1
|
Liu J, Dai Q, Qu T, Ma J, Lv C, Wang H, Yu Y. Ameliorating effects of transcutaneous auricular vagus nerve stimulation on a mouse model of constipation-predominant irritable bowel syndrome. Neurobiol Dis 2024; 193:106440. [PMID: 38369213 DOI: 10.1016/j.nbd.2024.106440] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024] Open
Abstract
Limited treatment options have been shown to alter the natural course of constipation-predominant irritable bowel syndrome (IBS-C). Therefore, safer and more effective approaches are urgently needed. We investigated the effects of transcutaneous auricular vagus nerve stimulation (taVNS) in a mouse model of IBS-C. In the current study, C57BL/6 mice were randomly divided into normal control, IBS-C model control, sham-electrostimulation (sham-ES), taVNS, and drug treatment groups. The effects of taVNS on fecal pellet number, fecal water content, and gastrointestinal transit were evaluated in IBS-C model mice. We assessed the effect of taVNS on visceral hypersensitivity using the colorectal distention test. 16S rRNA sequencing was used to analyze the fecal microbiota of the experimental groups. First, we found that taVNS increased fecal pellet number, fecal water content, and gastrointestinal transit in IBS-C model mice compared with the sham-ES group. Second, taVNS significantly decreased the abdominal withdrawal reflex (AWR) score compared with the sham-ES group, thus relieving visceral hyperalgesia. Third, the gut microbiota outcomes showed that taVNS restored Lactobacillus abundance while increasing Bifidobacterium probiotic abundance at the genus level. Notably, taVNS increased the number of c-kit-positive interstitial cells of Cajal (ICC) in the myenteric plexus region in IBS-C mice compared with the sham-ES group. Therefore, our study indicated that taVNS effectively ameliorated IBS-C in the gut microbiota and ICC.
Collapse
Affiliation(s)
- Jie Liu
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Qian Dai
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230001, Anhui Province, China
| | - Tong Qu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230001, Anhui Province, China
| | - Jun Ma
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Chaolan Lv
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Haitao Wang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230001, Anhui Province, China.
| | - Yue Yu
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China.
| |
Collapse
|
2
|
Evans C, Howells K, Suzuki R, Brown AJH, Cox HM. Regional characterisation of TRPV1 and TRPA1 signalling in the mouse colon mucosa. Eur J Pharmacol 2023; 954:175897. [PMID: 37394028 PMCID: PMC10847397 DOI: 10.1016/j.ejphar.2023.175897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Capsaicin and allyl isothiocyanate (AITC) activate transient receptor potential (TRP) vanilloid-1 (TRPV1) and TRP ankyrin-1 (TRPA1), respectively. TRPV1 and TRPA1 expression have been identified in the gastrointestinal (GI) tract. GI mucosal functions remain largely undefined for TRPV1 and TRPA1 with side-dependence and regional differences in signalling unclear. Here we investigated TRPV1- and TRPA1-induced vectorial ion transport as changes in short-circuit current (ΔIsc), in defined segments of mouse colon mucosa (ascending, transverse and descending) under voltage-clamp conditions in Ussing chambers. Drugs were applied basolaterally (bl) or apically (ap). Capsaicin responses were biphasic, with primary secretory and secondary anti-secretory phases, observed with bl application only, which predominated in descending colon. AITC responses were monophasic and secretory, with ΔIsc dependent on colonic region (ascending vs. descending) and sidedness (bl vs. ap). Aprepitant (neurokinin-1 (NK1) antagonist, bl) and tetrodotoxin (Na+ channel blocker, bl) significantly inhibited capsaicin primary responses in descending colon, while GW627368 (EP4 receptor antagonist, bl) and piroxicam (cyclooxygenase inhibitor, bl) inhibited AITC responses in ascending and descending colonic mucosae. Antagonism of the calcitonin gene-related peptide (CGRP) receptor had no effect on mucosal TRPV1 signalling, while tetrodotoxin and antagonists of the 5-hydroxytryptamine-3 and 4 receptors, CGRP receptor, and EP1/2/3 receptors had no effect on mucosal TRPA1 signalling. Our data demonstrates the regional-specificity and side-dependence of colonic TRPV1 and TRPA1 signalling, with involvement of submucosal neurons and mediation by epithelial NK1 receptor activation for TRPV1, and endogenous prostaglandins and EP4 receptor activation for TRPA1 mucosal responses.
Collapse
Affiliation(s)
- Caryl Evans
- King's College London, Wolfson Centre for Age-Related Diseases, Institute of Psychology, Psychiatry and Neuroscience, Hodgkin Building, Guy's Campus, London, SE1 1UL, UK.
| | - Kathryn Howells
- Northern General Hospital, Herries Road, Sheffield, S5 7AU, UK
| | - Rie Suzuki
- Heptares Therapeutics Ltd, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | - Alastair J H Brown
- Heptares Therapeutics Ltd, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | - Helen M Cox
- King's College London, Wolfson Centre for Age-Related Diseases, Institute of Psychology, Psychiatry and Neuroscience, Hodgkin Building, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
3
|
Perna E, Aguilera-Lizarraga J, Florens MV, Jain P, Theofanous SA, Hanning N, De Man JG, Berg M, De Winter B, Alpizar YA, Talavera K, Vanden Berghe P, Wouters M, Boeckxstaens G. Effect of resolvins on sensitisation of TRPV1 and visceral hypersensitivity in IBS. Gut 2021; 70:1275-1286. [PMID: 33023902 DOI: 10.1136/gutjnl-2020-321530] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Resolvins (RvD1, RvD2 and RvE1) are endogenous anti-inflammatory lipid mediators that display potent analgesic properties in somatic pain by modulating transient receptor potential vanilloid 1 (TRPV1) activation. To what extent these molecules could also have a beneficial effect on TRPV1 sensitisation and visceral hypersensitivity (VHS), mechanisms involved in IBS, remains unknown. DESIGN The effect of RvD1, RvD2 and RvE1 on TRPV1 activation and sensitisation by histamine or IBS supernatants was assessed on murine dorsal root ganglion (DRG) neurons using live Ca2+ imaging. Based on the results obtained in vitro, we further studied the effect of RvD2 in vivo using a murine model of post-infectious IBS and a rat model of post-inflammatory VHS. Finally, we also tested the effect of RvD2 on submucosal neurons in rectal biopsies of patients with IBS. RESULTS RvD1, RvD2 and RvE1 prevented histamine-induced TRPV1 sensitisation in DRG neurons at doses devoid of an analgesic effect. Of note, RvD2 also reversed TRPV1 sensitisation by histamine and IBS supernatant. This effect was blocked by the G protein receptor 18 (GPR18) antagonist O-1918 (3-30 µM) and by pertussis toxin. In addition, RvD2 reduced the capsaicin-induced Ca2+ response of rectal submucosal neurons of patients with IBS. Finally, treatment with RvD2 normalised pain responses to colorectal distention in both preclinical models of VHS. CONCLUSIONS Our data suggest that RvD2 and GPR18 agonists may represent interesting novel compounds to be further evaluated as treatment for IBS.
