastula period of zebrafish embryos, the outermost blastomeres begin to undergo a significant thinning in the apical/basolateral dimension to form the first distinct cellular domain of the embryo, the enveloping layer (EVL). During this shape transformation, only the EVL-precursor cells generate a coincidental series of highly restricted Ca(2+) transients. To investigate the role of these localized Ca(2+) transients in this shape-change process, embryos were treated with a Ca(2+) chelator (5,5'-difluoro BAPTA AM; DFB), or the Ca(2+) ionophore (A23187), to downregulate and upregulate the transients, respectively, while the shape-change of the forming EVL cells was measured. DFB was shown to significantly slow, and A23187 to significantly facilitate the shape change of the forming EVL cells. In addition, to investigate the possible involvement of the phosphoinositide and Wnt/Ca(2+) signaling pathways in the Ca(2+) transient generation and/or shape-change processes, embryos were treated with antagonists (thapsigargin, 2-APB and U73122) or an agonist (Wnt-5A) of these pathways. Wnt-5A upregulated the EVL-restricted Ca(2+) transients and facilitated the change in shape of the EVL cells, while 2-APB downregulated the Ca(2+) transients and significantly slowed the cell shape-change process. Furthermore, thapsigargin and U73122 also both inhibited the EVL cell shape-change. We hypothesize, therefore, that the highly localized and coincidental Ca(2+) transients play a necessary role in initiating the shape-change of the EVL cells.
Collapse
Affiliation(s)
- Jiao Zhang
- Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | |
Collapse
|
25
|
Popgeorgiev N, Bonneau B, Ferri KF, Prudent J, Thibaut J, Gillet G. The apoptotic regulator Nrz controls cytoskeletal dynamics via the regulation of Ca2+ trafficking in the zebrafish blastula. Dev Cell 2011; 20:663-76. [PMID: 21571223 DOI: 10.1016/j.devcel.2011.03.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 02/02/2011] [Accepted: 03/21/2011] [Indexed: 11/26/2022]
Abstract
Bcl-2 family members are key regulators of apoptosis. Their involvement in other cellular processes has been so far overlooked. We have studied the role of the Bcl-2 homolog Nrz in the developing zebrafish. Nrz was found to be localized to the yolk syncytial layer, a region containing numerous mitochondria and ER membranes. Nrz knockdown resulted in developmental arrest before gastrulation, due to free Ca(2+) increase in the yolk cell, activating myosin light chain kinase, which led to premature contraction of actin-myosin cables in the margin and separation of the blastomeres from the yolk cell. In the yolk syncytial layer, Nrz appears to prevent the release of Ca(2+) from the endoplasmic reticulum by directly interacting with the IP3R1 Ca(2+) channel. Thus, the Bcl-2 family may participate in early development, not only by controlling apoptosis but also by acting on cytoskeletal dynamics and cell movements via Ca(2+) fluxes inside the embryo.
Collapse
Affiliation(s)
- Nikolay Popgeorgiev
- CRCL U1052 INSERM, UMS 3443 CNRS, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| | | | | | | | | | | |
Collapse
|
26
|
Zebrafish Nkd1 promotes Dvl degradation and is required for left-right patterning. Dev Biol 2010; 348:22-33. [PMID: 20858476 DOI: 10.1016/j.ydbio.2010.08.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 08/22/2010] [Accepted: 08/27/2010] [Indexed: 12/20/2022]
Abstract
The establishment of the left-right (LR) axis in zebrafish embryos relies on signals from the dorsal forerunner cells (DFC) and the Kupffer's vesicle (KV). While the Wnt signaling network influences many aspects of embryonic development, its precise role in LR patterning is still unclear. One branch of the Wnt network leads to stabilization of β-catenin and activation of downstream target genes. Other Wnt ligands appear to act independently of β-catenin to modulate calcium release and influence cell polarity. Central to regulation of β-catenin and coordination of convergent extension (CE) movements is Dishevelled (Dvl). Naked Cuticle (Nkd) binds Dvl and modulates β-catenin-dependent and independent Wnt signaling. Here, we analyze the expression patterns of three zebrafish Nkd homologs and find enriched expression of nkd1 in DFCs and KV. Dvl is degraded upon Nkd1 overexpression in zebrafish. Knockdown of Nkd1 specifically in the DFC results in β-catenin nuclear localization and transcriptional activation as well as alterations to DFC migration, KV formation, ciliogenesis and LR patterning. Furthermore, we identify asymmetric expression of the Nodal antagonist charon around the KV and show that Nkd1 knockdown impacts asymmetric charon expression. Our findings show that Nkd1 acts as a β-catenin antagonist in the DFCs necessary for LR patterning.
