1
|
Antunes FTT, Campos MM, Carvalho VDPR, da Silva Junior CA, Magno LAV, de Souza AH, Gomez MV. Current Drug Development Overview: Targeting Voltage-Gated Calcium Channels for the Treatment of Pain. Int J Mol Sci 2023; 24:ijms24119223. [PMID: 37298174 DOI: 10.3390/ijms24119223] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 06/12/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) are targeted to treat pain conditions. Since the discovery of their relation to pain processing control, they are investigated to find new strategies for better pain control. This review provides an overview of naturally based and synthetic VGCC blockers, highlighting new evidence on the development of drugs focusing on the VGCC subtypes as well as mixed targets with pre-clinical and clinical analgesic effects.
Collapse
Affiliation(s)
- Flavia Tasmin Techera Antunes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Maria Martha Campos
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil
| | | | | | - Luiz Alexandre Viana Magno
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade Ciências Médicas de Minas Gerais (FCMMG), Belo Horizonte 30110-005, MG, Brazil
| | - Alessandra Hubner de Souza
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade Ciências Médicas de Minas Gerais (FCMMG), Belo Horizonte 30110-005, MG, Brazil
| | | |
Collapse
|
2
|
Voltage-dependent Ca V3.2 and Ca V2.2 channels in nociceptive pathways. Pflugers Arch 2022; 474:421-434. [PMID: 35043234 DOI: 10.1007/s00424-022-02666-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
Noxious stimuli like cold, heat, pH change, tissue damage, and inflammation depolarize a membrane of peripheral endings of specialized nociceptive neurons which eventually results in the generation of an action potential. The electrical signal is carried along a long axon of nociceptive neurons from peripheral organs to soma located in dorsal root ganglions and further to the dorsal horn of the spinal cord where it is transmitted through a chemical synapse and is carried through the spinal thalamic tract into the brain. Two subtypes of voltage-activated calcium play a major role in signal transmission: a low voltage-activated CaV3.2 channel and a high voltage-activated CaV2.2 channel. The CaV3.2 channel contributes mainly to the signal conductance along nociceptive neurons while the principal role of the CaV2.2 channel is in the synaptic transmission at the dorsal horn. Both channels contribute to the signal initiation at peripheral nerve endings. This review summarizes current knowledge about the expression and distribution of these channels in a nociceptive pathway, the regulation of their expression and gating during pain pathology, and their suitability as targets for pharmacological therapy.
Collapse
|
3
|
Modi H, Mazumdar B, Bhatt J. Study of interaction of tramadol with amlodipine in mice. Indian J Pharmacol 2013; 45:76-9. [PMID: 23543914 PMCID: PMC3608300 DOI: 10.4103/0253-7613.106440] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 10/04/2012] [Accepted: 10/29/2012] [Indexed: 11/05/2022] Open
Abstract
Objective: To study a possible interaction between tramadol, an opioid analgesic and amlodipine, a dihydropyridine calcium channel blocker with proposed antinociceptive property. Materials and Methods: Albino mice of Haffkine strain were used for the study. The experiment was carried out using tail-flick method. Different doses of tramadol (50 mg/kg, 22.8 mg/kg and 10 mg/kg) were administered intraperitoneally to select the nonanalgesic dose. The animals were treated with different doses of amlodipine (2.5 mg/kg, 3.0 mg/kg, 3.5 mg/kg) to study its antinociceptive action. Combination of different doses of both the drugs were administered to study antinociceptive effect of the combination. Results: Tramadol, showed dose dependent antinociception which persisted for entire two hours of the study period. Antinociceptive action was seen with amlodipine at a dose of 3.5 mg/kg. Different doses of amlodipine (2.5 mg/kg, 3.0 mg/kg) in combination with the nonanalgesic dose of tramadol (10 mg/kg) produced a significant enhancement of antinociceptive effect of tramadol. Combination of 3.5 mg/kg dose of amlodipine with nonanalgesic dose of tramadol (10 mg/kg) further enhances antinociceptive activity. Conclusion: It is concluded that combination of amlodipine, a N - type calcium channel blocker, with tramadol produce significant enhancement of antinociceptive activity of tramadol.
