1
|
Chowdhury UN, Faruqe MO, Mehedy M, Ahmad S, Islam MB, Shoombuatong W, Azad A, Moni MA. Effects of Bacille Calmette Guerin (BCG) vaccination during COVID-19 infection. Comput Biol Med 2021; 138:104891. [PMID: 34624759 PMCID: PMC8479467 DOI: 10.1016/j.compbiomed.2021.104891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
The coronavirus disease 2019 (COVID-19) is caused by the infection of highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as the novel coronavirus. In most countries, the containment of this virus spread is not controlled, which is driving the pandemic towards a more difficult phase. In this study, we investigated the impact of the Bacille Calmette Guerin (BCG) vaccination on the severity and mortality of COVID-19 by performing transcriptomic analyses of SARS-CoV-2 infected and BCG vaccinated samples in peripheral blood mononuclear cells (PBMC). A set of common differentially expressed genes (DEGs) were identified and seeded into their functional enrichment analyses via Gene Ontology (GO)-based functional terms and pre-annotated molecular pathways databases, and their Protein-Protein Interaction (PPI) network analysis. We further analysed the regulatory elements, possible comorbidities and putative drug candidates for COVID-19 patients who have not been BCG-vaccinated. Differential expression analyses of both BCG-vaccinated and COVID-19 infected samples identified 62 shared DEGs indicating their discordant expression pattern in their respected conditions compared to control. Next, PPI analysis of those DEGs revealed 10 hub genes, namely ITGB2, CXCL8, CXCL1, CCR2, IFNG, CCL4, PTGS2, ADORA3, TLR5 and CD33. Functional enrichment analyses found significantly enriched pathways/GO terms including cytokine activities, lysosome, IL-17 signalling pathway, TNF-signalling pathways. Moreover, a set of identified TFs, miRNAs and potential drug molecules were further investigated to assess their biological involvements in COVID-19 and their therapeutic possibilities. Findings showed significant genetic interactions between BCG vaccination and SARS-CoV-2 infection, suggesting an interesting prospect of the BCG vaccine in relation to the COVID-19 pandemic. We hope it may potentially trigger further research on this critical phenomenon to combat COVID-19 spread.
Collapse
Affiliation(s)
- Utpala Nanda Chowdhury
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Omar Faruqe
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Mehedy
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - Shamim Ahmad
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - M. Babul Islam
- Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - A.K.M. Azad
- Faculty of Science, Engineering & Technology, Swinburne University of Technology Sydney, Australia
| | - Mohammad Ali Moni
- School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4072, Australia,Corresponding author
| |
Collapse
|
2
|
Zhang Y, Cao H, Qiu X, Xu D, Chen Y, Barnes GN, Tu Y, Gyabaah AT, Gharbal AHAA, Peng C, Cai J, Cai X. Neuroprotective Effects of Adenosine A1 Receptor Signaling on Cognitive Impairment Induced by Chronic Intermittent Hypoxia in Mice. Front Cell Neurosci 2020; 14:202. [PMID: 32733207 PMCID: PMC7363980 DOI: 10.3389/fncel.2020.00202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022] Open
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a breathing disorder associated with cognitive impairment. However, the mechanisms leading to cognitive deficits in OSAHS remain uncertain. In this study, a mouse model of chronic intermittent hypoxia (CIH) exposures were applied for simulating the deoxygenation-reoxygenation events occurring in OSAHS. The conventional adenosine A1 receptor gene (A1R) knockout mice and the A1R agonist CCPA- or antagonist DPCPX-administrated mice were utilized to determine the precise function of A1R signaling in the process of OSAHS-relevant cognitive impairment. We demonstrated that CIH induced morphological changes and apoptosis in hippocampal neurons. Further, CIH blunted hippocampal long-term potentiation (LTP) and resulted in learning/memory impairment. Disruption of adenosine A1R exacerbated morphological, cellular, and functional damage induced by CIH. In contrast, activation of adenosine A1R signaling reduced morphological changes and apoptosis of hippocampal neurons, promoted LTP, and enhanced learning and memory. A1Rs may up-regulate protein kinase C (PKC) and its subtype PKC-ζ through the activation of Gα(i) improve spatial learning and memory disorder induced by CIH in mice. Taken together, A1R signaling plays a neuroprotective role in CIH-induced cognitive dysfunction and pathological changes in the hippocampus.
Collapse
Affiliation(s)
- Yichun Zhang
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hongchao Cao
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Department of Internal Medicine, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo, China
| | - Xuehao Qiu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Danfen Xu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yifeng Chen
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Gregory N Barnes
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, United States.,Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY, United States
| | - Yunjia Tu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Adwoa Takyiwaa Gyabaah
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | | | - Chenlei Peng
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Department of Internal Medicine, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo, China
| | - Jun Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY, United States
| | - Xiaohong Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Seydyousefi M, Moghanlou AE, Metz GAS, Gursoy R, Faghfoori MH, Mirghani SJ, Faghfoori Z. Exogenous adenosine facilitates neuroprotection and functional recovery following cerebral ischemia in rats. Brain Res Bull 2019; 153:250-256. [PMID: 31545998 DOI: 10.1016/j.brainresbull.2019.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/31/2022]
Abstract
INTRODUCTION & OBJECTIVE Cerebral ischemia causes physiological and biochemical cellular changes that ultimately result in structural and functional damage to hippocampal neurons. Ischemia also raises endogenous adenosine release that in turn has neuroprotective effects. The purpose of this study was to evaluate the effect of exogenous adenosine on mitigating neuronal lesions to the CA1 region of hippocampus and A2A protein expression following cerebral I/R in rats. METHODS Male Wistar rats were randomly assigned to three experimental groups (sham, ischemia + control, and ischemia + adenosine). A daily dose of adenosine (0.1 mg/ml/kg, i.p.) was administered starting 24 h post-ischemia for 7 days. Ischemia was induced by occlusion of both common carotid arteries for 45 min. Cresyl violet and Hematoxylin Eosin staining were used to assess lesion extent and location. To investigate the expression and protein levels, immunohistochemistry and enzyme-linked immunosorbent assay method was used. RESULTS The cerebral ischemia caused neuronal loss in the CA1 region and reduced sensorimotor functions in lesion animals. Injection of adenosine significantly diminished cell death and improved sensorimotor functional recovery. Moreover, the expression and concentration of A2A protein was significantly greater in the adenosine group compared to the ischemia group. CONCLUSION This study showed that the administration of exogenous adenosine promotes protection against cell death and supports functional recovery following ischemic injury.
Collapse
Affiliation(s)
- Mehdi Seydyousefi
- Department of Physical Education and Sport Sciences, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran.
| | | | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Recep Gursoy
- Faculty of Sports Sciences, Mugla Sitki Kocman University, Mugla, Turkey.
| | - Mohammad Hasan Faghfoori
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| | | | - Zeinab Faghfoori
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran; Department of Nutrition, School of Nutrition and Food Sciences, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
4
|
Maguire R, Kunc M, Hyrsl P, Kavanagh K. Caffeine administration alters the behaviour and development of Galleria mellonella larvae. Neurotoxicol Teratol 2017; 64:37-44. [DOI: 10.1016/j.ntt.2017.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/11/2017] [Accepted: 10/08/2017] [Indexed: 12/11/2022]
|
5
|
Controlled pauses at the initiation of sodium nitroprusside-enhanced cardiopulmonary resuscitation facilitate neurological and cardiac recovery after 15 mins of untreated ventricular fibrillation. Crit Care Med 2012; 40:1562-9. [PMID: 22430233 DOI: 10.1097/ccm.0b013e31823e9f78] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE A multipronged approach to improve vital organ perfusion during cardiopulmonary resuscitation that includes sodium nitroprusside, active compression-decompression cardiopulmonary resuscitation, an impedance threshold device, and abdominal pressure (sodium nitroprusside-enhanced cardiopulmonary resuscitation) has been recently shown to increase coronary and cerebral perfusion pressures and higher rates of return of spontaneous circulation vs. standard cardiopulmonary resuscitation. To further reduce reperfusion injury during sodium nitroprusside-enhanced cardiopulmonary resuscitation, we investigated the addition of adenosine and four 20-sec controlled pauses spread throughout the first 3 mins of sodium nitroprusside-enhanced cardiopulmonary resuscitation. The primary study end point was 24-hr survival with favorable neurologic function after 15 mins of untreated ventricular fibrillation. DESIGN Randomized, prospective, blinded animal investigation. SETTING Preclinical animal laboratory. SUBJECTS Thirty-two female pigs (four groups of eight) 32±2 kg. INTERVENTIONS After 15 mins of untreated ventricular fibrillation, isoflurane-anesthetized pigs received 5 mins of either standard cardiopulmonary resuscitation, sodium nitroprusside-enhanced cardiopulmonary resuscitation, sodium nitroprusside-enhanced cardiopulmonary resuscitation+adenosine, or controlled pauses-sodium nitroprusside-enhanced cardiopulmonary resuscitation+adenosine. After 4 mins of cardiopulmonary resuscitation, all animals received epinephrine (0.5 mg) and a defibrillation shock 1 min later. Sodium nitroprusside-enhanced cardiopulmonary resuscitation-treated animals received sodium nitroprusside (2 mg) after 1 min of cardiopulmonary resuscitation and 1 mg after 3 mins of cardiopulmonary resuscitation. After 1 min of sodium nitroprusside-enhanced cardiopulmonary resuscitation, adenosine (24 mg) was administered in two groups. MEASUREMENTS AND MAIN RESULTS A veterinarian blinded to the treatment assigned a cerebral performance category score of 1-5 (normal, slightly disabled, severely disabled but conscious, vegetative state, or dead, respectively) 24 hrs after return of spontaneous circulation. Sodium nitroprusside-enhanced cardiopulmonary resuscitation, sodium nitroprusside-enhanced cardiopulmonary resuscitation+adenosine, and controlled pauses-sodium nitroprusside-enhanced cardiopulmonary resuscitation+adenosine resulted in a significantly higher 24-hr survival rate compared to standard cardiopulmonary resuscitation (7 of 8, 8 of 8, and 8 of 8 vs. 2 of 8, respectively p<.05). The mean cerebral performance category scores for standard cardiopulmonary resuscitation, sodium nitroprusside-enhanced cardiopulmonary resuscitation, sodium nitroprusside-enhanced cardiopulmonary resuscitation+adenosine, or controlled pauses-sodium nitroprusside-enhanced cardiopulmonary resuscitation+adenosine were 4.6±0.7, 3±1.3, 2.5±0.9, and 1.5±0.9, respectively (p<.01 for controlled pauses-sodium nitroprusside-enhanced cardiopulmonary resuscitation+adenosine compared to all other groups). CONCLUSIONS Reducing reperfusion injury and maximizing circulation during cardiopulmonary resuscitation significantly improved functional neurologic recovery after 15 mins of untreated ventricular fibrillation. These results suggest that brain resuscitation after prolonged cardiac arrest is possible with novel, noninvasive approaches focused on reversing the mechanisms of tissue injury.
