1
|
Sawada T, Iino Y, Yoshida K, Okazaki H, Nomura S, Shimizu C, Arima T, Juichi M, Zhou S, Kurabayashi N, Sakurai T, Yagishita S, Yanagisawa M, Toyoizumi T, Kasai H, Shi S. Prefrontal synaptic regulation of homeostatic sleep pressure revealed through synaptic chemogenetics. Science 2024; 385:1459-1465. [PMID: 39325885 DOI: 10.1126/science.adl3043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/28/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Sleep is regulated by homeostatic processes, yet the biological basis of sleep pressure that accumulates during wakefulness, triggers sleep, and dissipates during sleep remains elusive. We explored a causal relationship between cellular synaptic strength and electroencephalography delta power indicating macro-level sleep pressure by developing a theoretical framework and a molecular tool to manipulate synaptic strength. The mathematical model predicted that increased synaptic strength promotes the neuronal "down state" and raises the delta power. Our molecular tool (synapse-targeted chemically induced translocation of Kalirin-7, SYNCit-K), which induces dendritic spine enlargement and synaptic potentiation through chemically induced translocation of protein Kalirin-7, demonstrated that synaptic potentiation of excitatory neurons in the prefrontal cortex (PFC) increases nonrapid eye movement sleep amounts and delta power. Thus, synaptic strength of PFC excitatory neurons dictates sleep pressure in mammals.
Collapse
Affiliation(s)
- Takeshi Sawada
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yusuke Iino
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kensuke Yoshida
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Hitoshi Okazaki
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shinnosuke Nomura
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Chika Shimizu
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tomoki Arima
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Motoki Juichi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Siqi Zhou
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Molecular Behavioral Physiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Sho Yagishita
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Taro Toyoizumi
- RIKEN Center for Brain Science, Wako, Saitama, Japan
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Haruo Kasai
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shoi Shi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Goffin E, Fraikin P, Abboud D, de Tullio P, Beaufour C, Botez I, Hanson J, Danober L, Francotte P, Pirotte B. New insights in the development of positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors belonging to 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides: Introduction of (mono/difluoro)methyl groups at the 2-position of the thiadiazine ring. Eur J Med Chem 2023; 250:115221. [PMID: 36863228 DOI: 10.1016/j.ejmech.2023.115221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Positive allosteric modulators of the AMPA receptors (AMPAR PAMs) have been proposed as new drugs for the management of various neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, attention deficit hyperactivity disorder, depression, and schizophrenia. The present study explored new AMPAR PAMs belonging to 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides (BTDs) characterized by the presence of a short alkyl substituent at the 2-position of the heterocycle and by the presence or absence of a methyl group at the 3-position. The introduction of a monofluoromethyl or a difluoromethyl side chain at the 2-position instead of the methyl group was examined. 7-Chloro-4-cyclopropyl-2-fluoromethyl-3,4-dihydro-4H-1,2,4-benzothiadiazine 1,1-dioxide (15e) emerged as the most promising compound associating high in vitro potency on AMPA receptors, a favorable safety profile in vivo and a marked efficacy as a cognitive enhancer after oral administration in mice. Stability studies in aqueous medium suggested that 15e could be considered, at least in part, as a precursor of the corresponding 2-hydroxymethyl-substituted analogue and the known AMPAR modulator 7-chloro-4-cyclopropyl-3,4-dihydro-4H-1,2,4-benzothiadiazine 1,1-dioxide (3) devoid of an alkyl group at the 2-position.
Collapse
Affiliation(s)
- Eric Goffin
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Pierre Fraikin
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Avenue Hippocrate 1/11 (B34), B-4000, Liège, Belgium
| | - Pascal de Tullio
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Caroline Beaufour
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290, Croissy-sur-Seine, France
| | - Iuliana Botez
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290, Croissy-sur-Seine, France
| | - Julien Hanson
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium; Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Avenue Hippocrate 1/11 (B34), B-4000, Liège, Belgium
| | - Laurence Danober
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290, Croissy-sur-Seine, France
| | - Pierre Francotte
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Bernard Pirotte
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium.
| |
Collapse
|
3
|
Scheffel C, Thiermann H, Worek F. Effect of reversible ligands on oxime-induced reactivation of sarin- and cyclosarin-inhibited human acetylcholinesterase. Toxicol Lett 2015; 232:557-65. [DOI: 10.1016/j.toxlet.2014.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022]
|
4
|
Nørholm AB, Francotte P, Goffin E, Botez I, Danober L, Lestage P, Pirotte B, Kastrup JS, Olsen L, Oostenbrink C. Thermodynamic characterization of new positive allosteric modulators binding to the glutamate receptor A2 ligand-binding domain: combining experimental and computational methods unravels differences in driving forces. J Chem Inf Model 2014; 54:3404-16. [PMID: 25420075 DOI: 10.1021/ci500559b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Positive allosteric modulation of the ionotropic glutamate receptor GluA2 presents a potential treatment of cognitive disorders, for example, Alzheimer's disease. In the present study, we describe the synthesis, pharmacology, and thermodynamic studies of a series of monofluoro-substituted 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides. Measurements of ligand binding by isothermal titration calorimetry (ITC) showed similar binding affinities for the modulator series at the GluA2 LBD but differences in the thermodynamic driving forces. Binding of 5c (7-F) and 6 (no-F) is enthalpy driven, and 5a (5-F) and 5b (6-F) are entropy driven. For 5d (8-F), both quantities were equal in size. Thermodynamic integration (TI) and one-step perturbation (OSP) were used to calculate the relative binding affinity of the modulators. The OSP calculations had a higher predictive power than those from TI, and combined with the shorter total simulation time, we found the OSP method to be more effective for this setup. Furthermore, from the molecular dynamics simulations, we extracted the enthalpies and entropies, and along with the ITC data, this suggested that the differences in binding free energies are largely explained by the direct ligand-surrounding enthalpies. Furthermore, we used the OSP setup to predict binding affinities for a series of polysubstituted fluorine compounds and monosubstituted methyl compounds and used these predictions to characterize the modulator binding pocket for this scaffold of positive allosteric modulators.
