1
|
Tulluri V, Nemmara VV. Role of Antizyme Inhibitor Proteins in Cancers and Beyond. Onco Targets Ther 2021; 14:667-682. [PMID: 33531815 PMCID: PMC7846877 DOI: 10.2147/ott.s281157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/05/2020] [Indexed: 01/30/2023] Open
Abstract
Polyamines are multivalent organic cations essential for many cellular functions, including cell growth, differentiation, and proliferation. However, elevated polyamine levels are associated with a slew of pathological conditions, including multiple cancers. Intracellular polyamine levels are primarily controlled by the autoregulatory circuit comprising two different protein types, Antizymes (OAZ) and Antizyme Inhibitors (AZIN), which regulate the activity of the polyamine biosynthetic enzyme ornithine decarboxylase (ODC). While OAZ functions to decrease the intracellular polyamine levels by inhibiting ODC activity and exerting a negative control of polyamine uptake, AZIN operates to increase intracellular polyamine levels by binding and sequestering OAZ to relieve ODC inhibition and to increase polyamine uptake. Interestingly, OAZ and AZIN exhibit autoregulatory functions on polyamine independent pathways as well. A growing body of evidence demonstrates the dysregulation of AZIN expression in multiple cancers. Additionally, RNA editing of the Azin1 transcript results in a "gain-of-function" phenotype, which is shown to drive aggressive tumor types. This review will discuss the recent advances in AZIN's role in cancers via aberrant polyamine upregulation and its polyamine-independent protein regulation. This report will also highlight AZIN interaction with proteins outside the polyamine biosynthetic pathway and its potential implication to cancer pathogenesis. Finally, this review will reveal the protein interaction network of AZIN isoforms by analyzing three different interactome databases.
Collapse
Affiliation(s)
- Vennela Tulluri
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ08028, USA
| | - Venkatesh V Nemmara
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ08028, USA
| |
Collapse
|
2
|
FANCA Polymorphism Is Associated with the Rate of Proliferation in Uterine Leiomyoma in Korea. J Pers Med 2020; 10:jpm10040228. [PMID: 33202820 PMCID: PMC7712130 DOI: 10.3390/jpm10040228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022] Open
Abstract
Uterine leiomyomas are the most common benign gynecologic tumors. This study was aimed to identify single nucleotide polymorphism of Fanconi anemia complementation group A (FANCA), associated with the rate of proliferation in uterine leiomyomas. In vitro study of patient-derived primary-cultured leiomyoma cells and direct sequencing of fresh frozen leiomyoma from each subject was conducted. Leiomyomas obtained from 44 patients who had underwent surgery were both primary-cultured and freshly frozen. Primary-cultured leiomyoma cells were divided into, according to the rate of proliferation, fast and slow groups. Single nucleotide polymorphism (SNP) of FANCA were determined from fresh frozen tissues of each patient using direct sequencing. Direct sequencing revealed a yet unidentified role of FANCA, a caretaker in the DNA damage-response pathway, as a possible biomarker molecule for the prediction of uterine leiomyoma proliferation. We identified that rs2239359 polymorphism, which causes a missense mutation in FANCA, is associated with the rate of proliferation in uterine leiomyomas. The frequency of C allele in the fast group was 35.29% while that in slow group was 11.11% (odds ratio (OR) 4.036 (1.176–13.855), p = 0.0266). We also found that the TC + CC genotype was more frequently observed in the fast group compared with that in the slow group (OR 6.44 (1.90–31.96), p = 0.0227). Taken together, the results in the current study suggested that a FANCA missense mutation may play an important regulatory role in the proliferation of uterine leiomyoma and thus may serve as a prognostic marker.
