1
|
Retinal blood flow dysregulation precedes neural retinal dysfunction in type 2 diabetic mice. Sci Rep 2021; 11:18401. [PMID: 34526573 PMCID: PMC8443656 DOI: 10.1038/s41598-021-97651-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022] Open
Abstract
We investigated and compared the susceptibility of retinal blood flow regulation and neural function in mice developing type 2 diabetes. The longitudinal changes in retinal neuronal function and blood flow responses to a 10-min systemic hyperoxia and a 3-min flicker stimulation were evaluated every 2 weeks in diabetic db/db mice and nondiabetic controls (db/m) from age 8 to 20 weeks. The retinal blood flow and neural activity were assessed using laser speckle flowgraphy and electroretinography (ERG), respectively. The db/db mice had significantly higher blood glucose levels and body weight. The resting retinal blood flow was steady and comparable between two groups throughout the study. Hyperoxia elicited a consistent decrease, and flicker light an increase, in retinal blood flow in db/m mice independent of age. However, these flow responses were significantly diminished in db/db mice at 8 weeks old and then the mice became unresponsive to stimulations at 12 weeks. Subsequently, the ERG implicit time for oscillatory potential was significantly increased at 14 weeks of age while the a-wave and b-wave amplitudes and implicit times remained unchanged. The deficiencies of flow regulation and neurovascular coupling in the retina appear to precede neural dysfunction in the mouse with type 2 diabetes.
Collapse
|
2
|
Idris-Khodja N, Ouerd S, Mian MOR, Gornitsky J, Barhoumi T, Paradis P, Schiffrin EL. Endothelin-1 Overexpression Exaggerates Diabetes-Induced Endothelial Dysfunction by Altering Oxidative Stress. Am J Hypertens 2016; 29:1245-1251. [PMID: 27465439 DOI: 10.1093/ajh/hpw078] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 07/06/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Increased endothelin (ET)-1 expression causes endothelial dysfunction and oxidative stress. Plasma ET-1 is increased in patients with diabetes mellitus. Since endothelial dysfunction often precedes vascular complications in diabetes, we hypothesized that overexpression of ET-1 in the endothelium would exaggerate diabetes-induced endothelial dysfunction. METHODS Diabetes was induced by streptozotocin treatment (55mg/kg/day, i.p.) for 5 days in 6-week-old male wild type (WT) mice and in mice overexpressing human ET-1 restricted to the endothelium (eET-1). Mice were studied 14 weeks later. Small mesenteric artery (MA) endothelial function and vascular remodeling by pressurized myography, reactive oxygen species (ROS) production by dihydroethidium staining and mRNA expression by reverse transcription/quantitative PCR were determined. RESULTS Endothelium-dependent vasodilatory responses to acetylcholine of MA were reduced 24% by diabetes in WT ( P < 0.05), and further decreased by 12% in eET-1 ( P < 0.05). Diabetes decreased MA media/lumen in WT and eET-1 ( P < 0.05), whereas ET-1 overexpression increased MA media/lumen similarly in diabetic and nondiabetic WT mice ( P < 0.05). Vascular ROS production was increased 2-fold by diabetes in WT ( P < 0.05) and further augmented 1.7-fold in eET-1 ( P < 0.05). Diabetes reduced endothelial nitric oxide synthase (eNOS, Nos3 ) expression in eET-1 by 31% ( P < 0.05) but not in WT. Induction of diabetes caused a 52% ( P < 0.05) increase in superoxide dismutase 1 ( Sod1 ) and a 32% ( P < 0.05) increase in Sod2 expression in WT but not in eET-1. CONCLUSIONS Increased expression of ET-1 exaggerates diabetes-induced endothelial dysfunction. This may be caused by decrease in eNOS expression, increase in vascular oxidative stress, and decrease in antioxidant capacity.
Collapse
Affiliation(s)
- Noureddine Idris-Khodja
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research , Montréal, Québec , Canada
| | - Sofiane Ouerd
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research , Montréal, Québec , Canada
| | - Muhammad Oneeb Rehman Mian
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research , Montréal, Québec , Canada
| | - Jordan Gornitsky
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research , Montréal, Québec , Canada
| | - Tlili Barhoumi
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research , Montréal, Québec , Canada
| | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research , Montréal, Québec , Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, Québec, Canada
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Québec, Canada
| |
Collapse
|
3
|
Sorop O, van den Heuvel M, van Ditzhuijzen NS, de Beer VJ, Heinonen I, van Duin RWB, Zhou Z, Koopmans SJ, Merkus D, van der Giessen WJ, Danser AHJ, Duncker DJ. Coronary microvascular dysfunction after long-term diabetes and hypercholesterolemia. Am J Physiol Heart Circ Physiol 2016; 311:H1339-H1351. [PMID: 27591223 DOI: 10.1152/ajpheart.00458.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/01/2016] [Indexed: 02/07/2023]
Abstract
Coronary microvascular dysfunction (CMD) has been proposed as an important component of diabetes mellitus (DM)- and hypercholesterolemia-associated coronary artery disease (CAD). Previously we observed that 2.5 mo of DM and high-fat diet (HFD) in swine blunted bradykinin (BK)-induced vasodilation and attenuated endothelin (ET)-1-mediated vasoconstriction. Here we studied the progression of CMD after 15 mo in the same animal model of CAD. Ten male swine were fed a HFD in the absence (HFD, n = 5) or presence of streptozotocin-induced DM (DM + HFD, n = 5). Responses of small (∼300-μm-diameter) coronary arteries to BK, ET-1, and the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine were examined in vitro and compared with those of healthy (Normal) swine (n = 12). Blood glucose was elevated in DM + HFD (17.6 ± 4.5 mmol/l) compared with HFD (5.1 ± 0.4 mmol/l) and Normal (5.8 ± 0.6 mmol/l) swine, while cholesterol was markedly elevated in DM + HFD (16.8 ± 1.7 mmol/l) and HFD (18.1 ± 2.6 mmol/l) compared with Normal (2.1 ± 0.2 mmol/l) swine (all P < 0.05). Small coronary arteries showed early atherosclerotic plaques in HFD and DM + HFD swine. Surprisingly, DM + HFD and HFD swine maintained BK responsiveness compared with Normal swine due to an increase in NO availability relative to endothelium-derived hyperpolarizing factors. However, ET-1 responsiveness was greater in HFD and DM + HFD than Normal swine (both P < 0.05), resulting mainly from ETB receptor-mediated vasoconstriction. Moreover, the calculated vascular stiffness coefficient was higher in DM + HFD and HFD than Normal swine (both P < 0.05). In conclusion, 15 mo of DM + HFD, as well as HFD alone, resulted in CMD. Although the overall vasodilation to BK was unperturbed, the relative contributions of NO and endothelium-derived hyperpolarizing factor pathways were altered. Moreover, the vasoconstrictor response to ET-1 was enhanced, involving the ETB receptors. In conjunction with our previous study, these findings highlight the time dependence of the phenotype of CMD.