Collapse
|
6
|
Abstract
Despite major advances in a variety of neuroscientific research fields, the majority of neurodegenerative and neurological diseases are poorly controlled by currently available drugs, which are largely based on a neurocentric drug design. Research from the past 5 years has established a central role of glia to determine how neurons function and, consequently, glial dysfunction is implicated in almost every neurodegenerative and neurological disease. Glial cells are key regulators of the brain's endogenous neuroprotectant and anticonvulsant adenosine. This review will summarize how glial cells contribute to adenosine homeostasis and how glial adenosine receptors affect glial function. We will then move on to discuss how glial cells interact with neurons and the vasculature, and outline new methods to study glial function. We will discuss how glial control of adenosine function affects neuronal cell death, and its implications for epilepsy, traumatic brain injury, ischemia, and Parkinson's disease. Eventually, glial adenosine-modulating drug targets might be an attractive alternative for the treatment of neurodegenerative diseases. There are, however, several major open questions that remain to be tackled.
Collapse
|
7
|
Pimentel VC, Bellé LP, Pinheiro FV, De Bona KS, Da Luz SCA, Moretto MB. Adenosine deaminase activity, lipid peroxidation and astrocyte responses in the cerebral cortex of rats after neonatal hypoxia ischemia. Int J Dev Neurosci 2009; 27:857-62. [PMID: 19559780 DOI: 10.1016/j.ijdevneu.2009.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/03/2009] [Accepted: 06/17/2009] [Indexed: 10/20/2022] Open
Abstract
Hypoxia ischemia (HI) is a common cause of damage in the fetal and neonatal brain. Lifelong disabilities such as cerebral palsy, epilepsy, behavioral and learning disorders are some of the consequences of brain injury acquired in the perinatal periods. Inflammation and formation of free radicals appear to play key roles in neonatal HI. The aim of this study was to describe the chronological sequence of adenosine deaminase (ADA) activity, the oxidative damage changes and astrocyte response using the classic model of neonatal HI. We observed an increase in the activity of ADA and lipid peroxidation in the cerebral cortex 8 days after neonatal HI. This was accompanied by a GFAP-positive, and the degree of brain damage was determined histochemically by hematoxylin-eosin (HE). Taking into account the important anti-inflammatory role of adenosine, ADA may provide an efficient means for scavenging cell-surrounding adenosine and play an important part in subsequent events of neonatal HI in association with GFAP reactive gliosis. The present investigation showed that neonatal HI causes the increase of free radicals and significant damage in the cerebral cortex. The increase in ADA activity may reflect the activation of the immune system caused by HI because the morphological analysis exhibited a lymphocytic infiltration.
Collapse
Affiliation(s)
- V C Pimentel
- Postgraduate Program in Pharmaceutical Sciences, Health Science Centre, Santa Maria, RS, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Antonyan AA, Sharoyan SG, Harutyunyan AA, Mardanyan SS. Influence of aluminum toxicosis on the activity of adenosine deaminase and dipeptidyl peptidases II and IV. NEUROCHEM J+ 2009. [DOI: 10.1134/s181971240902007x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Chen JF, Sonsalla PK, Pedata F, Melani A, Domenici MR, Popoli P, Geiger J, Lopes LV, de Mendonça A. Adenosine A2A receptors and brain injury: Broad spectrum of neuroprotection, multifaceted actions and “fine tuning” modulation. Prog Neurobiol 2007; 83:310-31. [DOI: 10.1016/j.pneurobio.2007.09.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 08/10/2007] [Accepted: 09/21/2007] [Indexed: 10/22/2022]
|
10
|
C-Jun N-terminal kinase regulates adenosine A1 receptor-mediated synaptic depression in the rat hippocampus. Neuropharmacology 2007; 53:906-17. [PMID: 17967469 DOI: 10.1016/j.neuropharm.2007.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2006] [Revised: 08/31/2007] [Accepted: 09/03/2007] [Indexed: 12/19/2022]
Abstract
Adenosine A1 receptors are ubiquitous mediators of presynaptic inhibition of neurotransmission in the central nervous system, yet the signalling pathway linking A1 receptor activation and decreased neurotransmitter release remains poorly resolved. We tested the contribution of c-Jun N-terminal kinase (JNK) to adenosine A1 receptor-mediated depression of field excitatory postsynaptic potentials (fEPSPs) in area CA1 of the rat hippocampus. We found that inhibition of JNK with SP600125 or JNK inhibitor V, but not an inactive analogue, attenuated the depression of fEPSPs induced by adenosine, hypoxia, and the A1 receptor agonist N(6)-cyclopentyladenosine (CPA). In contrast, the JNK inhibitor SP600125 did not inhibit GABA(B)-mediated synaptic depression. In support of our electrophysiological findings, Western blot analysis showed that A1 receptor stimulation resulted in a transient increase in JNK phosphorylation in the membrane fraction of hippocampal lysates. The total amount of JNK in the membrane fraction was unchanged by CPA treatment. The increase in phosphorylated JNK induced by A1 receptor stimulation was blocked by the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), indicating that A1 receptors specifically activate JNK in the hippocampus. Together with functional data indicating that JNK inhibition decreased CPA-induced paired pulse facilitation, these results suggest that JNK activation is necessary for adenosine A1 receptor-mediated synaptic depression occurring at a presynaptic locus The adenosine A1 receptor-JNK signalling pathway may represent a novel mechanism underlying inhibition of neurotransmitter release in the CNS.
Collapse
|
11
|
Sichardt K, Nieber K. Adenosine A(1) receptor: Functional receptor-receptor interactions in the brain. Purinergic Signal 2007; 3:285-98. [PMID: 18404442 PMCID: PMC2072922 DOI: 10.1007/s11302-007-9065-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 07/24/2007] [Indexed: 12/20/2022] Open
Abstract
Over the past decade, many lines of investigation have shown that receptor-mediated signaling exhibits greater diversity than previously appreciated. Signal diversity arises from numerous factors, which include the formation of receptor dimers and interplay between different receptors. Using adenosine A1 receptors as a paradigm of G protein-coupled receptors, this review focuses on how receptor-receptor interactions may contribute to regulation of the synaptic transmission within the central nervous system. The interactions with metabotropic dopamine, adenosine A2A, A3, neuropeptide Y, and purinergic P2Y1 receptors will be described in the first part. The second part deals with interactions between A1Rs and ionotropic receptors, especially GABAA, NMDA, and P2X receptors as well as ATP-sensitive K+ channels. Finally, the review will discuss new approaches towards treating neurological disorders.
Collapse
Affiliation(s)
- Kathrin Sichardt
- Institute of Pharmacy, University of Leipzig, Talstr. 33, 04103 Leipzig, Germany
| | - Karen Nieber
- Institute of Pharmacy, University of Leipzig, Talstr. 33, 04103 Leipzig, Germany
| |
Collapse
|
12
|
Fatokun AA, Stone TW, Smith RA. Cell death in rat cerebellar granule neurons induced by hydrogen peroxide in vitro: mechanisms and protection by adenosine receptor ligands. Brain Res 2006; 1132:193-202. [PMID: 17188658 DOI: 10.1016/j.brainres.2006.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 11/02/2006] [Accepted: 11/03/2006] [Indexed: 11/23/2022]
Abstract
Oxidative stress, resulting from excessive production of reactive oxygen species (ROS), is a pathological state that causes profound cellular damage and eventual death resulting from the overactivation of glutamate receptors, and the generation of nitric oxide, superoxide and hydrogen peroxide (H(2)O(2)). As such, H(2)O(2) represents an important model for studying the neuropathology of oxidative stress in a variety of CNS disorders. The effects of H(2)O(2) on the viability of post-natal cerebellar granule neurons (CGNs), the nature of the cell death involved and the potential protection by adenosine receptors against the damage were examined in the current study. Hydrogen peroxide (10-400 microM) reduced CGN viability in a concentration- and time-dependent manner. The addition of catalase (100 U/ml) prevented this effect, and the non-specific COX inhibitor aspirin (1 mM) also alleviated the damage. A combination of H(2)O(2) (5 microM) and Cu(2+) (0.5 mM) resulted in a significant damage that was not prevented by the hydroxyl radical scavenger mannitol (50 mM). The permeability transition pore blocker cyclosporin A, the caspase-3 inhibitor Z-DEVD-fmk (40 microM) and the PARP-1 inhibitor DPQ (10 microM) each significantly protected against peroxide damage. While the A(1) adenosine receptor agonist CPA and the A(2A) receptor antagonist ZM241385 (each at 100 nM) elicited protection, the A(1) adenosine receptor blocker DPCPX and the A(2A) receptor agonist CGS21680 (each at 100 nM) showed no effect. The data demonstrate that H(2)O(2) induced oxidative stress in CGNs, involving both apoptotic and necrotic death, and this can be ameliorated by A(1) receptor activation or A(2A) receptor blockade.
Collapse
Affiliation(s)
- Amos A Fatokun
- Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | |
Collapse
|
13
|
Brust TB, Cayabyab FS, Zhou N, MacVicar BA. p38 mitogen-activated protein kinase contributes to adenosine A1 receptor-mediated synaptic depression in area CA1 of the rat hippocampus. J Neurosci 2006; 26:12427-38. [PMID: 17135404 PMCID: PMC6674914 DOI: 10.1523/jneurosci.4052-06.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adenosine is arguably the most potent and widespread presynaptic modulator in the CNS, yet adenosine receptor signal transduction pathways remain unresolved. Here, we demonstrate a novel mechanism in which adenosine A1 receptor stimulation leads to p38 mitogen-activated protein kinase (MAPK) activation and contributes to the inhibition of synaptic transmission. Western blot analysis indicated that selective A1 receptor activation [with N6-cyclopentyladenosine (CPA)] resulted in rapid increases in phosphorylated p38 (phospho-p38) MAPK immunoreactivity in membrane fractions, and decreases in phospho-p38 MAPK in cytosolic fractions. Immunoprecipitation with a phospho-p38 MAPK antibody revealed constitutive association of this phosphoprotein with adenosine A1 receptors. Phospho-p38 MAPK activation by A1 receptor stimulation induced translocation of PP2a (protein phosphatase 2a) to the membrane. We then examined the actions of p38 MAPK activation in A1 receptor-mediated synaptic inhibition. Excitatory postsynaptic field potentials evoked in area CA1 of the rat hippocampus markedly decreased in response to adenosine (10 microM), the A1 receptor agonist CPA (40 nM), or a 5 min exposure to hypoxia. These inhibitory responses were mediated by A1 receptor activation because the selective antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine) (100 nM) prevented them. In agreement with the biochemical analysis, the selective p38 MAPK inhibitor SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole] (25 microM) blocked the inhibitory actions of A1 receptor activation, whereas both the inactive analog SB202474 [4-ethyl-2-(p-methoxyphenyl)-5-(4'-pyridyl)-1H-imidazole] (25 microM) and the ERK 1/2 (extracellular signal-regulated kinase 1/2) MAPK inhibitor PD98059 [2'-amino-3'-methoxyflavone] (50 microM) were ineffective. In contrast, the p38 MAPK inhibitors did not inhibit GABA(B)-mediated synaptic depression. These data suggest A1 receptor-mediated p38 MAPK activation is a crucial step underlying the presynaptic inhibitory effect of adenosine on CA3-CA1 synaptic transmission.