Collapse
Affiliation(s)
- Eluisa Perna
- Center of Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Javier Aguilera-Lizarraga
- Center of Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Morgane V Florens
- Center of Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Piyush Jain
- Center of Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Stavroula A Theofanous
- Center of Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Nikita Hanning
- Laboratory of Experimental Medicine and Pediatrics (LEMP) and Infla-Med, research consortium of excellence, University of Antwerp, Antwerp, Belgium
| | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics (LEMP) and Infla-Med, research consortium of excellence, University of Antwerp, Antwerp, Belgium
| | - Maya Berg
- Laboratory of Experimental Medicine and Pediatrics (LEMP) and Infla-Med, research consortium of excellence, University of Antwerp, Antwerp, Belgium
| | - Benedicte De Winter
- Laboratory of Experimental Medicine and Pediatrics (LEMP) and Infla-Med, research consortium of excellence, University of Antwerp, Antwerp, Belgium
| | | | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Mira Wouters
- Center of Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Guy Boeckxstaens
- Center of Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Abstract
The gut-brain axis is a coordinated communication system that not only maintains homeostasis, but significantly influences higher cognitive functions and emotions, as well as neurological and behavioral disorders. Among the large populations of sensory and motor neurons that innervate the gut, insights into the function of primary afferent nociceptors, whose cell bodies reside in the dorsal root ganglia and nodose ganglia, have revealed their multiple crosstalk with several cell types within the gut wall, including epithelial, vascular, and immune cells. These bidirectional communications have immunoregulatory functions, control host response to pathogens, and modulate sensations associated with gastrointestinal disorders, through activation of immune cells and glia in the peripheral and central nervous system, respectively. Here, we will review the cellular and neurochemical basis of these interactions at the periphery, in dorsal root ganglia, and in the spinal cord. We will discuss the research gaps that should be addressed to get a better understanding of the multifunctional role of sensory neurons in maintaining gut homeostasis and regulating visceral sensitivity.
Collapse
Affiliation(s)
- Nasser Abdullah
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Manon Defaye
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Smith-Edwards KM, Najjar SA, Edwards BS, Howard MJ, Albers KM, Davis BM. Extrinsic Primary Afferent Neurons Link Visceral Pain to Colon Motility Through a Spinal Reflex in Mice. Gastroenterology 2019; 157:522-536.e2. [PMID: 31075226 PMCID: PMC6995031 DOI: 10.1053/j.gastro.2019.04.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/08/2019] [Accepted: 04/22/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Proper colon function requires signals from extrinsic primary afferent neurons (ExPANs) located in spinal ganglia. Most ExPANs express the vanilloid receptor TRPV1, and a dense plexus of TRPV1-positive fibers is found around myenteric neurons. Capsaicin, a TRPV1 agonist, can initiate activity in myenteric neurons and produce muscle contraction. ExPANs might therefore form motility-regulating synapses onto myenteric neurons. ExPANs mediate visceral pain, and myenteric neurons mediate colon motility, so we investigated communication between ExPANs and myenteric neurons and the circuits by which ExPANs modulate colon function. METHODS In live mice and colon tissues that express a transgene encoding the calcium indicator GCaMP, we visualized levels of activity in myenteric neurons during smooth muscle contractions induced by application of capsaicin, direct colon stimulation, stimulation of ExPANs, or stimulation of preganglionic parasympathetic neuron (PPN) axons. To localize central targets of ExPANs, we optogenetically activated TRPV1-expressing ExPANs in live mice and then quantified Fos immunoreactivity to identify activated spinal neurons. RESULTS Focal electrical stimulation of mouse colon produced phased-locked calcium signals in myenteric neurons and produced colon contractions. Stimulation of the L6 ventral root, which contains PPN axons, also produced myenteric activation and contractions that were comparable to those of direct colon stimulation. Surprisingly, capsaicin application to the isolated L6 dorsal root ganglia, which produced robust calcium signals in neurons throughout the ganglion, did not activate myenteric neurons. Electrical activation of the ganglia, which activated even more neurons than capsaicin, did not produce myenteric activation or contractions unless the spinal cord was intact, indicating that a complete afferent-to-efferent (PPN) circuit was necessary for ExPANs to regulate myenteric neurons. In TRPV1-channel rhodopsin-2 mice, light activation of ExPANs induced a pain-like visceromotor response and expression of Fos in spinal PPN neurons. CONCLUSIONS In mice, ExPANs regulate myenteric neuron activity and smooth muscle contraction via a parasympathetic spinal circuit, linking sensation and pain to motility.
Collapse
Affiliation(s)
- Kristen M. Smith-Edwards
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania,Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sarah A. Najjar
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania,Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian S. Edwards
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania,Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Kathryn M. Albers
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania,Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian M. Davis
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania,Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Delvalle NM, Dharshika C, Morales-Soto W, Fried DE, Gaudette L, Gulbransen BD. Communication Between Enteric Neurons, Glia, and Nociceptors Underlies the Effects of Tachykinins on Neuroinflammation. Cell Mol Gastroenterol Hepatol 2018; 6:321-344. [PMID: 30116771 PMCID: PMC6091443 DOI: 10.1016/j.jcmgh.2018.05.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 05/18/2018] [Indexed: 12/18/2022]
Abstract
Background & Aims Tachykinins are involved in physiological and pathophysiological mechanisms in the gastrointestinal tract. The major sources of tachykinins in the gut are intrinsic enteric neurons in the enteric nervous system and extrinsic nerve fibers from the dorsal root and vagal ganglia. Although tachykinins are important mediators in the enteric nervous system, how they contribute to neuroinflammation through effects on neurons and glia is not fully understood. Here, we tested the hypothesis that tachykinins contribute to enteric neuroinflammation through mechanisms that involve intercellular neuron-glia signaling. Methods We used immunohistochemistry and quantitative real-time polymerase chain reaction, and studied cellular activity using transient-receptor potential vanilloid-1 (TRPV1)tm1(cre)Bbm/J::Polr2atm1(CAG-GCaMP5g,-tdTomato)Tvrd and Sox10CreERT2::Polr2atm1(CAG-GCaMP5g,-tdTomato)Tvrd mice or Fluo-4. We used the 2,4-di-nitrobenzene sulfonic acid (DNBS) model of colitis to study neuroinflammation, glial reactivity, and neurogenic contractility. We used Sox10::CreERT2+/-/Rpl22tm1.1Psam/J mice to selectively study glial transcriptional changes. Results Tachykinins are expressed predominantly by intrinsic neuronal varicosities whereas neurokinin-2 receptors (NK2Rs) are expressed predominantly by enteric neurons and TRPV1-positive neuronal varicosities. Stimulation of NK2Rs drives responses in neuronal varicosities that are propagated to enteric glia and neurons. Antagonizing NK2R signaling enhanced recovery from colitis and prevented the development of reactive gliosis, neuroinflammation, and enhanced neuronal contractions. Inflammation drove changes in enteric glial gene expression and function, and antagonizing NK2R signaling mitigated these changes. Neurokinin A-induced neurodegeneration requires glial connexin-43 hemichannel activity. Conclusions Our results show that tachykinins drive enteric neuroinflammation through a multicellular cascade involving enteric neurons, TRPV1-positive neuronal varicosities, and enteric glia. Therapies targeting components of this pathway could broadly benefit the treatment of dysmotility and pain after acute inflammation in the intestine.