Collapse
Affiliation(s)
- Ann-Beth Nørholm
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Francotte P, Nørholm AB, Deva T, Olsen L, Frydenvang K, Goffin E, Fraikin P, de Tullio P, Challal S, Thomas JY, Iop F, Louis C, Botez-Pop I, Lestage P, Danober L, Kastrup JS, Pirotte B. Positive Allosteric Modulators of 2-Amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic Acid Receptors Belonging to 4-Cyclopropyl-3,4-dihydro-2H-1,2,4-pyridothiadiazine Dioxides and Diversely Chloro-Substituted 4-Cyclopropyl-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-Dioxides. J Med Chem 2014; 57:9539-53. [DOI: 10.1021/jm501268r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pierre Francotte
- Department
of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines
(CIRM), University of Liege, Avenue de l’Hôpital,
1, B36, B-4000 Liège, Belgium
| | - Ann-Beth Nørholm
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken, 2, DK-2100 Copenhagen, Denmark
| | - Taru Deva
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken, 2, DK-2100 Copenhagen, Denmark
| | - Lars Olsen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken, 2, DK-2100 Copenhagen, Denmark
| | - Karla Frydenvang
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken, 2, DK-2100 Copenhagen, Denmark
| | - Eric Goffin
- Department
of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines
(CIRM), University of Liege, Avenue de l’Hôpital,
1, B36, B-4000 Liège, Belgium
| | - Pierre Fraikin
- Department
of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines
(CIRM), University of Liege, Avenue de l’Hôpital,
1, B36, B-4000 Liège, Belgium
| | - Pascal de Tullio
- Department
of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines
(CIRM), University of Liege, Avenue de l’Hôpital,
1, B36, B-4000 Liège, Belgium
| | - Sylvie Challal
- Institut
de Recherches
Servier, 125 Chemin de Ronde, F-78290 Croissy-sur-Seine, France
| | - Jean-Yves Thomas
- Institut
de Recherches
Servier, 125 Chemin de Ronde, F-78290 Croissy-sur-Seine, France
| | - Fabrice Iop
- Institut
de Recherches
Servier, 125 Chemin de Ronde, F-78290 Croissy-sur-Seine, France
| | - Caroline Louis
- Institut
de Recherches
Servier, 125 Chemin de Ronde, F-78290 Croissy-sur-Seine, France
| | - Iuliana Botez-Pop
- Institut
de Recherches
Servier, 125 Chemin de Ronde, F-78290 Croissy-sur-Seine, France
| | - Pierre Lestage
- Institut
de Recherches
Servier, 125 Chemin de Ronde, F-78290 Croissy-sur-Seine, France
| | - Laurence Danober
- Institut
de Recherches
Servier, 125 Chemin de Ronde, F-78290 Croissy-sur-Seine, France
| | - Jette S. Kastrup
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken, 2, DK-2100 Copenhagen, Denmark
| | - Bernard Pirotte
- Department
of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines
(CIRM), University of Liege, Avenue de l’Hôpital,
1, B36, B-4000 Liège, Belgium
| |
Collapse
|
6
|
Francotte P, Goffin E, Fraikin P, Graindorge E, Lestage P, Danober L, Challal S, Rogez N, Nosjean O, Caignard DH, Pirotte B, de Tullio P. Development of Thiophenic Analogues of Benzothiadiazine Dioxides as New Powerful Potentiators of 2-Amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic Acid (AMPA) Receptors. J Med Chem 2013; 56:7838-50. [DOI: 10.1021/jm400676g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pierre Francotte
- Centre Interfacultaire
de Recherche du Médicament (CIRM)—Laboratoire de Chimie
Pharmaceutique, University of Liege, Avenue de l′Hôpital 1, B36, 4000 Liège, Belgium
| | - Eric Goffin
- Centre Interfacultaire
de Recherche du Médicament (CIRM)—Laboratoire de Chimie
Pharmaceutique, University of Liege, Avenue de l′Hôpital 1, B36, 4000 Liège, Belgium
| | - Pierre Fraikin
- Centre Interfacultaire
de Recherche du Médicament (CIRM)—Laboratoire de Chimie
Pharmaceutique, University of Liege, Avenue de l′Hôpital 1, B36, 4000 Liège, Belgium
| | - E. Graindorge
- Centre Interfacultaire
de Recherche du Médicament (CIRM)—Laboratoire de Chimie
Pharmaceutique, University of Liege, Avenue de l′Hôpital 1, B36, 4000 Liège, Belgium
| | - Pierre Lestage
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290 Croissy-sur-Seine, France
| | - Laurence Danober
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290 Croissy-sur-Seine, France
| | - Sylvie Challal
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290 Croissy-sur-Seine, France
| | - Nathalie Rogez
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290 Croissy-sur-Seine, France
| | - Olivier Nosjean
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290 Croissy-sur-Seine, France
| | - Daniel-Henri Caignard
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290 Croissy-sur-Seine, France
| | - Bernard Pirotte
- Centre Interfacultaire
de Recherche du Médicament (CIRM)—Laboratoire de Chimie
Pharmaceutique, University of Liege, Avenue de l′Hôpital 1, B36, 4000 Liège, Belgium
| | - Pascal de Tullio
- Centre Interfacultaire
de Recherche du Médicament (CIRM)—Laboratoire de Chimie
Pharmaceutique, University of Liege, Avenue de l′Hôpital 1, B36, 4000 Liège, Belgium
| |
Collapse
|
7
|