Collapse
Affiliation(s)
- Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands; and
| | - Mieke van den Heuvel
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Internal Medicine, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nienke S van Ditzhuijzen
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Vincent J de Beer
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ilkka Heinonen
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Richard W B van Duin
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Zhichao Zhou
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sietse J Koopmans
- Livestock Research, Wageningen University and Research Center, Wageningen, The Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wim J van der Giessen
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands; and
| | - A H Jan Danser
- Department of Internal Medicine, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dirk Jan Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands;
| |
Collapse
|
4
|
Miyauchi Y, Jesmin S, Sakai S, Kamiyama J, Shimojo N, Rahman A, Islam M, Zaedi S, Maeda S, Maruyama H, Mizutani T, Homma S, Aonuma K, Miyauchi T. Effects of selective endothelin (ET)-A receptor antagonist versus dual ET-A/B receptor antagonist on hearts of streptozotocin-treated diabetic rats. Life Sci 2014; 111:6-11. [PMID: 24953608 DOI: 10.1016/j.lfs.2014.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 06/04/2014] [Accepted: 06/07/2014] [Indexed: 01/08/2023]
Abstract
AIMS The aim was to study the differences in the effectiveness of two types of endothelin (ET) receptor antagonists (selective ET-A or dual ET-A/B antagonists) on the hearts of streptozotocin (STZ)-induced diabetic rats (type I diabetes) at functional and biochemical/molecular levels. MAIN METHODS Citrate saline (vehicle) or STZ was injected into rats. The ET-A/B dual receptor antagonist (SB209670, 1mg/kg/day) and the ET-A receptor antagonist (TA-0201, 1mg/kg/day) were then administered to these rats. One week after injection, the animals were separated into those receiving SB209670, TA-0201 or vehicle by 4-week osmotic mini-pump. KEY FINDINGS The VEGF level and percent fractional shortening in the diabetic heart were significantly decreased compared to the non-diabetic heart, whereas SB209670 and TA-0201 treatments greatly and comparably prevented this decrease. SB209670 treatment was more effective in reversing decreased expressions of KDR and phosphorylated AKT, downstream of VEGF angiogenic signaling, than TA-0201 treatment. The eNOS levels in hearts were significantly higher in diabetic rats than in healthy rats, and this increase was significantly reduced by TA-0210 but not by SB209670 treatment. SIGNIFICANCE Improvement of KDR mRNA and pAKT levels by SB209670 but not TA-0201 suggests that dual ET-A/-B blockade may be effective in improving intracellular systems of these components in the diabetic rat heart. However, the present study also showed that TA-0201 or SB209670 improved percent fractional shortening and VEGF levels of the diabetic hearts to a similar extent, suggesting that ET-A blockade and dual ET-A/-B blockade are similarly effective in improving cardiac dysfunction in the diabetic rats.
Collapse
Affiliation(s)
- Yumi Miyauchi
- Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan; Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Subrina Jesmin
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoshi Sakai
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Junko Kamiyama
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Nobutake Shimojo
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Arifur Rahman
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Majedul Islam
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Sohel Zaedi
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seiji Maeda
- Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Hidekazu Maruyama
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Taro Mizutani
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoshi Homma
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazutaka Aonuma
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takashi Miyauchi
- Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan; Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
5
|
van den Heuvel M, Sorop O, Koopmans SJ, Dekker R, de Vries R, van Beusekom HMM, Eringa EC, Duncker DJ, Danser AHJ, van der Giessen WJ. Coronary microvascular dysfunction in a porcine model of early atherosclerosis and diabetes. Am J Physiol Heart Circ Physiol 2011; 302:H85-94. [PMID: 21984550 DOI: 10.1152/ajpheart.00311.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Detailed evaluation of coronary function early in diabetes mellitus (DM)-associated coronary artery disease (CAD) development is difficult in patients. Therefore, we investigated coronary conduit and small artery function in a preatherosclerotic DM porcine model with type 2 characteristics. Streptozotocin-induced DM pigs on a saturated fat/cholesterol (SFC) diet (SFC + DM) were compared with control pigs on SFC and standard (control) diets. SFC + DM pigs showed DM-associated metabolic alterations and early atherosclerosis development in the aorta. Endothelium-dependent vasodilation to bradykinin (BK), with or without blockade of nitric oxide (NO) synthase, endothelium-independent vasodilation to an exogenous NO-donor (S-nitroso-N-acetylpenicillamine), and vasoconstriction to endothelin (ET)-1 with blockade of receptor subtypes, were assessed in vitro. Small coronary arteries, but not conduit vessels, showed functional alterations including impaired BK-induced vasodilatation due to loss of NO (P < 0.01 vs. SFC and control) and reduced vasoconstriction to ET-1 (P < 0.01 vs. SFC and control), due to a decreased ET(A) receptor dominance. Other vasomotor responses were unaltered. In conclusion, this model demonstrates specific coronary microvascular alterations with regard to NO and ET-1 systems in the process of early atherosclerosis in DM. In particular, the altered ET-1 system correlated with hyperglycemia in atherogenic conditions, emphasizing the importance of this system in DM-associated CAD development.
Collapse
Affiliation(s)
- Mieke van den Heuvel
- Department of Cardiology, Division of Pharmacology, Vascular and Metabolic Diseases, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Oak JH, Youn JY, Cai H. Aminoguanidine inhibits aortic hydrogen peroxide production, VSMC NOX activity and hypercontractility in diabetic mice. Cardiovasc Diabetol 2009; 8:65. [PMID: 20040119 PMCID: PMC2811700 DOI: 10.1186/1475-2840-8-65] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 12/30/2009] [Indexed: 12/04/2022] Open
Abstract
Background Dysfunctionally uncoupled endothelial nitric oxide synthase (eNOS) is involved in producing reactive oxygen species (ROS) in the diabetic endothelium. The present study investigated whether anti-diabetes drug Aminoguanidine (AG) has any effect on eNOS function and vascular oxidant stress. Methods and Results Blood glucose levels were increased to 452.0 ± 15.1 mg/dl in STZ-treated male C57BL/6J mice (148.4 ± 3.2 mg/dl in untreated controls). Aortic productions of NO• and O2•- were measured specifically and sensitively using electron spin resonance. Diabetic mice had a marked increase in aortic O2•- production. Aortic hydrogen peroxide (H2O2) production was also increased in diabetic aortas and significantly attenuated by AG. AG however had only a marginal effect in reducing aortic O2•- production, which corresponded to a minimal effect in improving aortic nitric oxide (NO•) bioavailability. The endothelium-dependent vasodilatation however was modestly but significantly improved by AG, likely consequent to AG-induced reduction in hyper-contractility. NAD(P)H oxidase (NOX)-dependent O2•- production was completely attenuated by AG in endothelium-denuded diabetic aortas. Conclusion In summary, despite that AG is not an effective eNOS recoupling agent presumably consequent to its ineffectiveness in preventing endothelial NOX activation, it is inhibitory of aortic H2O2 production, VSMC NOX activity, and hypercontractility in diabetes.
