1
|
Kongkaew S, Tubtimtong S, Thavarungkul P, Kanatharana P, Chang KH, Abdullah AFL, Limbut W. A Fabrication of Multichannel Graphite Electrode Using Low-Cost Stencil-Printing Technique. SENSORS 2022; 22:s22083034. [PMID: 35459019 PMCID: PMC9032575 DOI: 10.3390/s22083034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/10/2022]
Abstract
Multichannel graphite electrodes (MGrEs) have been designed and fabricated in this study. A template was cut from an adhesive plastic sheet using a desktop cutting device. The template was placed on a polypropylene substrate, and carbon graphite ink was applied with a squeegee to the template. The size of the auxiliary electrode (AE) as well as the location of the reference electrode (RE) of MGrEs design were investigated. Scanning electron microscopy was used to determine the thickness of the ink on the four working electrodes (WEs), which was 21.9 ± 1.8 µm. Cyclic voltammetry with a redox probe solution was used to assess the precision of the four WEs. The intra-electrode repeatability and inter-electrode reproducibility of the MGrEs production were satisfied by low RSD (<6%). Therefore, the MGrEs is reliable and capable of detecting four replicates of the target analyte in a single analysis. The electrochemical performance of four WEs was investigated and compared to one WE. The sensitivity of the MGrEs was comparable to the sensitivity of a single WE. The MGrEs’ potential applications were investigated by analyzing the nitrite in milk and tap water samples (recoveries values of 97.6 ± 0.4 to 110 ± 2%).
Collapse
Affiliation(s)
- Supatinee Kongkaew
- Center of Excellence for Trace Analysis and Biosensors (TAB-CoE), Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.K.); (P.T.); (P.K.)
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Suowarot Tubtimtong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensors (TAB-CoE), Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.K.); (P.T.); (P.K.)
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensors (TAB-CoE), Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.K.); (P.T.); (P.K.)
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Kah Haw Chang
- Forensic Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (K.H.C.); (A.F.L.A.)
| | - Ahmad Fahmi Lim Abdullah
- Forensic Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (K.H.C.); (A.F.L.A.)
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensors (TAB-CoE), Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.K.); (P.T.); (P.K.)
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
- Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Correspondence: ; Tel.: +66-74-288563
| |
Collapse
|
2
|
Piezoelectric sensing of glucose oxidase activity of Aspergillus niger spores pretreated by different methods. Food Chem 2022; 370:130901. [PMID: 34500289 DOI: 10.1016/j.foodchem.2021.130901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022]
Abstract
The development of Aspergillus niger (A. niger) spores as glucose oxidase (GOD) biocatalysts to produce gluconic acid is highly anticipated in the food industry. Herein, a piezoelectric sensor (PIS) method has been developed for the detection of GOD activity and better application of rapid screening of GOD activity in A. niger spores. The GOD activity detection is based on GOD catalyzing β-d-glucose to produce gluconic acid, which results in frequency shift changes recorded by the PIS device in real-time. Using the PIS method, the kinetic parameter 6.5 mg/mL, the correlation equation υ0=31.92CGOD+1.04, the recoveries (89.4%-93.9%, and their RSDs were all within 6.1%) and the optimal GOD activity in A. niger spores under different treatment conditions was obtained. Compared with the classical methods, the proposed method is accurate, rapid, convenient and does not require additional reagents. It has a broad range of potential applications for exploring new GOD biocatalysts.