Collapse
Key Words
- BzATP, 2’(3’)-O-(4-benzoylbenzoyl)adenosine 5’-triphosphate triethylammonium salt
- Ca2+, calcium
- Colitis
- Cx43, connexin-43
- DMEM, Dulbecco's modified Eagle medium
- DNBS, dinitrobenzene sulfonic acid
- EFS, electrical field stimulation
- ENS, enteric nervous system
- Enteric Nervous System
- FGID, functional gastrointestinal disorder
- GFAP, glial fibrillary acidic protein
- GI, gastrointestinal
- Glia
- HA, hemagglutinin
- IPAN, intrinsic primarily afferent neuron
- LMMP, longitudinal muscle–myenteric plexus
- MSU, Michigan State University
- NK1R, neurokinin-1 receptor
- NK2R, neurokinin-2 receptor
- NKA, neurokinin A
- Neurokinins
- SP, substance P
- TRPV1, transient receptor potential vanilloid-1
- mRNA, messenger RNA
Collapse
Affiliation(s)
| | - Christine Dharshika
- Genetics Program, Michigan State University, East Lansing, Michigan
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | | | - David E. Fried
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Lukas Gaudette
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Brian D. Gulbransen
- Neuroscience Program, Michigan State University, East Lansing, Michigan
- Department of Physiology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
7
|
Balemans D, Boeckxstaens GE, Talavera K, Wouters MM. Transient receptor potential ion channel function in sensory transduction and cellular signaling cascades underlying visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol 2017; 312:G635-G648. [PMID: 28385695 DOI: 10.1152/ajpgi.00401.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/21/2017] [Accepted: 04/01/2017] [Indexed: 01/31/2023]
Abstract
Visceral hypersensitivity is an important mechanism underlying increased abdominal pain perception in functional gastrointestinal disorders including functional dyspepsia, irritable bowel syndrome, and inflammatory bowel disease in remission. Although the exact pathophysiological mechanisms are poorly understood, recent studies described upregulation and altered functions of nociceptors and their signaling pathways in aberrant visceral nociception, in particular the transient receptor potential (TRP) channel family. A variety of TRP channels are present in the gastrointestinal tract (TRPV1, TRPV3, TRPV4, TRPA1, TRPM2, TRPM5, and TRPM8), and modulation of their function by increased activation or sensitization (decreased activation threshold) or altered expression in visceral afferents have been reported in visceral hypersensitivity. TRP channels directly detect or transduce osmotic, mechanical, thermal, and chemosensory stimuli. In addition, pro-inflammatory mediators released in tissue damage or inflammation can activate receptors of the G protein-coupled receptor superfamily leading to TRP channel sensitization and activation, which amplify pain and neurogenic inflammation. In this review, we highlight the present knowledge on the functional roles of neuronal TRP channels in visceral hypersensitivity and discuss the signaling pathways that underlie TRP channel modulation. We propose that a better understanding of TRP channels and their modulators may facilitate the development of more selective and effective therapies to treat visceral hypersensitivity.
Collapse
Affiliation(s)
- Dafne Balemans
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Guy E Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Karel Talavera
- Laboratory of Ion Channel Research and TRP Research Platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven Belgium
| | - Mira M Wouters
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| |
Collapse
|
8
|
Buckinx R, Van Nassauw L, Avula LR, Alpaerts K, Adriaensen D, Timmermans JP. Transient receptor potential vanilloid type 1 channel (TRPV1) immunolocalization in the murine enteric nervous system is affected by the targeted C-terminal epitope of the applied antibody. J Histochem Cytochem 2013; 61:421-32. [PMID: 23482327 DOI: 10.1369/0022155413484764] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The expression of transient receptor potential vanilloid type 1 channel (TRPV1) in the enteric nervous system is still the subject of debate. Although a number of studies have reported that TRPV1 is limited to extrinsic afferent fibers, other studies argue for an intrinsic expression of TRPV1. In the present study, reverse transcriptase PCR was employed to establish the expression of TRPV1 mRNA throughout the gastrointestinal tract. Using two antibodies directed against different epitopes of TRPV1, we were able to show at the protein level that the observed distribution pattern of TRPV1 is dependent on the antibody used in the immunohistochemical staining. A first antibody indeed mainly stained neuronal fibers, whereas a second antibody exclusively stained perikarya of enteric neurons throughout the mouse gastrointestinal tract. We argue that these different distribution patterns are due to the antibodies discriminating between different modulated forms of TRPV1 that influence the recognition of the targeted immunogen and as such distinguish intracellular from plasmalemmal forms of TRPV1. Our study is the first to directly compare these two antibodies within the same species and in identical conditions. Our observations underline that detailed knowledge of the epitope that is recognized by the antibodies employed in immunohistochemical procedures is a prerequisite for correctly interpreting experimental results.
Collapse
Affiliation(s)
- Roeland Buckinx
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
9
|
Engel MA, Leffler A, Niedermirtl F, Babes A, Zimmermann K, Filipović MR, Izydorczyk I, Eberhardt M, Kichko TI, Mueller-Tribbensee SM, Khalil M, Siklosi N, Nau C, Ivanović-Burmazović I, Neuhuber WL, Becker C, Neurath MF, Reeh PW. TRPA1 and substance P mediate colitis in mice. Gastroenterology 2011; 141:1346-58. [PMID: 21763243 DOI: 10.1053/j.gastro.2011.07.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 06/26/2011] [Accepted: 07/06/2011] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS The neuropeptides calcitonin gene-related peptide (CGRP) and substance P, and calcium channels, which control their release from extrinsic sensory neurons, have important roles in experimental colitis. We investigated the mechanisms of colitis in 2 different models, the involvement of the irritant receptor transient receptor potential of the ankyrin type-1 (TRPA1), and the effects of CGRP and substance P. METHODS We used calcium-imaging, patch-clamp, and neuropeptide-release assays to evaluate the effects of 2,4,6-trinitrobenzene-sulfonic-acid (TNBS) and dextran-sulfate-sodium-salt on neurons. Colitis was induced in wild-type, knockout, and desensitized mice. RESULTS TNBS induced TRPA1-dependent release of colonic substance P and CGRP, influx of Ca2+, and sustained ionic inward currents in colonic sensory neurons and transfected HEK293t cells. Analysis of mutant forms of TRPA1 revealed that TNBS bound covalently to cysteine (and lysine) residues in the cytoplasmic N-terminus. A stable sulfinic acid transformation of the cysteine-SH group, shown by mass spectrometry, might contribute to sustained sensitization of TRPA1. Mice with colitis had increased colonic neuropeptide release, mediated by TRPA1. Endogenous products of inflammatory lipid peroxidation also induced TRPA1-dependent release of colonic neuropeptides; levels of 4-hydroxy-trans-2-nonenal increased in each model of colitis. Colitis induction by TNBS or dextran-sulfate-sodium-salt was inhibited or reduced in TRPA1-/- mice and by 2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-N-(4-isopro-pylphenyl)-acetamide, a pharmacologic inhibitor of TRPA1. Substance P had a proinflammatory effect that was dominant over CGRP, based on studies of knockout mice. Ablation of extrinsic sensory neurons prevented or attenuated TNBS-induced release of neuropeptides and both forms of colitis. CONCLUSIONS Neuroimmune interactions control intestinal inflammation. Activation and sensitization of TRPA1 and release of substance P induce and maintain colitis in mice.