Collapse
Affiliation(s)
- Hiral Modi
- Department of Pharmacology, Medical College, Baroda, Gujarat, India
| | | | | |
Collapse
|
4
|
Stockner T, Koschak A. What can naturally occurring mutations tell us about Ca(v)1.x channel function? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1598-607. [PMID: 23219801 PMCID: PMC3787742 DOI: 10.1016/j.bbamem.2012.11.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 11/16/2012] [Accepted: 11/17/2012] [Indexed: 11/18/2022]
Abstract
Voltage-gated Ca2 + channels allow for Ca2 +-dependent intracellular signaling by directly mediating Ca2 + ion influx, by physical coupling to intracellular Ca2 + release channels or functional coupling to other ion channels such as Ca2 + activated potassium channels. L-type Ca2 + channels that comprise the family of Cav1 channels are expressed in many electrically excitable tissues and are characterized by their unique sensitivity to dihydropyridines. In this issue, we summarize genetic defects in L-type Ca2 + channels and analyze their role in human diseases (Ca2 + channelopathies); e.g. mutations in Cav1.2 α1 cause Timothy and Brugada syndrome, mutations in Cav1.3 α1 are linked to sinoatrial node dysfunction and deafness while mutations in Cav1.4 α1 are associated with X-linked retinal disorders such as an incomplete form of congenital stationary night blindness. Herein, we also put the mutations underlying the channel's dysfunction into the structural context of the pore-forming α1 subunit. This analysis highlights the importance of combining functional data with structural analysis to gain a deeper understanding for the disease pathophysiology as well as for physiological channel function. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- Thomas Stockner
- Medical University Vienna, Center for Physiology and Pharmacology, Department of Pharmacology, Währingerstrasse 13A, 1090 Vienna, Austria
| | | |
Collapse
|
5
|
Piekarz AD, Due MR, Khanna M, Wang B, Ripsch MS, Wang R, Meroueh SO, Vasko MR, White FA, Khanna R. CRMP-2 peptide mediated decrease of high and low voltage-activated calcium channels, attenuation of nociceptor excitability, and anti-nociception in a model of AIDS therapy-induced painful peripheral neuropathy. Mol Pain 2012; 8:54. [PMID: 22828369 PMCID: PMC3502107 DOI: 10.1186/1744-8069-8-54] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 07/02/2012] [Indexed: 11/10/2022] Open
Abstract
Background The ubiquity of protein-protein interactions in biological signaling offers ample opportunities for therapeutic intervention. We previously identified a peptide, designated CBD3, that suppressed inflammatory and neuropathic behavioral hypersensitivity in rodents by inhibiting the ability of collapsin response mediator protein 2 (CRMP-2) to bind to N-type voltage-activated calcium channels (CaV2.2) [Brittain et al. Nature Medicine 17:822–829 (2011)]. Results and discussion Here, we utilized SPOTScan analysis to identify an optimized variation of the CBD3 peptide (CBD3A6K) that bound with greater affinity to Ca2+ channels. Molecular dynamics simulations demonstrated that the CBD3A6K peptide was more stable and less prone to the unfolding observed with the parent CBD3 peptide. This mutant peptide, conjugated to the cell penetrating motif of the HIV transduction domain protein TAT, exhibited greater anti-nociception in a rodent model of AIDS therapy-induced peripheral neuropathy when compared to the parent TAT-CBD3 peptide. Remarkably, intraperitoneal administration of TAT-CBD3A6K produced none of the minor side effects (i.e. tail kinking, body contortion) observed with the parent peptide. Interestingly, excitability of dissociated small diameter sensory neurons isolated from rats was also reduced by TAT-CBD3A6K peptide suggesting that suppression of excitability may be due to inhibition of T- and R-type Ca2+ channels. TAT-CBD3A6K had no effect on depolarization-evoked calcitonin gene related peptide (CGRP) release compared to vehicle control. Conclusions Collectively, these results establish TAT-CBD3A6K as a peptide therapeutic with greater efficacy in an AIDS therapy-induced model of peripheral neuropathy than its parent peptide, TAT-CBD3. Structural modifications of the CBD3 scaffold peptide may result in peptides with selectivity against a particular subset of voltage-gated calcium channels resulting in a multipharmacology of action on the target.
