1
|
GABA B Receptor Chemistry and Pharmacology: Agonists, Antagonists, and Allosteric Modulators. Curr Top Behav Neurosci 2021; 52:81-118. [PMID: 34036555 DOI: 10.1007/7854_2021_232] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The GABAB receptors are metabotropic G protein-coupled receptors (GPCRs) that mediate the actions of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA). In the CNS, GABA plays an important role in behavior, learning and memory, cognition, and stress. GABA is also located throughout the gastrointestinal (GI) tract and is involved in the autonomic control of the intestine and esophageal reflex. Consequently, dysregulated GABAB receptor signaling is associated with neurological, mental health, and gastrointestinal disorders; hence, these receptors have been identified as key therapeutic targets and are the focus of multiple drug discovery efforts for indications such as muscle spasticity disorders, schizophrenia, pain, addiction, and gastroesophageal reflex disease (GERD). Numerous agonists, antagonists, and allosteric modulators of the GABAB receptor have been described; however, Lioresal® (Baclofen; β-(4-chlorophenyl)-γ-aminobutyric acid) is the only FDA-approved drug that selectively targets GABAB receptors in clinical use; undesirable side effects, such as sedation, muscle weakness, fatigue, cognitive deficits, seizures, tolerance and potential for abuse, limit their therapeutic use. Here, we review GABAB receptor chemistry and pharmacology, presenting orthosteric agonists, antagonists, and positive and negative allosteric modulators, and highlight the therapeutic potential of targeting GABAB receptor modulation for the treatment of various CNS and peripheral disorders.
Collapse
|
2
|
Kentish SJ, Frisby CL, Kritas S, Li H, Hatzinikolas G, O'Donnell TA, Wittert GA, Page AJ. TRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice. PLoS One 2015; 10:e0135892. [PMID: 26285043 PMCID: PMC4540489 DOI: 10.1371/journal.pone.0135892] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/28/2015] [Indexed: 12/31/2022] Open
Abstract
Aim Within the gastrointestinal tract vagal afferents play a role in control of food intake and satiety signalling. Activation of mechanosensitive gastric vagal afferents induces satiety. However, gastric vagal afferent responses to mechanical stretch are reduced in high fat diet mice. Transient receptor potential vanilloid 1 channels (TRPV1) are expressed in vagal afferents and knockout of TRPV1 reduces gastro-oesophageal vagal afferent responses to stretch. We aimed to determine the role of TRPV1 on gastric vagal afferent mechanosensitivity and food intake in lean and HFD-induced obese mice. Methods TRPV1+/+ and -/- mice were fed either a standard laboratory diet or high fat diet for 20wks. Gastric emptying of a solid meal and gastric vagal afferent mechanosensitivity was determined. Results Gastric emptying was delayed in high fat diet mice but there was no difference between TRPV1+/+ and -/- mice on either diet. TRPV1 mRNA expression in whole nodose ganglia of TRPV1+/+ mice was similar in both dietary groups. The TRPV1 agonist N-oleoyldopamine potentiated the response of tension receptors in standard laboratory diet but not high fat diet mice. Food intake was greater in the standard laboratory diet TRPV1-/- compared to TRPV1+/+ mice. This was associated with reduced response of tension receptors to stretch in standard laboratory diet TRPV1-/- mice. Tension receptor responses to stretch were decreased in high fat diet compared to standard laboratory diet TRPV1+/+ mice; an effect not observed in TRPV1-/- mice. Disruption of TRPV1 had no effect on the response of mucosal receptors to mucosal stroking in mice on either diet. Conclusion TRPV1 channels selectively modulate gastric vagal afferent tension receptor mechanosensitivity and may mediate the reduction in gastric vagal afferent mechanosensitivity in high fat diet-induced obesity.