Collapse
|
27
|
Lin S, Baye LM, Westfall TA, Slusarski DC. Wnt5b-Ryk pathway provides directional signals to regulate gastrulation movement. ACTA ACUST UNITED AC 2010; 190:263-78. [PMID: 20660632 PMCID: PMC2930277 DOI: 10.1083/jcb.200912128] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The soluble ligand Wnt5b repels cells expressing the Ryk (related to tyrosine kinase) receptor, establishing directional motility during gastrulation. Noncanonical Wnts are largely believed to act as permissive cues for vertebrate cell movement via Frizzled (Fz). In addition to Fz, Wnt ligands are known to regulate neurite outgrowth through an alternative receptor related to tyrosine kinase (Ryk). However, Wnt–Ryk signaling during embryogenesis is less well characterized. In this study, we report a role for Wnt5b as an instructive cue to regulate gastrulation movements through Ryk. In zebrafish, Ryk deficiency impairs Wnt5b-induced Ca2+ activity and directional cell movement. Wnt5b–Ryk signaling promotes polarized cell protrusions. Upon Wnt5b stimulation, Fz2 but not Ryk recruits Dishevelled to the cell membrane, suggesting that Fz2 and Ryk mediate separate pathways. Using co-culture assays to generate directional Wnt5b cues, we demonstrate that Ryk-expressing cells migrate away from the Wnt5b source. We conclude that full-length Ryk conveys Wnt5b signals in a directional manner during gastrulation.
Collapse
Affiliation(s)
- Shengda Lin
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
28
|
Freisinger CM, Fisher RA, Slusarski DC. Regulator of g protein signaling 3 modulates wnt5b calcium dynamics and somite patterning. PLoS Genet 2010; 6:e1001020. [PMID: 20628572 PMCID: PMC2900303 DOI: 10.1371/journal.pgen.1001020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 06/07/2010] [Indexed: 01/01/2023] Open
Abstract
Vertebrate development requires communication among cells of the embryo in order to define the body axis, and the Wnt-signaling network plays a key role in axis formation as well as in a vast array of other cellular processes. One arm of the Wnt-signaling network, the non-canonical Wnt pathway, mediates intracellular calcium release via activation of heterotrimeric G proteins. Regulator of G protein Signaling (RGS) proteins can accelerate inactivation of G proteins by acting as G protein GTPase-activating proteins (GAPs), however, the possible role of RGS proteins in non-canonical Wnt signaling and development is not known. Here, we identify rgs3 as having an overlapping expression pattern with wnt5b in zebrafish and reveal that individual knockdown of either rgs3 or wnt5b gene function produces similar somite patterning defects. Additionally, we describe endogenous calcium release dynamics in developing zebrafish somites and determine that both rgs3 and wnt5b function are required for appropriate frequency and amplitude of calcium release activity. Using rescue of gene knockdown and in vivo calcium imaging assays, we demonstrate that the activity of Rgs3 requires its ability to interact with Gα subunits and function as a G protein GAP. Thus, Rgs3 function is necessary for appropriate frequency and amplitude of calcium release during somitogenesis and is downstream of Wnt5 activity. These results provide the first evidence for an essential developmental role of RGS proteins in modulating the duration of non-canonical Wnt signaling. Vertebrate development requires communication among cells in order to define the body axis (front/back, head/tail, or left/right). Secreted factors such as Wnts play key roles in a vast array of cellular processes, including patterning of the body axis. One arm of the Wnt-signaling network, the non-canonical pathway, mediates intracellular calcium release via activation of heterotrimeric G proteins. Regulator of G protein Signaling (RGS) proteins can accelerate inactivation of G proteins by acting as G protein GAPs and are uniquely situated to control the amplitude of a Wnt signal. Here, we combine cellular, molecular, and genetic analyses with high resolution calcium imaging to identify a role for RGS modulation of Wnt-mediated calcium release dynamics and developmental patterning events. We find that loss of rgs3 gene function produced body patterning defects like those observed with loss of wnt5b gene function. Analysis of endogenous calcium release dynamics in developing zebrafish revealed that both rgs3 and wnt5b are required for appropriate frequency and amplitude of calcium release. Our results provide new evidence that a member of the RGS protein family is essential for modulating the non-canonical Wnt network to assure normal tissue patterning during development.
Collapse
Affiliation(s)
| | - Rory A. Fisher
- Department of Pharmacology, University of Iowa College of Medicine, Iowa City, Iowa, United States of America
| | - Diane C. Slusarski
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
29
|
Jung H, Kim HJ, Lee SK, Kim R, Kopachik W, Han JK, Jho EH. Negative feedback regulation of Wnt signaling by Gbetagamma-mediated reduction of Dishevelled. Exp Mol Med 2010; 41:695-706. [PMID: 19561403 DOI: 10.3858/emm.2009.41.10.076] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Wnt signaling is known to be important for diverse embryonic and post-natal cellular events and be regulated by the proteins Dishevelled and Axin. Although Dishevelled is activated by Wnt and involved in signal transduction, it is not clear how Dishevelled-mediated signaling is turned off. We report that guanine nucleotide binding protein beta 2 (Gnb2; Gbeta2) bound to Axin and Gbeta2 inhibited Wnt mediated reporter activity. The inhibition involved reduction of the level of Dishevelled, and the Gbeta2gamma2 mediated reduction of Dishevelled was countered by increased expression of Axin. Consistent with these effects in HEK293T cells, injection of Gbeta2gamma2 into Xenopus embryos inhibited the formation of secondary axes induced either by XWnt8 or Dishevelled, but not by beta-catenin. The DEP domain of Dishevelled is necessary for both interaction with Gbeta2gamma2 and subsequent degradation of Dishevelled via the lysosomal pathway. Signaling induced by Gbeta2gamma2 is required because a mutant of Gbeta2, Gbeta2 (W332A) with lower signaling activity, had reduced ability to downregulate the level of Dishevelled. Activation of Wnt signaling by either of two methods, increased Frizzled signaling or transient transfection of Wnt, also led to increased degradation of Dishevelled and the induced Dishevelled loss is dependent on Gbeta1 and Gbeta2. Other studies with agents that interfere with PLC action and calcium signaling suggested that loss of Dishevelled is mediated through the following pathway: Wnt/Frizzled-->Gbetagamma-->PLC-->Ca(+2)/PKC signaling. Together the evidence suggests a novel negative feedback mechanism in which Gbeta2gamma2 inhibits Wnt signaling by degradation of Dishevelled.