Collapse
Affiliation(s)
- Jeong-Ho Oak
- Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA.
| | | | | |
Collapse
|
7
|
Liakopoulos V, Wurth P, Mertens PR, Eleftheriadis T, Kourti P, Voliotis G, Heintz B, Koukoulis GN, Stefanidis I. Endothelin-1 Plasma Levels in Hemodialysis Treatment—The Influence of Type 2 Diabetes. Ren Fail 2009; 27:515-22. [PMID: 16152988 DOI: 10.1080/08860220500198250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
In patients on chronic hemodialysis the prevalence of atherosclerosis is increased and is by far the leading cause of morbidity and mortality. Endothelin-1, an endothelium-derived peptide with vasoconstrictive and mitogenic effects on vascular smooth muscles, is involved in the pathogenesis of atherosclerosis. The aim of the present study was to investigate the time course of plasma endothelin-1 levels during a hemodialysis session and to explore the influence of preexisting type 2 diabetes mellitus. Forty-five clinically stable hemodialysis patients (21 females, 24 males; mean age 62 +/- 12 years) were evaluated. Patients with type 2 diabetes (n= 11) were compared with the group of patients without diabetes (n=34). Relative blood volume (BV) changes (hemoglobinometry) and blood pressure (BP) was measured. Samples were taken before, every hour during, and after hemodialysis. Plasma endothelin-1 levels were measured by enzyme-linked immunoassay (ELISA) and results were corrected according to hemoconcentration. Hemodialysis with an ultrafiltration of 2215 +/- 952 mL was performed. Total BV at the end of hemodialysis was 89.3% +/- 8.3% of the pretreatment volume. Plasma endothelin-1 was enhanced in hemodialysis patients compared to normal subjects and increased from 1.28 +/- 0.47 before to 1.44 +/- 0.54 pg/mL (ref. 0.3-0.9) at the end of hemodialysis (p<0.05). The BV change (r=0.41) and the BP (mean BP: r=0.34) correlated with plasma endothelin-1 at the end of hemodialysis (p<0.05). The levels of endothelin-1 were significantly higher in the group of dialysis patients with type 2 diabetes compared to nondiabetics in all measurements (p<0.05). These findings suggest a potential role of endothelin-1 in the pathogenesis of vascular dysfunction in diabetes mellitus. The dialysis procedure per se, through vasoconstriction due to BV decrease, local endothelial injury (a.v. fistula), or bioincompatibility reactions (foreign surface contact) may additionally alter endothelial cell functions.
Collapse
Affiliation(s)
- Vasilios Liakopoulos
- Division of Nephrology, Department of Medicine, School of Health Sciences, University of Thessalia, Larissa, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abboud K, Bassila JC, Ghali-Ghoul R, Sabra R. Temporal changes in vascular reactivity in early diabetes mellitus in rats: role of changes in endothelial factors and in phosphodiesterase activity. Am J Physiol Heart Circ Physiol 2009; 297:H836-45. [PMID: 19542492 DOI: 10.1152/ajpheart.00102.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aims of this study were to study the influence of the duration of diabetes, the role of endothelial-derived vasodilators, and the role of phosphodiesterase (PDE) isoform activity in the early changes in vascular reactivity of aortic rings from diabetic rats. Diabetes mellitus was induced in female rats by intravenous streptozotocin (85 mg/kg). Two or 4 wk later, thoracic aortic rings from control and diabetic rats were isolated, and vascular responses to acetylcholine (ACh), S-nitroso-N-acetylpenicillamine (SNAP) [nitric oxide (NO) donor], DMPPO (PDE5 inhibitor), and phenylephrine (PE) were obtained in the presence and absence of endothelium or other drugs. PDE isoform activity was also measured. At 2 wk, responses to ACh and DMPPO were enhanced, whereas those to PE were attenuated in diabetic rats relative to controls. Indomethacin and SQ-29548 (a thromboxane A(2) receptor antagonist), but not N(G)-nitro-L-arginine methyl ester, corrected these differences. The responses to SNAP, and cAMP and cGMP hydrolytic activities, were similar in the two groups. In contrast, at 4 wk, ACh, DMPPO, and PE produced similar responses in the two groups: N(G)-nitro-L-arginine methyl ester rendered the response to PE lower in the diabetic group, and this was corrected by indomethacin, but not SQ-29548, treatment. The response to SNAP was greater in the diabetic group, and this was corrected by DMPPO. Activity of all PDEs was decreased at 4 wk. We conclude that, at 2 wk, there is modulation of thromboxane A(2) production, but no change in the NO system or PDE isoform activities. At 4 wk, a reduction in NO activity is superimposed; at this stage, PDE activity is reduced, together with increased production of vasodilating prostaglandins, possibly as a compensatory mechanism to maintain normal vascular reactivity.
Collapse
Affiliation(s)
- K Abboud
- Department of Pharmacology and Therapeutics, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | | | | | | |
Collapse
|
9
|
Agosti V, Graziano S, Artiaco L, Sorrentino G. Biological mechanisms of stroke prevention by physical activity in type 2 diabetes. Acta Neurol Scand 2009; 119:213-23. [PMID: 18700881 DOI: 10.1111/j.1600-0404.2008.01080.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The principal modifiable risk factors for stroke are hypertension, diabetes mellitus, hypercholesterolaemia, hyperhomocysteinaemia, smoking and limited physical activity. However, it is not clear whether physical inactivity is a risk factor per se, or because it predisposes to pathological conditions that are risk factors for stroke. The limited availability of effective therapeutic approaches for stroke emphasizes the crucial role of prevention of risk factors. The global burden associated with type 2 diabetes is large and continues to grow. Convincing epidemiologic data support the role of physical activity in preventing type 2 diabetes. The increasing evidence of physical activity in preventing diabetic complications, including stroke, has generated interest in the molecular basis underlying these beneficial effects. The aim of the present review is to discuss the biological mechanisms underlying the effect of physical activity in preventing stroke in type 2 diabetes.