Collapse
|
3
|
Jeong E, Lee SG, Kim HS, Yang J, Shin J, Kim Y, Kim J, Schärer OD, Kim Y, Yeo JE, Kim HM, Cho Y. Structural basis of the fanconi anemia-associated mutations within the FANCA and FANCG complex. Nucleic Acids Res 2020; 48:3328-3342. [PMID: 32002546 PMCID: PMC7102982 DOI: 10.1093/nar/gkaa062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Monoubiquitination of the Fanconi anemia complementation group D2 (FANCD2) protein by the FA core ubiquitin ligase complex is the central event in the FA pathway. FANCA and FANCG play major roles in the nuclear localization of the FA core complex. Mutations of these two genes are the most frequently observed genetic alterations in FA patients, and most point mutations in FANCA are clustered in the C-terminal domain (CTD). To understand the basis of the FA-associated FANCA mutations, we determined the cryo-electron microscopy (EM) structures of Xenopus laevis FANCA alone at 3.35 Å and 3.46 Å resolution and two distinct FANCA–FANCG complexes at 4.59 and 4.84 Å resolution, respectively. The FANCA CTD adopts an arc-shaped solenoid structure that forms a pseudo-symmetric dimer through its outer surface. FA- and cancer-associated point mutations are widely distributed over the CTD. The two different complex structures capture independent interactions of FANCG with either FANCA C-terminal HEAT repeats, or the N-terminal region. We show that mutations that disturb either of these two interactions prevent the nuclear localization of FANCA, thereby leading to an FA pathway defect. The structure provides insights into the function of FANCA CTD, and provides a framework for understanding FA- and cancer-associated mutations.
Collapse
Affiliation(s)
- Eunyoung Jeong
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Seong-Gyu Lee
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hyun-Suk Kim
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Jihyeon Yang
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Jinwoo Shin
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Youngran Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jihan Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Youngjin Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jung-Eun Yeo
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yunje Cho
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| |
Collapse
|
4
|
Bravo-Navas S, Yáñez L, Romón Í, Pipaón C. Elevated FANCA expression determines a worse prognosis in chronic lymphocytic leukemia and interferes with p53 function. FASEB J 2019; 33:10477-10489. [PMID: 31251079 DOI: 10.1096/fj.201802439rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by a failure in the mechanisms of apoptosis that leads to an accumulation of mature B cells in peripheral blood, bone marrow, and lymphoid organs. The molecular basis of CLL remains unknown. Certain cytogenetic and molecular markers determine a bad prognosis in CLL. Fanconi anemia complementation (FANC) proteins have been related to chromosomal instability and alterations in the mechanisms of p53 activation, control of cell cycle, and apoptosis. We investigated the role of certain FANC proteins in CLL. Our data identified a group of patients with CLL with high expression of FANCA in peripheral B-CLL cells and we established its relationship with the deletion of 11q23 and a worse prognosis. When we investigated the molecular mechanisms of this bad prognosis, we observed a reduction in the expression of 2 p53 target genes, p21 and ∆Np73, in CLL primary cells transfected with FANCA. Functional studies demonstrated an impairment of p53 by FANCA. Moreover, we obtained evidence of a cooperation between FANCA and the NEDD8-interacting protein NUB1L in the destabilization of p53. For the first time, FANCA is reported as a bad prognosis marker by a mechanism other than its role in the Fanconi anemia-breast cancer DNA repair pathway.-Bravo-Navas, S., Yáñez, L., Romón, Í., Pipaón, C. Elevated FANCA expression determines a worse prognosis in chronic lymphocytic leukemia and interferes with p53 function.
Collapse
Affiliation(s)
- Sara Bravo-Navas
- Instituto de Investigación Marqués de Valdecilla (IDIVAL)-Hospital Marqués de Valdecilla, Santander, Spain
| | - Lucrecia Yáñez
- Instituto de Investigación Marqués de Valdecilla (IDIVAL)-Hospital Marqués de Valdecilla, Santander, Spain
| | - Íñigo Romón
- Instituto de Investigación Marqués de Valdecilla (IDIVAL)-Hospital Marqués de Valdecilla, Santander, Spain
| | - Carlos Pipaón
- Instituto de Investigación Marqués de Valdecilla (IDIVAL)-Hospital Marqués de Valdecilla, Santander, Spain
| |
Collapse
|
5
|
Neuhäuser K, Küper L, Christiansen H, Bogdanova N. Assessment of the role of translationally controlled tumor protein 1 (TPT1/TCTP) in breast cancer susceptibility and ATM signaling. Clin Transl Radiat Oncol 2019; 15:99-107. [PMID: 30815593 PMCID: PMC6378894 DOI: 10.1016/j.ctro.2019.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 01/08/2023] Open
Abstract
TPT1 sequencing identified one novel, potentially damaging mutation in 200 breast cancer patients. TPT1 is not required for the recognition of radiation-induced DNA damage. Phosphorylation of KAP1 and CHEK2 by ATM is not affected by silencing of TPT1. Nuclear localization and foci formation of TPT1 potentially depends on cell type. TPT1 knockdown might exert a marginally significant effect on residual γH2A.X foci.