Collapse
Affiliation(s)
- Matthias A Engel
- Institute of Physiology and Pathophysiology, First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Holzer P. TRP channels in the digestive system. Curr Pharm Biotechnol 2011; 12:24-34. [PMID: 20932260 DOI: 10.2174/138920111793937862] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 05/09/2010] [Indexed: 12/26/2022]
Abstract
Several of the 28 mammalian transient receptor potential (TRP) channel subunits are expressed throughout the alimentary canal where they play important roles in taste, chemo- and mechanosensation, thermoregulation, pain and hyperalgesia, mucosal function and homeostasis, control of motility by neurons, interstitial cells of Cajal and muscle cells, and vascular function. While the implications of some TRP channels, notably TRPA1, TRPC4, TRPM5, TRPM6, TRPM7, TRPV1, TRPV4, and TRPV6, have been investigated in much detail, the understanding of other TRP channels in their relevance to digestive function lags behind. The polymodal chemo- and mechanosensory function of TRPA1, TRPM5, TRPV1 and TRPV4 is particularly relevant to the alimentary canal whose digestive and absorptive function depends on the surveillance and integration of many chemical and physical stimuli. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 appear to be essential for the absorption of Ca(2+) and Mg(2+), respectively, while TRPM7 appears to contribute to the pacemaker activity of the interstitial cells of Cajal, and TRPC4 transduces smooth muscle contraction evoked by muscarinic acetylcholine receptor activation. The implication of some TRP channels in pathological processes has raised enormous interest in exploiting them as a therapeutic target. This is particularly true for TRPV1, TRPV4 and TRPA1, which may be targeted for the treatment of several conditions of chronic abdominal pain. Consequently, blockers of these TRP channels have been developed, and their clinical usefulness has yet to be established.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitátsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
11
|
Holzer P. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system. Pharmacol Ther 2011; 131:142-70. [PMID: 21420431 PMCID: PMC3107431 DOI: 10.1016/j.pharmthera.2011.03.006] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 12/12/2022]
Abstract
Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca²⁺ and Mg²⁺, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
12
|
Matsumoto K, Hosoya T, Tashima K, Namiki T, Murayama T, Horie S. Distribution of transient receptor potential vanilloid 1 channel-expressing nerve fibers in mouse rectal and colonic enteric nervous system: relationship to peptidergic and nitrergic neurons. Neuroscience 2010; 172:518-34. [PMID: 20951772 DOI: 10.1016/j.neuroscience.2010.10.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 09/29/2010] [Accepted: 10/11/2010] [Indexed: 12/22/2022]
Abstract
In the gut, transient receptor potential vanilloid (TRPV) 1 activation leads to release of neurotransmitters such as neuropeptides and nitric oxide. However, the distribution of TRPV1 nerve fibers and neurotransmitters released form sensory nerve endings in the enteric nervous system are currently not well understood. The present study investigated the immunohistochemical distribution of TRPV1 channels, sensory neuropeptides, and nitric oxide and their co-localization in mouse large intestine. Numerous TRPV1 and calcitonin gene-related peptide (CGRP) immunoreactivities were detected, mainly in the mucosa, submucosal layer, and myenteric plexus. Abundant substance P (SP), neurokinin A (NKA), and neuronal nitric oxide synthase (nNOS)-immunoreactivity were revealed in muscle layers. Motor function studies of circular and longitudinal muscles found that contractile responses to capsaicin in the rectum were most sensitive among the rectum, and distal, transverse, and proximal colon. Double labeling studies were carried out in horizontal sections of mouse rectum. TRPV1/protein gene product (PGP)9.5 double labeled axons were observed, but PGP9.5 and neuronal nuclear protein immunopositive cell bodies did not express TRPV1 immunoreactivity in the myenteric plexus. In the mucosa, submucosal layer, deep muscular plexus, circular muscle, myenteric plexus and longitudinal muscle layer, TRPV1 nerve fibers were found to contain CGRP, SP and nNOS. SP and NKA were almost entirely colocalized at the axons and cell bodies in all layers. Double labeling with c-Kit revealed that TRPV1 nerve fibers localized adjacent to the interstitial cells of Cajal (ICC). These results suggest that the TRPV1-expressing nerve and its neurotransmitters regulate various functions of the large intestine.
Collapse
Affiliation(s)
- K Matsumoto
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba 283-8555, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Szitter I, Pozsgai G, Sandor K, Elekes K, Kemeny A, Perkecz A, Szolcsanyi J, Helyes Z, Pinter E. The role of transient receptor potential vanilloid 1 (TRPV1) receptors in dextran sulfate-induced colitis in mice. J Mol Neurosci 2010; 42:80-8. [PMID: 20411352 DOI: 10.1007/s12031-010-9366-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 04/05/2010] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate the involvement of transient receptor potential vanilloid 1 (TRPV1) receptors in oral dextran sulfate sodium-induced (DSS) colitis using TRPV1 knockout mice and their wild-type C57BL/6 counterparts. DSS (2% or 5%) was administered orally ad libitum for 7 days; the controls received tap water. Animal weight, stool consistency, and blood content were scored every day to calculate the disease activity index (DAI). After sacrificing the mice on day 7, the colons were cut into three equal segments (proximal, intermediate, and distal) for histology, myeloperoxidase (MPO), and cytokine measurements. In the 2% DSS-treated group, the lack of TRPV1 receptors decreased the DAI. Each colon segment of wild-type animals showed more than two-fold increase of MPO activity and more severe histological changes compared to the knockouts. This difference was not observed in case of 5% DSS, when extremely severe inflammation occurred in both groups. IL-1beta production was not altered by the absence of TRPV1. In conclusion, activation of TRPV1 channels enhances the clinical symptoms, histopathological changes, and neutrophil accumulation induced by 2% DSS. Elucidating the modulator role of TRPV1 channels in inflammatory bowel diseases may contribute to the development of novel anti-inflammatory drugs for their therapy.