Collapse
|
3
|
Trinh KT, Thai DA, Chae WR, Lee NY. Rapid Fabrication of Poly(methyl methacrylate) Devices for Lab-on-a-Chip Applications Using Acetic Acid and UV Treatment. ACS OMEGA 2020; 5:17396-17404. [PMID: 32715224 PMCID: PMC7377064 DOI: 10.1021/acsomega.0c01770] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/23/2020] [Indexed: 05/17/2023]
Abstract
In the present study, we introduce a new approach for rapid bonding of poly(methyl methacrylate) (PMMA)-based microdevices using an acetic acid solvent with the assistance of UV irradiation. For the anticipated mechanism, acetic acid and UV irradiation induced free radicals on the PMMA surfaces, and acrylate monomers subsequently formed cross-links to create a permanent bonding between the PMMA substrates. PMMA devices effectively bonded within 30 s at a low pressure using clamps, and a clogging-free microchannel was achieved with the optimized 50% acetic acid. For surface characterizations, contact angle measurements and bonding performance analyses were conducted using predetermined acetic acid concentrations to optimize bonding conditions. In addition, the highest bond strength of bonded PMMA was approximately 11.75 MPa, which has not been reported before in the bonding of PMMA. A leak test was performed over 180 h to assess the robustness of the proposed method. Moreover, to promote the applicability of this bonding method, we tested two kinds of microfluidic device applications, including a cell culture-based device and a metal microelectrode-integrated device. The results showed that the cell culture-based application was highly biocompatible with the PMMA microdevices fabricated using an acetic acid solvent. Moreover, the low pressure required during the bonding process supported the integration of metal microelectrodes with the PMMA microdevice without any damage to the metal films. This novel bonding method holds great potential in the ecofriendly and rapid fabrication of microfluidic devices using PMMA.
Collapse
Affiliation(s)
- Kieu The
Loan Trinh
- Department
of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| | - Duc Anh Thai
- Department
of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| | - Woo Ri Chae
- BioNano
Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| | - Nae Yoon Lee
- Department
of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| |
Collapse
|
4
|
Chia C, Shulaker MM, Provine J, Jeffrey SS, Howe RT. ALD HfO 2 Films for Defining Microelectrodes for Electrochemical Sensing and Other Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26082-26092. [PMID: 31305057 DOI: 10.1021/acsami.9b06891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microelectrodes are used in a wide range of applications from analytical electrochemistry and biomolecular sensing to in vivo implants. While a variety of insulating materials have been used to define the microelectrode active area, most are not suitable for nanoscale electrodes (<1 μm2) due to the limited robustness of these films when the film thickness is on the order of the nanoelectrode dimension. In this study, we investigate atomic layer deposited hafnium dioxide (ALD HfO2) as an insulating film to coat planar platinum microelectrodes, with the active areas being defined where the HfO2 is etched. Thermally grown films with thicknesses between 10 and 60 nm were deposited by 100 to 550 ALD cycles and were initially characterized by measuring their standard electrical properties and imaging incipient texture development. Electrochemical measurements on the structures were made, including linear sweep voltammetry and electrochemical impedance spectroscopy, which identified the presence of pinholes in films deposited over the range of 100 to 350 cycles, resulting in leakage. These measurements also suggest a lower limit to the size of microelectrodes below which the electrochemical current detected is no longer dominated by that through the exposed active area. A bilayer insulator comprising ALD HfO2 coated with parylene-C was investigated to minimize the pinhole leakage. Steady-state currents were measured for different electrode areas, qualitatively agreeing with the theory for areas down to ∼1 μm2. For sub-square micrometer electrode areas, bilayer-insulated devices with parylene-C apertures that exposed the smallest microelectrode area showed measured currents that were consistent with extrapolations, indicating that it reduces leakage through HfO2.
Collapse
Affiliation(s)
| | - Max M Shulaker
- Department of Electrical Engineering and Computer Science , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - J Provine
- Aligned Carbon, Inc. , Santa Clara , California 95087 , United States
| | | | | |
Collapse
|
5
|
GAMA MARIANAR, MELCHERT WANESSAR, PAIXÃO THIAGOR, ROCHA FÁBIOR. An overview of the Brazilian contributions to Green Analytical Chemistry. ACTA ACUST UNITED AC 2019; 91:e20180294. [DOI: 10.1590/0001-3765201920180294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
|
6
|
Pan TM, Wang CW, Mondal S, Pang ST. Super-Nernstian sensitivity in microfabricated electrochemical pH sensor based on CeTixOy film for biofluid monitoring. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.12.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Sinusoidal Alternating-Current Voltammetry and Metrological Properties of a Flat Voltammetric Electrode in the Time Domain. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.07.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Riaz U, Jadoun S, Kumar P, Arish M, Rub A, Ashraf SM. Influence of Luminol Doping of Poly(o-phenylenediamine) on the Spectral, Morphological, and Fluorescent properties: A Potential Fluorescent Marker for Early detection and Diagnosis of Leishmania donovani. ACS APPLIED MATERIALS & INTERFACES 2017; 9:33159-33168. [PMID: 28875693 DOI: 10.1021/acsami.7b10325] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
There has been a steady progress in the development of doped conjugated polymers to remarkably improve their photo physical properties for their application as biomarkers. With a view to enhance the spectral, morphological, and photo physical properties of poly(o-phenylenediamine) (POPD), the present work reports the synthesis of poly(o-phenylenediamine) and doping of this polymer using luminol. The formation of luminol-doped POPD was confirmed by infrared and ultraviolet-visible spectroscopies and X-ray diffraction studies. The energy band gap values and oscillator strength of luminol in acidic, basic, and neutral media were computed by density functional theory calculations using the B3LYP/6-31G (d) basis set and were compared with experimental data. The luminol doped POPDs show significant in vitro anti-leishmanial activity. Live cell imaging also proved that these molecules bind with the organelle of Leishmania also. These luminol doped POPDs were found non-toxic at the used concentrations on THP-1 derived human macrophage cells through methyl tetrazolium (MTT) assay. The results revealed that luminol doped POPDs were potentially non-toxic to human cells though exhibited immense potential to be used as a fluorescent marker to label Leishmania donovani for diagnostic and other studies.