Yefimenko N, Portero-Tresserra M, Martí-Nicolovius M, Guillazo-Blanch G, Vale-Martínez A. The AMPA receptor modulator S18986 in the prelimbic cortex enhances acquisition and retention of an odor-reward association. Neurosci Lett 2013; 548:105-9. [PMID: 23707650 DOI: 10.1016/j.neulet.2013.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/05/2013] [Accepted: 05/13/2013] [Indexed: 12/31/2022]
Abstract
Systemic administration of S18986, a positive allosteric modulator of AMPA receptors, improves cognition. The present study further characterizes the drug's memory-enhancing properties and is the first to investigate its intracerebral effects on learning and memory. The results showed that rats receiving a single dose of S18986 (3 μg/site) into the prelimbic cortex, prior to olfactory discrimination acquisition, exhibited significantly shorter latencies and fewer errors to make the correct response, both in the acquisition and two drug-free retention tests. Such findings corroborate the involvement of glutamate receptors in odor-reward learning and confirm the role of the AMPAkine S18986 as a cognitive enhancer.
Collapse
Affiliation(s)
- Natalya Yefimenko
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
8
|
Vandesquille M, Carrié I, Louis C, Beracochea D, Lestage P. Effects of positive modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors in a benzodiazepine-induced deficit of spatial discrimination in mice. J Psychopharmacol 2012; 26:845-56. [PMID: 21890586 DOI: 10.1177/0269881111416692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Imbalance between GABAergic and glutamatergic neurotransmission has been recently hypothesized to trigger memory decline related either to ageing or to Alzheimer's disease (AD). Thereby, benzodiazepine-induced anterograde amnesia has been construed as a model of hippocampal-related cognitive dysfunctions. Since spatial memory is altered both by ageing and by benzodiazepines such as alprazolam, we investigated the pharmacological sensitivity of alprazolam-induced deficit in a delayed spatial discrimination (SD) task, notably with positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors. We showed that alprazolam (0.1 mg/kg intraperitoneally) induced memory impairments as compared with vehicle-treated mice. The oral administration of modulators of AMPA receptors (IDRA-21: 10 mg/kg; S18986: 3 and 10 mg/kg) reversed the alprazolam-induced deficits. This study is first to show evidence that reference treatments of AD, such as memantine (a NMDA receptor antagonist) at 3 mg/kg per os (po) and donepezil (an acetylcholinesterase inhibitor) at 1 mg/kg po, also reversed the alprazolam-induced amnesia. Given such results, the SD task emerges as a valuable novel task to screen pro-cognitive compounds. Thus, we highlight the efficacy of modulators of AMPA-type glutamate receptors to counteract alprazolam-induced spatial deficits. These results could be viewed alongside the imbalance between excitation and inhibition observed during normal and pathological ageing.
Collapse
Affiliation(s)
- M Vandesquille
- Institut de Recherches Servier, Croissy-sur-Seine, France.
| | | | | | | | | |
Collapse
|
9
|
Vandesquille M, Krazem A, Louis C, Lestage P, Béracochéa D. S 18986 reverses spatial working memory impairments in aged mice: comparison with memantine. Psychopharmacology (Berl) 2011; 215:709-20. [PMID: 21274701 DOI: 10.1007/s00213-011-2168-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 01/04/2011] [Indexed: 12/25/2022]
Abstract
RATIONALE Normal or pathological ageing is characterized by working-memory dysfunction paired with a marked reduction in several neurotransmitters activity. The development of therapeutic strategy centered on the glutamatergic system known to bear a critical role in cognitive functions, is therefore of major importance in the treatment of mild forms of AD or age-related memory dysfunctions. OBJECTIVES In Experiment 1, we investigated the effects of ageing on spatial working memory measured by sequential alternation (SA). Thus, the decay of alternation rates over a series of trials separated by varying intertrial temporal intervals (ITI, from 5 sec to 180 sec) was studied in mice of different age groups. In Experiment 2, we investigated the memory-enhancing potential of S 18986--a modulator of AMPA receptors--on age-related SA impairments, in comparison with memantine--an antagonist of NMDA receptors--. RESULTS In Experiment 1, aged mice responded at chance with shorter ITI's and exhibited greater levels of interference in the SA task as compared to young adult mice. In Experiment 2, (1) S 18986 at 0.03 and 0.1 mg/kg reversed the memory deficit in aged mice but did not modify performance in young adult mice; (2) memantine at 10 mg/kg also increased SA rates in aged mice but did not improve performance in young adult mice. CONCLUSION The SA task is a useful tool to reveal age-induced time-dependent working memory impairments. As compared to memantine, S 18986--a compound targeting AMPA receptors--contributes a valuable therapy in the treatment of age-related cognitive dysfunctions or mild forms of AD.