Collapse
Affiliation(s)
- Istvan Szitter
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, 7624 Pécs, Szigeti u. 12, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
OBJECTIVES Capsaicin/vanilloid (transient receptor potential vanilloid 1, (TRPV1) receptor has been shown to be expressed in gastrointestinal tract and play a role as a member of sensory ion channel superfamily. The G315C polymorphism affects the TRPV1 gene and alters its protein level. We aimed to investigate the effect of TRPV1 G315C polymorphism on functional dyspepsia (FD) in a Japanese population. METHODS TRPV1 G315C polymorphism was genotyped in 98 subjects with no upper abdominal symptoms and 109 patients with FD. Severity of 7 upper gastrointestinal symptoms was assessed during cold water, and cold carbonated water drinking for randomly selected 20 healthy subjects. RESULTS We found a significant inverse association between TRPV1 315CC genotype and FD [CC vs. others; odds ratio (OR)=0.40, 95% confidence interval (CI)=0.38-0.82]. We also found that the same genotype held a lower risk of both epigastric pain syndrome (OR=0.25, 95% CI=0.09-0.73), postprandial syndrome (OR=0.27, 95% CI=0.07-0.96) according to Rome III, and Helicobacter pylori positive FD (OR=0.28, 95% CI=0.10-0.79). The evolution of symptom severity scale of 7 total symptoms (P=0.004), and heavy feeling in stomach (P=0.02) during cold carbonated water drinking were significantly lower among 315CC genotypes compared with others. CONCLUSIONS Homozygous TRPV1 315C influences the susceptibility to FD through altering the upper gastrointestinal sensation.
Collapse
|
15
|
Matsumoto K, Kurosawa E, Terui H, Hosoya T, Tashima K, Murayama T, Priestley JV, Horie S. Localization of TRPV1 and contractile effect of capsaicin in mouse large intestine: high abundance and sensitivity in rectum and distal colon. Am J Physiol Gastrointest Liver Physiol 2009; 297:G348-60. [PMID: 19497956 DOI: 10.1152/ajpgi.90578.2008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We investigated immunohistochemical differences in the distribution of TRPV1 channels and the contractile effects of capsaicin on smooth muscle in the mouse rectum and distal, transverse, and proximal colon. In the immunohistochemical study, TRPV1 immunoreactivity was found in the mucosa, submucosal, and muscle layers and myenteric plexus. Large numbers of TRPV1-immunoreactive axons were observed in the rectum and distal colon. In contrast, TRPV1-positive axons were sparsely distributed in the transverse and proximal colon. The density of TRPV1-immunoreactive axons in the rectum and distal colon was much higher than those in the transverse and proximal colon. Axons double labeled with TRPV1 and protein gene product (PGP) 9.5 were detected in the myenteric plexus, but PGP 9.5-immunoreactive cell bodies did not colocalize with TRPV1. In motor function studies, capsaicin induced a fast transient contraction, followed by a large long-lasting contraction in the rectum and distal colon, whereas in the transverse and proximal colon only the transient contraction was observed. The capsaicin-induced transient contraction from the proximal colon to the rectum was moderately inhibited by an NK1 or NK2 receptor antagonist. The capsaicin-induced long-lasting contraction in the rectum and distal colon was markedly inhibited by an NK2 antagonist, but not by an NK1 antagonist. The present results suggest that TRPV1 channels located on the rectum and distal colon play a major role in the motor function in the large intestine.
Collapse
Affiliation(s)
- Kenjiro Matsumoto
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba 283-8555, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Yamamoto Y, Sato Y, Taniguchi K. Distribution of TRPV1- and TRPV2-immunoreactive afferent nerve endings in rat trachea. J Anat 2007; 211:775-83. [PMID: 17979952 DOI: 10.1111/j.1469-7580.2007.00821.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nociception in the trachea is important for respiratory modulation. We investigated the distribution, neurochemical characteristics, and origin of nerve endings with immunoreactivity for candidate sensor channels, TRPV1 and TRPV2, in rat trachea. In the epithelial layer, the intraepithelial nerve endings and dense subepithelial network of nerve fibers were immunoreactive for TRPV1. In contrast, TRPV2 immunoreactivity was observed mainly in nerve fibers of the tracheal submucosal layer and in several intrinsic ganglion cells in the peritracheal plexus. Double immunostaining revealed that some TRPV1-immunoreactive nerve fibers were also immunoreactive for substance P or calcitonin gene-related peptide, but neither neuropeptide colocalized with TRPV2. Injection of the retrograde tracer, fast blue, into the tracheal wall near the thoracic inlet demonstrated labeled neurons in the jugular, nodose, and dorsal root ganglia at segmental levels of C2-C8. In the jugular and nodose ganglia, 59.3% (70/118) and 10.7% (17/159), respectively, of fast blue-labeled neurons were immunoreactive for TRPV1, compared to 8.8% (8/91) and 2.6% (5/191) for TRPV2-immunoreactive. Our results indicate that TRPV1-immunoreactive nerve endings are important for tracheal nociception, and the different expression patterns of TRPV1 and TRPV2 with neuropeptides may reflect different subpopulations of sensory neurons.
Collapse
Affiliation(s)
- Yoshio Yamamoto
- Laboratory of Veterinary Biochemistry and Cell Biology, Department of Veterinary Sciences, Faculty of Agriculture, Iwate University, Morioka, Japan.
| | | | | |
Collapse
|
17
|
Horie S, Michael GJ, Priestley JV. Co-localization of TRPV1-expressing nerve fibers with calcitonin-gene-related peptide and substance P in fundus of rat stomach. Inflammopharmacology 2006; 13:127-37. [PMID: 16259734 DOI: 10.1163/156856005774423854] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The localization of vanilloid receptor TRPV1 was studied in rat gastric fundus by an immunohistochemical technique. Numerous TRPV1-immunoreactive nerve fibers were found around arterioles in the submucosal layer. A large number of the nerve fibers were also seen in the smooth muscle layer and in the myenteric nerve plexus, but the cell bodies could not be found. TRPV1 nerve fibers within the circular muscle layers were running parallel to the muscle fibers. Virtually all TRPV1 axons were immunoreactive for calcitonin-gene-related peptide (CGRP), with particularly extensive double labeling seen in axons of the submucosa around blood vessels. TRPV1 nerve fibers containing substance P were found running in longitudinal muscle and circular muscle. The TRPV1 axons seem to be predominantly extrinsic and contain CGRP and substance P in gastric fundus. TRPV1 neurons are thought to be sensory afferent neurons that operate to maintain gastric motility and blood flow.