Collapse
Affiliation(s)
- Stephen J Kentish
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Claudine L Frisby
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Stamatiki Kritas
- Women's & Children's Hospital, Adelaide, South Australia, Australia
| | - Hui Li
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - George Hatzinikolas
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Tracey A O'Donnell
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Gary A Wittert
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia; Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Amanda J Page
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia; Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Curcic J, Schwizer A, Kaufman E, Forras-Kaufman Z, Banerjee S, Roy S, Pal A, Hebbard GS, Boesiger P, Fried M, Steingoetter A, Schwizer W, Fox M. Effects of baclofen on the functional anatomy of the oesophago-gastric junction and proximal stomach in healthy volunteers and patients with GERD assessed by magnetic resonance imaging and high-resolution manometry: a randomised controlled double-blind study. Aliment Pharmacol Ther 2014; 40:1230-40. [PMID: 25230154 DOI: 10.1111/apt.12956] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/23/2014] [Accepted: 08/25/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND The mechanism of reflux protection may involve a 'flap valve' at the oesophago-gastric junction (OGJ). AIM To assess the effects of baclofen, a gamma-aminobutyric acid receptor type-B (GABA-B) agonist known to suppress reflux events, on the 'functional anatomy' of the OGJ and proximal stomach after a large test meal. METHODS Twelve healthy volunteers (HVs) and 12 patients with gastro-oesophageal reflux disease (GERD); with erosive oesophagitis or pathological oesophageal acid exposure completed a randomised, double-blind, cross-over study. On 2 test days participants received 40-mg baclofen or placebo before ingestion of a large test meal. OGJ structure and function were assessed by high-resolution manometry (HRM) and magnetic resonance imaging (MRI) using validated methods. Measurements of the oesophago-gastric angle were derived from three-dimensional models reconstructed from anatomic MRI images. Cine-MRI and HRM identified postprandial reflux events. Mixed model analysis and Wilcoxon rank signed tests assessed differences between participant groups and treatment conditions. RESULTS In both HVs and GERD patients, baclofen reduced the frequency of postprandial reflux events. The oesophago-gastric insertion angle in GERD patients was reduced (-4.1 ± 1.8, P = 0.025), but was unchanged in healthy controls. In both study groups, baclofen augmented lower oesophageal sphincter (LES) pressure (HVs: +7.3 ± 1.8 mmHg, P < 0.0001, GERD: +4.50 ± 1.49 mmHg, P < 0.003) and increased LES length (HVs: +0.48 ± 0.11 cm, P < 0.0003, GERD: +0.35 ± 0.06 cm, P < 0.0001). CONCLUSIONS Baclofen inhibits transient LES relaxations and augments LES pressure and length. Additionally, baclofen has effects on the 'functional anatomy' of the OGJ and proximal stomach in GERD patients, which may suppress reflux by means of a 'flap valve' mechanism.
Collapse
Affiliation(s)
- J Curcic
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Li H, Kentish SJ, Kritas S, Young RL, Isaacs NJ, O'Donnell TA, Blackshaw LA, Wittert GA, Page AJ. Modulation of murine gastric vagal afferent mechanosensitivity by neuropeptide W. Acta Physiol (Oxf) 2013; 209:179-91. [PMID: 23927541 DOI: 10.1111/apha.12154] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/09/2013] [Accepted: 07/31/2013] [Indexed: 12/22/2022]
Abstract
AIM Neuropeptide W (NPW) is an endogenous ligand for the receptors GPR7 and GPR8 and is involved in central regulation of energy homeostasis. NPW in the periphery is found in gastric gastrin (G) cells. In the stomach, energy intake is influenced by vagal afferent signals, so we aimed to determine the effect of NPW on mechanosensitive gastric vagal afferents under different feeding conditions. METHODS Female C57BL/6 mice (N > 10 per group) were fed a standard laboratory diet (SLD), high-fat diet (HFD) or were food restricted. The relationship between NPW immunopositive cells and gastric vagal afferent endings was determined by anterograde tracing and NPW immunohistochemistry. An in vitro gastro-oesophageal preparation was used to determine the functional effects of NPW on gastric vagal afferents. Expression of NPW in the gastric mucosa and GPR7 in whole nodose ganglia was determined by quantitative RT-PCR (QRT-PCR). The expression of GPR7 in gastric vagal afferent neurones was determined by retrograde tracing and QRT-PCR. RESULTS Neuropeptide W immunoreactive cells were found in close proximity to traced vagal afferents. NPW selectively inhibited responses of gastric vagal tension receptors to stretch in SLD but not HFD or fasted mice. In the nodose ganglia, GPR7 mRNA was specifically expressed in gastric vagal afferent neurones. In fasted mice gastric mucosal NPW and nodose GPR7, mRNA was reduced compared with SLD. A HFD had no effect on gastric NPW mRNA, but down-regulated nodose GPR7 expression. CONCLUSION Neuropeptide W modulates gastric vagal afferent activity, but the effect is dynamic and related to feeding status.