Collapse
Affiliation(s)
- Tyson B. Brust
- Brain Research Centre, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5
| | - Francisco S. Cayabyab
- Brain Research Centre, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5
| | - Ning Zhou
- Brain Research Centre, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5
| | - Brian A. MacVicar
- Brain Research Centre, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5
| |
Collapse
|
14
|
Liu HQ, Zhang WY, Luo XT, Ye Y, Zhu XZ. Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson's disease by activation of adenosine A1 receptor. Br J Pharmacol 2006; 148:314-25. [PMID: 16582933 PMCID: PMC1751566 DOI: 10.1038/sj.bjp.0706732] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. This study examined whether Paeoniflorin (PF), the major active components of Chinese herb Paeoniae alba Radix, has neuroprotective effect in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD). 2. Subcutaneous administration of PF (2.5 and 5 mg kg(-1)) for 11 days could protect tyrosine hydroxylase (TH)-positive substantia nigra neurons and striatal nerve fibers from death and bradykinesia induced by four-dose injection of MPTP (20 mg kg(-1)) on day 8. 3. When given at 1 h after the last dose of MPTP, and then administered once a day for the following 3 days, PF (2.5 and 5 mg kg(-1)) also significantly attenuated the dopaminergic neurodegeneration in a dose-dependent manner. Post-treatment with PF (5 mg kg(-1)) significantly attenuated MPTP-induced proinflammatory gene upregulation and microglial and astrocytic activation. 4. Pretreatment with 0.3 mg kg(-1) 8-cyclopentyl-1,3-dipropylxanthine, an adenosine A1 receptor (A1AR) antagonist, 15 min before each dose of PF, reversed the neuroprotective and antineuroinflammatory effects of PF. 5. In conclusion, this study demonstrated that PF could reduce the MPTP-induced toxicity by inhibition of neuroinflammation by activation of the A1AR, and suggested that PF might be a valuable neuroprotective agent for the treatment of PD.
Collapse
Affiliation(s)
- Hua-Qing Liu
- Department of Pharmacology II, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Wei-Yu Zhang
- Department of Pharmacology II, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xue-Ting Luo
- Department of Pharmacology II, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Yang Ye
- Department of Pharmacology II, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xing-Zu Zhu
- Department of Pharmacology II, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China
- Author for correspondence:
| |
Collapse
|
15
|
Ilie A, Spulber S, Avramescu S, Nita DA, Zagrean AM, Zagrean L, Moldovan M. Delayed ischemic electrocortical suppression during rapid repeated cerebral ischemia and kainate-induced seizures in rat. Eur J Neurosci 2006; 23:2135-44. [PMID: 16630060 DOI: 10.1111/j.1460-9568.2006.04747.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Global cerebral ischemia induces, within seconds, suppression of spontaneous electrocortical activity, partly due to alterations in synaptic transmission. In vitro studies have found that repeated brief hypoxic episodes prolong the persistence of synaptic transmission due to weakened adenosine release. The aim of this study was to investigate in vivo whether the time to ischemic electrocortical suppression (T(ES)) could be altered during energy stress conditions such as rapid repeated global cerebral ischemia and kainate-induced seizures. Experiments were carried out in adult rats under chloral hydrate anaesthesia. Repeated episodes of 1 min of ischemia were induced by transiently clamping the carotid arteries in a 'four-vessel occlusion' model. We devised an automatic method of T(ES) estimation based on the decay of the root mean square of two-channel electrocorticographic recordings. To distinguish the alterations in spontaneous electrocortical activity we compared T(ES) with the ischemic suppression of visual evoked potentials (VEP). During the first ischemic episode, T(ES) was approximately 15 s and remained unchanged when five ischemic episodes were separated by 10-min reperfusion intervals. When ischemia was repeated after 2 min of reperfusion T(ES) progressively increased, reaching a plateau value of approximately 24 s. A similar plateau was reached during kainate-induced seizures. The T(ES) plateau occurred prior to ischemic suppression of VEP. Our data suggest that, under conditions of acute metabolic stress in vivo, the ischemic suppression of spontaneous electrocortical activity may be delayed up to a plateau value. These findings are consistent with the hypothesis of a depletable adenosine pool; however, the restoration of synaptic transmission may be faster in vivo than in vitro.
Collapse
Affiliation(s)
- Andrei Ilie
- Center for Excellence in Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | | | | | | | | | | |
Collapse
|
16
|
Lu MK, Cheng JJ, Lai WL, Lin YR, Huang NK. Adenosine as an active component of Antrodia cinnamomea that prevents rat PC12 cells from serum deprivation-induced apoptosis through the activation of adenosine A2A receptors. Life Sci 2006; 79:252-8. [PMID: 16443241 DOI: 10.1016/j.lfs.2005.12.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 12/14/2005] [Accepted: 12/31/2005] [Indexed: 10/25/2022]
Abstract
Antrodia cinnamomea (formerly named Antrodia camphorata) is a rare medicinal fungus. We previously reported that it exhibits antioxidative, vasorelaxative, anti-inflammatory, and anti-angiogenic effects. When serum deprivation-induced apoptosis in neuronal-like PC12 cells was used as a stress model, the extract of A. cinnamomea displayed effectiveness in preventing serum-deprived apoptosis. Since our previous data show that the extract of A. cinnamomea contains adenosine (ADO), we attempt to investigate if the active component is ADO and to identify its targeting site in this study. After pre-incubation with ADO deaminase, neither ADO nor the extract of A. cinnamomea exerted any protection, demonstrating that the active component of A. cinnamomea is ADO. Furthermore, an ADO A(2A) receptor (A(2A)-R) antagonist was used and was able to block the protective effects of ADO and the extract of A. cinnamomea, demonstrating that the ADO targeting site in this model is A(2A)-R. Taken together, the protective effect of A. cinnamomea is owed to its active component, ADO, which acts through activation of A(2A)-R to prevent serum deprivation-induced PC12 cell apoptosis.
Collapse
Affiliation(s)
- Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Taipei, Taiwan, No 155-1, Section 2, Li-Nung Street., Shipai, Pei-tou District (112), Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
17
|
Pugliese AM, Coppi E, Spalluto G, Corradetti R, Pedata F. A3 adenosine receptor antagonists delay irreversible synaptic failure caused by oxygen and glucose deprivation in the rat CA1 hippocampus in vitro. Br J Pharmacol 2006; 147:524-32. [PMID: 16415905 PMCID: PMC1616978 DOI: 10.1038/sj.bjp.0706646] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The role of adenosine A3 receptor activation during ischaemia-like conditions produced by oxygen and glucose deprivation (OGD) was evaluated with extracellular recordings from the CA1 region of rat hippocampal slices. In all, 7 min of OGD evoked tissue anoxic depolarisation (AD, peak at approximately 7 min from OGD start, n=20) and were invariably followed by irreversible loss of electrically evoked field epsps (fepsps, n=42).The selective adenosine A3 antagonists 3-propyl-6-ethyl-5[(ethylthio)carbonyl]-2-phenyl-4-propyl-3-pyridinecarboxylate (MRS 1523, 1-100 nM, n=31), N-[9-chloro-2-(2-furanyl)[1,2,4]-triazolo[1,5-c]quinazolin-5-yl]benzeneacetamide (MRS 1220, 100 nM, n=7), N-(2-methoxyphenyl)-N'-[2-(3-pyrindinyl)-4-quinazolinyl]-urea, (VUF 5574, 100 nM, n=3) and 5-[[(4-pyridyl)amino]carbonyl]amino-8-methyl-2-(2-furyl)-pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine hydrochloride (1 nM, n=4), prevented the irreversible failure of neurotransmission induced by 7 min OGD (n=45) and the development of AD in 20 out of 22 monitored slices. When tested on OGD episodes of longer duration (8-10 min, n=18), 100 nM MRS 1523 prevented or delayed the appearance of AD and exerted a protective effect on neurotransmission for episodes of up to 9 min duration. In the absence of AD, the fepsp recovery was almost total, regardless of OGD episode duration. These findings support the notion that A3 receptor stimulation is deleterious during ischaemia and suggest that selective A3 receptor block may substantially increase the resistance of the CA1 hippocampal region to ischaemic damage.
Collapse
Affiliation(s)
- Anna Maria Pugliese
- Dipartimento di Farmacologia Preclinica e Clinica, Universita' di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Elisabetta Coppi
- Dipartimento di Farmacologia Preclinica e Clinica, Universita' di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Giampiero Spalluto
- Dipartimento di Scienze Farmaceutiche, Universita' di Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Renato Corradetti
- Dipartimento di Farmacologia Preclinica e Clinica, Universita' di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Felicita Pedata
- Dipartimento di Farmacologia Preclinica e Clinica, Universita' di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy
- Author for correspondence:
| |
Collapse
|
18
|
Redzic ZB, Isakovic AJ, Misirlic Dencic ST, Popadic D, Segal MB. Uneven distribution of nucleoside transporters and intracellular enzymatic degradation prevent transport of intact [14C] adenosine across the sheep choroid plexus epithelium as a monolayer in primary culture. Cerebrospinal Fluid Res 2006; 3:4. [PMID: 16571111 PMCID: PMC1450313 DOI: 10.1186/1743-8454-3-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 03/29/2006] [Indexed: 11/21/2022] Open
Abstract
Background Efflux transport of adenosine across the choroid plexus (CP) epithelium might contribute to the homeostasis of this neuromodulator in the extracellular fluids of the brain. The aim of this study was to explore adenosine transport across sheep CP epithelial cell monolayers in primary culture. Methods To explore transport of adenosine across the CP epithelium, we have developed a method for primary culture of the sheep choroid plexus epithelial cells (CPEC) on plastic permeable supports and analysed [14C] adenosine transport across this cellular layer, [14C] adenosine metabolism inside the cells, and cellular uptake of [14C] adenosine from either of the chambers. The primary cell culture consisted of an enriched epithelial cell fraction from the sheep fourth ventricle CP and was grown on laminin-precoated filter inserts. Results and conclusion CPEC grew as monolayers forming typical polygonal islands, reaching optical confluence on the third day after the seeding. Transepithelial electrical resistance increased over the time after seeding up to 85 ± 9 Ω cm2 at day 8, while permeability towards [14C] sucrose, a marker of paracellular diffusion, simultaneously decreased. These cells expressed some features typical of the CPEC in situ, including three nucleoside transporters at the transcript level that normally mediate adenosine transport across cellular membranes. The estimated permeability of these monolayers towards [14C] adenosine was low and the same order of magnitude as for the markers of paracellular diffusion. However, inhibition of the intracellular enzymes, adenosine kinase and adenosine deaminase, led to a significant increase in transcellular permeability, indicating that intracellular phosphorylation into nucleotides might be a reason for the low transcellular permeability. HPLC analysis with simultaneous detection of radioactivity revealed that [14C] radioactivity which appeared in the acceptor chamber after the incubation of CPEC monolayers with [14C] adenosine in the donor chamber was mostly present as [14C] hypoxanthine, a product of adenosine metabolic degradation. Therefore, it appears that CPEC in primary cultures act as an enzymatic barrier towards adenosine. Cellular uptake studies revealed that concentrative uptake of [14C] adenosine was confined only to the side of these cells facing the upper or apical chamber, indicating uneven distribution of nucleoside transporters.