Collapse
Affiliation(s)
| | | | - Prabhat Kumar
- Advanced Instrumentation Research Facility, Jawaharlal Nehru University , New Delhi 110067, India
| | | | - Abdur Rub
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University , Al Majmaah 15341, Kingdom of Saudia Arabia (KSA)
| | | |
Collapse
|
9
|
Abstract
The reference electrode is a key component in electrochemical measurements, yet it remains a challenge to implement a reliable reference electrode in miniaturized electrochemical sensors. Here we explore experimentally and theoretically an alternative approach based on redox cycling which eliminates the reference electrode altogether. We show that shifts in the solution potential caused by the lack of reference can be understood quantitatively, and determine the requirements for accurate measurements in miniaturized systems in the absence of a reference electrode.
Collapse
Affiliation(s)
- Sahana Sarkar
- MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands, ; Fax: +31 53 489 3511; Tel : +31 53 489 2306
| | - Klaus Mathwig
- MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands, ; Fax: +31 53 489 3511; Tel : +31 53 489 2306
| | - Shuo Kang
- MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands, ; Fax: +31 53 489 3511; Tel : +31 53 489 2306
| | - Ab. F. Nieuwenhuis
- MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands, ; Fax: +31 53 489 3511; Tel : +31 53 489 2306
| | - Serge G. Lemay
- MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands, ; Fax: +31 53 489 3511; Tel : +31 53 489 2306
| |
Collapse
|
10
|
Davis F, Higson SPJ. Arrays of microelectrodes: technologies for environmental investigations. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:1477-1489. [PMID: 23811985 DOI: 10.1039/c3em00234a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Within this work it is our intention to provide an overview of the use of arrays or microelectrodes in the characterisation of environmental samples. Electrochemical methods are often a relatively simple and inexpensive alternative to spectroscopic or chromatographic methods for the analysis of a wide range of analytes. Arrays of microelectrodes display a number of advantages over simple planar macroelectrodes and the reasons for this will be detailed within this work. We will also describe some of the most common methods for constructing microarrays. The application of these arrays for analysis of environmental samples such as soil and water for heavy metal contamination has been the major focus of research in this field and comprises much of this review. However other systems will also be detailed such as determination of various anions or other samples such as pesticides.
Collapse
Affiliation(s)
- Frank Davis
- Cranfield Health, Cranfield University, MK43 0AL, UK.