Background and purpose The translationally controlled tumor protein 1 (TPT1/TCTP) has been implicated in the intracellular DNA damage response. We tested the role of TPT1 in breast cancer (BC) predisposition and re-evaluated its function in Ataxia-Telangiectasia mutated (ATM)-mediated damage recognition and DNA repair. Material and methods The TPT1 coding sequence was scanned for mutations in genomic DNA from 200 breast cancer patients. TPT1 was down-regulated through siRNA in breast epithelial and fibroblast cell cultures. ATM activation after irradiation (IR) was analyzed by western blotting, and γH2A.X foci were monitored by immunocytochemistry. Results The sequencing study identified a novel, potentially damaging missense mutation in a single patient. Silencing of TPT1 did not significantly affect ATM kinase activity and did not impair the initial formation of γH2A.X foci, while we observed a marginally significant effect on residual γH2A.X foci at 6–48 h after IR. Conclusions TPT1 does not harbor common mutations as BC susceptibility gene. Consistently, TPT1 protein is not required for the recognition of radiation-induced DNA damage via the ATM-dependent pathway and has only slight impact on timely repair. These results may be important when considering TPT1 as a DNA damage marker.
Collapse
Affiliation(s)
- Katharina Neuhäuser
- Radiation Oncology Research Unit, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | - Leonie Küper
- Radiation Oncology Research Unit, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany.,Gynaecology Research Unit, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | - Hans Christiansen
- Radiation Oncology Research Unit, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | - Natalia Bogdanova
- Radiation Oncology Research Unit, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| |
Collapse
|
6
|
Liu J, Liu L, Yagüe E, Yang Q, Pan T, Zhao H, Hu Y, Zhang J. GGNBP2 suppresses triple-negative breast cancer aggressiveness through inhibition of IL-6/STAT3 signaling activation. Breast Cancer Res Treat 2018; 174:65-78. [PMID: 30450530 DOI: 10.1007/s10549-018-5052-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/13/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, lacking effective targeted therapies, and whose underlying mechanisms are still unclear. The gene coding for Gametogenetin-binding protein (GGNBP2), also known as Zinc Finger Protein 403 (ZNF403), is located on chromosome 17q12-q23, a region known as a breast cancer susceptibility locus. We have previously reported that GGNBP2 functions as a tumor suppressor in estrogen receptor-positive breast cancer. The aim of this study was to evaluate the role and mechanisms of GGNBP2 in TNBC. METHODS The effect of GGNBP2 on TNBC aggressiveness was investigated both in vitro and in vivo. The protein and mRNA expression levels were analyzed by western blotting and reverse transcription quantitative polymerase chain reaction, respectively. Fluorescence-activated cell sorting analysis was used to evaluate the cell cycle distribution and cell apoptosis. Immunohistochemistry was used to determine the expression of GGNBP2 in breast cancer tissues. RESULTS We find that GGNBP2 expression decreases in TNBC tissues and is associated with the outcome of breast cancer patients. Furthermore, experimental overexpression of GGNBP2 in MDA-MB-231 and Cal51 cells suppresses cell proliferation, migration and invasion, reduces the cancer stem cell subpopulation, and promotes cell apoptosis in vitro as well as inhibits tumor growth in vivo. In these cell models, overexpression of GGNBP2 decreases the activation of IL-6/STAT3 signaling. CONCLUSION Our data demonstrate that GGNBP2 suppresses cancer aggressiveness by inhibition of IL-6/STAT3 activation in TNBC.