Collapse
Affiliation(s)
- Zoran B Redzic
- School of Biomedical Sciences, King's College London, London, UK
- Department of Physiology, Faculty of Medicine, Kuwait, Kuwait
| | | | | | - Dusan Popadic
- Department of Microbiology, School of Medicine, Belgrade, Serbia & Montenegro
| | - Malcolm B Segal
- School of Biomedical Sciences, King's College London, London, UK
| |
Collapse
|
19
|
Coelho JE, Rebola N, Fragata I, Ribeiro JA, de Mendonça A, Cunha RA. Hypoxia-induced desensitization and internalization of adenosine A1 receptors in the rat hippocampus. Neuroscience 2006; 138:1195-203. [PMID: 16442739 DOI: 10.1016/j.neuroscience.2005.12.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 10/21/2005] [Accepted: 12/02/2005] [Indexed: 12/20/2022]
Abstract
Activation of A1 adenosine receptors is important for both the neuromodulatory and neuroprotective effects of adenosine. However, short periods of global ischemia decrease A1 adenosine receptor density in the brain and it is not known if a parallel loss of functional efficiency of A1 adenosine receptors occurs. We now tested if hypoxia leads to changes in the density and efficiency of A1 adenosine receptors to inhibit excitatory synaptic transmission in rat hippocampal slices. In control conditions, the adenosine analog 2-chloroadenosine, inhibited field excitatory post-synaptic potentials with an EC50 of 0.23 microM. After hypoxia (95% N2 and 5% CO2, for 60 min) and reoxygenation (30 min), the EC50 increased to 0.73 microM. This EC50 shift was prevented by the presence of the A1 adenosine receptor antagonist 8-phenyltheophyline, but not by the A(2A)R antagonist 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c] pyrimidine, during the hypoxic period. This decreased efficiency of A1 adenosine receptors was not paralleled by a global change of A1 adenosine receptor density or affinity (as evaluated by the binding parameters obtained in nerve terminal membranes). However, the density of biotinylated A1 adenosine receptors at the plasma membrane of nerve terminals was reduced by 30% upon hypoxia/reoxygenation, in a manner prevented by the A1 adenosine receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine and mimicked by prolonged (60 min) supra-maximal activation of A1 adenosine receptors with 2-chloroadenosine (10 microM). These results indicate that hypoxia leads to a rapid (<90 min) homologous desensitization of A1 adenosine receptor-mediated inhibition of synaptic transmission that is likely due to an internalization of A1 adenosine receptors in nerve terminals.
Collapse
Affiliation(s)
- J E Coelho
- Laboratory of Neurosciences, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, 1649-028 Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
20
|
Nagai K, Nagasawa K, Fujimoto S. Transport mechanisms for adenosine and uridine in primary-cultured rat cortical neurons and astrocytes. Biochem Biophys Res Commun 2005; 334:1343-50. [PMID: 16043124 DOI: 10.1016/j.bbrc.2005.07.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 07/07/2005] [Indexed: 11/22/2022]
Abstract
Endogenous adenosine and uridine are important modulators of neural survival and activity. In the present study, we examined transport mechanisms of adenosine and uridine in primary-cultured rat cortical neurons, and compared the results for neurons with those for astrocytes. Reverse transcription-polymerase chain reaction identified the mRNAs for ENT1, ENT2, and CNT2, but not CNT1 and CNT3, in neurons and astrocytes. [3H]Adenosine and [3H]uridine were time-, temperature-, and concentration-dependently taken up into neurons and astrocytes. In kinetic analyses, the uptake of both substrates by neurons and astrocytes consisted of two and one, respectively, saturable transport components. The uptake clearance for both substrates by neurons was greater than that by astrocytes. The relative contribution of the high-affinity major component of both substrates to total uptake was estimated to be approximately 80% in neurons. The uptake of [3H]adenosine and [3H]uridine by both neurons and astrocytes was almost entirely Na+-independent, and sensitive to micro, but not nano, molar concentrations of nitrobenzylmercaptopurine riboside, which are transport characteristics of ENT2. Therefore, it was indicated that adenosine and uridine are more efficiently taken up into neurons than into astrocytes, and ENT2 may predominantly contribute to the transport of the nucleosides as a high-affinity transport system in neurons, as in the case of astrocytes.
Collapse
Affiliation(s)
- Katsuhito Nagai
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | | | | |
Collapse
|
21
|
Bhattacharya P, Roy K. QSAR of adenosine A3 receptor antagonist 1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives using chemometric tools. Bioorg Med Chem Lett 2005; 15:3737-43. [PMID: 15993066 DOI: 10.1016/j.bmcl.2005.05.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2005] [Revised: 05/16/2005] [Accepted: 05/17/2005] [Indexed: 01/07/2023]
Abstract
Considering the potential of selective adenosine A3 receptor subtype ligands in the development of prospective therapeutic agents, an attempt has been made to explore physicochemical requirements of 1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives for A3 receptor binding. In this study, lipophilicity (logP), physicochemical substituent constants (pi, MR, sigma p) of phenyl ring substituents, and Wang-Ford charges of common atoms of the quinoxaline nucleus (calculated from molecular electrostatic potential surface of energy-minimized geometry using AM1 technique) were used as independent variables along with suitable dummy parameters. The best multiple linear regression (MLR) equation obtained from factor analysis (FA-MLR) as the preprocessing step could explain and predict 72.6% and 65.3%, respectively, of the variance of the binding affinity. The same equation also emerged as the best equation in the population of 100 equations obtained from genetic function approximation (GFA-MLR). The results suggested that presence of an electron-withdrawing group at the para position of the phenyl ring would be favorable for the binding affinity. Again, the presence of a nitro group at position R1 increases the binding affinity. When factor scores were used as predictor variables in the principal component regression analysis, the resultant model showed 78.6% explained variance and 63.1% predicted variance. The best equation derived from G/PLS could explain and predict 74.4% and 64.8%, respectively. The results have suggested the importance of Wang-Ford charges of atoms C15 and C19, apart from positive contributions of electron-withdrawing para substituents of the variance of the phenyl ring and nitro group at the R1 position.
Collapse
Affiliation(s)
- Prosenjit Bhattacharya
- Drug Theoretics and Cheminformatics Lab, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, India
| | | |
Collapse
|
22
|
Pedata F, Gianfriddo M, Turchi D, Melani A. The protective effect of adenosine A2A receptor antagonism in cerebral ischemia. Neurol Res 2005; 27:169-74. [PMID: 15829180 DOI: 10.1179/016164105x21913] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES We reviewed our most recent work on the protective effect of adenosine A(2A)antagonism in cerebral ischemia. METHODS Focal ischemia was produced in rats by introducing a nylon monofilament pre-coated with silicone through the external carotid artery to occlude the right MCA at its origin. RESULTS A(2A) antagonism was found protective in the model of permanent focal ischemia induced by the monofilament technique. This methodology provides the possibility of evaluating the protection against the outflow of excitatory amino acids and against an acute motor disturbance, i.e.contralateral turning to the ischemic side in the first hours after ischemia in awake rats. Hours later, a definite neurological deficit and necrotic neuronal damage can be evaluated. DISCUSSION Our results suggest that A(2A) antagonism may be protective from the earliest up to several hours after the ischemic event.
Collapse
Affiliation(s)
- F Pedata
- Department of Preclinical and Clinical Pharmacology, University of Florence, V.le Pieraccini 6, 50139 Florence, Italy.
| | | | | | | |
Collapse
|
23
|
Chishty M, Begley DJ, Abbott NJ, Reichel A. Interaction of nucleoside analogues with nucleoside transporters in rat brain endothelial cells. J Drug Target 2004; 12:265-72. [PMID: 15512777 DOI: 10.1080/10611860410001731398] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A number of nucleoside analogues, consisting of antiviral compounds and agents designed as adenosine A1 receptor agonists, were examined for nucleoside transporter affinity using an in vitro model of the blood-brain barrier (BBB), the rat brain endothelial cell line, RBE4. Structure-activity relationships (SAR) were also performed to identify the key structural requirements for transporter recognition and the suitability of these systems for carrier-mediated strategies to deliver therapeutics across the BBB. Adenosine receptor agonists did not show transport affinity for concentrative nucleoside carriers, but exhibited affinity for equilibrative systems (Ki=10.8-97.9 microM) within the range of Kms for natural substrates. However, none of the antiviral compounds tested in this study showed affinity for either class of nucleoside transporter. SAR studies suggest that the hydroxyl group located at the 3'-position of the ribose moiety is an essential requirement for transporter recognition. This may explain the inability of nucleoside derived anti-viral compounds to use these systems despite the significant structural homology with naturally occurring nucleosides. Sites have also been identified which accommodate structural additions with retention of carrier affinity, suggesting that compounds which fail to penetrate the BBB could be attached to these sites for carrier-mediated delivery using a prodrug strategy.
Collapse
Affiliation(s)
- Mansoor Chishty
- Blood-Brain Barrier Research Group, Centre for Neuroscience Research, GKT School of Biomedical Sciences, King's College London, UK
| | | | | | | |
Collapse
|
24
|
Pearson T, Frenguelli BG. Adrenoceptor subtype-specific acceleration of the hypoxic depression of excitatory synaptic transmission in area CA1 of the rat hippocampus. Eur J Neurosci 2004; 20:1555-65. [PMID: 15355322 DOI: 10.1111/j.1460-9568.2004.03602.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The depression of excitatory synaptic transmission by hypoxia in area CA1 of the hippocampus is largely dependent upon the activation of adenosine A(1) receptors on presynaptic glutamatergic terminals. As well as adenosine, norepinephrine levels increase in the hypoxic/ischemic hippocampus. We sought to determine the influence of alpha- and beta-adrenoceptor (AR) activation on the hypoxic depression of synaptic transmission utilizing electrophysiological, pharmacological and adenosine sensor techniques. Norepinephrine depressed synaptic transmission and significantly accelerated the hypoxic depression of synaptic transmission. The alpha-AR agonist 6-fluoronorepinephrine mimicked both of these effects whilst the alpha(2)-AR antagonist yohimbine, but not the alpha(1)-AR antagonist urapidil, prevented the actions of 6-fluoronorepinephrine. In contrast, the beta-AR agonist isoproterenol enhanced synaptic transmission and only accelerated the hypoxic depression of transmission in hypoxia-conditioned slices in which the hypoxic release of adenosine is reduced. The effects of isoproterenol were blocked by the non-selective beta-AR antagonist propranolol and the selective beta(1)-AR antagonist betaxolol. Using an enzyme-based adenosine sensor we observed that the application of the beta-AR agonist resulted in increased extracellular adenosine during repeated hypoxia. Our results suggest that alpha(2)-AR activation facilitates the hypoxic depression of synaptic transmission probably via the known alpha(2)-AR-mediated inhibition of presynaptic calcium channels whereas beta(1)-AR activation does so via increased extracellular adenosine and greater activation of inhibitory adenosine A(1) receptors.