Collapse
Affiliation(s)
- Syunji Horie
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | | | | |
Collapse
|
18
|
Holzer P. Gastrointestinal pain in functional bowel disorders: sensory neurons as novel drug targets. Expert Opin Ther Targets 2006; 8:107-23. [PMID: 15102553 DOI: 10.1517/14728222.8.2.107] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Functional bowel disorders (FBDs) are defined by symptoms of gastrointestinal (GI) dysfunction, discomfort and pain in the absence of a demonstrable organic cause. Since the prevalence of FBDs, particularly functional dyspepsia and irritable bowel syndrome, can be as high as 20%, FBDs represent a significant burden in terms of direct healthcare and productivity costs. There is emerging evidence that the discomfort and pain experienced by many FBD patients is due to persistent hypersensitivity of primary afferent neurons, which may develop in response to infection, inflammation or other insults. This concept identifies vagal and spinal sensory neurons as important targets for novel therapies of GI hyperalgesia. Sensory neuron-specific targets can be grouped into three categories: receptors and sensors at the peripheral nerve terminals, ion channels relevant to nerve excitability and conduction and transmitter receptors. Particular therapeutic potential is attributed to targets that are selectively expressed by afferent neurons, such as the transient receptor potential channel TRPV1, acid-sensing ion channels and tetrodotoxin-resistant Na + channels.
Collapse
Affiliation(s)
- Peter Holzer
- Medical University of Graz, Department of Experimental and Clinical Pharmacology, Austria.
| |
Collapse
|
19
|
D'Argenio G, Valenti M, Scaglione G, Cosenza V, Sorrentini I, Di Marzo V. Up-regulation of anandamide levels as an endogenous mechanism and a pharmacological strategy to limit colon inflammation. FASEB J 2006; 20:568-70. [PMID: 16403786 DOI: 10.1096/fj.05-4943fje] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Direct stimulation of cannabinoid CB1 receptors exerts a protective function in animal models of inflammatory bowel diseases (IBDs). However, it is not known whether endocannabinoids are up-regulated during IBDs in animals or humans, nor whether pharmacological elevation of endocannabinoid levels can be exploited therapeutically in these disorders. In this study we addressed these questions. Colon inflammation was induced in mice and rats with 2,4-dinitrobenzene- and 2,4,6-trinitrobenzene sulfonic acids (DNBS and TNBS), respectively. DNBS-treated mice were treated chronically (for 3 or 7 days) with inhibitors of anandamide enzymatic hydrolysis (N-arachidonoyl-serotonin, AA-5-HT) or reuptake (VDM11), 10 or 5 mg/kg, s.c., or with 5-amino-salicilic acid (5-ASA, 1.4 mg/kg, i.r.). Endocannabinoids (anandamide and 2-arachidonoylglycerol, 2-AG) were quantified in mouse colon, or in rat colon mucosa and submucosa, and in bioptic samples from the colon of patients with untreated ulcerative colitis, by liquid chromatography-mass spectrometry. A strong elevation of anandamide, but not 2-AG, levels was found in the colon of DNBS-treated mice, in the colon submucosa of TNBS-treated rats, and in the biopsies of patients with ulcerative colitis. VDM-11 significantly elevated anandamide levels in the colon of DNBS-treated mice and concomitantly abolished inflammation, whereas AA-5-HT did not affect endocannabinoid levels and was significantly less efficacious at attenuating colitis. 5-ASA also increased anandamide levels and abolished colitis. Thus, anandamide is elevated in the inflamed colon of patients with ulcerative colitis, as well as in animal models of IBDs, to control inflammation, and elevation of its levels with inhibitors of its cellular reuptake might be used in the treatment of IBDs.
Collapse
MESH Headings
- Adult
- Aged
- Amidohydrolases/antagonists & inhibitors
- Animals
- Arachidonic Acids/analysis
- Arachidonic Acids/biosynthesis
- Arachidonic Acids/genetics
- Arachidonic Acids/pharmacology
- Arachidonic Acids/physiology
- Arachidonic Acids/therapeutic use
- Benzenesulfonates/toxicity
- Colitis/chemically induced
- Colitis/drug therapy
- Colitis/pathology
- Colitis, Ulcerative/metabolism
- Colitis, Ulcerative/pathology
- Colon/chemistry
- Colon/pathology
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Endocannabinoids
- Female
- Glycerides/analysis
- Humans
- Inflammatory Bowel Diseases/drug therapy
- Inflammatory Bowel Diseases/metabolism
- Inflammatory Bowel Diseases/pathology
- Intestinal Mucosa/chemistry
- Intestinal Mucosa/pathology
- Male
- Mesalamine/pharmacology
- Mesalamine/therapeutic use
- Mice
- Mice, Inbred C57BL
- Middle Aged
- Peroxidase/analysis
- Polyunsaturated Alkamides
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/physiology
- Serotonin/analogs & derivatives
- Serotonin/pharmacology
- Serotonin/therapeutic use
- Specific Pathogen-Free Organisms
- Trinitrobenzenesulfonic Acid/toxicity
Collapse
|
20
|
Nagy I, Sántha P, Jancsó G, Urbán L. The role of the vanilloid (capsaicin) receptor (TRPV1) in physiology and pathology. Eur J Pharmacol 2005; 500:351-69. [PMID: 15464045 DOI: 10.1016/j.ejphar.2004.07.037] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 02/06/2023]
Abstract
The cloning of the vanilloid receptor 1 opened a floodgate for discoveries regarding the function of this complex molecule. It has been found that, in addition to heat, protons and vanilloids, this receptor also responds to various endogenous ligands. Furthermore, it has been also emerged that, through associations with other molecules, the vanilloid receptor 1 plays an important role in the integration of various stimuli and modulation of cellular excitability. Although, originally, the vanilloid receptor 1 was associated with nociceptive primary afferent fibres, it has been gradually revealed that it is broadly expressed in the brain, epidermis and visceral cells. The expression pattern of the vanilloid receptor 1 indicates that it could be involved in various physiological functions and in the pathomechanisms of diverse diseases. Here, we summarise the molecular, pharmacological and physiological characteristics, and putative functions, of the vanilloid receptor 1, and discuss the therapeutic potential of this molecule.
Collapse
Affiliation(s)
- István Nagy
- Department of Anaesthetics and Intensive Care, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, United Kingdom.
| | | | | | | |
Collapse
|
21
|
Barthó L, Benkó R, Patacchini R, Pethö G, Holzer-Petsche U, Holzer P, Lázár Z, Undi S, Illényi L, Antal A, Horváth OP. Effects of capsaicin on visceral smooth muscle: a valuable tool for sensory neurotransmitter identification. Eur J Pharmacol 2005; 500:143-57. [PMID: 15464028 DOI: 10.1016/j.ejphar.2004.07.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 11/27/2022]
Abstract
Studying the visceral effects of the sensory stimulant capsaicin is a useful and relatively simple tool of neurotransmitter identification and has been used for this purpose for approximately 25 years in the authors' and other laboratories. We believe that conclusions drawn from experiments on visceral preparations may have an impact on studies dealing with the central endings of primary afferent neurons, i.e. research on nociception at the spinal level. The present review concentrates on the effects of capsaicin--through the transient receptor potential vanilloid receptor type 1 (TRPV1) receptor--on innervated gastrointestinal, respiratory and genitourinary smooth muscle preparations. Tachykinins and calcitonin gene-related peptide (CGRP) are the most widely accepted transmitters to mediate "local efferent" effects of capsaicin-sensitive nerves in tissues taken from animals. Studies more and more frequently indicate a supra-additive interaction of various types of tachykinin receptors (tachykinin NK(1), NK(2), NK(3) receptors) in the excitatory effects of capsaicin. There is also evidence for a mediating role of ATP, acting on P(2) purinoceptors. Non-specific inhibitory actions of capsaicin-like drugs have to be taken into consideration while designing experiments with these drugs. Results obtained on human tissues may be sharply different from those of animal preparations. Capsaicin potently inhibits tone and movements of human intestinal preparations, an effect mediated by nitric oxide (NO) and/or vasoactive intestinal polypeptide.