Collapse
Affiliation(s)
- Jingjing Liu
- The 3rd Department of Breast Cancer, Treatment and Research Center, China Tianjin Breast Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Huan Hu Xi Road, Ti Yuan Bei, He Xi District, Tianjin, 300060, People's Republic of China
| | - Lei Liu
- The 3rd Department of Breast Cancer, Treatment and Research Center, China Tianjin Breast Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Huan Hu Xi Road, Ti Yuan Bei, He Xi District, Tianjin, 300060, People's Republic of China
| | - Ernesto Yagüe
- Division of Cancer, Faculty of Medicine, Cancer Research Center, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Qianxi Yang
- The 3rd Department of Breast Cancer, Treatment and Research Center, China Tianjin Breast Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Huan Hu Xi Road, Ti Yuan Bei, He Xi District, Tianjin, 300060, People's Republic of China
| | - Teng Pan
- The 3rd Department of Breast Cancer, Treatment and Research Center, China Tianjin Breast Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Huan Hu Xi Road, Ti Yuan Bei, He Xi District, Tianjin, 300060, People's Republic of China
| | - Hui Zhao
- The 3rd Department of Breast Cancer, Treatment and Research Center, China Tianjin Breast Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Huan Hu Xi Road, Ti Yuan Bei, He Xi District, Tianjin, 300060, People's Republic of China
| | - Yunhui Hu
- The 3rd Department of Breast Cancer, Treatment and Research Center, China Tianjin Breast Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Huan Hu Xi Road, Ti Yuan Bei, He Xi District, Tianjin, 300060, People's Republic of China.
| | - Jin Zhang
- The 3rd Department of Breast Cancer, Treatment and Research Center, China Tianjin Breast Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Huan Hu Xi Road, Ti Yuan Bei, He Xi District, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
7
|
Nepal M, Ma C, Xie G, Jia W, Fei P. Fanconi Anemia complementation group C protein in metabolic disorders. Aging (Albany NY) 2018; 10:1506-1522. [PMID: 29930218 PMCID: PMC6046246 DOI: 10.18632/aging.101487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/16/2018] [Indexed: 01/01/2023]
Abstract
Given importance of 22-Fanconi Anemia (FA) proteins together to act in a signaling pathway in preventing deleterious clinical symptoms, e.g. severe bone marrow failure, congenital defects, an early onset of aging and cancer, studies on each FA protein become increasingly attractive. However, an unbiased and systematic investigation of cellular effects resulting from each FA protein is missing. Here, we report roles of FA complementation C group protein (FANCC) in the protection from metabolic disorders. This study was prompted by the diabetes-prone feature displayed in FANCC knockout mice, which is not typically shown in patients with FA. We found that in cells expressing FANCC at different levels, there are representative alterations in metabolites associated with aging (glycine, citrulline, ornithine, L-asparagine, L-tyrosine, L-arginine, L-glutamine, L-leucine, L-isoleucine, L-valine, L-proline and L-alanine), Diabetes Mellitus (DM) (carbon monoxide, collagens, fatty acids, D-glucose, fumaric acid, 2-oxoglutaric acid, C3), inflammation (inosine, L-arginine, L-isoleucine, L-leucine, L-lysine, L-phenylalanine, hypoxanthine, L-methionine), and cancer ( L-methionine, sphingomyelin, acetyl-L-carnitine, L-aspartic acid, L-glutamic acid, niacinamide, phospho-rylethanolamine). We also found that FANCC can act in an FA-pathway-independent manner in tumor suppression. Collectively, featured-metabolic alterations are readouts of functional mechanisms underlying reduced tumorigenicity driven by FANCC, demonstrating close links among cancer, aging, inflammation and DM.
Collapse
Affiliation(s)
- Manoj Nepal
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
- Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96822, USA
| | - Chi Ma
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Guoxiang Xie
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Wei Jia
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Peiwen Fei
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
- Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96822, USA
| |
Collapse
|
8
|
Chun MJ, Kim S, Hwang SK, Kim BS, Kim HG, Choi HI, Kim JH, Goh SH, Lee CH. AMP-activated protein kinase is involved in the activation of the Fanconi anemia/BRCA pathway in response to DNA interstrand crosslinks. Oncotarget 2018; 7:53642-53653. [PMID: 27449087 PMCID: PMC5288211 DOI: 10.18632/oncotarget.10686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/07/2016] [Indexed: 12/27/2022] Open
Abstract
Fanconi anemia complementation group (FANC) proteins constitute the Fanconi Anemia (FA)/BRCA pathway that is activated in response to DNA interstrand crosslinks (ICLs). We previously performed yeast two-hybrid screening to identify novel FANC-interacting proteins and discovered that the alpha subunit of AMP-activated protein kinase (AMPKα1) was a candidate binding partner of the FANCG protein, which is a component of the FA nuclear core complex. We confirmed the interaction between AMPKα and both FANCG using co-immunoprecipitation experiments. Additionally, we showed that AMPKα interacted with FANCA, another component of the FA nuclear core complex. AMPKα knockdown in U2OS cells decreased FANCD2 monoubiquitination and nuclear foci formation upon mitomycin C-induced ICLs. Furthermore, AMPKα knockdown enhanced cellular sensitivity to MMC. MMC treatment resulted in an increase in AMPKα phosphorylation/activation, indicating AMPK is involved in the cellular response to ICLs. FANCA was phosphorylated by AMPK at S347 and phosphorylation increased with MMC treatment. MMC-induced FANCD2 monoubiquitination and nuclear foci formation were compromised in a U2OS cell line that stably overexpressed the S347A mutant form of FANCA compared to wild-type FANCA-overexpressing cells, indicating a requirement for FANCA phosphorylation at S347 for proper activation of the FA/BRCA pathway. Our data suggest AMPK is involved in the activation of the FA/BRCA pathway.