Collapse
Affiliation(s)
- H. Li
- Nerve-Gut Research Laboratory; University of Adelaide; Adelaide; Australia
| | - S. J. Kentish
- Nerve-Gut Research Laboratory; University of Adelaide; Adelaide; Australia
| | - S. Kritas
- Women's & Children's Hospital; University of Adelaide; Adelaide; Australia
| | | | - N. J. Isaacs
- Nerve-Gut Research Laboratory; University of Adelaide; Adelaide; Australia
| | | | - L. A. Blackshaw
- Wingate Institute of Neurogastroenterology; Blizard Institute; Barts and The London School of Medicine & Dentistry; Queen Mary, University of London; London; UK
| | - G. A. Wittert
- Nerve-Gut Research Laboratory; University of Adelaide; Adelaide; Australia
| | | |
Collapse
|
5
|
Collares EF, Vinagre AM. Effect of baclofen on liquid and solid gastric emptying in rats. ARQUIVOS DE GASTROENTEROLOGIA 2011; 47:290-6. [PMID: 21140092 DOI: 10.1590/s0004-28032010000300015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 05/06/2009] [Indexed: 11/22/2022]
Abstract
CONTEXT Gamma-aminobutyric acid (GABA) is a potent inhibitory neurotransmitter. There is evidence that GABA(B) receptors located in the dorsal complex and in afferent fibers of the vagus nerve participate in the control of gastrointestinal motility. OBJECTIVE To assess the intracerebroventricularly (ICV) and intravenously (IV) effect of baclofen, a GABA(B) receptor agonist, on liquid and solid gastric emptying in rats. METHODS Adult male Wistar rats weighing 250-300 g (n = 6-8 animals) were used. Gastric emptying of liquid test meals labeled with phenol red was evaluated by the determination of percent gastric retention (%GR) 10 and 15 min after orogastric administration of saline and 10% glucose meals, respectively. Baclofen was injected ICV (1 and 2 µg/animal) through a tube implanted into the lateral ventricle of the brain and was injected IV (1 and 2 mg/kg) into a tail vein. The gastric emptying of liquid was determined 10 or 30 min after ICV and IV baclofen administration, respectively. The gastric emptying of the solid meal was assessed by the determination of percent gastric retention 2 h after the beginning of the ingestion of the habitual ratio by the animal, consumed over a period of 30 min. Baclofen was administered ICV (1 and 2 µg/animal) or IV (1 and 2 mg/kg) immediately after the end of the ingestion of the solid meal. The control groups received vehicle (sterile saline solution) ICV or IV. RESULTS The group of animals receiving baclofen ICV (2 mg/animal) presented a significantly lower (P<0.05, Tukey test) %GR (mean ± SEM) of the saline (18.1 ± 2.5%) compared to control (33.2 ± 2.2%). In the group receiving the drug IV, the gastric retention of the same test meal did not differ from control. ICV and IV administration of baclofen had no effect on the gastric emptying of the 10% glucose solution compared to control. ICV administration of 1 or 2 mg baclofen/animal significantly increased the gastric retention of the solid test meal (57.9 ± 6.5% and 66.6 ± 6.3%, respectively) compared to control (35.1 ± 4.4%). The same phenomenon was observed only with the IV dose of 2 mg/kg (71.9 ± 2.6%) compared to control (52.7 ± 2.8%). CONCLUSION Baclofen administered: 1. ICV (2 µg/animal), but not IV, increased gastric emptying of a non-caloric isotonic liquid test meal (saline); 2. when administered ICV or IV, it had no effect of gastric emptying of a 10% glucose solution; 3) when administered ICV (1 and 2 mg/animal) and IV (2 mg/kg) it delayed the gastric emptying of the solid meal.