Collapse
Affiliation(s)
- Tim Pearson
- Neurosciences Institute, Division of Pathology and Neuroscience, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | | |
Collapse
|
25
|
Böcklinger K, Tomaselli B, Heftberger V, Podhraski V, Bandtlow C, Baier-Bitterlich G. Purine nucleosides support the neurite outgrowth of primary rat cerebellar granule cells after hypoxia. Eur J Cell Biol 2004; 83:51-4. [PMID: 15146976 DOI: 10.1078/0171-9335-00362] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mammalian neurons require a constant supply of oxygen to maintain adequate cellular functions and survival. Following sustained hypoxia during ischemic events in brain, the energy status of neurons and glia is compromised, which may subsequently lead to cell death by apoptosis and necrosis. Concomitant with energy depletion is the formation of the purine nucleoside adenosine, a powerful endogenous neuroprotectant. In this paper the effect of chemical hypoxia on cell survival and neurite outgrowth of primary cerebellar granule cells was investigated. Rotenone, a mitochondrial complex I inhibitor, induced a 30.4 +/- 3.6% loss of viable cells and a 35.0 +/- 4.4% loss of neurite formation of cerebellar granule cells, which was partially restored by the addition of purine nucleosides adenosine, inosine and guanosine. Inosine had the most striking effect of 37.7 +/- 2.9% rescue of viability and 71.2 +/- 18.4% rescue of neurite outgrowth. Data confirm the suggested role of purine nucleosides for the neuronal regeneration of primary brain cells following hypoxic insult.
Collapse
Affiliation(s)
- Karl Böcklinger
- Institute for Medical Chemistry and Biochemistry, Department of Neurobiochemistry, University of Innsbruck, Fritz Pregl Str. 3, A-6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
26
|
Basheer R, Strecker RE, Thakkar MM, McCarley RW. Adenosine and sleep–wake regulation. Prog Neurobiol 2004; 73:379-96. [PMID: 15313333 DOI: 10.1016/j.pneurobio.2004.06.004] [Citation(s) in RCA: 369] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 06/28/2004] [Indexed: 10/26/2022]
Abstract
This review addresses three principal questions about adenosine and sleep-wake regulation: (1) Is adenosine an endogenous sleep factor? (2) Are there specific brain regions/neuroanatomical targets and receptor subtypes through which adenosine mediates sleepiness? (3) What are the molecular mechanisms by which adenosine may mediate the long-term effects of sleep loss? Data suggest that adenosine is indeed an important endogenous, homeostatic sleep factor, likely mediating the sleepiness that follows prolonged wakefulness. The cholinergic basal forebrain is reviewed in detail as an essential area for mediating the sleep-inducing effects of adenosine by inhibition of wake-promoting neurons via the A1 receptor. The A2A receptor in the subarachnoid space below the rostral forebrain may play a role in the prostaglandin D2-mediated somnogenic effects of adenosine. Recent evidence indicates that a cascade of signal transduction induced by basal forebrain adenosine A1 receptor activation in cholinergic neurons leads to increased transcription of the A1 receptor; this may play a role in mediating the longer-term effects of sleep deprivation, often called sleep debt.
Collapse
Affiliation(s)
- Radhika Basheer
- Neuroscience Laboratory, Department of Psychiatry, Harvard Medical School and Boston VA Healthcare System, Brockton, MA 02301, USA
| | | | | | | |
Collapse
|
27
|
Sorimachi T, Nowak TS. Pharmacological manipulations of ATP-dependent potassium channels and adenosine A1 receptors do not impact hippocampal ischemic preconditioning in vivo: evidence in a highly quantitative gerbil model. J Cereb Blood Flow Metab 2004; 24:556-63. [PMID: 15129188 DOI: 10.1097/00004647-200405000-00010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ischemic preconditioning models have been characterized in brain, heart, and other tissues, and previous pharmacologic studies have suggested an involvement of adenosine and ATP dependent potassium (KATP) channels in such tolerance phenomena. This question was reexamined in a reproducible gerbil model in which the duration of ischemic depolarization defined the severity of preconditioning and test insults. Agents studied were glibenclamide, a blocker of KATP channels; 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an adenosine A1 receptor antagonist; and N6-cyclopentyladenosine (CPA), an A1 agonist. Intraventricular glibenclamide injections aggravated neuron damage after brief priming insults, in parallel with a dose-dependent prolongation of ischemic depolarization. However, the depolarization thresholds for ischemic neuronal injury were identical in vehicle- and glibenclamide-treated animals, and glibenclamide did not affect preconditioning when equivalent insult severity was maintained during priming insults. Neither DPCPX nor CPA had any effect on the onset or duration of depolarization after intraperitoneal injection in this model, and neither drug affected neuron damage. In the case of CPA, it was necessary to maintain temperature for 4 to 6 hours of recirculation to avoid significant confounding hypothermia. These results fail to support a direct involvement of A1 receptors or KATP channels during early stages in the development of ischemic tolerance in vivo, and emphasize the need for robust, well-controlled, and quantitative models in such studies.
Collapse
Affiliation(s)
- Takatoshi Sorimachi
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
28
|
Hunter CJ, Bennet L, Power GG, Roelfsema V, Blood AB, Quaedackers JS, George S, Guan J, Gunn AJ. Key neuroprotective role for endogenous adenosine A1 receptor activation during asphyxia in the fetal sheep. Stroke 2003; 34:2240-5. [PMID: 12933964 DOI: 10.1161/01.str.0000083623.77327.ce] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The fetus is well known to be able to survive prolonged exposure to asphyxia with minimal injury compared with older animals. We and others have observed a rapid suppression of EEG intensity with the onset of asphyxia, suggesting active inhibition that may be a major neuroprotective adaptation to asphyxia. Adenosine is a key regulator of cerebral metabolism in the fetus. METHODS We therefore tested the hypothesis that infusion of the specific adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), given before 10 minutes of profound asphyxia in near-term fetal sheep, would prevent neural inhibition and lead to increased brain damage. RESULTS DPCPX treatment was associated with a transient rise and delayed fall in EEG activity in response to cord occlusion (n=8) in contrast with a rapid and sustained suppression of EEG activity in controls (n=8). DPCPX was also associated with an earlier and greater increase in cortical impedance, reflecting earlier onset of primary cytotoxic edema, and a significantly smaller reduction in calculated cortical heat production after the start of cord occlusion. After reperfusion, DPCPX-treated fetuses but not controls developed delayed onset of seizures, which continued for 24 hours, and sustained greater selective hippocampal, striatal, and parasagittal neuronal loss after 72-hour recovery. CONCLUSIONS These data support the hypothesis that endogenous activation of the adenosine A1 receptor during severe asphyxia mediates the initial suppression of neural activity and is an important mechanism that protects the fetal brain.
Collapse
Affiliation(s)
- Christian J Hunter
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, Calif ., USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pugliese AM, Latini S, Corradetti R, Pedata F. Brief, repeated, oxygen-glucose deprivation episodes protect neurotransmission from a longer ischemic episode in the in vitro hippocampus: role of adenosine receptors. Br J Pharmacol 2003; 140:305-14. [PMID: 12970092 PMCID: PMC1574038 DOI: 10.1038/sj.bjp.0705442] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
1. Ischemic preconditioning in the brain consists of reducing the sensitivity of neuronal tissue to further, more severe, ischemic insults. We recorded field epsps (fepsps) extracellularly from hippocampal slices to develop a model of in vitro ischemic preconditioning and to evaluate the role of A1, A2A and A3 adenosine receptors in this phenomenon. 2. The application of an ischemic insult, obtained by glucose and oxygen deprivation for 7 min, produced an irreversible depression of synaptic transmission. Ischemic preconditioning was induced by four ischemic insults (2 min each) separated by 13 min of normoxic conditions. After 30 min, an ischemic insult of 7 min was applied. This protocol substantially protected the tissue from the irreversible depression of synaptic activity. 3. The selective adenosine A1 receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 100 nm), completely prevented the protective effect of preconditioning. The selective adenosine A2A receptor antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385, 100 nm) did not modify the magnitude of fepsp recovery compared to control slices. The selective A3 adenosine receptor antagonists, 3-propyl-6-ethyl-5[ethyl(thio)carbonyl]-2-phenyl-4-propyl-3-pyridinecarboxylate (MRS 1523, 100 nm) significantly improved the recovery of fepsps after 7 min of ischemia. 4. Our results show that in vitro ischemic preconditioning allows CA1 hippocampal neurons to become resistant to prolonged exposure to ischemia. Adenosine, by stimulating A1 receptors, plays a crucial role in eliciting the cell mechanisms underlying preconditioning; A2A receptors are not involved in this phenomenon, whereas A3 receptor activation is harmful to ischemic preconditioning.
Collapse
Affiliation(s)
- Anna Maria Pugliese
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Serena Latini
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Renato Corradetti
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Felicita Pedata
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
- Author for correspondence:
| |
Collapse
|
30
|
Goding JW, Grobben B, Slegers H. Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1638:1-19. [PMID: 12757929 DOI: 10.1016/s0925-4439(03)00058-9] [Citation(s) in RCA: 278] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP) multigene family contains five members. NPP1-3 are type II transmembrane metalloenzymes characterized by a similar modular structure composed of a short intracellular domain, a single transmembrane domain and an extracellular domain containing a conserved catalytic site. The short intracellular domain of NPP1 has a basolateral membrane-targeting signal while NPP3 is targeted to the apical surface of polarized cells. NPP4-5 detected by database searches have a predicted type I membrane orientation but have not yet been functionally characterized. E-NPPs have been detected in almost all tissues often confined to specific substructures or cell types. In some cell types, NPP1 expression is constitutive or can be induced by TGF-beta and glucocorticoids, but the signal transduction pathways that control expression are poorly documented. NPP1-3 have a broad substrate specificity which may reflect their role in a host of physiological and biochemical processes including bone mineralization, calcification of ligaments and joint capsules, modulation of purinergic receptor signalling, nucleotide recycling, and cell motility. Abnormal NPP expression is involved in pathological mineralization, crystal depositions in joints, invasion and metastasis of cancer cells, and type 2 diabetes. In this review we summarize the present knowledge on the structure and the physiological and biochemical functions of E-NPP and their contribution to the pathogenesis of diseases.