Collapse
Affiliation(s)
- Andrew D Piekarz
- Department of Pharmacology and Toxicology, 950 West Walnut Street, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bahia PK, Bennett ES, Taylor-Clark TE. Reductions in external divalent cations evoke novel voltage-gated currents in sensory neurons. PLoS One 2012; 7:e31585. [PMID: 22328938 PMCID: PMC3273472 DOI: 10.1371/journal.pone.0031585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 01/09/2012] [Indexed: 12/31/2022] Open
Abstract
It has long been recognized that divalent cations modulate cell excitability. Sensory nerve excitability is of critical importance to peripheral diseases associated with pain, sensory dysfunction and evoked reflexes. Thus we have studied the role these cations play on dissociated sensory nerve activity. Withdrawal of both Mg2+ and Ca2+ from external solutions activates over 90% of dissociated mouse sensory neurons. Imaging studies demonstrate a Na+ influx that then causes depolarization-mediated activation of voltage-gated Ca2+ channels (CaV), which allows Ca2+ influx upon divalent re-introduction. Inhibition of CaV (ω-conotoxin, nifedipine) or NaV (tetrodotoxin, lidocaine) fails to reduce the Na+ influx. The Ca2+ influx is inhibited by CaV inhibitors but not by TRPM7 inhibition (spermine) or store-operated channel inhibition (SKF96365). Withdrawal of either Mg2+ or Ca2+ alone fails to evoke cation influxes in vagal sensory neurons. In electrophysiological studies of dissociated mouse vagal sensory neurons, withdrawal of both Mg2+ and Ca2+ from external solutions evokes a large slowly-inactivating voltage-gated current (IDF) that cannot be accounted for by an increased negative surface potential. Withdrawal of Ca2+ alone fails to evoke IDF. Evidence suggests IDF is a non-selective cation current. The IDF is not reduced by inhibition of NaV (lidocaine, riluzole), CaV (cilnidipine, nifedipine), KV (tetraethylammonium, 4-aminopyridine) or TRPM7 channels (spermine). In summary, sensory neurons express a novel voltage-gated cation channel that is inhibited by external Ca2+ (IC50∼0.5 µM) or Mg2+ (IC50∼3 µM). Activation of this putative channel evokes substantial cation fluxes in sensory neurons.
Collapse
Affiliation(s)
- Parmvir K. Bahia
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Eric S. Bennett
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Thomas E. Taylor-Clark
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
7
|
Yamamoto S, Tanabe M, Ono H. N- and L-Type Voltage-Dependent Ca 2+ Channels Contribute to the Generation of After-Discharges in the Spinal Ventral Root After Cessation of Noxious Mechanical Stimulation. J Pharmacol Sci 2012; 119:82-90. [DOI: 10.1254/jphs.12035fp] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
8
|
A region of N-type Ca2+ channel critical for blockade by the dihydropyridine amlodipine. Eur J Pharmacol 2010; 632:14-22. [DOI: 10.1016/j.ejphar.2010.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 12/08/2009] [Accepted: 01/12/2010] [Indexed: 11/20/2022]
|
9
|
Differential expression of L- and N-type voltage-sensitive calcium channels in the spinal cord of morphine+nimodipine treated rats. Brain Res 2009; 1249:128-34. [DOI: 10.1016/j.brainres.2008.10.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 09/05/2008] [Accepted: 10/17/2008] [Indexed: 11/22/2022]
|
10
|
|
11
|
Hereditary pancreatitis amlodipine trial: a pilot study of a calcium-channel blocker in hereditary pancreatitis. Pancreas 2007; 35:308-12. [PMID: 18090235 DOI: 10.1097/mpa.0b013e318120023a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Hereditary pancreatitis (HP) is a form of recurrent acute pancreatitis (AP) mediated by mutations in cationic trypsinogen (PRSS1). Mutations cluster in the calcium-associated regulator regions of PRSS1. In rats, calcium-channel blockers (CCB) prevent hyperstimulation-associated AP. Because of the potential importance of hyperstimulation in triggering episodes of AP in HP, we designed a pilot study to evaluate the safety and potential benefit of CCB use in HP. METHODS Subjects 6 years or older had a PRSS1 mutation, recurrent AP, and pain. Total study duration was 16 weeks. Amlodipine was given during weeks 0 to 11. Dose (2.5, 5, or 10 mg) was based on weight (range, 0.08-0.17 mg x kg(-1) x d(-1)). Subjects filled a daily diary including pain (0-10 scale) and blood pressure reading. Clinical assessments occurred at weeks -4, 0, 1, 2, 6, 10, 11, and 12. Subjects filled a Medical Outcomes Study Short-Form Survey version 2 (SF-10 for children <14 years old) at weeks -4, 0, 6, and 10. Data were compared for weeks -4 to 0 and 6 to 10. RESULTS Nine subjects signed informed consent (4 males; 12-52 years old). Four were excluded during the screening phase. Drug was discontinued in one due to development of unilateral lower-extremity numbness. Four subjects (12-31 years old) completed the study. Mean blood pressure, laboratory tests, physical findings, and daily pain scores did not clinically significantly differ before and during drug therapy, but all reported reduced symptoms. Three reduced analgesic use. Three had improved scores on the Medical Outcomes Study Short-Form Survey version 2. CONCLUSIONS Amlodipine is generally safe in subjects with HP and does not increase pain or episodes of AP. Further research into the mechanism of CCB on pancreatitis would be important to provide a pathophysiologic basis to support further trials in HP.