Collapse
Affiliation(s)
- V Agosti
- University of Naples Parthenope and Istituto di diagnosi e cura Hermitage Capodimonte, Italy
| | | | | | | |
Collapse
|
10
|
Shao Y, He M, Zhou L, Yao T, Huang Y, Lu LM. Chronic angiotensin (1-7) injection accelerates STZ-induced diabetic renal injury. Acta Pharmacol Sin 2008; 29:829-37. [PMID: 18565281 DOI: 10.1111/j.1745-7254.2008.00812.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIM The renin-angiotensin system (RAS) plays a critical role in blood pressure control and body fluid and electrolyte homeostasis. In the past few years, angiotensin (Ang) (1-7) has been reported to counteract the effects of Ang II and was even considered as a new therapeutical target in RAS. The present study aimed to investigate the effect of Ang (1-7) administration on a diabetic animal model and the modulation on local RAS. METHODS Streptozotocin (STZ) injection-induced diabetic rats were used in the experiment. The animals were divided into 3 groups: (1) control; (2) STZ-induced diabetes; and (3) STZ-induced diabetes with chronic Ang (1-7) treatment [D+Ang(1-7)]. In the D+Ang(1-7) group, a dose of 25 microg x kg(-1) x h(-1) of Ang (1-7) was continually injected through the jugular vein by embedding miniosmotic pump for 6 weeks. Plasma glucose, ratio of kidney to body weight, and 24 h urine protein and serum creatinine were monitored by conventional measurement. Plasma and renal Ang II levels were measured by radioimmunoassay. Ang-converting enzyme (ACE), ACE2, Ang II type 1 (AT1) receptor, Ang II type 2 (AT2) receptor, Ang (1-7) Mas receptor, and TGF- beta1 mRNA levels were measured by real time PCR; ACE, ACE2, and TGF- beta1 protein levels were analyzed by Western blotting. RESULTS The renal function of diabetic rats was significantly retrogressed when compared with that of control rats. After the treatment by constant Ang (1-7) vein injection for 6 weeks, renal function was found to be even worse than diabetic rats, and both TGF-beta1 mRNA and protein levels were elevated in the D+Ang(1-7) group compared with the diabetic rats. The real-time PCR result also showed an increase in ACE mRNA expression and decrease in ACE2 mRNA level in the D+Ang(1-7) group when compared with diabetic rats. The number of AT1 receptors increased in the Ang (1-7)-injected group, while the number of AT2 and Mas receptors decreased. CONCLUSION Exogenous Ang (1-7) injection did not ameliorate STZinduced diabetic rat renal injury; on the contrary, it accelerated the progressive diabetic nephropathies.
Collapse
Affiliation(s)
- Ying Shao
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
11
|
Abebe W. Effects of taurine on the reactivity of aortas from diabetic rats. Life Sci 2008; 82:279-89. [DOI: 10.1016/j.lfs.2007.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 11/13/2007] [Accepted: 11/18/2007] [Indexed: 10/22/2022]
|
12
|
Maharsy WM, Kadi LN, Issa NG, Bitar KM, Der-Boghossian AH, Abrahamian R, Bikhazi AB. Cross-talk related to insulin and angiotensin II binding on myocardial remodelling in diabetic rat hearts. J Renin Angiotensin Aldosterone Syst 2007; 8:59-65. [PMID: 17703431 DOI: 10.3317/jraas.2007.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
This study focused on the regulation and affinity modulation of angiotensin II (Ang II) binding to its receptor subtypes (AT(1)- and AT(2)-receptor) in the coronary endothelium (CE) and cardiomyocytes (CM) of Sprague-Dawley male rats in normal (N), normal treated with losartan (NL), streptozotocin-induced diabetic (D), insulin-treated diabetic (DI), losartan-treated diabetic (DL), and diabetic co-treated with insulin and losartan (DIL). Heart perfusion was used to estimate Ang II binding affinity (tau=1/k-(n)) to its receptor subtypes on CE and CM. Diabetes decreased tau value on CE and increased it on CM as compared to normal. In DL group, the tau value decreased on CE but was normalised on CM. Insulin treatment alone (DI) or with losartan (DIL) restored t to normal on both CE and CM. Western blot results for AT(1)-receptor density showed an increase in diabetics compared to normal with no normalising effect with insulin treatment. The AT(1)-receptor density was normalised in the diabetic groups treated with losartan +/- insulin. Results for AT(2)-receptor regulation revealed a significant difference between untreated (D) and losartan-treated (DL, DIL) diabetic groups. All of these data show the interrelated pathway and cross-talk between insulin and Ang II system indicating potentially negative effects on the diabetic heart.
Collapse
Affiliation(s)
- Wael M Maharsy
- Department of Physiology, American University of Beirut, Beirut, Lebanon
| | | | | | | | | | | | | |
Collapse
|
13
|
Nuwayri-Salti N, Karam CN, Al Jaroudi WA, Usta JA, Maharsy WM, Bitar KM, Bikhazi AB. Effect of type-1 diabetes mellitus on the regulation of insulin and endothelin-1 receptors in rat hearts. Can J Physiol Pharmacol 2007; 85:215-24. [PMID: 17487263 DOI: 10.1139/y07-012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This project assesses the treatment role with insulin and (or) angiotensin II receptor subtype-1 (AT1-R) blocker (ARB) on insulin receptor and endothelin-1 receptor subtype (ETA-R and ETB-R) regulation in rat hearts suffering from insulin-dependent diabetes mellitus (IDDM). Animals were divided into 6 groups: groups 1, 3, and 5 were controls consisting of normal, diabetic (streptozotocin-treated, once at 0 time), and diabetic supplemented daily with insulin, respectively, whereas groups 2, 4, and 6 were the controls treated daily with losartan. One month after enrollment, rats were sacrificed and samples of cardiac tissue were snapped frozen for immunostaining and Western blotting. Insulin receptor density was observed to be upregulated in the cardiomyocytes of diabetic animals, but downregulated with insulin supplementation alone. Cotreatment with insulin and an ARB resulted in drastic increase in insulin-receptor density in the diabetic rats. In addition, expression of ETA-R in cardiomyocytes was upregulated and was consistently maintained within the various treatment modalities. However, ETB-R expression was significantly reduced in the diabetic group treated with both insulin and an ARB. The changes in the expression of the insulin, the ETA-Rs, and the ETB-Rs at the various sites of the myocardium and the effect of both insulin treatment and blockade of the AT1-R explain the new benefits related to the halting of myocardial remodeling in IDDM rats.