Collapse
Affiliation(s)
- James W Goding
- Department of Pathology and Immunology, Monash Medical School, Monash University, 3181, Victoria, Prahran, Australia
| | | | | |
Collapse
|
31
|
Abstract
In the central nervous system (CNS), adenosine is an important neuromodulator and regulates neuronal and non-neuronal cellular function (e.g. microglia) by actions on extracellular adenosine A(1), A(2A), A(2B) and A(3) receptors. Extracellular levels of adenosine are regulated by synthesis, metabolism, release and uptake of adenosine. Adenosine also regulates pain transmission in the spinal cord and in the periphery, and a number of agents can alter the extracellular availability of adenosine and subsequently modulate pain transmission, particularly by activation of adenosine A(1) receptors. The use of capsaicin (which activates receptors selectively expressed on C-fibre afferent neurons and produces neurotoxic actions in certain paradigms) allows for an interpretation of C-fibre involvement in such processes. In the spinal cord, adenosine availability/release is enhanced by depolarization (K(+), capsaicin, substance P, N-methyl-D-aspartate (NMDA)), by inhibition of metabolism or uptake (inhibitors of adenosine kinase (AK), adenosine deaminase (AD), equilibrative transporters), and by receptor-operated mechanisms (opioids, 5-hydroxytryptamine (5-HT), noradrenaline (NA)). Some of these agents release adenosine via an equilibrative transporter indicating production of adenosine inside the cell (K(+), morphine), while others release nucleotide which is converted extracellularly to adenosine by ecto-5'-nucleotidase (capsaicin, 5-HT). Release can be capsaicin-sensitive, Ca(2+)-dependent and involve G-proteins, and this suggests that within C-fibres, Ca(2+)-dependent intracellular processes regulate production and release of adenosine. In the periphery, adenosine is released from both neuronal and non-neuronal sources. Neuronal release from capsaicin-sensitive afferents is induced by glutamate and by neurogenic inflammation (capsaicin, low concentration of formalin), while that from sympathetic postganglionic neurons (probably as adenosine 5'-triphosphate (ATP) with NA) occurs following more generalized inflammation. Such release is modified differentially by inhibitors of AK and AD. Following nerve injury, there is an alteration in capsaicin-sensitive adenosine release, as spinal release now is less responsive to opioids, while peripheral release is less responsive to inhibitors of metabolism. Following inflammation, adenosine is released from a variety of cell types in addition to neurons (e.g. endothelial cells, neutrophils, mast cells, fibroblasts). ATP is released both spinally and peripherally following inflammation or injury, and may be converted to adenosine by ecto-5'-nucleotidase contributing an additional source of adenosine. Release of adenosine from both spinal and peripheral compartments has inhibitory effects on pain transmission, as methylxanthine adenosine receptor antagonists reduce analgesia produced by agents which augment extracellular levels of adenosine spinally (morphine, 5-HT, substance P, AK inhibitors) and peripherally (AK inhibitors, AD inhibitors). Increases in extracellular adenosine availability also may contribute to antiinflammatory effects of certain agents (methotrexate, sulfasalazine, salicylates, AK inhibitors), and this could have secondary effects on pain signalling in chronic inflammation. The purpose of the present review is to consider: (a). the factors that regulate the extracellular availability of adenosine in the spinal cord and at peripheral sites; and (b). the extent to which this adenosine affects pain signalling in these two distinct compartments.
Collapse
Affiliation(s)
- Jana Sawynok
- Department of Pharmacology, Dalhousie University, Halifax, NS Canada B3H 1X5.
| | | |
Collapse
|
32
|
Melani A, Pantoni L, Bordoni F, Gianfriddo M, Bianchi L, Vannucchi MG, Bertorelli R, Monopoli A, Pedata F. The selective A2A receptor antagonist SCH 58261 reduces striatal transmitter outflow, turning behavior and ischemic brain damage induced by permanent focal ischemia in the rat. Brain Res 2003; 959:243-50. [PMID: 12493612 DOI: 10.1016/s0006-8993(02)03753-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adenosine A(2A) receptor antagonists have been proved protective in different ischemia models. In this study we verified if the protective effect of the selective A(2A) antagonist, SCH 58261, could be attributed to the reduction of the excitatory amino acid outflow induced by cerebral focal ischemia. A vertical microdialysis probe was inserted into the striatum of male Wistar rats and, after 24 h, permanent right intraluminal middle cerebral artery occlusion (MCAo) was induced. Soon after waking, rats showed a definite contralateral turning behavior, which persisted up to 7 h after MCAo. During 4 h after MCAo, glutamate, aspartate, GABA, adenosine and taurine outflow increased. SCH 58261 (0.01 mg/kg, i.p.), administered 5 min after MCAo, suppressed turning behavior and significantly reduced the outflow of glutamate, aspartate, GABA and adenosine. At 24 h after MCAo, the rats showed severe sensorimotor deficit and damage in both the striatum and cortex. SCH 58261 significantly reduced cortical damage but did not protect against the sensorimotor deficit. The protective effect of SCH 58261 against turning behavior and increased outflow of excitatory amino acids in the first hours after MCAo suggests the potential utility of selective adenosine A(2A) antagonists when administered in the first hours after ischemia. Furthermore, this study, for the first time, proposes that turning behavior after permanent intraluminal MCAo, be used as a precocious index of neurological deficit and neuronal damage.
Collapse
Affiliation(s)
- Alessia Melani
- Department of Preclinical and Clinical Pharmacology, University of Florence, V le Pieraccini 6, 50139, Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Parkinson FE, Sinclair CJD, Othman T, Haughey NJ, Geiger JD. Differences between rat primary cortical neurons and astrocytes in purine release evoked by ischemic conditions. Neuropharmacology 2002; 43:836-46. [PMID: 12384169 DOI: 10.1016/s0028-3908(02)00083-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the brain, the levels of adenosine increase up to 100-fold during cerebral ischernia; however, the roles of specific cell types, enzymatic pathways and membrane transport processes in regulating intra- and extracellular concentrations of adenosine are poorly characterized. Rat primary cortical neurons and astrocytes were incubated with [(3)H]adenine for 30 min to radiolabel intracellular ATP. Cells were then treated with buffer, glucose deprivation (GD), oxygen-glucose deprivation (OGD), 100 micro M sodium cyanide (NaCN) or 500 micro M iodoacetate (IAA) for 1 h to stimulate the metabolism of ATP and cellular release of [(3)H]purines. The nucleoside transport inhibitor dipyridamole (DPR) (10 micro M), the adenosine kinase inhibitor iodotubercidin (ITU) (1 micro M), the adenosine deaminase inhibitor EHNA (1 micro M) and the purine nucleoside phosphorylase inhibitor BCX-34 (10 micro M) were tested to investigate the contribution of specific enzymes and transporters in the metabolism and release of purines from each cell type. Our results indicate that (a). under basal conditions astrocytes released significantly more [(3)H]adenine nucleotides and [(3)H]adenosine than neurons, (b). OGD, NaCN and IAA conditions produced significant increases in [(3)H]adenosine release from neurons but not astrocytes, and (c) DPR blocked [(3)H]inosine release from both astrocytes and neurons but only blocked [(3)H]adenosine release from neurons. These data suggest that, in these experimental conditions, adenosine was formed by an intracellular pathway in neurons and then released via a nucleoside transporter. In contrast, adenine nucleotide release and extracellular metabolism to adenosine appeared to predominate in astrocytes.
Collapse
Affiliation(s)
- F E Parkinson
- Department of Pharmacology and Therapeutics, University of Manitoba, 753 McDermot Avenue, Winnipeg, MB, R3E 0T6 Canada.
| | | | | | | | | |
Collapse
|
34
|
Robertson CL, Bell MJ, Kochanek PM, Adelson PD, Ruppel RA, Carcillo JA, Wisniewski SR, Mi Z, Janesko KL, Clark RS, Marion DW, Graham SH, Jackson EK. Increased adenosine in cerebrospinal fluid after severe traumatic brain injury in infants and children: association with severity of injury and excitotoxicity. Crit Care Med 2001; 29:2287-93. [PMID: 11801827 DOI: 10.1097/00003246-200112000-00009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To measure adenosine concentration in the cerebrospinal fluid of infants and children after severe traumatic brain injury and to evaluate the contribution of patient age, Glasgow Coma Scale score, mechanism of injury, Glasgow Outcome Score, and time after injury to cerebrospinal fluid adenosine concentrations. To evaluate the relationship between cerebrospinal fluid adenosine and glutamate concentrations in this population. DESIGN Prospective survey. SETTING Pediatric intensive care unit in a university-based children's hospital. PATIENTS Twenty-seven critically ill infants and children who had severe traumatic brain injury (Glasgow Coma Scale < 8), who required placement of an intraventricular catheter and drainage of cerebrospinal fluid as part of their neurointensive care. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Patients ranged in age from 2 months to 14 yrs. Cerebrospinal fluid samples (n = 304) were collected from 27 patients during the first 7 days after traumatic brain injury. Control cerebrospinal fluid samples were obtained from lumbar puncture on 21 infants and children without traumatic brain injury or meningitis. Adenosine concentration was measured by using high-pressure liquid chromatography. Adenosine concentration was increased markedly in cerebrospinal fluid of children after traumatic brain injury vs. controls (p < .001). The increase in cerebrospinal fluid adenosine was independently associated with Glasgow Coma Scale < or = 4 vs. > 4 and time after injury (both p < .005). Cerebrospinal fluid adenosine concentration was not independently associated with either age (< or = 4 vs. > 4 yrs), mechanism of injury (abuse vs. other), or Glasgow Outcome Score (good/moderately disabled vs. severely disabled, vegetative, or dead). Of the 27 patients studied, 18 had cerebrospinal fluid glutamate concentration previously quantified by high-pressure liquid chromatography. There was a strong association between increases in cerebrospinal fluid adenosine and glutamate concentrations (p < .005) after injury. CONCLUSIONS Cerebrospinal fluid adenosine concentration is increased in a time- and severity-dependent manner in infants and children after severe head injury. The association between cerebrospinal fluid adenosine and glutamate concentrations may reflect an endogenous attempt at neuroprotection against excitotoxicity after severe traumatic brain injury.
Collapse
Affiliation(s)
- C L Robertson
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Latini S, Pedata F. Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 2001; 79:463-84. [PMID: 11701750 DOI: 10.1046/j.1471-4159.2001.00607.x] [Citation(s) in RCA: 562] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adenosine has several functions within the CNS that involve an inhibitory tone of neurotransmission and neuroprotective actions in pathological conditions. The understanding of adenosine production and release in the brain is therefore of fundamental importance and has been extensively studied. Conflicting results are often obtained regarding the cellular source of adenosine, the stimulus that induces release and the mechanism for release, in relation to different experimental approaches used to study adenosine production and release. A neuronal origin of adenosine has been demonstrated through electrophysiological approaches showing that neurones can release significant quantities of adenosine, sufficient to activate adenosine receptors and to modulate synaptic functions. Specific actions of adenosine are mediated by different receptor subtypes (A(1), A(2A), A(2B) and A(3)), which are activated by various ranges of adenosine concentrations. Another important issue is the measurement of adenosine concentrations in the extracellular fluid under different conditions in order to know the degree of receptor stimulation and understand adenosine central actions. For this purpose, several experimental approaches have been used both in vivo and in vitro, which provide an estimation of basal adenosine levels in the range of 50-200 nM. The purpose of this review is to describe pathways of adenosine production and metabolism, and to summarize characteristics of adenosine release in the brain in response to different stimuli. Finally, studies performed to evaluate adenosine concentrations under physiological and hypoxic/ischemic conditions will be described to evaluate the degree of adenosine receptor activation.