Collapse
|
12
|
Hoda JC, Zaghetto F, Koschak A, Striessnig J. Congenital stationary night blindness type 2 mutations S229P, G369D, L1068P, and W1440X alter channel gating or functional expression of Ca(v)1.4 L-type Ca2+ channels. J Neurosci 2005; 25:252-9. [PMID: 15634789 PMCID: PMC6725195 DOI: 10.1523/jneurosci.3054-04.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in the CACNA1F gene (voltage-dependent L-type calcium channel alpha1F subunit) encoding retinal Ca(v)1.4 L-type Ca2+ channels cause X-linked recessive congenital stationary night blindness type 2 (CSNB2). Many of them are predicted to yield nonfunctional channels. Complete loss of Ca(v)1.4 function is therefore regarded as a pathogenetic mechanism for the impaired signaling from photoreceptors to second-order retinal neurons. We investigated the functional consequences of CSNB2 missense mutations S229P, G369D, and L1068P and the C-terminal truncation mutant W1440X. After expression in Xenopus laevis oocytes or human embryonic kidney tsA-201 cells, inward Ca2+ current (I(Ca)) and inward Ba2+ current (I(Ba)) could be recorded from mutations G369D and L1068P. G369D shifted the half-maximal voltage for channel activation (V(0.5,act)) significantly to more negative potentials (>11 mV), slowed inactivation, and removed Ca2+-dependent inactivation. The L1068P mutant yielded currents only in the presence of the channel activator BayK8644. Currents (I(Ba)) inactivated faster than wild type (WT) and recovered more slowly from inactivation (I(Ba) and I(Ca)). No channel activity could be measured for mutants S229P and W1440X after oocyte expression. No W1440X alpha1 protein was detected after expression in tsA-201 cells, whereas S229P (as well as G369D and L1068P) alpha1 subunits were expressed at levels indistinguishable from WT (n = 3). Our data provide unequivocal evidence that CSNB2 missense mutations can induce severe changes in Ca(v)1.4 function, which may decrease (L1068P and S229P) or even increase (G369D) channel activity. The lower activation range of G369D can explain the reduced dynamic range of photoreceptor signaling. Moreover, we demonstrate that loss of channel function of one (L1068P) CSNB2 mutation can be rescued by a Ca2+ channel activator.