Collapse
Affiliation(s)
- Matthias Vandesquille
- Institut de Neurosciences Intégratives et Cognitives d'Aquitaine, Universités de Bordeaux, IMR CNRS 5287, Avenue des Facultés, 33405, Talence, France
| | | | | | | | | |
Collapse
|
10
|
Bernard K, Danober L, Thomas JY, Lebrun C, Muñoz C, Cordi A, Desos P, Lestage P, Morain P. DRUG FOCUS: S 18986: A positive allosteric modulator of AMPA-type glutamate receptors pharmacological profile of a novel cognitive enhancer. CNS Neurosci Ther 2011; 16:e193-212. [PMID: 21050420 DOI: 10.1111/j.1755-5949.2009.00088.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) type glutamate receptors are critical for synaptic plasticity and induction of long-term potentiation (LTP), considered as one of the synaptic mechanisms underlying learning and memory. Positive allosteric modulators of AMPA receptors could provide a therapeutic approach to the treatment of cognitive disorders resulting from aging and/or neurodegenerative diseases, such as Alzheimer disease (AD). Several AMPA potentiators have been described in the last decade, but for the moment their clinical efficacy has not been demonstrated due to the complexity of the target, AMPA receptors, and the difficulty in studying cognition in animals and humans. A better understanding of the mechanism of action of this type of drug remains an important issue, if knowledge of these compounds is to be increased and if this novel therapeutic approach is to be an interesting research area. Among the AMPA potentiators, S 18986 is emerging as a new selective positive allosteric modulator of AMPA-type glutamate receptors. S 18986, as with other positive AMPA receptor modulators, increased induction and maintenance of LTP in the hippocampus as well as the expression of brain-derived neurotrophic factor (BDNF) both in vitro and in vivo. Its cognitive-enhancing properties have been demonstrated in various behavioral models (procedural, spatial, "episodic," working, and relational/declarative memory) in young-adult and aged rodents. It is interesting to note that memory-enhancing effects appeared more robust in middle-aged animals compared with aged ones and in "episodic" and spatial memory tasks. From these results, S 18986 is expected to treat memory deficits associated with early cerebral aging and neurological diseases in elderly people.
Collapse
Affiliation(s)
- Katy Bernard
- Institut de Recherches Internationales Servier, Courbevoie, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Destot-Wong KD, Liang K, Gupta SK, Favrais G, Schwendimann L, Pansiot J, Baud O, Spedding M, Lelièvre V, Mani S, Gressens P. The AMPA receptor positive allosteric modulator, S18986, is neuroprotective against neonatal excitotoxic and inflammatory brain damage through BDNF synthesis. Neuropharmacology 2009; 57:277-86. [DOI: 10.1016/j.neuropharm.2009.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 05/22/2009] [Accepted: 05/22/2009] [Indexed: 02/02/2023]
|
12
|
GAP-43 is essential for the neurotrophic effects of BDNF and positive AMPA receptor modulator S18986. Cell Death Differ 2009; 16:624-37. [PMID: 19136940 DOI: 10.1038/cdd.2008.188] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Positive alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor modulators include benzamide compounds that allosterically modulate AMPA glutamate receptors. These small molecules that cross the blood-brain barrier have been shown to act as a neuroprotectant by increasing the levels of endogenous brain-derived neurotrophic factor (BDNF). Positive AMPA receptor modulators have also been shown to increase the levels of growth-associated protein-43 (GAP-43). GAP-43 plays a major role in many aspects of neuronal function in vertebrates. The goal of this study was to determine whether GAP-43 was important in mediating the actions of positive AMPA receptor modulator (S18986) and BDNF. Using cortical cultures from GAP-43 knockout and control mice, we show that (1) GAP-43 is upregulated in response to S18986 and BDNF in control cultures; (2) this upregulation of GAP-43 is essential for mediating the neuroprotective effects of S18986 and BDNF; (3) administration of S18986 and BDNF leads to an increase in the expression of the glutamate transporters GLT-1 and GLAST that are key to limiting excitotoxic cell death and this increase in GLT-1 and GLAST expression is completely blocked in the absence of GAP-43. Taken together this study concludes that GAP-43 is an important mediator of the neurotrophic effects of S18986 and BDNF on neuronal survival and plasticity, and is essential for the success of positive AMPA receptor modulator-BDNF-based neurotrophin therapy.