Collapse
Affiliation(s)
- S Latini
- Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | | |
Collapse
|
36
|
Abstract
Adenosine plays a major modulatory and neuroprotective role in the mammalian CNS. During cerebral metabolic stress, such as hypoxia or ischemia, the increase in extracellular adenosine inhibits excitatory synaptic transmission onto vulnerable neurons via presynaptic adenosine A(1) receptors, thereby reducing the activation of postsynaptic glutamate receptors. Using a combination of extracellular and whole-cell recordings in the CA1 region of hippocampal slices from 12- to 24-d-old rats, we have found that this protective depression of synaptic transmission weakens with repeated exposure to hypoxia, thereby allowing potentially damaging excitation to both persist for longer during oxygen deprivation and recover more rapidly on reoxygenation. This phenomenon is unlikely to involve A(1) receptor desensitization or impaired nucleoside transport. Instead, by using the selective A(1) antagonist 8-cyclopentyl-1,3-dipropylxanthine and a novel adenosine sensor, we demonstrate that adenosine production is reduced with repeated episodes of hypoxia. Furthermore, this adenosine depletion can be reversed at least partially either by the application of exogenous adenosine, but not by a stable A(1) agonist, N(6)-cyclopentyladenosine, or by endogenous means by prolonged (2 hr) recovery between hypoxic episodes. Given the vital neuroprotective role of adenosine, these findings suggest that depletion of adenosine may underlie the increased neuronal vulnerability to repetitive or secondary hypoxia/ischemia in cerebrovascular disease and head injury.
Collapse
|
37
|
Pedata F, Corsi C, Melani A, Bordoni F, Latini S. Adenosine extracellular brain concentrations and role of A2A receptors in ischemia. Ann N Y Acad Sci 2001; 939:74-84. [PMID: 11462806 DOI: 10.1111/j.1749-6632.2001.tb03614.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Various experimental approaches have been used to determine the concentration of adenosine in extracellular brain fluid. The cortical cup technique or the microdialysis technique, when adenosine concentrations are evaluated 24 hours after implantation of the microdialysis probe, are able to measure adenosine in the nM range under normoxic conditions and in the microM range under ischemia. In vitro estimation of adenosine show that it can reach 30 microM at the receptor level during ischemia, a concentration able to stimulate all adenosine receptor subtypes so far identified. Although the protective role of A1 receptors in ischemia seems consistent, the protective role of A2A receptors appears to be controversial. Both A2A agonists and antagonists have been shown to be neuroprotective in various in vivo ischemia models. Although A2A agonists may be protective, mainly through peripherally mediated effects, A2A antagonists may be protective through local brain mediated effects. It is possible that A2A receptors are tonically activated following a prolonged increase of adenosine concentration, such as occurs during ischemia. A2A receptor activation desensitizes A1 receptors and reduces A1 mediated effects. Under these conditions A2A receptor antagonists may be protective by potentiating all the neuroprotective A1 mediated effects, including decreased neurotoxicity due to reduced ischemia induced glutamate outflow.
Collapse
Affiliation(s)
- F Pedata
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| | | | | | | | | |
Collapse
|
38
|
Ribeiro JA, Cunha-Reis D, Lopes LV, Coelho JE, Costenla AR, Correia-de-Sá P, Cunha RA, de Mendonça A, Sebastião AM. Adenosine receptor interactions in the hippocampus. Drug Dev Res 2001. [DOI: 10.1002/ddr.1132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Sinclair CJ, Krizanac-Bengez L, Stanness KA, Janigro D, Parkinson FE. Adenosine permeation of a dynamic in vitro blood-brain barrier inhibited by dipyridamole. Brain Res 2001; 898:122-5. [PMID: 11292455 DOI: 10.1016/s0006-8993(01)02175-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Adenosine is an inhibitory neuromodulator in the central nervous system and has been reported to have neuroprotective properties. Using a dynamic in vitro blood-brain barrier, we investigated the hypothesis that inhibition of adenosine transporters on the lumenal side of the blood-brain barrier may decrease the loss of adenosine from the brain. Our results indicate that lumenal administration of dipyridamole, a nucleoside transport inhibitor, can inhibit adenosine permeation from the extracapillary space into the lumen.
Collapse
Affiliation(s)
- C J Sinclair
- Department of Pharmacology and Therapeutics, University of Manitoba, 753 McDermot Avenue, MB R3E 0T6, Winnipeg, Canada
| | | | | | | | | |
Collapse
|
40
|
Abstract
To clarify the mechanisms of interaction between adenosine A(1) receptor (A1-R) and adenosine A(2) receptor (A2-R) on neurotransmitter release, this study determined the functional interactions among adenosine receptors (AD-Rs), voltage-sensitive Ca(2+) channels (VSCCs), protein kinases (PKs), and synaptic proteins [N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptors] on hippocampal serotonin release using in vivo microdialysis in freely moving rat. Basal serotonin release was regulated by two functional complexes: N-type VSCC (N-VSCC)/calcium-phospholipid-dependent protein kinase (PKC)/syntaxin (major pathway) and P-type VSCC (P-VSCC)/cyclic AMP-dependent protein kinase (PKA)/synaptobrevin (minor pathway). However, K(+)-evoked serotonin release was regulated by N-VSCC/PKC/syntaxin (minor pathway) and P-VSCC/PKA/synaptobrevin (major pathway). A1-R antagonists increased basal serotonin release, which was reduced by inhibitors of N-VSCC, PKC, and syntaxin predominantly and by inhibitors of PKA and synaptobrevin weakly, but was not affected by P-VSCC inhibitor. In the presence of A1-R antagonist, A2-R agonists increased basal serotonin release, which was inhibited by inhibitors of P-VSCC, PKA, and synaptobrevin predominantly and reduced by inhibitors of N-VSCC, PKC, and syntaxin weakly. Under the condition of activation of adenylate cyclase in the absence of A1-R antagonists, A2-R agonists increased basal serotonin release. A1-R antagonist and A2-R agonist enhanced K(+)-evoked serotonin release, which was inhibited by inhibitors of P-VSCC, PKA, and synaptobrevin predominantly. These results suggest that an activation of A1-R suppresses serotonin release via inhibition of both N-VSCC/PKC/syntaxin and P-VSCC/PKA/synaptobrevin pathways, and an activation of A2-R stimulates serotonin release via enhancement of the P-VSCC/PKA/synaptobrevin pathway. Therefore, PKA activity plays an important role in the interaction between A1-R and A2-R on hippocampal serotonin release.
Collapse
|
41
|
Young C, Luo MZ, Shen YZ, Gean PW. Dissociation between synaptic depression and block of long-term depression induced by raising the temperature in rat hippocampal slices. Synapse 2001; 40:27-34. [PMID: 11170219 DOI: 10.1002/1098-2396(200104)40:1<27::aid-syn1023>3.0.co;2-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The influence of raising the bath temperature (39 degrees C) on synaptic transmission and neuronal plasticity was studied in the CA1 region of the rat hippocampus using an extracellular recording technique. Increasing the bath temperature from 32 to 39 degrees C resulted in a depression of field excitatory postsynaptic potential (fEPSP). Application of the selective A(1) receptor agonist, 2-chloro-adenosine (2-CADO, 1 microM) reduced the fEPSP and subsequently occluded the raised temperature-induced synaptic depression. On the other hand, the selective adenosine A(1) receptor antagonist 8-cyclopentyl-1, 3-dipropylxanthine (DPCPX) blocked depression of fEPSP produced by raising the temperature. These results suggest that raising temperature-induced synaptic depression is due to an alteration of extracellular adenosine concentration. Long-term depression (LTD) could be reliably induced by the standard low-frequency stimulation (LFS, 1 Hz for 15 min) protocol at 32 degrees C but not at 39 degrees C. The raised temperature-induced block of LTD was mimicked by 2-CADO. Unexpectedly, despite the presence of DPCPX, LFS still could not elicit LTD. NMDA receptor-mediated synaptic component (fEPSP(NMDA)) was decreased when increasing the temperature to 39 degrees C and DPCPX failed to reverse such a depression. The increase in the NMDA response in 0.1 mM Mg(++) compared with 1 mM Mg(++) was significantly greater at 32 degrees C than at 39 degrees C. These results suggest that, by increasing the sensitivity of Mg(++) block, an increase in temperature modulates NMDA responses and thereby inhibits the induction of LTD.
Collapse
Affiliation(s)
- C Young
- Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
42
|
Cunha RA. Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int 2001; 38:107-25. [PMID: 11137880 DOI: 10.1016/s0197-0186(00)00034-6] [Citation(s) in RCA: 466] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adenosine exerts two parallel modulatory roles in the CNS, acting as a homeostatic modulator and also as a neuromodulator at the synaptic level. We will present evidence to suggest that these two different modulatory roles are fulfilled by extracellular adenosine originated from different metabolic sources, and involve receptors with different sub-cellular localisation. It is widely accepted that adenosine is an inhibitory modulator in the CNS, a notion that stems from the preponderant role of inhibitory adenosine A(1) receptors in defining the homeostatic modulatory role of adenosine. However, we will review recent data that suggests that the synaptically localised neuromodulatory role of adenosine depend on a balanced activation of inhibitory A(1) receptors and mostly facilitatory A(2A) receptors. This balanced activation of A(1) and A(2A) adenosine receptors depends not only on the transient levels of extracellular adenosine, but also on the direct interaction between A(1) and A(2A) receptors, which control each other's action.
Collapse
Affiliation(s)
- R A Cunha
- Laboratory of Neurosciences, Faculty of Medicine, University of Lisbon, Portugal.
| |
Collapse
|
43
|
Sinclair CJ, LaRivière CG, Young JD, Cass CE, Baldwin SA, Parkinson FE. Purine uptake and release in rat C6 glioma cells: nucleoside transport and purine metabolism under ATP-depleting conditions. J Neurochem 2000; 75:1528-38. [PMID: 10987833 DOI: 10.1046/j.1471-4159.2000.0751528.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adenosine, through activation of membrane-bound receptors, has been reported to have neuroprotective properties during strokes or seizures. The role of astrocytes in regulating brain interstitial adenosine levels has not been clearly defined. We have determined the nucleoside transporters present in rat C6 glioma cells. RT-PCR analysis, (3)H-nucleoside uptake experiments, and [(3)H]nitrobenzylthioinosine ([(3)H]NBMPR) binding assays indicated that the primary functional nucleoside transporter in C6 cells was rENT2, an equilibrative nucleoside transporter (ENT) that is relatively insensitive to inhibition by NBMPR. [(3)H]Formycin B, a poorly metabolized nucleoside analogue, was used to investigate nucleoside release processes, and rENT2 transporters mediated [(3)H]formycin B release from these cells. Adenosine release was investigated by first loading cells with [(3)H]adenine to label adenine nucleotide pools. Tritium release was initiated by inhibiting glycolytic and oxidative ATP generation and thus depleting ATP levels. Our results indicate that during ATP-depleting conditions, AMP catabolism progressed via the reactions AMP --> IMP --> inosine --> hypoxanthine, which accounted for >90% of the evoked tritium release. It was surprising that adenosine was not released during ATP-depleting conditions unless AMP deaminase and adenosine deaminase were inhibited. Inosine release was enhanced by inhibition of purine nucleoside phosphorylase; ENT2 transporters mediated the release of adenosine or inosine. However, inhibition of AMP deaminase/adenosine deaminase or purine nucleoside phosphorylase during ATP depletion produced release of adenosine or inosine, respectively, via the rENT2 transporter. This indicates that C6 glioma cells possess primarily rENT2 nucleoside transporters that function in adenosine uptake but that intracellular metabolism prevents the release of adenosine from these cells even during ATP-depleting conditions.