Collapse
Affiliation(s)
- Jean-Charles Hoda
- Abteilung Pharmakologie und Toxikologie, Institut für Pharmazie, Universität Innsbruck, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
13
|
Suzuki H, Mobarakeh JI, Nunoki K, Sukegawa J, Watanabe H, Kuramasu A, Watanabe T, Yanai K, Yanagisawa T. Effects of activation of central nervous histamine receptors in cardiovascular regulation; studies in H(1) and H(2) receptor gene knockout mice. Naunyn Schmiedebergs Arch Pharmacol 2005; 371:99-106. [PMID: 15735960 DOI: 10.1007/s00210-005-1031-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Accepted: 01/27/2005] [Indexed: 12/15/2022]
Abstract
To elucidate the central roles of histamine receptors in cardiovascular regulatory system, systolic, mean, and diastolic blood pressures (BPs) and heart rate (HR) were examined in conscious H(1) receptor gene knockout (H(1)KO) mice, H(2) receptor gene knockout (H(2)KO) mice, H(1) and H(2) receptor gene double knockout (DKO) mice, and their respective control mice by the tail-cuff system. Histamine, histamine-trifluoromethyl-toluidine derivative (HTMT, an H(1) agonist), dimaprit (an H(2) agonist), and immepip (an H(3) agonist) were intrathecally administered to these KO mice and control mice. Basal BPs and HR were not different among these three KO mice and their control or wild-type mice. Intrathecal administration of histamine significantly increased BPs and decreased HR in control mice. The increases in BPs were produced by histamine in H(1)KO and H(2)KO mice and by HTMT and dimaprit in C57BL mice. The pressor responses by HTMT and dimaprit in C57BL mice were greater than those by histamine in H(1)KO and H(2)KO mice, although the same decreases in HR were induced by histamine in C57BL and H(1)KO mice and by dimaprit in C57BL mice. The selective stimulation of H(3) receptors by immepip produced a consistent decrease in BPs in control mice. These results obtained with the exogenous selective agonists of three histamine receptors suggest that the pressor responses to histamine are mediated through the stimulation of both H(1) and H(2) receptors, whereas the atropine-sensitive decrease in heart rate is mainly due to H(2) receptors which activate the vagal output to the heart.
Collapse
Affiliation(s)
- Hideaki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
L-type calcium channels couple membrane depolarization in neurons to numerous processes including gene expression, synaptic efficacy, and cell survival. To establish the contribution of L-type calcium channels to various signaling cascades, investigators have relied on their unique pharmacological sensitivity to dihydropyridines. The traditional view of dihydropyridine-sensitive L-type calcium channels is that they are high-voltage–activating and have slow activation kinetics. These properties limit the involvement of L-type calcium channels to neuronal functions triggered by strong and sustained depolarizations. This review highlights literature, both long-standing and recent, that points to significant functional diversity among L-type calcium channels expressed in neurons and other excitable cells. Past literature contains several reports of low-voltage–activated neuronal L-type calcium channels that parallel the unique properties of recently cloned CaV1.3 L-type channels. The fast kinetics and low activation thresholds of CaV1.3 channels stand in stark contrast to criteria currently used to describe L-type calcium channels. A more accurate view of neuronal L-type calcium channels encompasses a broad range of activation thresholds and recognizes their potential contribution to signaling cascades triggered by subthreshold depolarizations.
Collapse
Affiliation(s)
- Diane Lipscombe
- Department of Neuroscience, Brown University, 190 Thayer Street, Providence, RI 02912, USA.
| | | | | |
Collapse
|
15
|
Teodori E, Baldi E, Dei S, Gualtieri F, Romanelli MN, Scapecchi S, Bellucci C, Ghelardini C, Matucci R. Design, Synthesis, and Preliminary Pharmacological Evaluation of 4-Aminopiperidine Derivatives as N-Type Calcium Channel Blockers Active on Pain and Neuropathic Pain. J Med Chem 2004; 47:6070-81. [PMID: 15537361 DOI: 10.1021/jm049923l] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several compounds with a 4-aminopiperidine scaffold decorated on both nitrogen atoms by alkyl or acyl moieties containing the structural motifs of verapamil and of flunarizine, as well as those that are more frequent in known N-type calcium channel antagonists, have been synthesized. Antinociceptive activity on the mouse hot-plate test was used to select molecules to be submitted to further studies. Active compounds were tested in vitro on a PC12 rat pheochromocytoma clonal cell line, to evaluate their action on N-type calcium channels, and on a rat model of neuropathic pain. Two compounds that show N-type calcium channel antagonism and are endowed with potent action on pain and neuropathic pain (3 and 18) have been selected for further studies.