Collapse
Affiliation(s)
- Nuha Nuwayri-Salti
- Department of Human Morphology, American University of Beirut, Beirut, Lebanon
| | | | | | | | | | | | | |
Collapse
|
14
|
Jesmin S, Zaedi S, Shimojo N, Iemitsu M, Masuzawa K, Yamaguchi N, Mowa CN, Maeda S, Hattori Y, Miyauchi T. Endothelin antagonism normalizes VEGF signaling and cardiac function in STZ-induced diabetic rat hearts. Am J Physiol Endocrinol Metab 2007; 292:E1030-40. [PMID: 17148754 DOI: 10.1152/ajpendo.00517.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abnormal alterations in cardiac expression of vascular endothelial growth factor (VEGF) as well as its receptors and impairment in the development of coronary collaterals have recently been reported in diabetic subjects. However, the presence of pharmacological intervention on these defects in diabetes remains unsettled. Here, we studied the effect of endothelin (ET) receptor blockade on cardiac VEGF signaling pathways and cardiac function in Sprague-Dawley rats 5 wk after induction of type I diabetes with streptozotocin (65 mg/kg ip) in comparison with age-matched control rats. After streptozotocin (1 wk), some diabetic rats were treated with the ET receptor antagonist SB-209670 (1 mg/day) for 4 wk. VEGF, its receptors, and its angiogenic signaling molecules [phosphorylated Akt and endothelial nitric-oxide synthase (eNOS)] were analyzed by Western blot, ELISA, real-time PCR, and immunohistochemistry, and cardiac function was evaluated by echocardiography. Coronary capillary morphology was assessed by lectin and enzymatic double staining. We found significant decreases in cardiac expression of VEGF, its receptors, phosphorylation of Akt and eNOS, and coronary capillary density in diabetic rats compared with controls. Treatment of diabetic rats with SB-209670 reversed these alterations to the control levels and ameliorated impairment of cardiac function. From a molecular point of view, the present study is the first to indicate the potential usefulness of an ET receptor antagonist in the treatment of cardiac dysfunction in type I diabetes.
Collapse
Affiliation(s)
- Subrina Jesmin
- Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ding Y, Zou R, Judd RL, Zhong J. Endothelin-1 receptor blockade prevented the electrophysiological dysfunction in cardiac myocytes of streptozotocin-induced diabetic rats. Endocrine 2006; 30:121-7. [PMID: 17185800 DOI: 10.1385/endo:30:1:121] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 04/21/2006] [Accepted: 06/26/2006] [Indexed: 12/27/2022]
Abstract
Diabetes mellitus is complicated with the development of cardiac contractile dysfunction and electrical instability, which contributes to high morbidity and mortality in diabetic patients. This study examined the possible roles of enhanced endothelin-1 (ET-1) on diabetes-induced alterations in ventricular myocyte electrophysiology. Type 1 diabetic rats were induced by single dose injection of streptozotocin (STZ) and treated with or without ET-1 receptor antagonist bosentan for 8 wk before myocyte isolation. Action potential, outward K+ currents, and inward Ca2+ currents in ventricular myocytes were recorded using whole-cell patch clamp technique. STZ-injected rats exhibited hyperglycemia, reduced body weight gain, and elevated plasma ET-1 concentration, indicative of diabetes induction. Ventricular myocytes isolated from diabetic rats exhibited prolonged action potential and reduced all three types of outward K+ currents. Resting membrane potential, height of action potential, and L-type Ca2+ current were not altered in diabetic myocytes. In vivo chronic treatment of diabetic rats with bosentan significantly augmented K+ currents and reversed action potential prolongation in ventricular myocytes. On the other hand, bosentan treatment had no detectable effect on the electrophysiological properties in control myocytes. In addition, bosentan had no effect on Ltype Ca2+ currents in both control and diabetic myocytes. Our data suggest that altered electrophysiological properties in ventricular myocytes were largely resulted from augmented ET-1 system in diabetic animals.
Collapse
Affiliation(s)
- Yanfeng Ding
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | | | | | | |
Collapse
|
16
|
Setty S, Sun W, Martinez R, Downey HF, Tune JD. α-Adrenoceptor-mediated coronary vasoconstriction is augmented during exercise in experimental diabetes mellitus. J Appl Physiol (1985) 2004; 97:431-8. [PMID: 14978008 DOI: 10.1152/japplphysiol.01122.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study tested whether α-adrenoceptor-mediated coronary vasoconstriction is augmented during exercise in diabetes mellitus. Experiments were conducted in dogs instrumented with catheters in the aorta and coronary sinus and with a flow transducer around the circumflex coronary artery. Diabetes was induced with alloxan monohydrate ( n = 8, 40 mg/kg iv). Arterial plasma glucose concentration increased from 4.7 ± 0.2 mM in nondiabetic, control dogs ( n = 8) to 21.4 ± 1.9 mM 1 wk after alloxan injection. Coronary blood flow, myocardial oxygen consumption (MV̇o2), aortic pressure, and heart rate were measured at rest and during graded treadmill exercise before and after infusion of the α-adrenoceptor antagonist phentolamine (1 mg/kg iv). In untreated diabetic dogs, exercise increased MV̇o2 2.7-fold, coronary blood flow 2.2-fold, and heart rate 2.3-fold. Coronary venous Po2 fell as MV̇o2 increased during exercise. After α-adrenoceptor blockade, exercise increased MV̇o2 3.1-fold, coronary blood flow 2.7-fold, and heart rate 2.1-fold. Relative to untreated diabetic dogs, α-adrenoceptor blockade significantly decreased the slope of the relationship between coronary venous Po2 and MV̇o2. The difference between the untreated and phentolamine-treated slopes was greater in the diabetic dogs than in the nondiabetic dogs. In addition, the decrease in coronary blood flow to intracoronary norepinephrine infusion was significantly augmented in anesthetized, open-chest, β-adrenoceptor-blocked diabetic dogs compared with the nondiabetic dogs. These findings demonstrate that α-adrenoceptor-mediated coronary vasoconstriction is augmented in alloxan-induced diabetic dogs during physiological increases in MV̇o2.