| | | |
Collapse
|
11
|
Yu D, Yong D, Dong S. Toxicity detection of sodium nitrite, borax and aluminum potassium sulfate using electrochemical method. J Environ Sci (China) 2013; 25:785-790. [PMID: 23923788 DOI: 10.1016/s1001-0742(12)60119-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Based on the inhibition effect on the respiratory chain activity of microorganisms by toxicants, an electrochemical method has been developed to measure the current variation of a mediator in the presence of microorganisms contacted with a toxicant. Microelectrode arrays were adopted in this study, which can accelerate the mass transfer rate of an analyte to the electrode and also increase the total current signal, resulting in an improvement in detection sensitivity. We selected Escherichia coli as the testee and the standard glucose-glutamic acid as an exogenous material. Under oxygen restriction, the experiments in the presence of toxicant were performed at optimum conditions (solution pH 7.0, 37 degrees C and reaction for 3 hr). The resulting solution was then separated from the suspended microorganisms and was measured by an electrochemical method, using ferricyanide as a mediator. The current signal obtained represents the reoxidation of ferrocyanide, which was transformed to inhibiting efficiency, IC50, as a quantitative measure of toxicity. The IC50 values measured were 410, 570 and 830 mg/L for sodium nitrite, borax and aluminum potassium sulfate, respectively. The results show that the toxicity sequence for these three food additives is consistent with the value reported by other methods. Furthermore, the order of damage degree to the microorganism was also observed to be: sodium nitrite > borax > aluminum potassium sulfate > blank, according to the atomic force microscopy images of E. coli after being incubated for 3 hr with the toxic compound in buffer solutions. The electrochemical method is expected to be a sensitive and simple alternative to toxicity screening for chemical food additives.
Collapse
Affiliation(s)
- Dengbin Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | | | | |
Collapse
|
12
|
Moraes FC, Cesarino I, Coelho D, Pedrosa VA, Machado SAS. Highly Sensitive Neurotransmitters Analysis at Platinum-Ultramicroelectrodes Arrays. ELECTROANAL 2012. [DOI: 10.1002/elan.201200011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Microfabricated reference electrodes and their biosensing applications. SENSORS 2010; 10:1679-715. [PMID: 22294894 PMCID: PMC3264446 DOI: 10.3390/s100301679] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/28/2010] [Accepted: 02/05/2010] [Indexed: 11/25/2022]
Abstract
Over the past two decades, there has been an increasing trend towards miniaturization of both biological and chemical sensors and their integration with miniaturized sample pre-processing and analysis systems. These miniaturized lab-on-chip devices have several functional advantages including low cost, their ability to analyze smaller samples, faster analysis time, suitability for automation, and increased reliability and repeatability. Electrical based sensing methods that transduce biological or chemical signals into the electrical domain are a dominant part of the lab-on-chip devices. A vital part of any electrochemical sensing system is the reference electrode, which is a probe that is capable of measuring the potential on the solution side of an electrochemical interface. Research on miniaturization of this crucial component and analysis of the parameters that affect its performance, stability and lifetime, is sparse. In this paper, we present the basic electrochemistry and thermodynamics of these reference electrodes and illustrate the uses of reference electrodes in electrochemical and biological measurements. Different electrochemical systems that are used as reference electrodes will be presented, and an overview of some contemporary advances in electrode miniaturization and their performance will be provided.
Collapse
|
14
|
Ultramicroelectrode array based sensors: a promising analytical tool for environmental monitoring. SENSORS 2010; 10:475-90. [PMID: 22315551 PMCID: PMC3270852 DOI: 10.3390/s100100475] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 12/16/2009] [Accepted: 12/24/2009] [Indexed: 11/24/2022]
Abstract
The particular analytical performance of ultramicroelectrode arrays (UMEAs) has attracted a high interest by the research community and has led to the development of a variety of electroanalytical applications. UMEA-based approaches have demonstrated to be powerful, simple, rapid and cost-effective analytical tools for environmental analysis compared to available conventional electrodes and standardised analytical techniques. An overview of the fabrication processes of UMEAs, their characterization and applications carried out by the Spanish scientific community is presented. A brief explanation of theoretical aspects that highlight their electrochemical behavior is also given. Finally, the applications of this transducer platform in the environmental field are discussed.