Collapse
|
6
|
Hyland NP, Cryan JF. A Gut Feeling about GABA: Focus on GABA(B) Receptors. Front Pharmacol 2010; 1:124. [PMID: 21833169 PMCID: PMC3153004 DOI: 10.3389/fphar.2010.00124] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 09/07/2010] [Indexed: 12/15/2022] Open
Abstract
γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the body and hence GABA-mediated neurotransmission regulates many physiological functions, including those in the gastrointestinal (GI) tract. GABA is located throughout the GI tract and is found in enteric nerves as well as in endocrine-like cells, implicating GABA as both a neurotransmitter and an endocrine mediator influencing GI function. GABA mediates its effects via GABA receptors which are either ionotropic GABA(A) or metabotropic GABA(B). The latter which respond to the agonist baclofen have been least characterized, however accumulating data suggest that they play a key role in GI function in health and disease. Like GABA, GABA(B) receptors have been detected throughout the gut of several species in the enteric nervous system, muscle, epithelial layers as well as on endocrine-like cells. Such widespread distribution of this metabotropic GABA receptor is consistent with its significant modulatory role over intestinal motility, gastric emptying, gastric acid secretion, transient lower esophageal sphincter relaxation and visceral sensation of painful colonic stimuli. More intriguing findings, the mechanisms underlying which have yet to be determined, suggest GABA(B) receptors inhibit GI carcinogenesis and tumor growth. Therefore, the diversity of GI functions regulated by GABA(B) receptors makes it a potentially useful target in the treatment of several GI disorders. In light of the development of novel compounds such as peripherally acting GABA(B) receptor agonists, positive allosteric modulators of the GABA(B) receptor and GABA producing enteric bacteria, we review and summarize current knowledge on the function of GABA(B) receptors within the GI tract.
Collapse
Affiliation(s)
- Niall P Hyland
- Alimentary Pharmabiotic Centre and Department of Pharmacology and Therapeutics, University College Cork Cork, Ireland
| | | |
Collapse
|
7
|
Rotondo A, Serio R, Mulè F. Functional evidence for different roles of GABAA and GABAB receptors in modulating mouse gastric tone. Neuropharmacology 2010; 58:1033-7. [PMID: 20080114 DOI: 10.1016/j.neuropharm.2010.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 12/19/2009] [Accepted: 01/08/2010] [Indexed: 11/26/2022]
Abstract
The aims of the present study were to investigate, using mouse whole stomach in vitro, the effects of gamma-aminobutyric acid (GABA) and GABA receptor agonists on the spontaneous gastric tone, to examine the subtypes of GABA receptors involved in the responses and to determine the possible site(s) of action. GABA induced gastric relaxation, which was antagonized by the GABA(A)-receptor antagonist, bicuculline, potentiated by phaclofen, GABA(B)-receptor antagonist, but not affected by 1,2,5,6-Tetrahydropyridin-4-yl methylphosphinic acid hydrate (TPMPA), GABA(C)-receptor antagonist. Muscimol, GABA(A)-receptor agonist, mimicked GABA effects inducing relaxation, which was significantly reduced by bicuculline, N omega-nitro-L-arginine methyl ester (L-NAME), inhibitor of NO synthase or apamin, inhibitor of small conductance Ca(2+)-dependent K(+) channels, which blocks the purinergic transmission in this preparation. It was abolished by tetrodotoxin (TTX) or l-NAME plus apamin. Baclofen, a specific GABA(B)-receptor agonist, induced an increase in the gastric tone, which was antagonized by phaclofen and abolished by TTX or atropine. Bicuculline, but not phaclofen or TPMPA, per se induced an increase in gastric tone, which was prevented by L-NAME. In conclusion, our results suggest that GABA is involved in the regulation of mouse gastric tone, through modulation of intrinsic neurons. Activation of GABA(A)-receptors mediates relaxation through neural release of NO and neurotransmitters, activating Ca(2+)-dependent K(+) channels, likely purines, while activation of GABA(B)-receptors leads to contraction through acetylcholine release.