Collapse
Affiliation(s)
- Srinath Setty
- Departnment Integrative of Physiology, University of North Texas Health Sciences Center, Fort Worth, Texas 76107-2699, USA
| | | | | | | | | |
Collapse
|
17
|
Rodríguez-Mañas L, Angulo J, Vallejo S, Peiró C, Sánchez-Ferrer A, Cercas E, López-Dóriga P, Sánchez-Ferrer CF. Early and intermediate Amadori glycosylation adducts, oxidative stress, and endothelial dysfunction in the streptozotocin-induced diabetic rats vasculature. Diabetologia 2003; 46:556-66. [PMID: 12739028 DOI: 10.1007/s00125-003-1056-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2002] [Revised: 11/07/2002] [Indexed: 02/02/2023]
Abstract
AIMS/HYPOTHESIS In a model of streptozotocin-induced Type 1 diabetes mellitus in rats of 9 weeks duration, we analysed time associations between the development of hyperglycaemia, early and intermediate glycosylation Amadori adducts, or AGE compared with enhancement of oxidative stress and endothelial dysfunction. METHODS Endothelial function was tested at several stages of streptozotocin-induced diabetes and after treatment with insulin, resulting in different concentrations of blood glucose, glycosylated haemoglobin (an Amadori adduct), and AGE. Other animals were studied antagonising the formation of AGE with aminoguanidine. RESULTS Relaxation in response to acetylcholine (1 nmol/l to 10 micro mol/l) was tested in isolated segments from aorta or mesenteric microvessels. Impairment of endothelium-dependent relaxations occurred after 2 weeks of untreated diabetes. Preincubation of vessels affected with 100 U/ml superoxide dismutase improved the relaxations to acetylcholine, along the time-course of the endothelial impairment. This indicates the participation of reactive oxygen species on diabetic endothelial dysfunction. The impairment of endothelium-dependent relaxations was recovered after 3 more weeks of insulin treatment. Aminoguanidine treatment did not modify this pattern of development. The time course of the rise and disappearance of endothelial dysfunction showed a higher correlation with glycosylated haemoglobin concentrations than with blood glucose or serum AGE. CONCLUSION/INTERPRETATION Enhancement of early and intermediate Amadori adducts of protein glycosylation was the factor showing a better relation with the development of endothelium impairment. These results are consistent with a role for these products in the development of diabetic vasculopathy.
Collapse
Affiliation(s)
- L Rodríguez-Mañas
- Research Unit and Service of Geriatrics, University Hospital of Getafe, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Late morphological changes in the molar pulp of wistar rats with alloxan induced diabetes. ACTA VET-BEOGRAD 2003. [DOI: 10.2298/avb0306343r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
19
|
Mather KJ, Mirzamohammadi B, Lteif A, Steinberg HO, Baron AD. Endothelin contributes to basal vascular tone and endothelial dysfunction in human obesity and type 2 diabetes. Diabetes 2002; 51:3517-23. [PMID: 12453909 DOI: 10.2337/diabetes.51.12.3517] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Endothelium-dependent vasodilation is impaired in clinical states of insulin resistance such as obesity and type 2 diabetes. Individuals who have hyperinsulinemic insulin resistance have relatively elevated circulating levels of endothelin (ET)-1, suggesting that ET-1 may be important in the endothelial dysfunction and alterations of vascular tone in these conditions. In 8 lean subjects, 12 nondiabetic obese subjects, and 8 subjects with type 2 diabetes, we measured basal and methacholine-stimulated rates of leg blood flow (LBF) and total serum nitrates (NOx) before and after the intrafemoral arterial administration of BQ123, a specific blocker of ET(A) receptors. BQ123 produced significant vasodilation in the obese and type 2 diabetic subjects (leg vascular resistance = mean arterial pressure/LBF fell by 34 and 36%; P < 0.005) but not in the lean subjects (13%; P = NS, P = 0.018 comparing all groups). ET(A) blockade did not change basal NOx flux (NOx*LBF). This suggests increased basal ET-1 constrictor tone among obese and type 2 diabetic subjects. BQ123 corrected the baseline defect in endothelium-dependent vasodilation seen in obese and type 2 diabetic subjects, suggesting an important contribution of ET-1 to endothelial dysfunction in these subjects. In contrast to basal conditions, stimulated NOx flux was augmented by BQ123 in obese and type 2 diabetic subjects but not in L subjects (P = 0.04), suggesting a combined effect of ET(A) blockade to reduce constrictor tone and augment dilator tone. Endothelin seems to contribute to endothelial dysfunction and the regulation of vascular tone in human obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Kieren J Mather
- Division of Endocrinology & Metabolism, Indiana University-Purdue University Indianapolis School of Medicine, CL459, 541 North Clinical Drive, Indianapolis, IN 46202, USA.
| | | | | | | | | |
Collapse
|
20
|
Verma S, Arikawa E, Lee S, Dumont AS, Yao L, McNeill JH. Exaggerated coronary reactivity to endothelin-1 in diabetes: reversal with bosentan. Can J Physiol Pharmacol 2002; 80:980-6. [PMID: 12450064 DOI: 10.1139/y02-122] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously demonstrated that chronic endothelin receptor blockade (with bosentan) improved functional cardiac performance in streptozotocin-diabetic rats, suggesting a novel role of endothelin-1 (ET-1) in modulating diabetic heart dysfunction. To gain insight into the mechanism(s) underlying this effect, we examined the coronary vascular responses to ET-1 in hearts from diabetic and control rats treated with or without bosentan. Rats were divided into control, control-treated, diabetic, and diabetic-treated groups. The control-treated and diabetic-treated groups received bosentan (100 mg x kg(-1) x d(-1)) for 8 weeks. Following treatment, hearts were isolated and perfused, and coronary reactivity to ET-1 was assessed by measuring the changes in coronary perfusion pressure in response to ET-1 (50 and 100 pM). Additionally, maximal coronary blood flow (assessed with 10(-5) M adenosine) was measured in isolated perfused hearts. The key observation is that coronary reactivity to ET-1 was significantly higher in the diabetic than the control rats. This effect was normalized in diabetic rats chronically receiving bosentan. Maximal coronary vasodilation did not differ between the four groups. In conclusion, the reactivity of ET-1 is altered in the isolated perfused coronary vascular bed from diabetic rats, and chronic ET receptor blockade restores this reactivity to control values. These observations provide a possible mechanism for the improvement in diabetic heart function observed after chronic bosentan treatment.
Collapse
Affiliation(s)
- Subodh Verma
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia, 2146 East Mall, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Cardillo C, Campia U, Bryant MB, Panza JA. Increased activity of endogenous endothelin in patients with type II diabetes mellitus. Circulation 2002; 106:1783-7. [PMID: 12356630 DOI: 10.1161/01.cir.0000032260.01569.64] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Endothelial dysfunction may contribute to the risk of premature atherosclerosis in patients with diabetes. Endothelin (ET-1) may be involved in this process by activating smooth muscle cell mitogenesis and leukocyte adhesion. We sought to assess the activity of endogenous ET-1 in a group of patients with type II diabetes mellitus with the use of antagonists of ET-1 receptors. METHODS AND RESULTS Forearm blood flow (FBF) responses (strain gauge plethysmography) to intraarterial infusion of a selective blocker of ET(A) receptors (BQ-123) and, on a different occasion, to ET-1, were measured in 15 patients with diabetes and 12 healthy controls. In addition, 5 patients with diabetes received coinfusion of BQ-123 and BQ-788 (a selective blocker of ET(B) receptors). In normal subjects, BQ-123 did not significantly modify FBF from baseline (P=0.16). In contrast, BQ-123 administration resulted in a significant vasodilator response in patients with diabetes (P<0.001). Infusion of exogenous ET-1 resulted in lower vasoconstrictor responses in patients with diabetes than in controls (P=0.001), whereas the vasoconstrictor response to norepinephrine was similar in the 2 groups (P=0.78). In patients with diabetes, the vasodilator response to selective ET(A) blockade was not significantly modified by nonselective blockade of ET-1 receptors obtained by coinfusion of BQ-123 and BQ-788. CONCLUSIONS The activity of endogenous ET-1 on ET(A) receptors is enhanced in the resistance vessels of patients with diabetes, whereas their sensitivity to exogenous ET-1 is blunted. This abnormality may participate in the pathophysiology of vascular complications associated with diabetes.