Collapse
|
13
|
Kelly SJ, Bernard K, Muñoz C, Lawrence RC, Thacker J, Grillo CA, Piroli GG, Reagan LP. Effects of the AMPA receptor modulator S 18986 on measures of cognition and oxidative stress in aged rats. Psychopharmacology (Berl) 2009; 202:225-35. [PMID: 18762915 DOI: 10.1007/s00213-008-1301-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 08/10/2008] [Indexed: 12/13/2022]
Abstract
RATIONALE Development of cognitive-enhancing drugs that delay or halt mild cognitive impairment progression to Alzheimer's disease would be of great benefit. OBJECTIVES The aim of this study was to examine the ability of (S)-2,3-dihydro-[3,4]-cyclopentano-1,2,4-benzothiadiazine-1,1-dioxide (S 18986), a positive allosteric modulator of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, to improve behavioral performance and alleviate age-related deficits in oxidative stress status in the prelimbic cortex and hippocampus. MATERIALS AND METHODS Daily administration of S 18986 (0.1, 0.3, and 1.0 mg/kg) or vehicle was given to separate groups of male rats starting at 12 months of age. Additionally, daily vehicle administration was given to a group of rats starting at 3 months of age. Four months after initiation of drug administration, rats were trained and tested in an operant-delayed alternation task and a reinforcer devaluation task. Upon completion of testing, oxidative stress status was assessed in the prelimbic cortex and hippocampus. RESULTS S 18986 dose-dependently altered responses in the reinforcer devaluation task such that aged rats came to resemble young rats. There were no age or drug effects in the operant-delayed alternation task. Levels of the lipid peroxidation product 4-hydroxy-nonenal (HNE) were increased, and Cu/Zn-superoxide dismutase (SOD) levels were decreased in prelimbic cortex in aged rats, changes that were reversed by S 18986. Similarly, age-related increases in hippocampal HNE levels were prevented by S 18986. CONCLUSIONS Positive modulation of AMPA receptor activity may be a therapeutic approach to halt or slow progression of mild cognitive impairment via improvement in oxidative stress status in the hippocampus and prelimbic cortex.
Collapse
Affiliation(s)
- S J Kelly
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
The AMPA modulator S 18986 improves declarative and working memory performances in aged mice. Behav Pharmacol 2008; 19:235-44. [PMID: 18469541 DOI: 10.1097/fbp.0b013e3282feb0c1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this study was to further characterize the memory-enhancing profile of S 18986 a positive allosteric modulator of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors. S 18986 was studied in two mouse models of age-related memory deficits, using radial maze paradigms involving long-term/declarative memory and short-term/working memory. Aged mice exhibited severe deficits when compared with their younger counterparts in the two behavioural tests. S 18986 at the dose of 0.1 mg/kg selectively improved aged mouse performance in the test of long-term/declarative memory flexibility and exerted a beneficial effect on short-term retention of successive arm-visits in the short-term/working memory test. This study confirms the memory-enhancing properties of S 18986 and, in line with emerging data on multiple AMPA modulators, highlights the relevance of targeting AMPA receptors in the development of new memory enhancers.
Collapse
|
15
|
Behavioral and biological effects of chronic S18986, a positive AMPA receptor modulator, during aging. Exp Neurol 2008; 210:109-17. [DOI: 10.1016/j.expneurol.2007.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 10/05/2007] [Accepted: 10/08/2007] [Indexed: 11/24/2022]
|
16
|
Béracochéa D, Philippin JN, Meunier S, Morain P, Bernard K. Improvement of episodic contextual memory by S 18986 in middle-aged mice: comparison with donepezil. Psychopharmacology (Berl) 2007; 193:63-73. [PMID: 17384936 DOI: 10.1007/s00213-007-0765-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 03/06/2007] [Indexed: 11/24/2022]
Abstract
INTRODUCTION This study compared the effects of S 18986, a positive allosteric modulator of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors, to those of donepezil a cholinesterase inhibitor on memory impairments induced by ageing in a contextual serial discrimination (CSD) task in middle-aged mice. MATERIALS AND METHODS The CSD task involved the learning of two consecutive discriminations in a four-hole board, each performed on two different floors. This model has been developed to study simultaneously different forms of memory in mice (i.e., episodic-like vs semantic-like forms of memory). We showed that placebo-middle-aged mice (14-15 months old) and placebo-aged subjects (19-20 months old) exhibited a severe memory deficit for the first but not the second discrimination, which was due to an increase in interference, as compared with placebo-treated young mice (5 months old). Middle-aged mice were given (9 days) per os administration of either donepezil, S 18986, or placebo. RESULTS AND DISCUSSION Both 0.3 mg/kg donepezil and 0.1 mg/kg S 18986 reversed the deficit of middle-aged mice through a significant increase in contextually correct responses and in parallel a tendency to reduce interfering responses. CONCLUSION Overall, S 18986 emerges as having a beneficial impact on contextual memory processes in middle-aged mice.
Collapse
Affiliation(s)
- D Béracochéa
- Centre de Neurosciences Intégratives et Cognitives(CNIC), UMR CNRS 5228, Bat Biologie Animale, Univ. Bordeaux 1 et 2, 33405, Talence-cedex, France.
| | | | | | | | | |
Collapse
|
17
|
Francotte P, Tullio PD, Goffin E, Dintilhac G, Graindorge E, Fraikin P, Lestage P, Danober L, Thomas JY, Caignard DH, Pirotte B. Design, Synthesis, and Pharmacology of Novel 7-Substituted 3,4-Dihydro-2H-1,2,4-benzothiadiazine 1,1-Dioxides as Positive Allosteric Modulators of AMPA Receptors. J Med Chem 2007; 50:3153-7. [PMID: 17552506 DOI: 10.1021/jm070120i] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides have been synthesized and evaluated as potentiators of AMPA receptors. Attention was paid to the impact of the substituent introduced at the 7-position of the heterocycle. The biological evaluation was achieved by measuring the AMPA current in rat cortex mRNA-injected Xenopus oocytes. The most potent compound, 4-ethyl-7-fluoro-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide (12a) was found to be active in an object recognition test in rats demonstrating cognition enhancing effects in vivo after oral administration.