Collapse
Affiliation(s)
- Lorand Barthó
- Department of Pharmacology and Pharmacotherapy, Division of Pharmacodynamics, University Medical School of Pécs, Pécs, Hungary.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Benko R, Lazar Z, Undi S, Illenyi L, Antal A, Horvath OP, Rumbus Z, Wolf M, Maggi CA, Bartho L. Inhibition of nitric oxide synthesis blocks the inhibitory response to capsaicin in intestinal circular muscle preparations from different species. Life Sci 2005; 76:2773-82. [PMID: 15808879 DOI: 10.1016/j.lfs.2004.07.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Accepted: 07/22/2004] [Indexed: 10/25/2022]
Abstract
Moderate concentrations of the sensory stimulant drug capsaicin caused relaxation in human and animal intestinal circular muscle preparations (guinea-pig proximal, mouse distal colon, human small intestine and appendix) in vitro. With the exception of the guinea-pig colon, the nitric oxide (NO) synthase inhibitor N(G)-nitro-L-arginine (L-NOARG; 10(-4) M) strongly inhibited the relaxant effect of capsaicin. Tetrodotoxin, an inhibitor of voltage-sensitive Na+ channels failed to significantly reduce the inhibitory effect of capsaicin in the guinea-pig colon, human ileum and appendix; it caused an approximately 50% reduction in the mouse colon. The relaxant effect of capsaicin was strongly reduced in colonic preparations from transient receptor potential vanilloid type (TRPV1) receptor knockout mice as compared to their wildtype controls. It is concluded that nitric oxide, possibly of sensory origin, is involved in the relaxant action of capsaicin in the circular muscle of the mouse and human intestine.
Collapse
Affiliation(s)
- Rita Benko
- Department of Pharmacology and Pharmacotherapy, University Medical School of Pecs, Szigeti ut 12, H-7643 Pecs, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
In the digestive tract there is evidence for the presence of high levels of endocannabinoids (anandamide and 2-arachidonoylglycerol) and enzymes involved in the synthesis and metabolism of endocannabinoids. Immunohistochemical studies have shown the presence of CB1 receptors on myenteric and submucosal nerve plexuses along the alimentary tract. Pharmacological studies have shown that activation of CB1 receptors produces relaxation of the lower oesophageal sphincter, inhibition of gastric motility and acid secretion, as well as intestinal motility and secretion. In general, CB1-induced inhibition of intestinal motility and secretion is due to reduced acetylcholine release from enteric nerves. Conversely, endocannabinoids stimulate intestinal primary sensory neurons via the vanilloid VR1 receptor, resulting in enteritis and enhanced motility. The endogenous cannabinoid system has been found to be involved in the physiological control of colonic motility and in some pathophysiological states, including paralytic ileus, intestinal inflammation and cholera toxin-induced diarrhoea. Cannabinoids also possess antiemetic effects mediated by activation of central and peripheral CB1 receptors. Pharmacological modulation of the endogenous cannabinoid system could provide a new therapeutic target for the treatment of a number of gastrointestinal diseases, including nausea and vomiting, gastric ulcers, secretory diarrhoea, paralytic ileus, inflammatory bowel disease, colon cancer and gastro-oesophageal reflux conditions.
Collapse
Affiliation(s)
- A A Izzo
- Department of Experimental Pharmacology, University of Naples Federico II, via D Montesano 49, 80131 Naples, Italy
| | | |
Collapse
|
24
|
|
25
|
Kadowaki M, Kuramoto H, Takaki M. Combined determination with functional and morphological studies of origin of nerve fibers expressing transient receptor potential vanilloid 1 in the myenteric plexus of the rat jejunum. Auton Neurosci 2004; 116:11-8. [PMID: 15556833 DOI: 10.1016/j.autneu.2004.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Revised: 07/30/2004] [Accepted: 08/21/2004] [Indexed: 11/20/2022]
Abstract
The aim of this study was to determine the action of capsaicin in isolated rat intestine and the origin of nerve fibers expressing transient receptor potential vanilloid 1 (TRPV1: capsaicin receptor) in the rat jejunum by combination of functional and immunohistochemical experiments. Capsaicin (1 microM) produced a prolonged relaxation response (52. +/-15.3% of the relaxation response to papaverine, mean +/- S.D., n=27) of the isolated jejunum in the presence of atropine and guanethidine. Pretreatment with the TRPV1 antagonist, capsazepine (10 microM) and ruthenium red (3 microM) significantly reduced the relaxation response to capsaicin by 78% (P<0.01) and 38% (P<0.05), respectively. Tetrodotoxin and calcitonin gene-related peptide (CGRP)-desensitization significantly reduced the response to capsaicin by 72% (P<0.01) and 42% (P<0.01), respectively. Therefore, we investigated the distribution of TRPV1-immunoreactivity (IR) in the myenteric plexus of the rat jejunum. Using antisera raised against either the N-terminal or C-terminal domains of rat TRPV1, TRPV1-IR was present in the nerve fibers, but not in the cell bodies of myenteric neurons. These TRPV1-immunoreactive nerve fibers were running in myenteric ganglia and their interconnecting strands. Most TRPV1-immunoreactive nerve fibers showed CGRP-IR, whereas few VR1-immunoreactive nerve fibers showed substance P-IR. After chronic denervation of the extrinsic nerve supply to the jejunum, both the relaxation response to capsaicin and TRPV1-immunoreactive nerve fibers completely disappeared. These findings indicate that these TRPV1-immunoreactive nerve fibers in the rat jejunum derive from extrinsic neurons and that activation of TRPV1 produces the relaxation response in the rat jejunum, at least in part, through the release of CGRP from nerve fibers expressing TRPV1.