Collapse
Affiliation(s)
- C J Sinclair
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- J M Lee
- Center for the Study of Nervous System Injury and Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
45
|
de Mendonça A, Sebastião AM, Ribeiro JA. Adenosine: does it have a neuroprotective role after all? BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:258-74. [PMID: 11011069 DOI: 10.1016/s0165-0173(00)00033-3] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A neuroprotective role for adenosine is commonly assumed. Recent studies revealed that adenosine may unexpectedly, under certain circumstances, have the opposite effects contributing to neuronal damage and death. The basis for this duality may be the activation of distinct subtypes of adenosine receptors, interactions between these receptors, differential actions on neuronal and glial cells, and various time frames of adenosinergic compounds administration. If these aspects are understood, adenosine should remain an interesting target for therapeutical neuroprotective approaches after all.
Collapse
Affiliation(s)
- A de Mendonça
- Laboratory of Neurosciences, Faculty of Medicine of Lisbon, Av. Professor Egas Moniz, 1649-035, Lisbon, Portugal.
| | | | | |
Collapse
|
46
|
Germack R, Dickenson JM. Activation of protein kinase B by the A(1)-adenosine receptor in DDT(1)MF-2 cells. Br J Pharmacol 2000; 130:867-74. [PMID: 10864894 PMCID: PMC1572146 DOI: 10.1038/sj.bjp.0703396] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In this study the effect of insulin and A(1)-adenosine receptor stimulation on protein kinase B (PKB) activation has been investigated in the hamster vas deferens smooth muscle cell line DDT(1)MF-2. Increases in PKB phosphorylation were determined by Western blotting using an antibody that detects PKB phosphorylation at Ser(473). Insulin, a recognized activator of PKB, stimulated a concentration-dependent increase in PKB phosphorylation in DDT(1)MF-2 cells (EC(50) 5+/-1 pM). The selective A(1)-adenosine receptor agonist N(6)-cyclopentyladenosine (CPA) stimulated time and concentration-dependent increases in PKB phosphorylation in DDT(1)MF-2 cells (EC(50) 1.3+/-0.5 nM). CPA-mediated increases in PKB phosphorylation were antagonized by the A(1)-adenosine receptor selective antagonist 1,3-dipropylcyclopentylxanthine (DPCPX) yielding an apparent K(D) value of 2.3 nM. Pre-treatment of DDT(1)MF-2 cells with pertussis toxin (PTX, 100 ng ml(-1) for 16 h), to block G(i)/G(o)-dependent pathways, abolished CPA (1 microM) induced phosphorylation of PKB. In contrast, responses to insulin (100 nM) were resistant to PTX pre-treatment. The phosphatidylinositol 3-kinase (PI-3K) inhibitors wortmannin (IC(50) 10.3+/-0.6 nM) and LY 294002 (IC(50) 10.3+/-1.2 microM) attenuated the phosphorylation of PKB elicited by CPA (1 microM) in a concentration-dependent manner. Wortmannin (30 nM) and LY 294002 (30 microM) also blocked responses to insulin (100 nM). Removal of extracellular Ca(2+) and chelation of intracellular Ca(2+) with BAPTA had no significant effect on CPA-induced PKB phosphorylation. Similarly, pretreatment (30 min) with inhibitors of protein kinase C (Ro 31-8220; 10 microM), tyrosine kinase (genistein; 100 microM), mitogen-activated protein (MAP) kinase kinase (PD 98059; 50 microM) and p38 MAPK (SB 203580; 20 microM) had no significant effect on CPA-induced PKB phosphorylation. In conclusion, these data demonstrate that A(1)-adenosine receptor stimulation in DDT(1)MF-2 cells increases PKB phosphorylation through a PTX and PI-3K-sensitive pathway.
Collapse
Affiliation(s)
- Renée Germack
- Department of Life Sciences, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS
| | - John M Dickenson
- Department of Life Sciences, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS
- Author for correspondence:
| |
Collapse
|
47
|
von Lubitz DK, Ye W, McClellan J, Lin RC. Stimulation of adenosine A3 receptors in cerebral ischemia. Neuronal death, recovery, or both? Ann N Y Acad Sci 2000; 890:93-106. [PMID: 10668416 DOI: 10.1111/j.1749-6632.1999.tb07984.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of the adenosine A3 receptor continues to baffle, and, despite an increasing number of studies, the currently available data add to, rather than alleviate, the existing confusion. The reported effects of adenosine A3 receptor stimulation appear to depend on the pattern of drug administration (acute vs. chronic), dose, and type of the target tissue. Thus, while acute exposure to A3 receptor agonists protects against myocardial ischemia, it is severely damaging when these agents are given shortly prior to cerebral ischemia. Mast cells degranulate when their A3 receptors are stimulated. Degranulation of neutrophils is, on the other hand, impaired. While reduced production of reactive nitrogen species has been reported following activation of A3 receptors in collagen-induced arthritis, the process appears to be enhanced in cerebral ischemia. Indeed, immunocytochemical studies indicate that both pre- and postischemic treatment with A3 receptor antagonist dramatically reduces nitric oxide synthase in the affected hippocampus. Even more surprisingly, low doses of A3 receptor agonists seem to enhance astrocyte proliferation, while high doses induce their apoptosis. This review concentrates on the studies of cerebral A3 receptors and, based on the available evidence, discusses the possibility of adenosine A3 receptor serving as an integral element of the endogenous cerebral neuroprotective complex consisting of adenosine and its receptors.
Collapse
Affiliation(s)
- D K von Lubitz
- Department of Emergency Medicine, University of Michigan Health System, Ann Arbor 48109-0303, USA.
| | | | | | | |
Collapse
|
48
|
Moreau JL, Huber G. Central adenosine A(2A) receptors: an overview. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 31:65-82. [PMID: 10611496 DOI: 10.1016/s0165-0173(99)00059-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent advances in molecular biology, biochemistry, cell biology and behavioral pharmacology together with the development of more selective ligands to the various adenosine receptors have increased our understanding of the functioning of central adenosine A(2A) receptors. The A(2A) receptor is one of four adenosine receptors found in the brain. Its expression is highest in striatum, nucleus accumbens and olfactory tubercles, although it also occurs in neurons and microglia in most other brain regions. The receptor has seven transmembrane domains and couples via Gs to adenyl cyclase stimulation. Antagonistic interactions between A(2A) receptors and dopamine D(2) receptors have been described, as stimulation of the A(2A) receptor leads to a reduction in the affinity of D(2) receptors for D(2) receptor agonists. The A(2A) receptor is thought to play a role in a number of physiological responses and pathological conditions. Indeed, A(2A) receptor antagonists may be useful for the treatment of acute and chronic neurodegenerative disorders such as cerebral ischemia or Parkinson's disease. A(2A) receptor agonists may treat certain types of seizures or sleep disorders. This review discusses the characteristics, distribution, pharmacochemical properties and regulation of central A(2A) receptors, as well as A(2A) receptor-mediated behavioural responses and their potential role in various neuropsychiatric disorders.
Collapse
Affiliation(s)
- J L Moreau
- Pharma Division, Preclinical CNS Research, F. Hoffmann-La Roche, PRPN, 72/141, CH-4070, Basel, Switzerland.
| | | |
Collapse
|
49
|
Melani A, Pantoni L, Corsi C, Bianchi L, Monopoli A, Bertorelli R, Pepeu G, Pedata F. Striatal outflow of adenosine, excitatory amino acids, gamma-aminobutyric acid, and taurine in awake freely moving rats after middle cerebral artery occlusion: correlations with neurological deficit and histopathological damage. Stroke 1999; 30:2448-54; discussion 2455. [PMID: 10548683 DOI: 10.1161/01.str.30.11.2448] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE While a number of studies have investigated transmitter outflow in anesthetized animals after middle cerebral artery occlusion (MCAO) performed by craniectomy, studies have never been performed after MCAO induced by intraluminal filament. In addition, it has been reported that after MCAO, infarct volume correlates with functional outcome and with transmitter outflow, although there are no studies that demonstrate a direct correlation between transmitter outflow and functional outcome. The purpose of the present study was to assess excitatory amino acids, gamma-aminobutyric acid, taurine, and adenosine outflow in awake rats after intraluminal MCAO and to determine whether, in the same animal, outflow was correlated with neurological outcome and histological damage. METHODS Vertical microdialysis probes were placed in the striatum of male Wistar rats. After 24 hours, permanent MCAO was induced by the intraluminal suture technique. The transmitter concentrations in the dialysate were determined by high-performance liquid chromatography. Twenty-four hours after MCAO, neurological deficit and histological outcome were evaluated. RESULTS All transmitters significantly increased after MCAO. Twenty-four hours after MCAO, the rats showed a severe sensorimotor deficit and massive ischemic damage in the striatum and in the cortex (9+/-2% and 25+/-6% of hemispheric volume, respectively). Significant correlations were found between the efflux of all transmitters, neurological score, and striatal infarct volume. CONCLUSIONS In this study, for the first time, amino acid and adenosine extracellular concentrations during MCAO by the intraluminal suture technique were determined in awake and freely moving rats, and a significant correlation was found between transmitter outflow and neurological deficit. The evaluation of neurological deficit, histological damage, and transmitter outflow in the same animal may represent a useful approach for studying neuroprotective properties of new drugs/agents against focal ischemia.
Collapse
Affiliation(s)
- A Melani
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Sun LL, Xu LL, Nielsen TB, Rhee P, Burris D. Cyclopentyladenosine improves cell proliferation, wound healing, and hair growth. J Surg Res 1999; 87:14-24. [PMID: 10527699 DOI: 10.1006/jsre.1999.5716] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND N(6)-Cyclopentyladenosine (CPA), a structural analog of adenosine, is a vasodilator with extensive pharmacological effects. However, little is known about the effect of CPA on wound healing and hair growth. METHODS Cellular responses to CPA were measured in vitro by tetrazolium dye reduction and in vivo by bromodeoxyuridine (BrdU) uptake. The effect of CPA on healing of incisional and excisional wounds on the dorsum of diabetic (db/db, n = 94) and nondiabetic (db/+, n = 20) mice and hair growth along the wound margin was evaluated with wound breaking strength, wound closure rate, and quantitative histology. RESULTS CPA stimulated proliferation of BALB/3T3 fibroblasts and human dermal microvascular endothelial cells in both quiescent and nonquiescent phases. Wounds treated with CPA at 10 microM showed a significant increase in the number of BrdU-labeled cells, including keratinocytes, fibroblasts, endothelial cells, and cells in sebaceous glands and the outer root sheath of hair follicles, compared with controls (P < 0.05). CPA application (5.1 microg/daily for 12 days) significantly increased the breaking strength of incisional wounds at day 24 postwound (P < 0.05). Excisional wound closure rate in the CPA-treated group (3.4 microg/daily for 15 days) was accelerated starting at day 10 postwound compared with controls (P < 0.01). Tissue sections from CPA-treated wounds showed a sevenfold increase in hair follicle number, compared with controls (P < 0.01). Enhanced hair growth along the wound margin was revealed in CPA-treated groups. CONCLUSION CPA stimulated proliferation of many cell types in vivo and in vitro and enhanced wound healing and hair growth. Therefore, CPA could be an interesting candidate for clinical application.
Collapse
Affiliation(s)
- L L Sun
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20852, USA.
| | | | | | | | | |
Collapse
|