Collapse
Affiliation(s)
- Hwajin Jung
- Department of Life Science, The University of Seoul, Seoul 130-743, Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Fujikawa T, Munakata T, Kondo SI, Satoh N, Wada S. Stress response in the ascidian Ciona intestinalis: transcriptional profiling of genes for the heat shock protein 70 chaperone system under heat stress and endoplasmic reticulum stress. Cell Stress Chaperones 2010; 15:193-204. [PMID: 19629754 PMCID: PMC2866982 DOI: 10.1007/s12192-009-0133-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022] Open
Abstract
The genome of Ciona intestinalis contains eight genes for HSP70 superfamily proteins, 36 genes for J-proteins, a gene for a J-like protein, and three genes for BAG family proteins. To understand the stress responses of genes in the HSP70 chaperone system comprehensively, the transcriptional profiles of these 48 genes under heat stress and endoplasmic reticulum (ER) stress were studied using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Heat stress treatment increased the messenger RNA (mRNA) levels of six HSP70 superfamily genes, eight J-protein family genes, and two BAG family genes. In the cytoplasmic group of the DnaK subfamily of the HSP70 family, Ci-HSPA1/6/7-like was the only heat-inducible gene and Ci-HSPA2/8 was the only constitutively active gene which showed striking simplicity in comparison with other animals that have been examined genome-wide so far. Analyses of the time course and temperature dependency of the heat stress responses showed that the induction of Ci-HSPA1/6/7-like expression rises to a peak after heat stress treatment at 28 degrees C (10 degrees C upshift from control temperature) for 1 h. ER stress treatment with Brefeldin A, a drug that is known to act as ER stress inducer, increased the mRNA levels of four HSP70 superfamily genes and four J-protein family genes. Most stress-inducible genes are conserved between Ciona and vertebrates, as expected from a close evolutionary relationship between them. The present study characterized the stress responses of HSP70 chaperone system genes in Ciona for the first time and provides essential data for comprehensive understanding of the functions of the HSP70 chaperone system.
Collapse
Affiliation(s)
- Tetsuya Fujikawa
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829 Japan
| | - Takeo Munakata
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829 Japan
| | - Shin-ichi Kondo
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829 Japan
| | - Nori Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Promotion Corporation, Uruma, Okinawa 904-2234 Japan
| | - Shuichi Wada
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829 Japan
| |
Collapse
|
31
|
Ma H, Blake T, Chitnis A, Liu P, Balla T. Crucial role of phosphatidylinositol 4-kinase IIIalpha in development of zebrafish pectoral fin is linked to phosphoinositide 3-kinase and FGF signaling. J Cell Sci 2009; 122:4303-10. [PMID: 19887586 DOI: 10.1242/jcs.057646] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Phosphatidylinositol 4-kinases (PI4Ks) catalyze the first committed step in the synthesis of phosphoinositides, important lipid regulators of signaling and trafficking pathways. Here we cloned Pik4a, one of the zebrafish PI4K enzymes, and studied its role(s) in vertebrate development using morpholino oligonucleotide-based gene silencing in zebrafish. Downregulation of Pik4a led to multiple developmental abnormalities, affecting the brain, heart, trunk and most prominently causing loss of pectoral fins. Strikingly similar defects were caused by treatment of the developing embryos with the phosphoinositide 3-kinase (PI3K) inhibitor, LY294002. To investigate the cause of the pectoral fin developmental defect, we focused on fibroblast growth factor (FGF) signaling pathways because vertebrate limb development requires the concerted action of a series of FGF ligands. Using in situ hybridization, the pectoral fin defect was traced to disruption of the early FGF signaling loops that are crucial for the establishment of the sharp signaling center formed by the apical ectodermal ridge and the underlying mesenchyme. This, in turn caused a prominent loss of the induction of one of the mitogen-activated protein kinase (MAPK) phosphatases, Mkp3, an essential intermediate in vertebrate limb development. These changes were associated with impaired proliferation in the developing fin bud due to a loss of balance between the MAPK and PI3K branch of FGF-initiated signals. Our results identify Pik4a as an upstream partner of PI3Ks in the signaling cascade orchestrated by FGF receptors with a prominent role in forelimb development.