Collapse
Affiliation(s)
- Makoto Kadowaki
- Division of Gastrointestinal Pathophysiology, Department of Bioscience, Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | |
Collapse
|
26
|
Holzer P. TRPV1 and the gut: from a tasty receptor for a painful vanilloid to a key player in hyperalgesia. Eur J Pharmacol 2004; 500:231-41. [PMID: 15464036 DOI: 10.1016/j.ejphar.2004.07.028] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 12/26/2022]
Abstract
Capsaicin, the pungent ingredient in red pepper, has been used since ancient times as a spice, despite the burning sensation associated with its intake. More than 50 years ago, Nikolaus Jancso discovered that capsaicin can selectively stimulate nociceptive primary afferent neurons. The ensuing research established that the neuropharmacological properties of capsaicin are due to its activation of the transient receptor potential ion channel of the vanilloid type 1 (TRPV1). Expressed by primary afferent neurons innervating the gut and other organs, TRPV1 is gated not only by vanilloids such as capsaicin, but also by noxious heat, acidosis and intracellular lipid mediators such as anandamide and lipoxygenase products. Importantly, TRPV1 can be sensitized by acidosis and activation of various pro-algesic pathways. Upregulation of TRPV1 in inflammatory bowel disease and the beneficial effect of TRPV1 downregulation in functional dyspepsia and irritable bladder make this polymodal nociceptor an attractive target of novel therapies for chronic abdominal pain.
Collapse
Affiliation(s)
- Peter Holzer
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
27
|
Rong W, Hillsley K, Davis JB, Hicks G, Winchester WJ, Grundy D. Jejunal afferent nerve sensitivity in wild-type and TRPV1 knockout mice. J Physiol 2004; 560:867-81. [PMID: 15331673 PMCID: PMC1665286 DOI: 10.1113/jphysiol.2004.071746] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to investigate the contribution of the TRPV1 receptor to jejunal afferent sensitivity in the murine intestine. Multiunit activity was recorded in vitro from mesenteric afferents supplying segments of mouse jejunum taken from wild-type (WT) and TRPV1 knockout (TRPV1(-/-)) animals. In WT preparations, ramp distension of the gut (up to 60 mmHg) produced biphasic changes in afferent activity so the pressure-response curve had an initial rapid increase in afferent discharge followed by a second phase of slower increase in activity. Afferent response to distension was significantly lower in TRPV1(-/-) than in WT mice. Single-unit analysis revealed three functional types of afferent fibres: (1) low-threshold fibres (2) wide dynamic range fibres and (3) high-threshold fibres. There was a marked downward shift of the pressure-response curve for wide dynamic range fibres in the TRPV1(-/-) mice as compared to the WT controls. The afferent response to intraluminal hydrochloric acid (20 mM) was also attenuated in the TRPV1(-/-) mice. In contrast, the response to bath application of bradykinin (1 microm, 3 ml) was not significantly different between the two groups. The TRPV1 antagonist capsazepine (10 microm) significantly attenuated the nerve responses to distension, intraluminal acid and bradykinin, as well as the spontaneous discharge in WT mice. The WT jejunal afferents responded to capsaicin with rapid increases in afferent activity, whereas TRPV1(-/-) afferents were not at all sensitive to capsaicin. Previous evidence indicates that TRPV1 is not mechanosensitive, so the results of the present study suggest that activation of TRPV1 may sensitize small intestinal afferent neurones.
Collapse
Affiliation(s)
- Weifang Rong
- Department of Biomedical Science, University of Sheffield, Alfred Danny Building, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | | | |
Collapse
|
28
|
MacNaughton WK, Van Sickle MD, Keenan CM, Cushing K, Mackie K, Sharkey KA. Distribution and function of the cannabinoid-1 receptor in the modulation of ion transport in the guinea pig ileum: relationship to capsaicin-sensitive nerves. Am J Physiol Gastrointest Liver Physiol 2004; 286:G863-71. [PMID: 14701723 DOI: 10.1152/ajpgi.00482.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We investigated the distribution and function of cannabinoid (CB)(1) receptors in the submucosal plexus of the guinea pig ileum. CB(1) receptors were found on both types of submucosal secretomotor neurons, colocalizing with VIP and neuropeptide Y (NPY), the noncholinergic and cholinergic secretomotor neurons, respectively. CB(1) receptors colocalized with transient receptor potential vanilloid-1 receptors on paravascular nerves and fibers in the submucosal plexus. In the submucosal ganglia, these nerves were preferentially localized at the periphery of the ganglia. In denervated ileal segments, CB(1) receptor immunoreactivity in submucosal neurons was not modified, but paravascular and intraganglionic fiber staining was absent. Short-circuit current (I(sc)) was measured as an indicator of net electrogenic ion transport in Ussing chambers. In the ion-transport studies, I(sc) responses to capsaicin, which activates extrinsic primary afferents, and to electrical field stimulation (EFS) were reduced by pretreatment with the muscarinic antagonist atropine, abolished by tetrodotoxin, but were unaffected by VIP receptor desensitization, hexamethonium, alpha-amino-3-hydroxy-5-methlisoxazole-4-proprionic acid, or N-methyl-d-aspartate glutamate receptor antagonists. The responses to capsaicin and EFS were reduced by 47 +/- 12 and 30 +/- 14%, respectively, by the CB(1) receptor agonist WIN 55,212-2. This inhibitory effect was blocked by the CB(1) receptor antagonist, SR 141716A. I(sc) responses to forskolin or carbachol, which act directly on the epithelium, were not affected by WIN 55,212-2. The inhibitory effect of WIN 55,212-2 on EFS-evoked secretion was not observed in extrinsically denervated segments of ileum. Taken together, these data show cannabinoids act at CB(1) receptors on extrinsic primary afferent nerves, inhibiting the release of transmitters that act on cholinergic secretomotor pathways.
Collapse
Affiliation(s)
- Wallace K MacNaughton
- Dept. of Physiology and Biophysics, Univ. of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Borrelli F, Capasso R, Pinto A, Izzo AA. Inhibitory effect of ginger (Zingiber officinale) on rat ileal motility in vitro. Life Sci 2004; 74:2889-96. [PMID: 15050426 DOI: 10.1016/j.lfs.2003.10.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Accepted: 10/30/2003] [Indexed: 12/12/2022]
Abstract
Ginger (Zingiber officinale rhizome) is a widespread herbal medicine mainly used for the treatment of gastrointestinal diseases, including dyspepsia, nausea and diarrhoea. In the present study we evaluated the effect of this herbal remedy on the contractions induced by electrical stimulation (EFS) or acetylcholine in the isolated rat ileum. Ginger (0.01-1000 microg/ml) inhibited both EFS- and acetylcholine-evoked contractions, being more potent in inhibiting the contractions induced by EFS. The depressant effect of ginger on EFS-induced contractions was reduced by the vanilloid receptor antagonist capsazepine (10(-5) M), but unaffected by the alpha(2)-adrenergic antagonist yohimbine (10(-7) M), the CB(1) receptor antagonist SR141716A (10(-6) M), the opioid antagonist naloxone (10(-6) M) or by the NO synthase inhibitor L-NAME (3 x 10(-4) M). Zingerone (up to 3 x 10(-4) M), one of the active ingredients of ginger, did not possess inhibitory effects. It is concluded that ginger possesses both prejunctional and postjunctional inhibitory effects on ileal contractility; the prejunctional inhibitory effect of ginger on enteric excitatory transmission could involve a capsazepine-sensible site (possibly vanilloid receptors).
Collapse
Affiliation(s)
- Francesca Borrelli
- Department of Experimental Pharmacology, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | | | | | | |
Collapse
|