1
|
Ong HMG, Zhong Y, Hu C, Ong KH, Khor WC, Schlundt J, Aung KT. Antimicrobial Resistance Risk Assessment of Vibrio parahaemolyticus Isolated from Farmed Green Mussels in Singapore. Microorganisms 2023; 11:1498. [PMID: 37375000 DOI: 10.3390/microorganisms11061498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Vibrio parahaemolyticus, commonly found in seafood products, is responsible for gastroenteritis resulting from the consumption of undercooked seafood. Hence, there is a need to characterize and quantify the risk involved from this pathogen. However, there has been no study reporting the quantification of hemolytic antimicrobial-resistant (AMR) Vibrio parahaemolyticus in locally farmed shellfish in Singapore. In this study, ampicillin, penicillin G, tetracycline resistant, and non-AMR hemolytic V. parahaemolyticus were surveyed and quantified in green mussel samples from different premises in the food chain (farm and retail). The occurrence data showed that 31/45 (68.9%) of farmed green mussel samples, 6/6 (100%) farm water samples, and 41/45 (91.1%) retail shellfish samples detected the presence of hemolytic V. parahaemolyticus. V. parahaemolyticus counts ranged from 1.6-5.9 Log CFU/g in the retail shellfish samples and 1.0-2.9 Log CFU/g in the farm water samples. AMR risk assessments (ARRA), specifically for ampicillin, penicillin G, tetracycline, and hemolytic (non-AMR) scenarios were conducted for the full farm-to-home and partial retail-to-home chains. The hemolytic ARRA scenario estimated an average probability of illness of 5.7 × 10-3 and 1.2 × 10-2 per serving for the full and partial chains, respectively, translating to 165 and 355 annual cases per total population or 2.9 and 6.2 cases per 100,000 population, respectively. The average probability of illness per year ratios for the three ARRAs to the hemolytic ARRA were 0.82, 0.81, and 0.47 (ampicillin, penicillin G, and tetracycline, respectively) for the full chain and 0.54, 0.39, and 0.09 (ampicillin, penicillin G, and tetracycline, respectively) for the partial chain. The sensitivity analysis showed that the overall cooking effect, initial concentrations of pathogenic V. parahaemolyticus, and harvest duration and harvest temperature were key variables influencing the risk estimates in all of the modelled ARRAs. The study findings can be used by relevant stakeholders to make informed decisions for risk management that improve food safety.
Collapse
Affiliation(s)
- Hong Ming Glendon Ong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Block N1.2, B3-15, 62 Nanyang Drive, Singapore 637459, Singapore
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Techquest, Singapore 609919, Singapore
| | - Yang Zhong
- Department of Clinical Translational Research, Singapore General Hospital, Academia, 20 College Road, Singapore 169856, Singapore
| | - Chengcheng Hu
- Singapore Institute of Manufacturing Technology, 08-04, Innovis, 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Kar Hui Ong
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Techquest, Singapore 609919, Singapore
| | - Wei Ching Khor
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Techquest, Singapore 609919, Singapore
| | | | - Kyaw Thu Aung
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Techquest, Singapore 609919, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
2
|
Ong HMG, Zhong Y, Hu CC, Ong KH, Khor WC, Schlundt J, Aung KT. Quantitative Risk Evaluation of Antimicrobial-Resistant Vibrio parahaemolyticus Isolated from Farmed Grey Mullets in Singapore. Pathogens 2023; 12:93. [PMID: 36678441 PMCID: PMC9867465 DOI: 10.3390/pathogens12010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Vibrio parahaemolyticus is a causative pathogen for gastroenteritis involving the consumption of undercooked or raw seafood. However, there is a paucity of data regarding the quantitative detection of this pathogen in finfish, while no study reported the enumeration of haemolytic antimicrobial-resistant (AMR) V. parahaemolyticus. In this study, ampicillin-, penicillin G- and tetracycline-resistant and non-AMR haemolytic V. parahaemolyticus isolates were monitored and quantified in grey mullet samples reared locally from different premises within the food chain (farm and retail). Occurrence data for haemolytic V. parahaemolyticus were 13/45 (29%) in farm fish samples, 2/6 (one third) from farm water samples and 27/45 (60%) from retail fish samples. Microbial loads for haemolytic V. parahaemolyticus microbial loads ranged from 1.9 to 4.1 Log CFU/g in fish samples and 2.0 to 3.0 Log CFU/g in farm water samples. AMR risk assessments (ARRAs) for both the full farm-to-home and partial retail-to-home chains in the risk modelling framework were conducted, specifically for ampicillin, penicillin G, tetracycline and haemolytic (non-AMR) scenarios. The haemolytic ARRA predicted an average probability of illness of 2.9 × 10-4 and 4.5 × 10-5 per serving for the farm-to-home and retail-to-home chains, respectively, translating to 57 and 148 cases annually. The ratios of the average probability of illness per year for the three ARRAs to the haemolytic ARRA were 1.1 × 10-2 and 3.0 × 10-4 (ampicillin and penicillin G, respectively) for the farm-to-home chain and 1.3, 1.6 and 0.4 (ampicillin, penicillin G and tetracycline, respectively) for the retail-to-home chain. Sensitivity analysis showed that the initial concentrations of haemolytic V. parahaemolyticus in the gills and intestines of the fish and the cooking and washing of the fish cavity were the major variables influencing risk outputs in all modelled ARRAs. The findings of this study are useful for relevant stakeholders to make informed decisions regarding risk management to improve overall food safety.