Collapse
Affiliation(s)
- Min Jeong Chun
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Ilsandong-gu, Goyang, Gyeonggi, 10408, Korea
| | - Sunshin Kim
- Precision Medicine Branch, Research Institute, National Cancer Center, Ilsandong-gu, Goyang, Gyeonggi, 10408, Korea
| | - Soo Kyung Hwang
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Ilsandong-gu, Goyang, Gyeonggi, 10408, Korea
| | - Bong Sub Kim
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Ilsandong-gu, Goyang, Gyeonggi, 10408, Korea
| | - Hyoun Geun Kim
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Ilsandong-gu, Goyang, Gyeonggi, 10408, Korea
| | - Hae In Choi
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Ilsandong-gu, Goyang, Gyeonggi, 10408, Korea
| | - Jong Heon Kim
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Ilsandong-gu, Goyang, Gyeonggi, 10408, Korea
| | - Sung Ho Goh
- Precision Medicine Branch, Research Institute, National Cancer Center, Ilsandong-gu, Goyang, Gyeonggi, 10408, Korea
| | - Chang-Hun Lee
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Ilsandong-gu, Goyang, Gyeonggi, 10408, Korea
| |
Collapse
|
9
|
NEK1 kinase domain structure and its dynamic protein interactome after exposure to Cisplatin. Sci Rep 2017; 7:5445. [PMID: 28710492 PMCID: PMC5511132 DOI: 10.1038/s41598-017-05325-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/02/2017] [Indexed: 11/11/2022] Open
Abstract
NEK family kinases are serine/threonine kinases that have been functionally implicated in the regulation of the disjunction of the centrosome, the assembly of the mitotic spindle, the function of the primary cilium and the DNA damage response. NEK1 shows pleiotropic functions and has been found to be mutated in cancer cells, ciliopathies such as the polycystic kidney disease, as well as in the genetic diseases short-rib thoracic dysplasia, Mohr-syndrome and amyotrophic lateral sclerosis. NEK1 is essential for the ionizing radiation DNA damage response and priming of the ATR kinase and of Rad54 through phosphorylation. Here we report on the structure of the kinase domain of human NEK1 in its apo- and ATP-mimetic inhibitor bound forms. The inhibitor bound structure may allow the design of NEK specific chemo-sensitizing agents to act in conjunction with chemo- or radiation therapy of cancer cells. Furthermore, we characterized the dynamic protein interactome of NEK1 after DNA damage challenge with cisplatin. Our data suggest that NEK1 and its interaction partners trigger the DNA damage pathways responsible for correcting DNA crosslinks.