Collapse
Affiliation(s)
- Hui Ma
- Section on Molecular Signal Transduction, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
32
|
Mei W, Lee KW, Marlow FL, Miller AL, Mullins MC. hnRNP I is required to generate the Ca2+ signal that causes egg activation in zebrafish. Development 2009; 136:3007-17. [PMID: 19666827 DOI: 10.1242/dev.037879] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Egg activation is an important cellular event required to prevent polyspermy and initiate development of the zygote. Egg activation in all animals examined is elicited by a rise in free Ca(2+) in the egg cytosol at fertilization. This Ca(2+) rise is crucial for all subsequent egg activation steps, such as cortical granule exocytosis, which modifies the vitelline membrane to prevent polyspermy. The cytosolic Ca(2+) rise is primarily initiated by inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) release from the endoplasmic reticulum. The genes involved in regulating the IP(3)-mediated Ca(2+) release during egg activation remain largely unknown. Here we report on a zebrafish maternal-effect mutant, brom bones, which is defective in the cytosolic Ca(2+) rise and subsequent egg activation events, including cortical granule exocytosis and cytoplasmic segregation. We show that the egg activation defects in brom bones can be rescued by providing Ca(2+) or the Ca(2+)-release messenger IP(3), suggesting that brom bones is a regulator of IP(3)-mediated Ca(2+) release at fertilization. Interestingly, brom bones mutant embryos also display defects in dorsoventral axis formation accompanied by a disorganized cortical microtubule network, which is known to be crucial for dorsal axis formation. We provide evidence that the impaired microtubule organization is associated with non-exocytosed cortical granules from the earlier egg activation defect. Positional cloning of the brom bones gene reveals that a premature stop codon in the gene encoding hnRNP I (referred to here as hnrnp I) underlies the abnormalities. Our studies therefore reveal an important new role of hnrnp I in regulating the fundamental process of IP(3)-mediated Ca(2+) release at egg activation.
Collapse
Affiliation(s)
- Wenyan Mei
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
33
|
Leung CF, Miller AL, Korzh V, Chong SW, Sleptsova-Freidrich I, Webb SE. Visualization of stochastic Ca2+ signals in the formed somites during the early segmentation period in intact, normally developing zebrafish embryos. Dev Growth Differ 2009; 51:617-37. [DOI: 10.1111/j.1440-169x.2009.01123.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Tbx5-mediated expression of Ca2+/calmodulin-dependent protein kinase II is necessary for zebrafish cardiac and pectoral fin morphogenesis. Dev Biol 2009; 330:175-84. [DOI: 10.1016/j.ydbio.2009.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 03/24/2009] [Accepted: 03/26/2009] [Indexed: 01/30/2023]
|
35
|
Establishment of a transitory dorsal-biased window of localized Ca2+ signaling in the superficial epithelium following the mid-blastula transition in zebrafish embryos. Dev Biol 2009; 327:143-57. [DOI: 10.1016/j.ydbio.2008.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 11/24/2008] [Accepted: 12/03/2008] [Indexed: 12/28/2022]
|
36
|
Abstract
Many aspects of animal development are dependent on the dynamic release of calcium (Ca2+) ions. Although Ca2+ release within a cell is tightly controlled, how the release dynamics result in a specific biological output in embryonic development is less clear. The integration of pharmacological and molecular-genetic studies with in vivo imaging in zebrafish and Xenopus has linked endogenous Ca2+ release to the Wnt signaling network. Our data suggests that distinct Ca2+ release dynamics lead to antagonism of the developmentally important Wnt/beta-catenin pathway while sustained Ca2+ release modulates polarized cell movements.
Collapse
|
37
|
Pei W, Feldman B. Identification of common and unique modifiers of zebrafish midline bifurcation and cyclopia. Dev Biol 2008; 326:201-11. [PMID: 19046963 DOI: 10.1016/j.ydbio.2008.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 11/10/2008] [Accepted: 11/10/2008] [Indexed: 01/26/2023]
Abstract
Loss of the zebrafish Nodal-related protein Squint causes a spectrum of phenotypes including cyclopia and midline bifurcations (MB). Here we examine MBs and their relation to cyclopia in maternal-zygotic squint (MZsqt) mutants. There is a concordance of MB with cyclopia in MZsqt embryos. Heat treatment and depletion of Hsp90a are "common" risk factors, each of which increases the incidence of both phenotypes. Midline identity is specified on both sides of MBs, and deep-layer cells are initially lacking within bifurcations, whereas enveloping layer cells are intact. Bifurcations do not appear until the completion of gastrulation and are preceded by gaps in the expression of wnt5b, an essential regulator of dorsal convergence. The incidence of early MBs and wnt5b expression defects in heated MZsqt embryos is high, but there is also substantial recovery. Wnt5b depletion increases the incidence of MB, but not cyclopia, and as such Wnt5b is a "unique" risk factor for MB. Reciprocally, depletion of Wnt11 or Hsp90b increases cyclopia only. In summary, we find that MB arises after gastrulation in regions that fail to express wnt5b, and we show that two complex dysmorphologies - MB and cyclopia - can be promoted by either common or unique risk factors.