Collapse
Affiliation(s)
- Hong Ming Glendon Ong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Block N1.2, B3-15, 62 Nanyang Drive, Singapore 637459, Singapore
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Techquest, Singapore 609919, Singapore
| | - Yang Zhong
- Department of Clinical Translational Research, Singapore General Hospital, Academia, 20 College Road, Singapore 169856, Singapore
| | - Cheng Cheng Hu
- Singapore Institute of Manufacturing Technology, 2 Fusionopolis Way, 08-04, Innovis, Singapore 138634, Singapore
| | - Kar Hui Ong
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Techquest, Singapore 609919, Singapore
| | - Wei Ching Khor
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Techquest, Singapore 609919, Singapore
| | | | - Kyaw Thu Aung
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Techquest, Singapore 609919, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
3
|
HIGUCHI A, DÁVALOS J, HERNANI-MERINO M. Theory of planned behavior applied to fish consumption in modern Metropolitan Lima. FOOD SCIENCE AND TECHNOLOGY 2017. [DOI: 10.1590/1678-457x.17516] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Ahmad NI, Wan Mahiyuddin WR, Tengku Mohamad TR, Ling CY, Daud SF, Hussein NC, Abdullah NA, Shaharudin R, Sulaiman LH. Fish consumption pattern among adults of different ethnics in Peninsular Malaysia. Food Nutr Res 2016; 60:32697. [PMID: 27534846 PMCID: PMC4989178 DOI: 10.3402/fnr.v60.32697] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/21/2016] [Indexed: 11/21/2022] Open
Abstract
Background Understanding different patterns of fish consumption is an important component for risk assessment of contaminants in fish. A few studies on food consumption had been conducted in Malaysia, but none of them focused specifically on fish consumption. The objectives of this study were to document the meal pattern among three major ethnics in Malaysia with respect to fish/seafood consumption, identify most frequently consumed fish and cooking method, and examine the influence of demographic factors on pattern of fish consumption among study subjects. Methods A cross-sectional survey was conducted between February 2008 and May 2009 to investigate patterns of fish consumption among Malaysian adults in Peninsular Malaysia. Adults aged 18 years and above were randomly selected and fish consumption data were collected using a 3-day prospective food diary. Results A total of 2,675 subjects, comprising male (44.2%) and female (55.7%) participants from major ethnics (Malays, 76.9%; Chinese, 14.7%; Indians, 8.3%) with a mean age of 43.4±16.2 years, were involved in this study. The results revealed 10 most frequently consumed marine fish in descending order: Indian mackerel, anchovy, yellowtail and yellow-stripe scads, tuna, sardines, torpedo scad, Indian and short-fin scads, pomfret, red snapper, and king mackerel. Prawn and squid were also among the most preferred seafood by study subjects. The most frequently consumed freshwater fish were freshwater catfish and snakehead. The most preferred cooking style by Malaysians was deep-fried fish, followed by fish cooked in thick and/or thin chili gravy, fish curry, and fish cooked with coconut milk mixed with other spices and flavorings. Overall, Malaysians consumed 168 g/day fish, with Malay ethnics’ (175±143 g/day) consumption of fish significantly (p<0.001) higher compared with the other two ethnic groups (Chinese=152±133 g/day, Indians=136±141 g/day). Conclusion Fish consumption was significantly associated with ethnicity, age, marital status, residential area, and years of education of adults in Peninsular Malaysia, and the data collected are beneficial for the purpose of health risk assessment on the intake of contaminants through fish/seafood consumption.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lokman Hakim Sulaiman
- Ministry of Health Malaysia, Federal Government Administration Centre, Putrajaya, Malaysia
| |
Collapse
|
5
|
Burger J, Gochfeld M, Jeitner C, Pittfield T, Donio M. Heavy metals in fish from the Aleutians: interspecific and locational differences. ENVIRONMENTAL RESEARCH 2014; 131:119-30. [PMID: 24727640 PMCID: PMC9621401 DOI: 10.1016/j.envres.2014.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/21/2014] [Accepted: 02/28/2014] [Indexed: 05/11/2023]
Abstract