Collapse
|
10
|
Genomic amplification of Fanconi anemia complementation group A (FancA) in head and neck squamous cell carcinoma (HNSCC): Cellular mechanisms of radioresistance and clinical relevance. Cancer Lett 2016; 386:87-99. [PMID: 27867017 DOI: 10.1016/j.canlet.2016.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/25/2016] [Accepted: 11/10/2016] [Indexed: 01/06/2023]
Abstract
Radio (chemo) therapy is a crucial treatment modality for head and neck squamous cell carcinoma (HNSCC), but relapse is frequent, and the underlying mechanisms remain largely elusive. Therefore, novel biomarkers are urgently needed. Previously, we identified gains on 16q23-24 to be associated with amplification of the Fanconi anemia A (FancA) gene and to correlate with reduced progression-free survival after radiotherapy. Here, we analyzed the effects of FancA on radiation sensitivity in vitro, characterized the underlying mechanisms, and evaluated their clinical relevance. Silencing of FancA expression in HNSCC cell lines with genomic gains on 16q23-24 resulted in significantly impaired clonogenic survival upon irradiation. Conversely, overexpression of FancA in immortalized keratinocytes conferred increased survival accompanied by improved DNA repair, reduced accumulation of chromosomal translocations, but no hyperactivation of the FA/BRCA-pathway. Downregulation of interferon signaling as identified by microarray analyses, enforced irradiation-induced senescence, and elevated production of the senescence-associated secretory phenotype (SASP) appeared to be candidate mechanisms contributing to FancA-mediated radioresistance. Data of the TCGA HNSCC cohort confirmed the association of gains on 16q24.3 with FancA overexpression and impaired overall survival. Importantly, transcriptomic alterations similar to those observed upon FancA overexpression in vitro strengthened the clinical relevance. Overall, FancA amplification and overexpression appear to be crucial for radiotherapeutic failure in HNSCC.
Collapse
|
11
|
Bartolini D, Galli F. The functional interactome of GSTP: A regulatory biomolecular network at the interface with the Nrf2 adaption response to oxidative stress. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1019:29-44. [DOI: 10.1016/j.jchromb.2016.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 01/01/2023]
|
12
|
Analysis of a FANCE Splice Isoform in Regard to DNA Repair. J Mol Biol 2015; 427:3056-73. [PMID: 26277624 DOI: 10.1016/j.jmb.2015.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/15/2015] [Accepted: 08/04/2015] [Indexed: 11/27/2022]
Abstract
The FANC-BRCA DNA repair pathway is activated in response to interstrand crosslinks formed in DNA. A homozygous mutation in 1 of the 17 Fanconi anemia (FA) genes results in malfunctions of this pathway and development of FA syndrome. The integrity of this protein network is essential for good maintenance of DNA repair process and genome stability. Following the identification of an alternatively splice isoform of FANCE (Fanconi anemia complementation group E) significantly expressed in breast cancer individuals from high-risk non-BRCA1/2 families, we studied the impact of this FANCE splice isoform (FANCEΔ4) on DNA repair processes. We have demonstrated that FANCEΔ4 mRNA was efficiently translated into a functional protein and expressed in normal and breast cancer cell lines. Following treatment with the crosslinking agent mitomycin C, EUFA130 (FANCE-deficient) cells infected with FANCEΔ4 were blocked into G2/M phase, while cell survival was significantly reduced compared with FANCE-infected EUFA130 cells. In addition, FANCEΔ4 did not allow FANCD2 and FANCI monoubiquitination, which represents a crucial step of the FANC-BRCA functional pathway. As observed for FANCE wild-type protein, localization of FANCEΔ4 protein was confined to the nucleus following mitomycin C treatment. Although FANCEΔ4 protein showed interaction with FANCE, FANCEΔ4 did not support normal function of FANCE protein in this pathway and could have deleterious effects on FANCE protein activity. We have demonstrated that FANCEΔ4 seems to act as a regulator of FANCD2 protein expression level by promoting its degradation. This study highlights the importance of an efficient regulation of alternative splicing expression of FA genes for proper DNA repair.
Collapse
|
13
|
Solomon PJ, Margaret P, Rajendran R, Ramalingam R, Menezes GA, Shirley AS, Lee SJ, Seong MW, Park SS, Seol D, Seo SH. A case report and literature review of Fanconi Anemia (FA) diagnosed by genetic testing. Ital J Pediatr 2015; 41:38. [PMID: 25953249 PMCID: PMC4438458 DOI: 10.1186/s13052-015-0142-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/22/2015] [Indexed: 12/29/2022] Open
Abstract
Fanconi anemia (FA) is a genetically heterogeneous rare autosomal recessive disorder characterized by congenital malformations, hematological problems and predisposition to malignancies. The genes that have been found to be mutated in FA patients are called FANC. To date 16 distinct FANC genes have been reported. Among these, mutations in FANCA are the most frequent among FA patients worldwide which account for 60- 65%. In this study, a nine years old male child was brought to our hospital one year ago for opinion and advice. He was the third child born to consanguineous parents. The mutation analyses were performed for proband, parents, elder sibling and the relatives [maternal aunt and maternal aunt’s son (cousin)]. Molecular genetic testing [targeted next-generation sequencing (MiSeq, Illumina method)] was performed by mutation analysis in 15 genes involved. Entire coding exons and their flanking regions of the genes were analysed. Sanger sequencing [(ABI 3730 analyzer by Applied Biosystems)] was performed using primers specific for 43 coding exons of the FANCA gene. A novel splice site mutation, c.3066 + 1G > T, (IVS31 + 1G > T), homozygote was detected by sequencing in the patient. The above sequence variant was identified in heterozygous state in his parents. Further, the above sequence variant was not identified in other family members (elder sibling, maternal aunt and cousin). It is concluded that genetic study should be done if possible in all the cases of suspected FA, including siblings, parents and close blood relatives. It will help us to plan appropriate treatment and also to select suitable donor for hematopoietic stem cell transplantation and to plan for genetic counseling. In addition to the case report, the main focus of this manuscript was to review literature on role of FANCA gene in FA since large number of FANCA mutations and polymorphisms have been identified.