Collapse
Affiliation(s)
- Wuhong Pei
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 9000 Rockville Pike, Building 35, Room 1B 205, Bethesda, MD 20892, USA
| | | |
Collapse
|
38
|
Eid JP, Arias AM, Robertson H, Hime GR, Dziadek M. The Drosophila STIM1 orthologue, dSTIM, has roles in cell fate specification and tissue patterning. BMC DEVELOPMENTAL BIOLOGY 2008; 8:104. [PMID: 18950512 PMCID: PMC2584103 DOI: 10.1186/1471-213x-8-104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 10/24/2008] [Indexed: 11/16/2022]
Abstract
Background Mammalian STIM1 and STIM2 and the single Drosophila homologue dSTIM have been identified as key regulators of store-operated Ca2+ entry in cells. STIM proteins function both as molecular sensors of Ca2+concentration in the endoplasmic reticulum (ER) and the molecular triggers that activate SOC channels in the plasma membrane. Ca2+ is a crucial intracellular messenger utilised in many cellular processes, and regulators of Ca2+ homeostasis in the ER and cytosol are likely to play important roles in developmental processes. STIM protein expression is altered in several tumour types but the role of these proteins in developmental signalling pathways has not been thoroughly examined. Results We have investigated the expression and developmental function of dSTIM in Drosophila and shown that dSTIM is widely expressed in embryonic and larval tissues. Using the UAS-Gal4 induction system, we have expressed full-length dSTIM protein and a dsRNAi construct in different tissues. We demonstrate an essential role for dSTIM in larval development and survival, and a tissue-specific role in specification of mechanosensory bristles in the notum and specification of wing vein thickness. Conclusion Our studies show that dSTIM regulates growth and patterning of imaginal discs and indicate potential interactions with the Notch and Wingless signaling pathways. These interactions may be relevant to studies implicating STIM family proteins in tumorigenesis.
Collapse
Affiliation(s)
- Jean-Pierre Eid
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
39
|
Whitaker M, Smith J. Introduction. Calcium signals and developmental patterning. Philos Trans R Soc Lond B Biol Sci 2008; 363:1307-10. [PMID: 18192176 DOI: 10.1098/rstb.2007.2248] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Calcium ions generate ubiquitous cellular signals. Calcium signals play an important role in development. The most obvious example is fertilization, where calcium signals and calcium waves are triggered by the sperm and are responsible for activating the egg from dormancy and cell cycle arrest. Calcium signals also appear to contribute to cell cycle progression during the rapid cell cycles of early embryos. There is increasing evidence that calcium signals are an essential component of the signalling systems that specify developmental patterning and cell fate. This issue arises from a Discussion Meeting that brought together developmental biologists studying calcium signals with those looking at other patterning signals and events. This short introduction provides some background to the papers in this issue, setting out the emerging view that calcium signals are central to dorsoventral axis formation, gastrulation movements, neural specification and neuronal cell fate.
Collapse
Affiliation(s)
- Michael Whitaker
- Institute of Cell and Molecular Bioscience, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | | |
Collapse
|
40
|
Kohn AD, Moon RT. Wnt and calcium signaling: beta-catenin-independent pathways. Cell Calcium 2008; 38:439-46. [PMID: 16099039 DOI: 10.1016/j.ceca.2005.06.022] [Citation(s) in RCA: 555] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 12/12/2022]
Abstract
Wnt signaling is a complex pathway in which beta-catenin is typically viewed as a central mediator. However, within the past 15 years, at least three Wnt-mediated pathways have been proposed that function independent of beta-catenin. One pathway involves activation of calcium/calmodulin-dependent kinase II (CamKII) and protein kinase C (PKC). Another includes recruitment of heterotrimeric GTP-binding proteins to activate phospholipase C (PLC) and phosphodiesterase (PDE). Lastly, a pathway similar to the planar cell polarity (PCP) pathway in Drosophila has been identified that activates the Jun-N-terminal kinase (JNK) and, perhaps, small GTP-binding proteins. Calcium has been implicated as an important second messenger in all of these pathways. This review will focus on the role of calcium in Wnt signaling and, as a consequence, provide a limited overview of beta-catenin-independent Wnt signaling.
Collapse
Affiliation(s)
- Aimee D Kohn
- Howard Hughes Medical Institute, Division of Hematology, Department of Pharmacology, and the Center for Developmental Biology, University of Washington School of Medicine, Box 357750, Seattle, WA 98195, USA
| | | |
Collapse
|
41
|
Freisinger CM, Schneider I, Westfall TA, Slusarski DC. Calcium dynamics integrated into signalling pathways that influence vertebrate axial patterning. Philos Trans R Soc Lond B Biol Sci 2008; 363:1377-85. [PMID: 18198152 PMCID: PMC2610126 DOI: 10.1098/rstb.2007.2255] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many aspects of animal development including fertilization as well as organ formation and function are dependent upon the dynamic release of calcium (Ca(2+)) ions. Although the controlled release and/or accumulation of Ca(2+) ions has been extensively studied, how the release dynamics produce a specific biological output in embryonic development is less clear. We will briefly summarize Ca(2+) sources, highlight data on endogenous Ca(2+) release in vertebrate embryos relevant to body plan formation and cell movement, and integrate pharmacological and molecular-genetic studies to lend insight into the signalling pathways involved. Finally, based on in vivo imaging in zebrafish genetic mutants, we will put forward the model that distinct Ca(2+) release dynamics lead to antagonism of the developmentally important Wnt/beta-catenin signalling pathway, while sustained Ca(2+) release modulates cell polarization or directed migration.