The objectives of this study were to examine levels of arsenic, cadmium, lead, mercury and selenium in edible tissue of seven species of marine fish collected from several Aleutian islands (in 2004) to determine: (1) interspecific differences, (2) locational differences (among Aleutian Islands), (3) size-related differences in any metal levels within a species, and (4) potential risk to the fish or to predators on the fish, including humans. We also compared metals levels to those of three other fish species previously examined in detail, as well as examining metals in the edible tissue of octopus (Octopus dofleini). Octopus did not have the highest levels of any metal. There were significant interspecific differences in all metal levels among the fish species, although the differences were less than an order of magnitude, except for arsenic (mean of 19,500 ppb in Flathead sole, Hippoglossoides elassodon). Significant intraisland variation occurred among the four sites on Amchitka, but there was not a consistent pattern. There were significant interisland differences for some metals and species. Mercury levels increased significantly with size for several species; lead increased significantly for only one fish species; and cadmium and selenium decreased significantly with size for halibut (Hippoglossus stenolepis). The Alaskan Department of Health and Social Services supports unrestricted consumption of most Alaskan fish species for all people, including pregnant women. Most mean metal concentrations were well below the levels known to adversely affect the fish themselves, or predators that consume them (including humans), except for mercury in three fish species (mean levels just below 0.3 ppm), and arsenic in two fish species. However, even at low mercury levels, people who consume fish almost daily will exceed guideline values from the Centers for Disease Control and the Environmental Protection Agency.
Collapse
Affiliation(s)
- Joanna Burger
- Division of Life Sciences, Rutgers University, 604 Allison Road, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Consortium for Risk Evaluation with Stakeholder Participation, Vanderbilt University, Nashville, TN 37235, USA.
| | - Michael Gochfeld
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Consortium for Risk Evaluation with Stakeholder Participation, Vanderbilt University, Nashville, TN 37235, USA; Environmental and Occupational Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Christian Jeitner
- Division of Life Sciences, Rutgers University, 604 Allison Road, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Consortium for Risk Evaluation with Stakeholder Participation, Vanderbilt University, Nashville, TN 37235, USA
| | - Taryn Pittfield
- Division of Life Sciences, Rutgers University, 604 Allison Road, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Consortium for Risk Evaluation with Stakeholder Participation, Vanderbilt University, Nashville, TN 37235, USA
| | - Mark Donio
- Division of Life Sciences, Rutgers University, 604 Allison Road, Piscataway, NJ, USA
| |
Collapse
|
6
|
Burger J, Gochfeld M. Selenium/mercury molar ratios in freshwater, marine, and commercial fish from the USA: variation, risk, and health management. REVIEWS ON ENVIRONMENTAL HEALTH 2013; 28:129-143. [PMID: 24192499 DOI: 10.1515/reveh-2013-0010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/04/2013] [Indexed: 06/02/2023]
Abstract
Fish provide healthy protein as well as recreational and cultural benefits, but can also contain mercury (Hg), polychlorinated biphenyls (PCBs), and other contaminants that have adverse effects on humans and other organisms, particularly developing fetuses. Recently, some authors have suggested that a molar excess of selenium (Se) [e.g., selenium/mercury (Se/Hg) molar ratio >1] confers protection from Hg toxicity derived from fish consumption. Herein, we review our studies of Hg and Se in freshwater, marine, and commercial fish (mainly marine), examining the following: (1) whether and how Se/Hg molar ratios vary among species; (2) whether and how the molar ratios vary within species; (3) whether the molar ratios differ between freshwater and saltwater fish; (4) whether mean molar ratio values provide a reliable indication of potential risk to fish consumers; and (5) whether mean Se/Hg molar ratios are sufficiently constant (e.g., low variation) to allow for use in risk assessment, risk management, or risk communication. In saltwater fish, mean Se/Hg molar ratios varied from 0.3 in mako shark to 68.1 in whiting. For freshwater fish, the mean ratios varied from 0.68 in bowfin to 20.8 in black crappie. Commercial seafood (mainly saltwater) showed great variation in ratios; shrimp and scallops had very high ratios. There was somewhat less variability in the ratios for freshwater fish compared with the fish from saltwater, but there was no overall predictable difference in variation in Se/Hg molar ratios. For both saltwater and freshwater fish, some species with mean molar ratios above 1 had a significant proportion of individual fish with molar ratios below 1. Overall, this indicates great variation in measures of central tendencies and in measures of dispersion. We suggest that relying on the Se/Hg molar ratio as a method of predicting reduced risk from Hg toxicity is problematic because of the great variation among and within fish species, and the variation is not predictable because Hg varies by season, size of the fish, and location of the fish (which is not available for commercial fish). With the high variation in ratios, and low predictability, the ratios are currently not useful for risk assessment and risk management, and vulnerable individuals cannot rely on mean Se/Hg molar ratios for protection from Hg toxicity.