Collapse
|
15
|
Chen C, Zhang J, Du Y, Yang X, Wang E. Microfabricated on-chip integrated Au–Ag–Au three-electrode system for in situ mercury ion determination. Analyst 2010; 135:1010-4. [DOI: 10.1039/b924545f] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Ren X, Tang F, Liao R, Zhang L. Using gold nanorods to enhance the current response of a choline biosensor. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2009.07.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Arida H, Mohsen Q, Schöning M. Microfabrication, characterization and analytical application of a new thin-film silver microsensor. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2008.12.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Orozco J, Jiménez-Jorquera C, Fernández-Sánchez C. Gold nanoparticle-modified ultramicroelectrode arrays for biosensing: a comparative assessment. Bioelectrochemistry 2009; 75:176-81. [PMID: 19401273 DOI: 10.1016/j.bioelechem.2009.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/23/2009] [Accepted: 03/29/2009] [Indexed: 10/20/2022]
Abstract
Gold ultramicroelectrode arrays (UMEAs) modified with gold nanoparticles (GNP) are shown to be a highly suitable transducer platform for the fabrication of biosensors. Comparative studies were carried out with microelectrodes and UMEAs, the latter being either bare or modified with GNPs. GNPs could be electrodeposited on to the UMEA surface, thereby increasing its active area up to one hundred times but without affecting its inherent electrodic properties. Horseradish peroxidase enzyme (HRP) was covalently immobilized over the three different transducer platforms by means of a thiol self-assembled monolayer (SAM). The resulting biosensors were applied to the amperometric detection of catechol, selected as a target analyte, at a set potential of -0.1 V vs. Ag/AgCl. The use of GNP-modified UMEAs increased the sensitivity of the developed biosensor 3-fold and 80-fold compared with the values achieved with bare UMEA and microelectrode based biosensors, respectively. The GNP-modified UMEA based biosensor showed a linear response to catechol in the concentration range from 0.1 mM to 0.4 mM, with a limit of detection of 0.05 mM.
Collapse
Affiliation(s)
- Jahir Orozco
- Instituto de Microelectrónica de Barcelona (IMB-CNM), CSIC. Campus UAB, 08193 Bellaterra, Spain.
| | | | | |
Collapse
|
19
|
Orozco J, Fernández-Sánchez C, Jiménez-Jorquera C. Underpotential deposition-anodic stripping voltammetric detection of copper at gold nanoparticle-modified ultramicroelectrode arrays. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:4877-4882. [PMID: 18678020 DOI: 10.1021/es8005964] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The sensitive detection of copper (II) at gold nanoparticle-modified ultramicroelectrode arrays (UMEAs) is reported. Gold nanoparticles were electrodeposited onto the UMEAs surface by applying a constant positive potential of 1.6 V for 20 min in a 20-nm gold nanoparticle solution. This process significantly increases the electrode area without losing the UMEAs analytical features. Underpotential deposition-anodic stripping voltammetry of copper (II) with such modified UMEAs was performed and showed a high increase in sensitivity (25.9 +/- 1.3 nC x micro-1) and a broader linear range of response (0-10 microM) compared with those values obtained using bare UMEAs (7.5 +/- 0.6 nC x microM(-1) and 0-2 microM, respectively). The copper content of acid extracts of contaminated soils was successfully determined with the modified UMEAs and results are in good agreement with those obtained using the ICP-AES standard method. Overall, this work shows an alternative easy-to-use novel miniaturized device for the rapid and reliable determination of copper in soil samples whose application could be readily extended to other heavy metals of environmental interest.
Collapse
Affiliation(s)
- Jahir Orozco
- Instituto de Microelectronica de Barcelona (CNM-IMB), CSIC, Campus UAB, 08193 Bellaterra, Spain.
| | | | | |
Collapse
|
20
|
Orozco J, Fernández-Sánchez C, Mendoza E, Baeza M, Céspedes F, Jiménez-Jorquera C. Composite planar electrode for sensing electrochemical oxygen demand. Anal Chim Acta 2008; 607:176-82. [DOI: 10.1016/j.aca.2007.11.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 11/20/2007] [Accepted: 11/21/2007] [Indexed: 11/27/2022]
|
21
|
Orozco J, Suárez G, Fernández-Sánchez C, McNeil C, Jiménez-Jorquera C. Characterization of ultramicroelectrode arrays combining electrochemical techniques and optical microscopy imaging. Electrochim Acta 2007. [DOI: 10.1016/j.electacta.2007.07.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
|
23
|
Ordeig O, del Campo J, Muñoz F, Banks C, Compton R. Electroanalysis Utilizing Amperometric Microdisk Electrode Arrays. ELECTROANAL 2007. [DOI: 10.1002/elan.200703914] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
|
25
|
Hou CSJ, Godin M, Payer K, Chakrabarti R, Manalis SR. Integrated microelectronic device for label-free nucleic acid amplification and detection. LAB ON A CHIP 2007; 7:347-54. [PMID: 17330166 DOI: 10.1039/b617082j] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We present an integrated microelectronic device for amplification and label-free detection of nucleic acids. Amplification by polymerase chain reaction (PCR) is achieved with on-chip metal resistive heaters, temperature sensors, and microfluidic valves. We demonstrate a rapid thermocycling with rates of up to 50 degrees C s(-1) and a PCR product yield equivalent to that of a bench-top system. Amplicons within the PCR product are detected by their intrinsic charge with a silicon field-effect sensor. Similar to existing optical approaches with intercalators such as SYBR Green, our sensing approach can directly detect standard double-stranded PCR product, while in contrast, our sensor does not require labeling reagents. By combining amplification and detection on the same device, we show that the presence or absence of a particular DNA sequence can be determined by converting the analog surface potential output of the field-effect sensor to a simple digital true/false readout.