Collapse
|
42
|
Soto X, Mayor R, Torrejón M, Montecino M, Hinrichs MV, Olate J. Galphaq negatively regulates the Wnt-beta-catenin pathway and dorsal embryonic Xenopus laevis development. J Cell Physiol 2008; 214:483-90. [PMID: 17654482 DOI: 10.1002/jcp.21228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The non-canonical Wnt/Ca2+ signaling pathway has been implicated in the regulation of axis formation and gastrulation movements during early Xenopus laevis embryo development, by antagonizing the canonical Wnt/beta-catenin dorsalizing pathway and specifying ventral cell fate. However, the molecular mechanisms involved in this antagonist crosstalk are not known. Since Galphaq is the main regulator of Ca2+ signaling in vertebrates and from this perspective probably involved in the events elicited by the non-canonical Wnt/Ca2+ pathway, we decided to study the effect of wild-type Xenopus Gq (xGalphaq) in dorso-ventral axis embryo patterning. Overexpression of xGalphaq or its endogenous activation at the dorsal animal region of Xenopus embryo both induced a strong ventralized phenotype and inhibited the expression of dorsal-specific mesoderm markers goosecoid and chordin. Dorsal expression of an xGalphaq dominant-negative mutant reverted the xGalphaq-induced ventralized phenotype. Finally, we observed that the Wnt8-induced secondary axis formation is reverted by endogenous xGalphaq activation, indicating that it is negatively regulating the Wnt/beta-catenin pathway.
Collapse
Affiliation(s)
- Ximena Soto
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Casilla 160-C, Universidad de Concepción, Concepción, Chile
| | | | | | | | | | | |
Collapse
|
43
|
James RG, Conrad WH, Moon RT. Beta-catenin-independent Wnt pathways: signals, core proteins, and effectors. Methods Mol Biol 2008; 468:131-44. [PMID: 19099251 DOI: 10.1007/978-1-59745-249-6_10] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Wnt signaling activates several distinct intracellular pathways, which are important for cell proliferation, differentiation, and polarity. Wnt proteins are secreted molecules that typically signal across the membrane via interaction with the transmembrane receptor Frizzled. Following interaction with Frizzled, the downstream effect of the most widely studied Wnt pathway is stabilization and nuclear translocation of the cytosolic protein, beta-catenin. In this chapter, we discuss two beta-catenin-independent branches of Wnt signaling: 1) Wnt/planar cell polarity (PCP), a Wnt pathway that signals through the small GTPases, Rho and Rac, to promote changes in the actin cytoskeleton, and 2) Wnt/Ca2+, a Wnt pathway that promotes intracellular calcium transients and negatively regulates the Wnt/beta-catenin pathway. Finally, during the course of our discussion, we highlight areas that require future research.
Collapse
Affiliation(s)
- Richard G James
- Howard Hughes Medical Institute and Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | | | | |
Collapse
|
44
|
Tsuruwaka Y, Konishi T, Miyawaki A, Takagi M. Real-Time Monitoring of Dynamic Intracellular Ca2+Movement During Early Embryogenesis Through Expression of Yellow Cameleon. Zebrafish 2007; 4:253-60. [DOI: 10.1089/zeb.2007.0519] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Yusuke Tsuruwaka
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan
| | - Takafumi Konishi
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, Brain Science Institute, RIKEN, Saitama, Japan
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan
| |
Collapse
|
45
|
Schneider I, Houston DW, Rebagliati MR, Slusarski DC. Calcium fluxes in dorsal forerunner cells antagonize beta-catenin and alter left-right patterning. Development 2007; 135:75-84. [PMID: 18045845 DOI: 10.1242/dev.004713] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Establishment of the left-right axis is essential for normal organ morphogenesis and function. Ca(2+) signaling and cilia function in the zebrafish Kuppfer's Vesicle (KV) have been implicated in laterality. Here we describe an endogenous Ca(2+) release event in the region of the KV precursors (dorsal forerunner cells, DFCs), prior to KV and cilia formation. Manipulation of Ca(2+) release to disrupt this early flux does not impact early DFC specification, but results in altered DFC migration or cohesion in the tailbud at somite stages. This leads to disruption of KV formation followed by bilateral expression of asymmetrical genes, and randomized organ laterality. We identify beta-catenin inhibition as a Ca(2+)-signaling target and demonstrate that localized loss of Ca(2+) within the DFC region or DFC-specific activation of beta-catenin is sufficient to alter laterality in zebrafish. We identify a previously unknown DFC-like cell population in Xenopus and demonstrate a similar Ca(2+)-sensitive stage. As in zebrafish, manipulation of Ca(2+) release results in ectopic nuclear beta-catenin and altered laterality. Overall, our data support a conserved early Ca(2+) requirement in DFC-like cell function in zebrafish and Xenopus.