Collapse
|
7
|
Burger J, Gochfeld M, Jeitner C, Donio M, Pittfield T. Interspecific and intraspecific variation in selenium:mercury molar ratios in saltwater fish from the Aleutians: potential protection on mercury toxicity by selenium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 431:46-56. [PMID: 22664537 PMCID: PMC4300134 DOI: 10.1016/j.scitotenv.2012.05.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 05/12/2023]
Abstract
A number of factors affect the consumption risk from mercury in fish, including mercury levels, seasonal patterns of mercury concentrations, human consumption patterns, and sensitive populations (e.g. pregnant women, fetuses, young children, and yet unknown genetic factors). Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for saltwater fish. We examine levels of mercury and selenium in several species of fish and seabirds from the Aleutians (Alaska), determine selenium:mercury molar ratios, and examine species-specific and individual variation in the ratios as a means of exploring the use of the ratio in risk assessment and risk management. Variation among species was similar for mercury and selenium. There was significant interspecific and intraspecific variation in selenium:mercury molar ratios for fish, and for birds. The mean selenium:mercury molar ratios for all fish and bird species were above 1, meaning there was an excess of selenium relative to mercury. It has been suggested that an excess of selenium confers some protective advantage for salt water fish, although the degree of excess necessary is unclear. The selenium:mercury molar ratio was significantly correlated negatively with total length for most fish species, but not for dolly varden. Some individuals of Pacific cod, yellow irish lord, rock greenling, Pacific halibut, dolly varden, and to a lesser extent, flathead sole, had selenium:mercury ratios below 1. No bird muscle had an excess of mercury (ratio below 1), and only glaucous-winged gull and pigeon guillemot had ratios between 1 and 5. There was a great deal of variation in selenium:mercury molar ratios within fish species, and within bird species, making it difficult and impractical to use these ratios in risk assessment or management, for fish advisories, or for consumers, particularly given the difficulty of interpreting the ratios.
Collapse
Affiliation(s)
- Joanna Burger
- Division of Life Sciences, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA.
| | | | | | | | | |
Collapse
|
8
|
Burger J, Gochfeld M, Jeitner C, Donio M, Pittfield T. Selenium:mercury molar ratios in freshwater fish from Tennessee: individual, species, and geographical variations have implications for management. ECOHEALTH 2012; 9:171-82. [PMID: 22456727 PMCID: PMC4193431 DOI: 10.1007/s10393-012-0761-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/25/2012] [Accepted: 03/12/2012] [Indexed: 05/04/2023]
Abstract
Vertebrates, including humans, can experience adverse effects from mercury consumed in fish. Humans often prefer large predatory fish that bioaccumulate high mercury levels. Recent attention has focused on the role of selenium countering mercury toxicity, but there is little research on the selenium:mercury molar ratios in freshwater fish. We examine selenium:mercury molar ratios in freshwater fish from Tennessee at Poplar Creek which receives ongoing inputs of mercury from the Department of Energy's Oak Ridge Y-12 facility. Our objective was to determine variation of the ratios within species that might affect the protectiveness of selenium against mercury toxicity. Within species, the ratio was correlated significantly and positively with fish length only for two species. There was great individual variation in the selenium:mercury molar ratio within each species, except striped bass. The lack of a clear relationship between the selenium:mercury molar ratio and fish length, and the intraspecific variation, suggests that it would be difficult to use the molar ratio in predicting either the risk from mercury toxicity or in devising consumption advisories.