Collapse
Affiliation(s)
- Elisabetta Teodori
- Dipartimento di Scienze Farmaceutiche, Università di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (FI), Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Murakami M, Mori T, Nakagawasai O, Hagiwara K, Sakurada Y, Mobarakeh II, Murata A, Yamadera F, Miyoshi I, Tan-No K, Yanai K, Tadano T, Iijima T. Inhibitory effect of pranidipine on N-type voltage-dependent Ca2+ channels in mice. Neurosci Lett 2004; 367:118-22. [PMID: 15308311 DOI: 10.1016/j.neulet.2004.05.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2004] [Revised: 05/23/2004] [Accepted: 05/27/2004] [Indexed: 10/26/2022]
Abstract
We investigated the N-type voltage-dependent calcium channel blocking action of pranidipine, a novel dihydropyridine (DHP) derivative. Pranidipine significantly suppressed KCl-induced intracellular calcium changes ([Ca(2+)](i)) in a dose-dependent fashion in dorsal root ganglion neurons. A patch-clamp investigation revealed a dose-dependent blocking effect on N-type currents. Intrathecal injection of pranidipine significantly shortened the licking time in the late phase of the formalin test, as occurs with cilnidipine and amlodipine, which act on L- and N-type channels. Conversely, nicardipine, which acts exclusively on L-type channels, had no antinociceptive effect. Our results indicate that pranidipine inhibits N-type calcium channels. Furthermore, it exerts an antinociceptive effect, which might be related to an attenuation of synaptic transmission by nociceptive neurons due to the blocking effect of pranidipine on N-type calcium channels in primary nociceptive afferent fibers.
Collapse
Affiliation(s)
- Manabu Murakami
- Department of Pharmacology, Akita University School of Medicine, 1-1-1 Hondoh, Akita 010-8543, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Murakami M, Miyoshi I, Suzuki T, Sasano H, Iijima T. Structures of the murine genes for the beta1- and beta4-subunits of the voltage-dependent calcium channel. J Mol Neurosci 2003; 21:13-21. [PMID: 14500989 DOI: 10.1385/jmn:21:1:13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2002] [Accepted: 12/25/2002] [Indexed: 11/11/2022]
Abstract
The structures of the genomic DNA of the murine beta1- and beta4-subunits of the voltage-dependent calcium channel were mapped by comparing genomic and cDNA sequences. The gene structure analysis revealed that the murine beta1 gene consists of 15 translated exons spread over 19 kb of the genome, whereas the beta4 gene consists of 13 translated exons spread over 124 kb of the genome. Alternative spliced transcripts of the beta1 gene were also characterized. Although the total lengths differ, these subunits have exon-intron organization similar to the murine beta2- and beta3-, and human beta4-subunits, showing the highly conserved gene structure of this family. Furthermore, mRNA of these beta-subunits is strongly expressed in dorsal root ganglion neurons, which have many voltage-dependent calcium channels.
Collapse
Affiliation(s)
- Manabu Murakami
- Department of Pharmacology, Akita University School of Medicine, 1-1-1, Hondou, Akita 010-8543, Japan.
| | | | | | | | | |
Collapse
|
18
|
Abstract
Systemic administration of analgesics can lead to serious adverse side effects compromising therapeutic benefit in some patients. Information coding pain transmits along an afferent neuronal network, the first synapses of which reside principally in the spinal cord. Delivery of compounds to spinal cord, the intended site of action for some analgesics, is potentially a more efficient and precise method for inhibiting the pain signal. Activation of specific proteins that reside in spinal neuronal membranes can result in hyperpolarization of secondary neurons, which can prevent transmission of the pain signal. This is one of the mechanisms by which opioids induce analgesia. The spinal cord is enriched in such molecular targets, the activation of which inhibit the transmission of the pain signal early in the afferent neuronal network. This review describes the pre-clinical models that enable new target discovery and development of novel analgesics for site-directed pain management.