Collapse
Affiliation(s)
- Alessandra Rotondo
- Dipartimento di Biologia cellulare e dello Sviluppo, Laboratorio di Fisiologia generale, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | | |
Collapse
|
8
|
The effects of acute multiple intraperitoneal injections of the GABAB receptor agonist baclofen on food intake in rats. Eur J Pharmacol 2008; 601:106-10. [PMID: 19022241 DOI: 10.1016/j.ejphar.2008.10.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/10/2008] [Accepted: 10/31/2008] [Indexed: 11/24/2022]
Abstract
This study was undertaken to examine the effects of acute repeated administration of the GABA(B) receptor agonist baclofen on food intake in rats. In Experiment 1, the effects of repeated intraperitoneal (i.p.) injections of the GABA(B) receptor agonist baclofen (1 and 2 mg/kg) at 2 h intervals were investigated on food intake in non-deprived male Wistar rats. Both doses of baclofen significantly increased food intake after the 1st injection (P<0.05), but had no effects on intake following the 2nd and 3rd injections. By contrast, in Experiment 2, diazepam (1 and 2 mg/kg, i.p.) significantly increased food intake (at least, P<0.05) after each of 3 injection separated by 2 h in non-deprived rats. These data show that tolerance occurs to the hyperphagic effects of baclofen with acute multiple injections, and may have important implications for future studies investigating the effects of GABA(B) receptor agonists on food intake and energy homeostasis.
Collapse
|
9
|
Kumar KG, Byerley LO, Volaufova J, Drucker DJ, Churchill GA, Li R, York B, Zuberi A, Richards BKS. Genetic variation in Glp1r expression influences the rate of gastric emptying in mice. Am J Physiol Regul Integr Comp Physiol 2007; 294:R362-71. [PMID: 18077508 DOI: 10.1152/ajpregu.00640.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We demonstrated previously that food intake traits map to a quantitative trait locus (QTL) on proximal chromosome 17, which encompasses Glp1r (glucagon-like peptide 1 receptor), encoding an important modulator of gastric emptying. We then confirmed this QTL in a B6.CAST-17 congenic strain that consumed 27% more carbohydrate and 17% more total calories, yet similar fat calories, per body weight compared with the recipient C57BL/6J. The congenic strain also consumed greater food volume. The current aims were to 1) identify genetic linkage for total food volume in F(2) mice, 2) perform gene expression profiling in stomach of B6.CAST-17 congenic mice using oligonucleotide arrays, 3) test for allelic imbalance in Glp1r expression, 4) evaluate gastric emptying rate in parental and congenic mice, and 5) investigate a possible effect of genetic variation in Glp1r on gastric emptying. A genome scan revealed a single QTL for total food volume (Tfv1) (log of the odds ratio = 7.6), which was confirmed in B6.CAST-17 congenic mice. Glp1r exhibited allelic imbalance in stomach, which correlated with accelerated gastric emptying in parental CAST and congenic B6.CAST-17 mice. Moreover, congenic mice displayed an impaired gastric emptying response to exendin-(9-39). These results suggest that genetic variation in Glp1r contributes to the strain differences in gastric emptying rate.