Collapse
Affiliation(s)
- Joanna Burger
- Division of Life Sciences, Rutgers University, Piscataway, NJ 08854-8082, USA.
| | | | | | | | | |
Collapse
|
9
|
Gochfeld M, Burger J, Jeitner C, Donio M, Pittfield T. Seasonal, locational and size variations in mercury and selenium levels in striped bass (Morone saxatilis) from New Jersey. ENVIRONMENTAL RESEARCH 2012; 112:8-19. [PMID: 22226733 PMCID: PMC4193446 DOI: 10.1016/j.envres.2011.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 12/08/2011] [Accepted: 12/13/2011] [Indexed: 05/19/2023]
Abstract
We examined total mercury and selenium levels in muscle of striped bass (Morone saxatilis) collected from 2005 to 2008 from coastal New Jersey. Of primary interest was whether there were differences in mercury and selenium levels as a function of size and location, and whether the legal size limits increased the exposure of bass consumers to mercury. We obtained samples mainly from recreational anglers, but also by seine and trawl. For the entire sample (n=178 individual fish), the mean (±standard error) for total mercury was 0.39±0.02 μg/g (=0.39 ppm, wet weight basis) with a maximum of 1.3 μg/g (=1.3 ppm wet weight). Mean selenium level was 0.30±0.01 μg/g (w/w) with a maximum of 0.9 μg/g). Angler-caught fish (n=122) were constrained by legal size limits to exceed 61 cm (24 in.) and averaged 72.6±1.3 cm long; total mercury averaged 0.48±0.021 μg/g and selenium averaged 0.29±0.01 μg/g. For comparable sizes, angler-caught fish had significantly higher mercury levels (0.3 vs 0.21 μg/g) than trawled fish. In both the total and angler-only samples, mercury was strongly correlated with length (Kendall tau=0.37; p<0.0001) and weight (0.38; p<0.0001), but was not correlated with condition or with selenium. In the whole sample and all subsamples, total length yielded the highest r(2) (up to 0.42) of any variable for both mercury and selenium concentrations. Trawled fish from Long Branch in August and Sandy Hook in October were the same size (68.9 vs 70.1cm) and had the same mercury concentrations (0.22 vs 0.21 ppm), but different selenium levels (0.11 vs 0.28 ppm). The seined fish (all from Delaware Bay) had the same mercury concentration as the trawled fish from the Atlantic coast despite being smaller. Angler-caught fish from the North (Sandy Hook) were larger but had significantly lower mercury than fish from the South (mainly Cape May). Selenium levels were high in small fish, low in medium-sized fish, and increased again in larger fish, but overall selenium was correlated with length (tau=0.14; p=0.006) and weight (tau=0.27; p<0.0001). Length-squared contributed significantly to selenium models, reflecting the non-linear relationship. Inter-year differences were explained partly by differences in sizes. The selenium:mercury molar ratio was below 1:1 in 20% of the fish and 25% of the angler-caught fish. Frequent consumption of large striped bass can result in exposure above the EPA's reference dose, a problem particularly for fetal development.