Collapse
Affiliation(s)
- Pierre Francotte
- Drug Research Center, Laboratoire de Chimie Pharmaceutique, Université de Liège, Av. de l'Hôpital, 1, B36, 4000 Liège, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lockhart BP, Rodriguez M, Mourlevat S, Peron P, Catesson S, Villain N, Galizzi JP, Boutin JA, Lestage P. S18986: a positive modulator of AMPA-receptors enhances (S)-AMPA-mediated BDNF mRNA and protein expression in rat primary cortical neuronal cultures. Eur J Pharmacol 2007; 561:23-31. [PMID: 17331496 DOI: 10.1016/j.ejphar.2007.01.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 12/22/2006] [Accepted: 01/16/2007] [Indexed: 10/23/2022]
Abstract
The present study describes the effect of (S)-2,3-dihydro-[3,4]cyclopentano-1,2,4-benzothiadiazine-1,1-dioxide (S18986), a positive allosteric modulator of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors, on (S)-AMPA-mediated increases in brain-derived neurotrophic factor (BDNF) mRNA and protein expression in rat primary cortical neuronal cultures. (S)-AMPA (0.01-300 microM) induced a concentration-dependent increase in BDNF mRNA and protein expression (EC(50)=7 microM) with maximal increases (50-fold) compared to untreated cultures observed between 5 and 12 h, whereas for cellular protein levels, maximal expression was detected at 24 h. S18986 alone (< or =300 microM) failed to increase basal BDNF expression. However, S18986 (300 microM) in the presence of increasing concentrations of (S)-AMPA maximally enhanced AMPA-induced expression of BDNF mRNA and protein levels (3-5-fold). S18986 (100-300 microM) potentiated BDNF mRNA induced by 3 microM (S)-AMPA (2-3-fold). Under similar conditions, the AMPA allosteric modulator cyclothiazide induced a potent stimulation of (S)-AMPA-mediated BDNF expression (40-fold; EC(50)=18 microM), whereas IDRA-21 was inactive. Kinetic studies indicated that S18986 (300 microM) in the presence of 3 microM (S)-AMPA was capable of enhancing BDNF mRNA levels for up to 25 h, compared to 3 microM (S)-AMPA alone. On the other hand, S18986 only partially enhanced kainate-mediated expression of BDNF mRNA, but failed to significantly enhance N-methyl-D-aspartate-stimulated BDNF expression levels. In support of these observations, the competitive AMPA receptor antagonist NBQX (1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide) but not the selective NMDA-receptor antagonist, (+)-MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine], abrogated S18986-induced effects on BDNF expression. S18986-mediated enhancement of (S)-AMPA-evoked BDNF protein expression was markedly attenuated in Ca(2+)-free culture conditions. Furthermore, from a series of kinase inhibitors only the Calmodulin-Kinase II/IV inhibitor (KN-62, 25 microM) significantly inhibited (-85%, P<0.001) AMPA+S18986 stimulated expression of BDNF mRNA. The present study supports the observations that AMPA receptor allosteric modulators can enhance the expression of BDNF mRNA and protein expression via the AMPA receptor in cultured primary neurones. Consequently, the long-term elevation of endogenous BDNF expression by pharmacological intervention with this class of compounds represents a potentially promising therapeutic approach for behavioural disorders implicating cognitive deficits.
Collapse
Affiliation(s)
- Brian Paul Lockhart
- Servier Research Institute, Division of Molecular Pharmacology and Pathophysiology, 125, Chemin de ronde, 78290 Croissy-sur-Seine, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Marenco S, Weinberger DR. Therapeutic potential of positive AMPA receptor modulators in the treatment of neuropsychiatric disorders. CNS Drugs 2006; 20:173-85. [PMID: 16529524 DOI: 10.2165/00023210-200620030-00001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Drugs that potentiate the activity of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor cause a complex cascade of consequences in experimental models, ranging from enhancement of long-term potentiation to induction of neurotrophic factors. Animal studies characterising the pharmacological and behavioural effects of these substances have provided the rationale for several initial attempts to use these drugs in neuropsychiatric clinical settings. Applications in schizophrenia, Alzheimer's disease and mild cognitive impairment have been initiated. Other trials with these compounds include the treatment of Fragile X syndrome, and possible future applications may be in the field of Parkinson's disease. The literature published to date is limited mostly to small phase I or II trials, so there is no conclusive evidence for or against the use of these drugs. Substantial questions remain concerning which compounds to use, in what dose, for what condition and for how long.