Collapse
Affiliation(s)
- Carmine Cardillo
- Cardiology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md, USA
| | | | | | | |
Collapse
|
22
|
Reyes-Toso CF, Rosón MI, Albornoz LE, Damiano PF, Linares LM, Cardinali DP. Vascular reactivity in diabetic rats: effect of melatonin. J Pineal Res 2002; 33:81-6. [PMID: 12153441 DOI: 10.1034/j.1600-079x.2002.01886.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of the present study was to evaluate the in vitro contractile response of rat aorta in mild and severe type I diabetes and the effect of melatonin on it. Aortic rings were obtained from male Wistar rats injected with streptozotocin 8-12 wks earlier. Rats were divided into three groups: non-diabetic rats (NDR), mildly diabetic rats (MDR) and severely diabetic rats (SDR). Dose-response curves for acetylcholine-induced, endothelium-related relaxation of aortic rings (after previous exposure to phenylephrine) and for serotonin-induced vasoconstriction were conducted in the presence or absence of 10-5 mol/L melatonin. This protocol was repeated with rings preincubated in a high glucose solution (44 mmol/L). The contractile response to phenylephrine decreased in SDR, an effect counteracted by preincubation with high glucose. Melatonin decreased phenylephrine-induced vasoconstriction in MDR and counteracted the effect of high glucose in SDR. Acetylcholine-evoked relaxation decreased significantly after exposure to a high glucose in SDR, this effect being counteracted by melatonin. Serotonin-induced vasoconstriction decreased in SDR and augmented in MDR, but only after exposure to high glucose. Melatonin reduced the maximal tension of aortic contraction after serotonin in MDR, both under basal conditions and after preincubation in a high glucose solution. The results support the existence of differences in vasomotor responses as a function of the diabetes state and of an improvement of contractile performance in diabetic rats after exposure to melatonin at a pharmacological concentration (in terms of circulating melatonin levels but not necessarily for some other fluids or tissues).
Collapse
Affiliation(s)
- Carlos F Reyes-Toso
- Departmento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
23
|
Misurski DA, Hopfner RL, Gopalakrishnan V. Attenuated agonist evoked vasoconstrictor responses in the perfused mesenteric vascular bed of streptozotocin diabetic rats. Exp Biol Med (Maywood) 2001; 226:940-6. [PMID: 11682701 DOI: 10.1177/153537020122601010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We compared agonist-evoked responses in the perfused mesenteric vascular bed (MVB) of streptozotocin (STZ) diabetic Sprague-Dawley rats 2 and 14 weeks after induction of diabetes. Endothelin-1 (ET-1)-, methoxamine (MTX)-, and KCl-evoked vasoconstrictor responses were unchanged in 2-week-old diabetic rats. In contrast, both the sensitivity (P < 0.01) and the maximal vasoconstrictor responses (P < 0.05) to ET-1 were attenuated in 14-week-old diabetic rats, whereas endothelin plasma levels were increased (P < 0.05). Although no differences were observed in responses to KCl in either the 2- or 14-week-old diabetic groups, MTX-evoked maximal responses were attenuated in the 14-week-old group (P < 0.01). Changes in agonist-evoked responses in the 14-week-old diabetic group were unaffected by the protein kinase C (PKC) inhibitor, staurosporine, the phospholipase C (PLC) inhibitor, U73122, the calcium channel blocker, nifedipine, the calcium pump inhibitor, cyclopiazonic acid (CPA), or by endothelial denudation. Sodium fluoride (NaF), an activator of guanosine triphosphate binding proteins (G proteins) normalized the responses in the 14-week-old diabetic group. These data suggest that advanced stages of STZ are associated with alterations in G protein receptor coupling and/or activity leading to the attenuation of responses to vasoconstrictor agonists.
Collapse
Affiliation(s)
- D A Misurski
- Department of Pharmacology and the Cardiovascular Risk Factor Reduction Unit, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5 Canada
| | | | | |
Collapse
|
24
|
Bond BR, Dorman BH, Clair MJ, Walker CA, Pinosky ML, Reeves ST, Walton S, Kratz JM, Zellner JL, Crumbley AJ, Multani MM, Spinale FG. Endothelin-1 during and after cardiopulmonary bypass: association to graft sensitivity and postoperative recovery. J Thorac Cardiovasc Surg 2001; 122:358-64. [PMID: 11479510 DOI: 10.1067/mtc.2001.114936] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Our objectives are 2-fold: (1) to serially measure the release of endothelin and graft-conduit endothelin sensitivity during and after coronary artery bypass grafting and (2) to define potential relationships of changes in endothelin levels to perioperative parameters. METHODS Endothelin plasma content was measured in patients (n = 105) undergoing bypass grafting from select vascular compartments before operations and at specific intervals up to 24 hours postoperatively. Endothelin sensitivity was determined in isolated internal thoracic artery segments. RESULTS Systemic arterial and pulmonary arterial endothelin levels were increased by approximately 50% immediately after bypass grafting and increased by another 85% during the first 24 hours postoperatively. Endothelin levels were highest in patients with prolonged ventilatory requirements and extended stays in the intensive care unit (10.2 +/- 0.8 vs 13.2 +/- 1.1 fmol/mL, P =.02, and 9.8 +/- 0.7 vs 13.9 +/- 1.2 fmol/mL, P =.01, respectively. Endothelin sensitivity of the internal thoracic artery was increased in patients requiring prolonged vasodilator support with nitroglycerin. CONCLUSIONS Systemic and pulmonary arterial endothelin levels remained increased for at least 24 hours postoperatively. Prolonged pharmacologic management and increased intensive care unit stay were associated with increased systemic endothelin release and heightened graft-conduit sensitivity to endothelin.