Collapse
Affiliation(s)
- Michael Gochfeld
- Environmental and Occupational Medicine, EOHSI, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ, USA
- Consortium for Risk Evaluation with Stakeholder Participation, and Environmental and Occupational Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, USA
| | - Joanna Burger
- Consortium for Risk Evaluation with Stakeholder Participation, and Environmental and Occupational Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, USA
- Division of Life Sciences, 604 Allison Road, Rutgers University, Piscataway, NJ, USA
| | - Christian Jeitner
- Consortium for Risk Evaluation with Stakeholder Participation, and Environmental and Occupational Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, USA
- Division of Life Sciences, 604 Allison Road, Rutgers University, Piscataway, NJ, USA
| | - Mark Donio
- Consortium for Risk Evaluation with Stakeholder Participation, and Environmental and Occupational Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, USA
- Division of Life Sciences, 604 Allison Road, Rutgers University, Piscataway, NJ, USA
| | - Taryn Pittfield
- Consortium for Risk Evaluation with Stakeholder Participation, and Environmental and Occupational Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, USA
- Division of Life Sciences, 604 Allison Road, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
10
|
Burger J, Gochfeld M. Mercury and selenium levels in 19 species of saltwater fish from New Jersey as a function of species, size, and season. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:1418-29. [PMID: 21292311 PMCID: PMC4300121 DOI: 10.1016/j.scitotenv.2010.12.034] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 12/10/2010] [Accepted: 12/21/2010] [Indexed: 05/19/2023]
Abstract
There are few data on risks to biota and humans from mercury levels in saltwater fish. This paper examines mercury and selenium levels in muscle of 19 species of fish caught by recreational fisherfolk off the New Jersey shore, as a function of species of fish, size, and season, and risk of mercury to consumers. Average mercury levels ranged from 0.01 ppm (wet weight) (Menhaden Brevoortia tyrannus) to 1.83 ppm (Mako Shark Isurus oxyrinchus). There were four categories of mercury levels: very high (only Mako), high (averaging 0.3-0.5 ppm, 3 species), medium (0.14-0.20 ppm, 10 species), and low (below 0.13 ppm, 5 species). Average selenium levels for the fish species ranged from 0.18 ppm to 0.58 ppm, and had lower variability than mercury (coefficient of variation=38.3 vs 69.1%), consistent with homeostatic regulation of this essential element. The correlation between mercury and selenium was significantly positive for five and negative for two species. Mercury levels showed significant positive correlations with fish size for ten species. Size was the best predictor of mercury levels. Selenium showed no consistent relationship to fish length. Over half of the fish species had some individual fish with mercury levels over 0.3 ppm, and a third had fish with levels over 0.5 ppm, levels that pose a human health risk for high end consumers. Conversely several fish species had no individuals above 0.5 ppm, and few above 0.3 ppm, suggesting that people who eat fish frequently, can reduce their risk from mercury by selecting which species (and which size) to consume. Overall, with the exception of shark, Bluefin Tuna (Thunnus thynnus), Bluefish (Pomatomus saltatrix) and Striped Bass (Morone saxatilis), the species sampled are generally medium to low in mercury concentration. Selenium:mercury molar ratios were generally above 1:1, except for the Mako shark.
Collapse
Affiliation(s)
- Joanna Burger
- Division of Life Sciences, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA.
| | | |
Collapse
|
11
|
Hajeb P, Jinap S, Ahmad I. Biomagnifications of mercury and methylmercury in tuna and mackerel. ENVIRONMENTAL MONITORING AND ASSESSMENT 2010; 171:205-217. [PMID: 20041345 DOI: 10.1007/s10661-009-1272-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 12/03/2009] [Indexed: 05/28/2023]
Abstract
Seawater may be contaminated by harmful substances, including toxic elements released by human activities. The present study evaluates the total mercury and methylmercury concentrations and their correlations to fish body size in longtail tuna and short-bodied mackerel from Chendring, Kuantan, at east coast and Kuala Perlis at west costs of Peninsular Malaysia during May to November 2007. Total mercury and methylmercury in muscle tissue of 69 samples of longtail tuna and short-bodied mackerel, ranged from 0.180 to 1.460 μg/g and 0.0.169-0.973 μg/g and 0.251-1.470 μg/g and 0.202-1.352, whereas the methylmercury to total mercury ratio ranged from 70% to 83%, respectively. Samples of both species from the east coast showed higher levels of mercury compared to those from west coast. In all of the locations, significant positive correlations were found between fish body weight and mercury content (R(2) > 0.470). The estimated weekly intake of total mercury and methylmercury from the consumption 66.33 g/week of short-bodied mackerel and 18.34 g/week of longtail tuna (based on local dietry survey) was found to be lower than the maximum limit of 5 and 1.5 μg/kg bodyweight established by FAO/WHO and codex, respectively.