Collapse
Affiliation(s)
- Stefano Marenco
- Genes, Cognition and Psychosis Program, Clinical Brain Disorders Branch, National Institute of Mental Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
20
|
Bourasset F, Bernard K, Muñoz C, Genissel P, Scherrmann JM. Neuropharmacokinetics of a new alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) modulator, S18986 [(S)-2,3-dihydro-[3,4]cyclopentano-1,2,4-benzothiadiazine-1,1-dioxide], in the rat. Drug Metab Dispos 2005; 33:1137-43. [PMID: 15860654 DOI: 10.1124/dmd.105.004424] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of our study was to determine the neuropharmacokinetics of S18986 [(S)-2,3-dihydro-[3,4]cyclopentano-1,2,4-benzothiadiazine-1,1-dioxide], a new positive allosteric modulator of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid-type receptors, in the rat. We focused on its blood-brain barrier (BBB) uptake and on its brain intra- and extracellular fluid (bICF-bECF) partitioning. BBB transport of S18986 was measured using the in situ brain perfusion technique. bECF concentrations were determined by microdialysis in the two effector areas, i.e., frontal cortex (FC) and dorsal hippocampus (DH), and blood samples were collected simultaneously through a femoral catheter. Cerebrospinal fluid and brain tissue concentrations were determined using a conventional pharmacokinetic approach. Using all the experimental data, pharmacokinetic modeling was applied to describe the S18986 blood-brain disposition. The brain uptake clearance of S18986 was found to be high, about 20 mul s(-1) g(-1). Terminal half-lives were similar in plasma and brain, at around 1 h. Experimental and predicted blood and brain concentrations were a good fit with the pharmacokinetic model, which assumed first-order rate constants at each interface. Ratios of bECF to the unbound plasma area under the curve (AUC) were 0.24 in FC and 0.25 in DH, whereas ratios of bICF/plasma AUC were 1 in FC and 1.5 in DH. We conclude that despite the ratio of bECF/plasma AUC below 1, there is nevertheless an elevated BBB uptake of S18986. This can be explained by the S18986 nonhomogenous bECF/bICF partitioning, since S18986 mainly distributes into hippocampal bICF. This illustrates the importance of taking bECF/bICF partitioning into account when interpreting the neuropharmacokinetics of a drug.
Collapse
Affiliation(s)
- Fanchon Bourasset
- Université Laval, centre de recherche CHUQ-CHUL, Laboratoire d'endocrinologie moléculaire et on-cologique, T2-69, 2705 boulevard Laurier Sainte-Foy (Québec), G1V 4G2, Canada.
| | | | | | | | | |
Collapse
|
21
|
Spedding M, Lestage P. Plasticité cérébrale et neuropathologies : Nouvelles voies pour le médicament. Med Sci (Paris) 2005; 21:104-9. [PMID: 15639031 DOI: 10.1051/medsci/2005211104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Neuronal plasticity is now known to be very important in the adult, both in the formation of new synaptic connections and of new neurones (neurogenesis) and of glial cells. However, old age and stress can inhibit this plasticity and lead to cerebral atrophy. The time course of changes in neuronal plasticity involves, in the first milliseconds to seconds, changes in synaptic strength (long term potentialisation, LTP, or long term depression, LTD), then, over minutes to hours, changes in the number of synaptic connections (linked to changes in neurotrophic factors), and over weeks to months, to changes in neuronal reconfiguration. These changes in brain systems are particularly targeted in psychiatric disorders to the areas which are sensitive to stress and play roles in memory and emotion (hippocampus, amygdala and prefrontal cortex). The discovery and development of drugs modifying neuronal plasticity and neurotrophins production has been a priority for Servier research for the last ten years; Servier has a clinically effective antidepressant, tianeptine (Stablon), with a favourable side effect profile, but which does not inhibit the uptake of serotonin, or other monoamines. However, this drug can reverse the deleterious effects of stress on neuronal plasticity, thereby acting on the causes of psychiatric disorders. Furthermore, a new research area is being investigated - facilitation of AMPA receptors, favouring the production of neurotrophic factors.
Collapse
|
22
|
Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. J Neurosci 2002. [PMID: 11739593 DOI: 10.1523/jneurosci.21-24-09856.2001] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We examined the in vivo effects of the hallucinogen 4-iodo-2,5-dimethoxyamphetamine (DOI). DOI suppressed the firing rate of 7 of 12 dorsal raphe (DR) serotonergic (5-HT) neurons and partially inhibited the rest (ED(50) = 20 microg/kg, i.v.), an effect reversed by M100907 (5-HT(2A) antagonist) and picrotoxinin (GABA(A) antagonist). DOI (1 mg/kg, s.c.) reduced the 5-HT release in medial prefrontal cortex (mPFC) to 33 +/- 8% of baseline, an effect also antagonized by M100907. However, the local application of DOI in the mPFC increased 5-HT release (164 +/- 6% at 100 microm), an effect antagonized by tetrodotoxin, M100907, and BAY x 3702 (5-HT(1A) agonist) but not by SB 242084 (5-HT(2C) antagonist). The 5-HT increase was also reversed by NBQX (AMPA-KA antagonist) and 1S,3S-ACPD (mGluR 2/3 agonist) but not by MK-801 (NMDA antagonist). AMPA mimicked the 5-HT elevation produced by DOI. Likewise, the electrical-chemical stimulation of thalamocortical afferents and the local inhibition of glutamate uptake increased the 5-HT release through AMPA receptors. DOI application in mPFC increased the firing rate of a subgroup of 5-HT neurons (5 of 10), indicating an enhanced output of pyramidal neurons. Dual-label fluorescence confocal microscopic studies demonstrated colocalization of 5-HT(1A) and 5-HT(2A) receptors on individual cortical pyramidal neurons. Thus, DOI reduces the activity of ascending 5-HT neurons through a DR-based action and enhances serotonergic and glutamatergic transmission in mPFC through 5-HT(2A) and AMPA receptors. Because pyramidal neurons coexpress 5-HT(1A) and 5-HT(2A) receptors, DOI disrupts the balance between excitatory and inhibitory inputs and leads to an increased activity that may mediate its hallucinogenic action.