Collapse
Affiliation(s)
- B R Bond
- Department of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
To clarify the mechanism underlying increased endothelin-1 release in diabetic rats, we examined its release from thoracic aortas obtained from streptozotocin-induced diabetic rats. The methoxamine-induced contraction was significantly inhibited by BQ-123 plus BQ-788 (specific antagonists for ET(A) and ET(B) receptors) in diabetic, but not control rats. Preincubation with phosphoramidon also inhibited the methoxamine-induced contraction in diabetic but not control rats. The expression of prepro endothelin-1 mRNA was significantly enhanced in aortas from streptozotocin-induced diabetic rats. These results suggest that the increases in the basal and alpha-agonist-induced release of endothelin-1 in the diabetic state may be due to an overexpression of the mRNA for prepro endothelin-1.
Collapse
Affiliation(s)
- A Makino
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, 142-8501, Tokyo, Japan
| | | | | |
Collapse
|
26
|
Arikawa E, Verma S, Dumont AS, McNeill JH. Chronic bosentan treatment improves renal artery vascular function in diabetes. J Hypertens 2001; 19:803-12. [PMID: 11330884 DOI: 10.1097/00004872-200104000-00018] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Endothelin-1 (ET-1) has been suggested to play an important role in the pathogenesis of diabetes-induced vascular complications. The primary purpose of the present study was to examine the potential beneficial effects of chronic ET receptor blockade (with bosentan) on vascular function in renal arteries from streptozotocin (STZ)-induced diabetic rats. DESIGN Wistar rats were divided into four groups: control (C), control bosentan-treated (CB), diabetic (D) and diabetic bosentan-treated (DB). Following 10 weeks of bosentan treatment, vascular responses to norepinephrine (NE), ET-1, acetylcholine (ACh) were determined in vascular segments of renal arteries, both with and without the endothelium denuded, according to the following protocol: (1) a cumulative dose-response curve (DRC) to NE in the absence and presence of the nitric oxide synthase (NOS) inhibitor L-NAME (2) cumulative DRC to ET-1 and (3) cumulative DRC to ACh in precontracted arteries. In addition, plasma ET-1 was assayed and ET-1-like immunoreactivity was determined in vascular tissues by immunohistochemistry. RESULTS The maximum contractile responses to NE and ET-1 were markedly exaggerated in endothelium-intact renal arteries from untreated D rats while ACh responses were preserved. Arteries denuded of endothelium did not exhibit exaggerated responses to NE or ET-1. L-NAME treatment did not affect responses to NE in arteries with or without endothelium. Strikingly, responses to NE and ET-1 (in arteries with endothelium) were completely normalized following long-term bosentan treatment. In addition, plasma ET-1 levels did not differ between C and D groups. However, renal arteries isolated from the D group exhibited increased ET-1-like immunoreactivity (local ET-1 content). CONCLUSION These data uncover, for the first time, beneficial effects of mixed ETA/ETB receptor blockade on renal artery vascular function in diabetes. Alterations in the production and/or action of ET-1 may have important implications in the development of vascular dysfunction in experimental diabetes.
Collapse
Affiliation(s)
- E Arikawa
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
27
|
Timar-Peregrin A, Guy RG. Recovery of microvascular responses during streptozotocin-induced diabetes. Eur J Pharmacol 2001; 414:63-70. [PMID: 11230996 DOI: 10.1016/s0014-2999(01)00758-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Microvascular reactivity of cannulated and pressurised rat cremaster arterioles was studied during the progress of diabetes using mechanical (intraluminal pressure) and chemical (acetylcholine, sodium nitroprusside) stimulation. Microvessels were studied in controls and at 2, 4 and 8 weeks following induction of diabetes by streptozotocin. Mechanical responses were stable at the test pressure (70 mmHg) used for pharmacological investigations during the period of diabetes. Acetylcholine application could induce maximal dilatation in control vessels and in vessels exposed to 8 weeks of diabetes. However, acetylcholine administration failed to generate maximal dilatation at 2 and 4 weeks of diabetes. During the period of diabetes, loss of nitric oxide (NO) pathway effectiveness was revealed by diminished response to sodium nitroprusside and by reduced capacity of Nomega-nitro-L-arginine methyl ester (L-NAME) to decrease resting diameter and acetylcholine-evoked dilatation. L-NAME and indomethacin application revealed a significant non-NO, non-prostaglandin contribution to the acetylcholine response at 4 and 8 weeks of diabetes. Recovery of responsiveness to acetylcholine and stabilisation of resting vessel diameter during diabetes may, in part, be due to increasing effectiveness of non-NO, non-prostaglandin pathways.
Collapse
Affiliation(s)
- A Timar-Peregrin
- Department of Human Biology and Movement Science, RMIT University, Melbourne, Australia.
| | | |
Collapse
|
28
|
Chen S, Apostolova MD, Cherian MG, Chakrabarti S. Interaction of endothelin-1 with vasoactive factors in mediating glucose-induced increased permeability in endothelial cells. J Transl Med 2000; 80:1311-21. [PMID: 10950122 DOI: 10.1038/labinvest.3780139] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Alteration of endothelins (ET) and/or their receptors may be important in mediating vascular dysfunction in diabetes. We investigated mechanisms regulating ET-1 expression in human umbilical vein endothelial cells (HUVEC) in response to glucose and the functional significance of these mechanisms. Permeability across HUVEC, grown in medium containing either low (5 mmol/l) or high (25 mmol/l) D-glucose were investigated. L-glucose was used as a control. ET-1, ET(A), and ET(B) mRNA were assessed by semiquantitative RT-PCR. ET-1 immunoreactivity and F-actin microfilament assembly were investigated using confocal microscopy. Increased transendothelial permeability was noted in cells cultured in high glucose or when the cells grown in low (physiologic) glucose were incubated with ET-1, vascular endothelial growth factor (VEGF), or N (G) -nitro-L-arginine methyl ester but not when they were incubated with ET-3, N(G)-nitro-D-arginine methyl ester, or L-glucose. Increased permeability was associated with increased ET-1, ET(A), and ET(B) mRNA expression and augmented ET-1 immunoreactivity. High glucose induced increased permeability, increased ET-1, ET(A), and ET(B) mRNA expression. ET-1 immunoreactivity was blocked by the protein kinase C (PKC) inhibitor chelerythrine, the specific PKC isoform inhibitor 379196, VEGF-neutralizing antibody, or the ET(A) blocker TBC11251, but was not blocked by the specific ET(B) blocker BQ788 or by a VEGF-non-neutralizing antibody. Increased permeability was also associated with deranged F-actin assembly in the endothelial cells and by derangement of endothelial cell junctions as assessed by electron microscopy. Data from this study suggest that high glucose-induced increased permeability may be induced through increased ET-1 expression and disorganization of F-actin assembly. ET-1 expression and increased permeability may occur secondary to PKC isoform activation and may be modulated by VEGF and nitric oxide.
Collapse
Affiliation(s)
- S Chen
- Department of Pathology, University of Western Ontario, London, Canada
| | | | | | | |
Collapse
|