Collapse
Affiliation(s)
- P Hajeb
- Centre of Excellence for Food Safety Research (CEFSR), Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | | | | |
Collapse
|
12
|
Burger J. Risk to consumers from mercury in bluefish (Pomatomus saltatrix) from New Jersey: Size, season and geographical effects. ENVIRONMENTAL RESEARCH 2009; 109:803-11. [PMID: 19643400 PMCID: PMC4041110 DOI: 10.1016/j.envres.2009.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 06/23/2009] [Accepted: 07/07/2009] [Indexed: 05/19/2023]
Abstract
Relatively little attention has been devoted to the risks from mercury in saltwater fish, that were caught by recreational fisherfolk. Although the US Food and Drug Administration has issued advisories based on mercury for four saltwater species or groups of fish, there are few data on how mercury levels vary by size, season, or location. This paper examines total mercury levels in muscle of bluefish (Pomatomus saltatrix) collected from coastal New Jersey, mainly by recreational fishermen. Of primary interest was whether there were differences in mercury levels as a function of location, weight and length of the fish, and season, and in what risk mercury posed to the food chain, including people. Selenium was also measured because of its reported protective effects against mercury. Mercury levels averaged 0.35+/-0.02 (mean and standard error)ppm, and selenium levels averaged 0.37+/-0.01ppm (N=206). In this study, 41% of the fish had mercury levels above 0.3ppm, 20% had levels above 0.5ppm, and 4% had levels above 1ppm. Size was highly correlated with mercury levels, but not with selenium. While selenium levels did not vary at all with season, mercury levels decreased significantly. This relationship was not due to differences in the size of fish, since the fish collected in the summer were the smallest, but had intermediate mercury levels. Mercury levels declined from early June until November, particularly for the smaller-sized fish. While there were significant locational differences in mercury levels (but not selenium), these differences could be a result of size. The levels of mercury in bluefish are not sufficiently high to cause problems for the bluefish themselves, based on known adverse health effects levels, but are high enough to cause potential adverse health effects in sensitive birds and mammals that eat them, and to provide a potential health risk to humans who consume them. Fish larger than 50cm fork length averaged levels above 0.3ppm, suggesting that eating them should be avoided by pregnant women, children, and others who are at risk.
Collapse
Affiliation(s)
- Joanna Burger
- Division of Life Sciences, Rutgers University, 604 Allison Road, Piscataway, NJ 08855-8082, USA.
| |
Collapse
|
13
|
García T, Grande I. Determinants of food expenditure patterns among older consumers. The Spanish case. Appetite 2009; 54:62-70. [PMID: 19766154 DOI: 10.1016/j.appet.2009.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 09/07/2009] [Accepted: 09/13/2009] [Indexed: 11/30/2022]
Abstract
The continuously evolving lifestyles of European consumers are most noticeable in the elderly age segment, which, as a result, is drawing increasing attention from agrifood companies. The aim of this study is to perform an empirical analysis of the main determinants of food expenditure among elderly Spanish consumers, by comparing key variables reported in the literature, based on data from different years. The performed estimations yield a linear model with three statistically significant variables; type of household, level of education--a proxy measure for family income--and consumer's age. The results enable us to conclude that agrifood companies will need to deal with a changing demographic environment, and increase the flexibility of their supply to adjust to the new situation.
Collapse
Affiliation(s)
- Teresa García
- Public University of Navarra, Department of Business Administration, Campus de Arrosadia, 31006 Pamplona, Spain.
| | | |
Collapse
|
14
|
Butler LM, Wang R, Koh WP, Stern MC, Yuan JM, Yu MC. Marine n-3 and saturated fatty acids in relation to risk of colorectal cancer in Singapore Chinese: a prospective study. Int J Cancer 2008; 124:678-86. [PMID: 18973226 DOI: 10.1002/ijc.23950] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Experimental data support multiple roles for fatty acids in colorectal carcinogenesis. We examined dietary fatty acids and incidence of colorectal cancer, and evaluated effect modification by sex and stage of disease among a population-based cohort of 61,321 Singapore Chinese that was established between 1993 and 1998. As of December 31, 2005, 961 incident colorectal cancers were diagnosed. Presented hazard ratios (HRs) are for highest versus lowest quartiles with adjustment for potential confounders. Among women, we observed a dose-dependent, positive association between saturated fat and localized colorectal cancer (Dukes A or B) [(HR=1.69, 95% confidence interval (CI)=1.08-2.63, p for trend=0.01)]. No such associations were noted in men (p for interaction by sex=0.04). Marine n-3 polyunsaturated fatty acid (PUFA) intake was positively associated with advanced disease (Dukes C or D) (HR=1.33, 95% CI=1.05-1.70, p for trend=0.01), regardless of sex. The association with marine n-3 PUFAs was strongest among those with the shortest (<or=5 years) duration of follow-up (HR=1.49, 95% CI=1.00-2.21, p for trend=0.04). In contrast, we observed a small, albeit imprecise, inverse association with marine n-3 PUFAs for localized colorectal cancer among those with the longest duration of follow-up (>10 years) (HR=0.62, 95% CI=0.29-1.34, p for trend=0.55). Our findings suggest that subtypes of fatty acids may differentially influence risk of colorectal cancer of a specified stage.