Collapse
|
19
|
Cav1.4alpha1 subunits can form slowly inactivating dihydropyridine-sensitive L-type Ca2+ channels lacking Ca2+-dependent inactivation. J Neurosci 2003. [PMID: 12853422 DOI: 10.1523/jneurosci.23-14-06041.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neuronal L-type calcium channels (LTCCs) Cav1.2alpha1 and Cav1.3alpha1 are functionally distinct. Cav1.3alpha1 activates at lower voltages and inactivates more slowly than Cav1.2alpha1, making it suitable to support sustained L-type Ca2+ inward currents (ICa,L) and serve in pacemaker functions. We compared the biophysical and pharmacological properties of human retinal Cav1.4alpha1 using the whole-cell patch-clamp technique after heterologous expression in tsA-201 cells with other L-type alpha1 subunits. Cav1.4alpha1-mediated inward Ba2+ currents (IBa) required the coexpression of alpha2delta1 and beta3 or beta2a subunits and were detected in a lower proportion of transfected cells than Cav1.3alpha1. IBa activated at more negative voltages (5% activation threshold; -39mV; 15 mm Ba2+) than Cav1.2alpha1 and slightly more positive than Cav1.3alpha1. Voltage-dependent inactivation of IBa was slower than for Cav1.2alpha1 and Cav1.3alpha1( approximately 50% inactivation after 5 sec; alpha2delta1 + beta3 coexpression). Inactivation was not increased with Ca2+ as the charge carrier, indicating the absence of Ca2+-dependent inactivation. Cav1.4alpha1 exhibited voltage-dependent, G-protein-independent facilitation by strong depolarizing pulses. The dihydropyridine (DHP)-antagonist isradipine blocked Cav1.4alpha1 with approximately 15-fold lower sensitivity than Cav1.2alpha1 and in a voltage-dependent manner. Strong stimulation by the DHP BayK 8644 was found despite the substitution of an otherwise L-type channel-specific tyrosine residue in position 1414 (repeat IVS6) by a phenylalanine. Cav1.4alpha1 + alpha2delta1 + beta channel complexes can form LTCCs with intermediate DHP antagonist sensitivity lacking Ca2+-dependent inactivation. Their biophysical properties should enable them to contribute to sustained ICa,L at negative potentials, such as required for tonic neurotransmitter release in sensory cells and plateau potentials in spiking neurons.
Collapse
|
20
|
Hagiwara K, Nakagawasai O, Murata A, Yamadera F, Miyoshi I, Tan-No K, Tadano T, Yanagisawa T, Iijima T, Murakami M. Analgesic action of loperamide, an opioid agonist, and its blocking action on voltage-dependent Ca2+ channels. Neurosci Res 2003; 46:493-7. [PMID: 12871771 DOI: 10.1016/s0168-0102(03)00126-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the relationship between the antinociceptive effect of the opiate agonist loperamide at the spinal level and its inhibitory effect on calcium influx. Intrathecal administration of loperamide showed a significant antinociceptive effect in the formalin test, which was not prevented by naloxone. On the other hand, no significant effects were observed by nicardipine, an L-type specific blocker, or by BAY K8644, an L-type specific agonist, suggesting no significant role of L-type calcium channels in nociceptive signal transduction. Loperamide suppressed the calcium influx in dorsal root ganglion neurons. As the antinociceptive effect of loperamide was not affected by naloxone or other calcium channel blocking toxins, and loperamide showed a direct inhibitory effect on calcium-influx, the analgesic effect of intrathecally injected loperamide might be due to its blockade of the voltage-dependent calcium channels at the terminals of the primary afferent fibers.
Collapse
Affiliation(s)
- Kunie Hagiwara
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi Aobaku, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Murakami M, Fleischmann B, De Felipe C, Freichel M, Trost C, Ludwig A, Wissenbach U, Schwegler H, Hofmann F, Hescheler J, Flockerzi V, Cavalié A. Pain perception in mice lacking the beta3 subunit of voltage-activated calcium channels. J Biol Chem 2002; 277:40342-51. [PMID: 12161429 DOI: 10.1074/jbc.m203425200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The importance of voltage-activated calcium channels in pain processing has been suggested by the spinal antinociceptive action of blockers of N- and P/Q-type calcium channels as well as by gene targeting of the alpha1B subunit (N-type). The accessory beta3 subunits of calcium channels are preferentially associated with the alpha1B subunit in neurones. Here we show that deletion of the beta3 subunit by gene targeting affects strongly the pain processing of mutant mice. We pinpoint this defect in the pain-related behavior and ascending pain pathways of the spinal cord in vivo and at the level of calcium channel currents and proteins in single dorsal root ganglion neurones in vitro. The pain induced by chemical inflammation is preferentially damped by deletion of beta3 subunits, whereas responses to acute thermal and mechanical harmful stimuli are reduced moderately or not at all, respectively. The defect results in a weak wind-up of spinal cord activity during intense afferent nerve stimulation. The molecular mechanism responsible for the phenotype was traced to low expression of N-type calcium channels (alpha1B) and functional alterations of calcium channel currents in neurones projecting to the spinal cord.
Collapse
Affiliation(s)
- Manabu Murakami
- Pharmakologie und Toxikologie, Universität des Saarlandes, D-66421 Homburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|