Collapse
Affiliation(s)
- K Ganesh Kumar
- Division of Experimental Obesity, Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA 70808-4124, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zizzo MG, Mulè F, Serio R. Functional evidence for GABA as modulator of the contractility of the longitudinal muscle in mouse duodenum: Role of GABAA and GABAC receptors. Neuropharmacology 2007; 52:1685-90. [PMID: 17517423 DOI: 10.1016/j.neuropharm.2007.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 03/19/2007] [Accepted: 03/28/2007] [Indexed: 11/23/2022]
Abstract
We investigated, in vitro, the effects of gamma-aminobutyric acid (GABA) on the spontaneous mechanical activity of the longitudinal smooth muscle in mouse duodenum. GABA induced an excitatory effect, consisting in an increase in the basal tone, which was antagonized by the GABA(A)-receptor antagonist, bicuculline, potentiated by (1,2,5,6-Tetrahydropyridin-4-yl)methylphosphinic acid hydrate (TPMPA), a GABA(C)-receptor antagonist and it was not affected by phaclofen, a GABA(B)-receptor antagonist. Muscimol, GABA(A) receptor agonist, induced a contractile effect markedly reduced by bicuculline, tetrodotoxin (TTX), hexamethonium and atropine. Cis-4-aminocrotonic acid (CACA), a specific GABA(C) receptor agonist, induced an inhibitory effect, consisting in the reduction of the amplitude of the spontaneous contractions and muscular relaxation, which was antagonised by TPMPA, GABA(C)-receptor antagonist, TTX or N(omega)-nitro-l-arginine methyl ester (L-NAME), nitric oxide (NO) synthase inhibitor, but not affected by hexamethonium. In conclusion, our study indicates that GABA is a modulator of mechanical activity of longitudinal muscle in mouse duodenum. GABA may act through neuronal presynaptic receptors, namely GABA(A) receptors, leading to the release of ACh from excitatory cholinergic neurons, and GABA(C) receptors increasing the release of NO from non-adrenergic, non-cholinergic inhibitory neurons.
Collapse
Affiliation(s)
- Maria Grazia Zizzo
- Dipartimento di Biologia Cellulare e dello Sviluppo, Laboratorio di Fisiologia generale, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | | |
Collapse
|
11
|
Omari TI, Benninga MA, Sansom L, Butler RN, Dent J, Davidson GP. Effect of baclofen on esophagogastric motility and gastroesophageal reflux in children with gastroesophageal reflux disease: a randomized controlled trial. J Pediatr 2006; 149:468-74. [PMID: 17011315 DOI: 10.1016/j.jpeds.2006.05.029] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 03/29/2006] [Accepted: 05/17/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To evaluate the effect of baclofen, a gamma-amino-butyric-acid B receptor agonist that inhibits transient lower esophageal sphincter relaxation (TLESR), on the rates of TLESR, gastroesophageal reflux (GER), and gastric emptying (GE) in children with GER disease. STUDY DESIGN The efficacy of 0.5 mg/kg baclofen was evaluated in a randomized, double-blinded, placebo-controlled trial in 30 children. Patients were intubated with a manometric/pH assembly and given 250 mL of cow's milk. Esophageal motility and pH were then measured for 2 hours (control period). Baclofen or placebo was then administered, and 1 hour later 250 mL of milk was given again and measurements performed for another 2 hours (test period). The GE rate was measured by the (13)C octanoate breath test. RESULTS Baclofen significantly reduced the incidence of TLESR (mean, 7.3 +/- 1.5 vs 3.6 +/- 1.2 TLESR/2 hours; P < .05) and acid GER (mean 4.2 +/- 0.7 vs 1.7 +/- 1.0 TLESR + GER/2 hours; P < .05) during the test period compared with the control period. Baclofen significantly accelerated the GE rate (median [interquartile range], GE(t1/2), 61 minutes [39, 81 minutes] vs 114 minutes [67, 170 minutes]; P < .05). Baclofen had no effect on the swallowing rate, pattern of esophageal peristalsis, or lower esophageal sphincter pressure. CONCLUSIONS Baclofen reduces GER in children by inhibiting the triggering of TLESR. Baclofen also accelerates GE.