Collapse
Affiliation(s)
- Igor Schneider
- Department of Biological Sciences, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
46
|
Webb SE, Miller AL. Ca2+SIGNALLING AND EARLY EMBRYONIC PATTERNING DURING ZEBRAFISH DEVELOPMENT. Clin Exp Pharmacol Physiol 2007; 34:897-904. [PMID: 17645637 DOI: 10.1111/j.1440-1681.2007.04709.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
1. It has been proposed that Ca2+ signalling, in the form of pulses, waves and steady gradients, may play a crucial role in key pattern-forming events during early vertebrate development. 2. With reference to the embryo of the zebrafish (Danio rerio), herein we review the Ca2+ transients reported from the cleavage to segmentation periods. This time-window includes most of the major pattern-forming events of early development, which transform a single-cell zygote into a complex multicellular embryo with established primary germ layers and body axes. 3. Data are presented to support our proposal that intracellular Ca2+ waves are an essential feature of embryonic cytokinesis and that propagating intercellular Ca2+ waves (both long and short range) may play a crucial role in: (i) the establishment of the embryonic periderm and the coordination of cell movements during epiboly, convergence and extension; (ii) the establishment of the basic embryonic axes and germ layers; and (iii) definition of the morphological boundaries of specific tissue domains and embryonic structures, including future organ anlagen. 4. The potential downstream targets of these Ca2+ transients are also discussed, as well as how they may integrate with other pattern-forming signalling pathways known to modulate early developmental events.
Collapse
Affiliation(s)
- Sarah E Webb
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | |
Collapse
|
47
|
Slusarski DC, Pelegri F. Calcium signaling in vertebrate embryonic patterning and morphogenesis. Dev Biol 2007; 307:1-13. [PMID: 17531967 PMCID: PMC2729314 DOI: 10.1016/j.ydbio.2007.04.043] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 04/25/2007] [Accepted: 04/29/2007] [Indexed: 10/23/2022]
Abstract
Signaling pathways that rely on the controlled release and/or accumulation of calcium ions are important in a variety of developmental events in the vertebrate embryo, affecting cell fate specification and morphogenesis. One such major developmentally important pathway is the Wnt/calcium signaling pathway, which, through its antagonism of Wnt/beta-catenin signaling, appears to regulate the formation of the early embryonic organizer. In addition, the Wnt/calcium pathway shares components with another non-canonical Wnt pathway involved in planar cell polarity, suggesting that these two pathways form a loose network involved in polarized cell migratory movements that fashion the vertebrate body plan. Furthermore, left-right axis determination, neural induction and somite formation also display dynamic calcium release, which may be critical in these patterning events. Finally, we summarize recent evidence that propose a role for calcium signaling in stem cell biology and human developmental disorders.
Collapse
Affiliation(s)
- Diane C. Slusarski
- Department of Biological Sciences, University of Iowa, Iowa City, IA 52242, Phone: 319.335.3229, FAX: 319.335.1069,
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, WI 53706, Phone: 608.265.9286, FAX: 608.262.2976,
| |
Collapse
|
48
|
Ashworth R, Devogelaere B, Fabes J, Tunwell RE, Koh KR, De Smedt H, Patel S. Molecular and functional characterization of inositol trisphosphate receptors during early zebrafish development. J Biol Chem 2007; 282:13984-93. [PMID: 17331947 DOI: 10.1074/jbc.m700940200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fluctuations in cytosolic Ca(2+) are crucial for a variety of cellular processes including many aspects of development. Mobilization of intracellular Ca(2+) stores via the production of inositol trisphosphate (IP(3)) and the consequent activation of IP(3)-sensitive Ca(2+) channels is a ubiquitous means by which diverse stimuli mediate their cellular effects. Although IP(3) receptors have been well studied at fertilization, information regarding their possible involvement during subsequent development is scant. In the present study we examined the role of IP(3) receptors in early development of the zebrafish. We report the first molecular analysis of zebrafish IP(3) receptors which indicates that, like mammals, the zebrafish genome contains three distinct IP(3) receptor genes. mRNA for all isoforms was detectable at differing levels by the 64 cell stage, and IP(3)-induced Ca(2+) transients could be readily generated (by flash photolysis) in a controlled fashion throughout the cleavage period in vivo. Furthermore, we show that early blastula formation was disrupted by pharmacological blockade of IP(3) receptors or phospholipase C, by molecular inhibition of the former by injection of IRBIT (IP(3) receptor-binding protein released with IP(3)) and by depletion of thapsigargin-sensitive Ca(2+) stores after completion of the second cell cycle. Inhibition of Ca(2+) entry or ryanodine receptors, however, had little effect. Our work defines the importance of IP(3) receptors during early development of a genetically and optically tractable model vertebrate organism.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Embryo, Nonmammalian/metabolism