Collapse
Affiliation(s)
- Lesley M Butler
- Department of Public Health Sciences, University of California-Davis, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Burger J, Gochfeld M. Risk to consumers from mercury in Pacific cod (Gadus macrocephalus) from the Aleutians: fish age and size effects. ENVIRONMENTAL RESEARCH 2007; 105:276-84. [PMID: 17599825 DOI: 10.1016/j.envres.2007.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 05/10/2007] [Accepted: 05/18/2007] [Indexed: 05/16/2023]
Abstract
While there has been considerable attention devoted to the risks to high level consumers from mercury in freshwater fish, relatively little attention has been devoted to saltwater fish. Although the U.S. Food and Drug Administration has issued advisories based on mercury for four saltwater species or groups of fish, there are few data on mercury levels generally, or on the risk these levels pose to the fish themselves or to consumers of marine fish. We examined total mercury levels in liver and muscle of Pacific cod (Gadus macrocephalus) collected from the northern Pacific and Bering Sea waters around Nikolski, Amchitka, and Kiska Islands in the Aleutian Chain (Alaska). We were interested in whether there were differences in mercury levels as a function of location, weight, length, and age of the fish, and what risk mercury posed to the food chain, including people. Fish were aged by examining otoliths, and we measured selenium because of its reported protective effects against mercury. Regression models indicated that 27% of the variation in levels of mercury was due to tissue examined and age, while 67% of the variation in levels of selenium was due to tissue, length, and age. Mercury levels were significantly higher in the muscle than the liver, and the reverse was true for selenium. Mercury levels were negatively correlated with selenium levels, and positively correlated with length, weight, and age. There were no gender differences in mercury or selenium levels. The mean levels of mercury in muscle (0.17 ppm wet weight) are within the range known to cause adverse effects in sensitive birds and mammals. Only 4% of the Pacific cod samples had mercury levels above 0.5 ppm, the action level promulgated by many states and countries, and none were above the 1 ppm action level of the U.S. FDA.
Collapse
Affiliation(s)
- Joanna Burger
- Division of Life Sciences, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA.
| | | |
Collapse
|
16
|
Burger J, Gochfeld M, Jeitner C, Burke S, Stamm T. Metal levels in flathead sole (Hippoglossoides elassodon) and great sculpin (Myoxocephalus polyacanthocephalus) from Adak Island, Alaska: potential risk to predators and fishermen. ENVIRONMENTAL RESEARCH 2007; 103:62-9. [PMID: 16581061 DOI: 10.1016/j.envres.2006.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 02/02/2006] [Accepted: 02/09/2006] [Indexed: 05/08/2023]
Abstract
Increasingly there is a need to assess the contaminant levels in fish as indicators of the health and well-being of both the fish and their consumers, including humans. This paper examines the levels of arsenic, cadmium, chromium, lead, manganese, mercury, and selenium in the kidney, liver, and muscle of great sculpin and flathead sole from Adak Island in the Aleutian Islands, Alaska. Both species are consumed by the local Aleuts and others. There were significant differences in the levels of heavy metals as a function of tissue for both fish species; the liver of sculpin and sole generally had the highest levels of most metals, except for arsenic, lead, and selenium. Sole had significantly higher mean levels of arsenic in kidney (32,384 vs. 531 ppb, wet weight), liver (18,954 vs. 2532 ppb), and muscle (19,452 vs. 1343 ppb) than did sculpin. Sole also had higher mean levels of cadmium (230 vs. 63 ppb), lead (1236 vs. 48 ppb), mercury (150 vs. 107 ppb), and selenium (5215 vs. 1861 ppb) in kidney than did sculpin. There were significant correlations among weight and length measurements for both species. However, except for mercury, there were few significant correlations among tissue types for most metals. Only mercury and manganese levels were significantly correlated with size for sculpin (but not for sole). Levels of arsenic, lead, and mercury may pose a risk to predators that consume them, and arsenic and mercury may pose a risk to human consumers.
Collapse
Affiliation(s)
- Joanna Burger
- Nelson Biological Laboratory, Division of Life Sciences, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA.
| | | | | | | | | |
Collapse
|