Collapse
Affiliation(s)
- Ponnumony John Solomon
- Department of Paediatrics, Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Priya Margaret
- Department of Paediatrics, Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Ramya Rajendran
- Department of Paediatrics, Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Revathy Ramalingam
- Department of Physiology/Central research laboratory (CRL), Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Godfred A Menezes
- College of Applied Medical Sciences and Molecular Diagnostics and Personalised Therapeutics Unit (MDPTU), Ha'il University, Ha'il, Kingdom of Saudi Arabia (KSA). .,Worked previously as in-charge and scientist in Central Research Laboratory (CRL), Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Alph S Shirley
- Department of Paediatrics, Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Seung Jun Lee
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Dodam Seol
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Soo Hyun Seo
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
14
|
Benitez A, Yuan F, Nakajima S, Wei L, Qian L, Myers R, Hu JJ, Lan L, Zhang Y. Damage-dependent regulation of MUS81-EME1 by Fanconi anemia complementation group A protein. Nucleic Acids Res 2013; 42:1671-83. [PMID: 24170812 PMCID: PMC3919598 DOI: 10.1093/nar/gkt975] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
MUS81-EME1 is a DNA endonuclease involved in replication-coupled repair of DNA interstrand cross-links (ICLs). A prevalent hypothetical role of MUS81-EME1 in ICL repair is to unhook the damage by incising the leading strand at the 3′ side of an ICL lesion. In this study, we report that purified MUS81-EME1 incises DNA at the 5′ side of a psoralen ICL residing in fork structures. Intriguingly, ICL repair protein, Fanconi anemia complementation group A protein (FANCA), greatly enhances MUS81-EME1-mediated ICL incision. On the contrary, FANCA exhibits a two-phase incision regulation when DNA is undamaged or the damage affects only one DNA strand. Studies using truncated FANCA proteins indicate that both the N- and C-moieties of the protein are required for the incision regulation. Using laser-induced psoralen ICL formation in cells, we find that FANCA interacts with and recruits MUS81 to ICL lesions. This report clarifies the incision specificity of MUS81-EME1 on ICL damage and establishes that FANCA regulates the incision activity of MUS81-EME1 in a damage-dependent manner.