Collapse
Affiliation(s)
- Taher I Omari
- Department of Paediatrics, University of Adelaide, Adelaide, South Australia, Australia.
| | | | | | | | | | | |
Collapse
|
12
|
Omari T. Gastro-oesophageal reflux disease in infants and children: new insights, developments and old chestnuts. J Pediatr Gastroenterol Nutr 2005; 41 Suppl 1:S21-3. [PMID: 16131955 DOI: 10.1097/01.scs.0000180292.89483.cf] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Taher Omari
- Centre for Pediatric & Adolescent Gastroenterology, Women's & Children's Hospital, North Adelaide, Australia.
| |
Collapse
|
13
|
Tsai LH. Function of GABAergic and glutamatergic neurons in the stomach. J Biomed Sci 2005; 12:255-66. [PMID: 15917994 DOI: 10.1007/s11373-005-1357-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Accepted: 11/18/2004] [Indexed: 11/26/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) and L-glutamic acid (L-Glu) are transmitters of GABAergic and glutamatergic neurons in the enteric interneurons, targeting excitatory or inhibitory GABA receptors or glutamate receptors that modulate gastric motility and mucosal function. GABAergic and glutamatergic neuron immunoreactivity have been found in cholinergic enteric neurons in the stomach. GABA and L-Glu may also subserve hormonal and paracrine signaling. Disruption in gastrointestinal function following perturbation of enteric GABA receptors and glutamate receptors presents potential new target sites for drug development.
Collapse
Affiliation(s)
- Li Hsueh Tsai
- Department of Physiology, School of Medicine, Taipei Medical University, Taipei, 11014, Taiwan.
| |
Collapse
|
14
|
Bettler B, Kaupmann K, Mosbacher J, Gassmann M. Molecular structure and physiological functions of GABA(B) receptors. Physiol Rev 2004; 84:835-67. [PMID: 15269338 DOI: 10.1152/physrev.00036.2003] [Citation(s) in RCA: 666] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
GABA(B) receptors are broadly expressed in the nervous system and have been implicated in a wide variety of neurological and psychiatric disorders. The cloning of the first GABA(B) receptor cDNAs in 1997 revived interest in these receptors and their potential as therapeutic targets. With the availability of molecular tools, rapid progress was made in our understanding of the GABA(B) system. This led to the surprising discovery that GABA(B) receptors need to assemble from distinct subunits to function and provided exciting new insights into the structure of G protein-coupled receptors (GPCRs) in general. As a consequence of this discovery, it is now widely accepted that GPCRs can exist as heterodimers. The cloning of GABA(B) receptors allowed some important questions in the field to be answered. It is now clear that molecular studies do not support the existence of pharmacologically distinct GABA(B) receptors, as predicted by work on native receptors. Advances were also made in clarifying the relationship between GABA(B) receptors and the receptors for gamma-hydroxybutyrate, an emerging drug of abuse. There are now the first indications linking GABA(B) receptor polymorphisms to epilepsy. Significantly, the cloning of GABA(B) receptors enabled identification of the first allosteric GABA(B) receptor compounds, which is expected to broaden the spectrum of therapeutic applications. Here we review current concepts on the molecular composition and function of GABA(B) receptors and discuss ongoing drug-discovery efforts.
Collapse
Affiliation(s)
- Bernhard Bettler
- Pharmazentrum, Dept. of Clinical-Biological Sciences, Institute of Physiology, Univ. of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland.
| | | | | | | |
Collapse
|