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation, Developmental
- Inositol 1,4,5-Trisphosphate Receptors/classification
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Ryanodine Receptor Calcium Release Channel/metabolism
- Thapsigargin/pharmacology
- Zebrafish/embryology
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Rachel Ashworth
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
49
|
Webb SE, Miller AL. Ca2+ signaling and early embryonic patterning during the Blastula and Gastrula Periods of Zebrafish and Xenopus development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1192-208. [PMID: 16962186 DOI: 10.1016/j.bbamcr.2006.08.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 08/02/2006] [Indexed: 11/23/2022]
Abstract
It has been proposed that Ca(2+) signaling, in the form of pulses, waves and steady gradients, may play a crucial role in key pattern forming events during early vertebrate development [L.F. Jaffe, Organization of early development by calcium patterns, BioEssays 21 (1999) 657-667; M.J. Berridge, P. Lipp, M.D. Bootman, The versatility and universality of calcium signaling, Nat. Rev. Mol. Cell Biol. 1 (2000) 11-21; S.E. Webb, A.L. Miller, Calcium signalling during embryonic development, Nat. Rev. Mol. Cell Biol. 4 (2003) 539-551]. With reference to the embryos of zebrafish (Danio rerio) and the frog, Xenopus laevis, we review the Ca(2+) signals reported during the Blastula and Gastrula Periods. This developmental window encompasses the major pattern forming events of epiboly, involution, and convergent extension, which result in the establishment of the basic germ layers and body axes [C.B. Kimmel, W.W. Ballard, S.R. Kimmel, B. Ullmann, T.F. Schilling, Stages of embryonic development of the zebrafish, Dev. Dyn. 203 (1995) 253-310]. Data will be presented to support the suggestion that propagating waves (both long and short range) of Ca(2+) release, followed by sequestration, may play a crucial role in: (1) Coordinating cell movements during these pattern forming events and (2) Contributing to the establishment of the basic embryonic axes, as well as (3) Helping to define the morphological boundaries of specific tissue domains and embryonic structures, including future organ anlagen [E. Gilland, A.L. Miller, E. Karplus, R. Baker, S.E. Webb, Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation, Proc. Natl. Acad. Sci. USA 96 (1999) 157-161; J.B. Wallingford, A.J. Ewald, R.M. Harland, S.E. Fraser, Calcium signaling during convergent extension in Xenopus, Curr. Biol. 11 (2001) 652-661]. The various potential targets of these Ca(2+) transients will also be discussed, as well as how they might integrate with other known pattern forming pathways known to modulate early developmental events (such as the Wnt/Ca(2+)pathway; [T.A. Westfall, B. Hjertos, D.C. Slusarski, Requirement for intracellular calcium modulation in zebrafish dorsal-ventral patterning, Dev. Biol. 259 (2003) 380-391]).
Collapse
Affiliation(s)
- Sarah E Webb
- Department of Biology, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | | |
Collapse
|
50
|
Cooper BJ, Key B, Carter A, Angel NZ, Hart DNJ, Kato M. Suppression and overexpression of adenosylhomocysteine hydrolase-like protein 1 (AHCYL1) influences zebrafish embryo development: a possible role for AHCYL1 in inositol phospholipid signaling. J Biol Chem 2006; 281:22471-84. [PMID: 16754674 DOI: 10.1074/jbc.m602520200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adenosylhomocysteine hydrolase-like protein 1 (AHCYL1) is a novel intracellular protein with approximately 50% protein identity to adenosylhomocysteine hydrolase (AHCY), an important enzyme for metabolizing S-adenosyl-l-homocysteine, the by-product of S-adenosyl-l-homomethionine-dependent methylation. AHCYL1 binds to the inositol 1,4,5-trisphosphate receptor, suggesting that AHCYL1 is involved in intracellular calcium release. We identified two zebrafish AHCYL1 orthologs (zAHCYL1A and -B) by bioinformatics and reverse transcription-PCR. Unlike the ubiquitously present AHCY genes, AHCYL1 genes were only detected in segmented animals, and AHCYL1 proteins were highly conserved among species. Phylogenic analysis suggested that the AHCYL1 gene diverged early from AHCY and evolved independently. Quantitative reverse transcription-PCR showed that zAHCYL1A and -B mRNA expression was regulated differently from the other AHCY-like protein zAHCYL2 and zAHCY during zebrafish embryogenesis. Injection of morpholino antisense oligonucleotides against zAHCYL1A and -B into zebrafish embryos inhibited zAHCYL1A and -B mRNA translation specifically and induced ventralized morphologies. Conversely, human and zebrafish AHCYL1A mRNA injection into zebrafish embryos induced dorsalized morphologies that were similar to those obtained by depleting intracellular calcium with thapsigargin. Human AHCY mRNA injection showed little effect on the embryos. These data suggest that AHCYL1 has a different function from AHCY and plays an important role in embryogenesis by modulating inositol 1,4,5-trisphosphate receptor function for the intracellular calcium release.
Collapse
Affiliation(s)
- Benjamine J Cooper
- Dendritic Cell Program, Mater Medical Research Institute, Brisbane, Queensland 4101, Australia
| | | | | | | | | | | |
Collapse
|