Collapse
Affiliation(s)
- Chih-Sheng Johnson Hou
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
26
|
Luo L, Zhang Z. Sensors based on galvanic cell generated electrochemiluminescence and its application. Anal Chim Acta 2006; 580:14-7. [PMID: 17723750 DOI: 10.1016/j.aca.2006.07.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 07/11/2006] [Accepted: 07/18/2006] [Indexed: 10/24/2022]
Abstract
In this paper, a novel electrochemiluminescence (ECL) imaging sensor array was developed for determination of hydrogen peroxide (H2O2), which was based on Cu/Zn alloy galvanic cell generated ECL. In alkaline solution, Cu/Zn galvanic cell was formed because of corrosion effect, the galvanic cell could supply stable potential for ECL generation of luminol, and the weak ECL emission could be enhanced by H(2)O(2). The galvanic cell sensor array was designed by putting Cu/Zn alloy in 96-well microtiter plates separately. The relative ECL intensity was proportional with the concentration of hydrogen peroxide in the range of 1.0 x 10(-6) to 1.0 x 10(-4) mol l(-1) and the detection limit was 3.0 x 10(-7) mol l(-1) (3sigma), the relative standard deviation (R.S.D.) for 11 parallel measurements of 1.0 x 10(-5)mol l(-1) H2O2 was 4.0%.
Collapse
Affiliation(s)
- Lirong Luo
- Department of Chemistry, School of Material Science and Chemistry, Shaanxi Normal University, Xi'an 710062, China
| | | |
Collapse
|
27
|
Pejcic B, De Marco R. Impedance spectroscopy: Over 35 years of electrochemical sensor optimization. Electrochim Acta 2006. [DOI: 10.1016/j.electacta.2006.04.025] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Chang JL, Zen JM. Fabrication of disposable ultramicroelectrodes: Characterization and applications. Electrochem commun 2006. [DOI: 10.1016/j.elecom.2006.01.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
29
|
Hutton EA, Ogorevc B, Hočevar SB, Smyth MR. Bismuth film microelectrode for direct voltammetric measurement of trace cobalt and nickel in some simulated and real body fluid samples. Anal Chim Acta 2006. [DOI: 10.1016/j.aca.2005.10.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Chang YT, Lin KC, Chen SM. Preparation, characterization and electrocatalytic properties of poly(luminol) and polyoxometalate hybrid film modified electrodes. Electrochim Acta 2005. [DOI: 10.1016/j.electacta.2005.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Kim HJ, Yun KS, Yoon E, Kwak J. A direct analysis of nanomolar metal ions in environmental water samples with Nafion-coated microelectrodes. Electrochim Acta 2004. [DOI: 10.1016/j.electacta.2004.07.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
XPS and AFM characterisation of selective monolayers for cationic detection: application to field effect chemical micro-sensors. Chem Phys Lett 2003. [DOI: 10.1016/s0009-2614(03)00978-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Chen SM, Lin KC. The electrocatalytic properties of biological molecules using polymerized luminol film-modified electrodes. J Electroanal Chem (Lausanne) 2002. [DOI: 10.1016/s0022-0728(02)00735-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Affiliation(s)
- R E Clement
- Laboratory Services Branch, Ontario Ministry of the Environment, Etobicoke, Canada
| | | |
Collapse
|