Collapse
|
23
|
Ishide T, Maher T, Nauli SM, Pearce WJ, Ally A. Modulation of pressor response to muscle contraction via monoamines following AMPA-receptor blockade in the ventrolateral medulla. Pharmacol Res 2001; 44:481-9. [PMID: 11735354 DOI: 10.1006/phrs.2001.0881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that cardiovascular responses to static muscle contraction are mediated via changes in extracellular concentrations of monoamines (norepinephrine, dopamine and serotonin) following the administration of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, an AMPA-receptor antagonist) into the rostral (RVLM) or caudal (CVLM) ventrolateral medulla. For the RVLM experiments (n= 8), a 2-min static muscle contraction increased the mean arterial pressure (MAP) and heart rate (HR) by 23 +/- 2 mmHg and 28 +/- 8 bpm, respectively. During this contraction, the concentrations of norepinephrine, dopamine, and serotonin within the RVLM increased by 278 +/- 52%, 213 +/- 23%, and 232 +/- 24%, respectively. Microdialysis of CNQX (1.0 microM) for 30 min into the RVLM attenuated the increases in MAP and HR ( 11 +/- 2 mmHg and 14 +/- 5 bpm) without a change in developed muscle tension. The levels of norepinephrine, dopamine, and serotonin within the RVLM were also attenuated. In contrast, microdialysis of CNQX into the CVLM (n= 8) potentiated the contraction-evoked responses in MAP ( 21 +/- 2 vs 33 +/- 5 mmHg) and HR ( 25 +/- 5 vs 46 +/- 8 bpm) without any effect on the monoamine levels within the CVLM region. These results suggest that AMPA-receptor blockade within the RVLM and CVLM has opposing effects on cardiovascular responses during static muscle contraction. In addition, such receptor blockade modulates extracellular concentrations of monoamines within the RVLM but not in the CVLM. These results provide evidence that AMPA receptors within the ventrolateral medulla play a role in exercise pressor reflex.
Collapse
Affiliation(s)
- T Ishide
- Department of Physiology, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | |
Collapse
|
24
|
Russell VA. Increased AMPA receptor function in slices containing the prefrontal cortex of spontaneously hypertensive rats. Metab Brain Dis 2001; 16:143-9. [PMID: 11769327 DOI: 10.1023/a:1012584826144] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Spontaneously hypertensive rats (SHR) are used as a genetic model for attention-deficit hyperactivity disorder (ADHD), since they have behavioral characteristics that mimic the major symptoms of ADHD. We have previously shown that dopaminergic and noradrenergic systems are altered in the prefrontal cortex of SHR compared to normotensive Wistar-Kyoto (WKY) control rats. We also showed that neural circuits that use glutamate as a neurotransmitter increased norepinephrine release from rat prefrontal cortex slices and that glutamate caused significantly greater release of norepinephrine from prefrontal cortex slices of SHR than from those of WKY. The effect of glutamate did not appear to be mediated by NMDA receptors, since NMDA did not exert any effect on norepinephrine release and the NMDA receptor antagonist MK-801 did not reduce the effect of glutamate. In this investigation we show that the stimulatory effect of glutamate is greater in SHR than in WKY and that the effect can be antagonised by the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). The results suggest that glutamatergic neuron terminals in rat prefrontal cortex establish synaptic contacts with noradrenergic terminals to enhance norepinephrine release by activation of AMPA receptors and that this enhancement is amplified in SHR.
Collapse
Affiliation(s)
- V A Russell
- Department of Human Biology, University of Cape Town, Faculty of Health Sciences., South Atrica.
| |
Collapse
|
25
|
Skolnick P, Legutko B, Li X, Bymaster FP. Current perspectives on the development of non-biogenic amine-based antidepressants. Pharmacol Res 2001; 43:411-23. [PMID: 11394932 DOI: 10.1006/phrs.2000.0806] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Compounds that inhibit the re-uptake and/or metabolism of biogenic amines (i.e. serotonin, norepinephrine, and dopamine) have been used to treat depression for more than 40 years. Selective re-uptake inhibitors, currently the most widely prescribed class of biogenic amine-based agents, are certainly safe and relatively easy to use, but do not exhibit either a faster onset of action or greater efficacy than their predecessors. An approach to overcome the limitations that may be inherent to these 'conventional' therapies is to circumvent the monoaminergic synapse. In this review, two potential antidepressant strategies are discussed that may converge with intracellular pathways impacted by chronic treatment with biogenic amine-based agents. Drugs emerging from these strategies may offer significant advantages over currently used antidepressants.
Collapse
Affiliation(s)
- P Skolnick
- Neuroscience Discovery, Eli Lilly and Co., Lilly Corporate Center, DC 0510, Indianapolis, IN 46285-0510, USA.
| | | | | | | |
Collapse
|