Collapse
Affiliation(s)
- Anaid Benitez
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Fenghua Yuan
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Satoshi Nakajima
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Leizhen Wei
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Liangyue Qian
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Richard Myers
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jennifer J. Hu
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Li Lan
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yanbin Zhang
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- *To whom correspondence should be addressed. Tel: +1 305 243 9237; Fax: +1 305 243 3955;
| |
Collapse
|
15
|
Shukla P, Solanki A, Ghosh K, Vundinti BR. DNA interstrand cross-link repair: understanding role of Fanconi anemia pathway and therapeutic implications. Eur J Haematol 2013; 91:381-93. [DOI: 10.1111/ejh.12169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2013] [Indexed: 02/01/2023]
Affiliation(s)
- Pallavi Shukla
- Department of Cytogenetics; National Institute of Immunohaematology (NIIH); Mumbai India
| | - Avani Solanki
- Department of Cytogenetics; National Institute of Immunohaematology (NIIH); Mumbai India
| | - Kanjaksha Ghosh
- Department of Cytogenetics; National Institute of Immunohaematology (NIIH); Mumbai India
| | - Babu Rao Vundinti
- Department of Cytogenetics; National Institute of Immunohaematology (NIIH); Mumbai India
| |
Collapse
|
16
|
Ravera S, Vaccaro D, Cuccarolo P, Columbaro M, Capanni C, Bartolucci M, Panfoli I, Morelli A, Dufour C, Cappelli E, Degan P. Mitochondrial respiratory chain Complex I defects in Fanconi anemia complementation group A. Biochimie 2013; 95:1828-37. [PMID: 23791750 DOI: 10.1016/j.biochi.2013.06.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/11/2013] [Indexed: 12/11/2022]
Abstract
Fanconi anemia (FA) is a rare and complex inherited blood disorder of the child. At least 15 genes are associated with the disease. The highest frequency of mutations belongs to groups A, C and G. Genetic instability and cytokine hypersensitivity support the selection of leukemic over non-leukemic stem cells. FA cellular phenotype is characterized by alterations in red-ox state, mitochondrial functionality and energy metabolism as reported in the past however a clear picture of the altered biochemical phenotype in FA is still elusive and the final biochemical defect(s) still unknown. Here we report an analysis of the respiratory fluxes in FANCA primary fibroblasts, lymphocytes and lymphoblasts. FANCA mutants show defective respiration through Complex I, diminished ATP production and metabolic sufferance with an increased AMP/ATP ratio. Respiration in FANCC mutants is normal. Treatment with N-acetyl-cysteine (NAC) restores oxygen consumption to normal level. Defective respiration in FANCA mutants appear correlated with the FA pro-oxidative phenotype which is consistent with the altered morphology of FANCA mitochondria. Electron microscopy measures indeed show profound alterations in mitochondrial ultrastructure and shape.
Collapse
Affiliation(s)
- Silvia Ravera
- DIFAR-Biochemistry Lab., Department of Pharmacology, University of Genova, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
SanGiovanni JP, Neuringer M. The putative role of lutein and zeaxanthin as protective agents against age-related macular degeneration: promise of molecular genetics for guiding mechanistic and translational research in the field. Am J Clin Nutr 2012; 96:1223S-33S. [PMID: 23053548 PMCID: PMC3471204 DOI: 10.3945/ajcn.112.038240] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Age-related macular degeneration (AMD) is the primary cause of vision loss in elderly people of western European ancestry. Genetic, dietary, and environmental factors affect tissue concentrations of macular xanthophylls (MXs) within retinal cell types manifesting AMD pathology. In this article we review the history and state of science on the putative role of the MXs (lutein, zeaxanthin, and meso-zeaxanthin) in AMD and report findings on AMD-associated genes encoding enzymes, transporters, ligands, and receptors affecting or affected by MXs. We then use this context to discuss emerging research opportunities that offer promise for meaningful investigation and inference in the field.
Collapse
|
18
|
Fanconi anemia proteins and their interacting partners: a molecular puzzle. Anemia 2012; 2012:425814. [PMID: 22737580 PMCID: PMC3378961 DOI: 10.1155/2012/425814] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/13/2012] [Indexed: 11/17/2022] Open
Abstract
In recent years, Fanconi anemia (FA) has been the subject of intense investigations, primarily in the DNA repair research field. Many discoveries have led to the notion of a canonical pathway, termed the FA pathway, where all FA proteins function sequentially in different protein complexes to repair DNA cross-link damages. Although a detailed architecture of this DNA cross-link repair pathway is emerging, the question of how a defective DNA cross-link repair process translates into the disease phenotype is unresolved. Other areas of research including oxidative metabolism, cell cycle progression, apoptosis, and transcriptional regulation have been studied in the context of FA, and some of these areas were investigated before the fervent enthusiasm in the DNA repair field. These other molecular mechanisms may also play an important role in the pathogenesis of this disease. In addition, several FA-interacting proteins have been identified with roles in these “other” nonrepair molecular functions. Thus, the goal of this paper is to revisit old ideas and to discuss protein-protein interactions related to other FA-related molecular functions to try to give the reader a wider perspective of the FA molecular puzzle.
Collapse
|
19
|
Tumini E, Plevani P, Muzi-Falconi M, Marini F. Physical and functional crosstalk between Fanconi anemia core components and the GINS replication complex. DNA Repair (Amst) 2011; 10:149-58. [PMID: 21109493 DOI: 10.1016/j.dnarep.2010.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/20/2010] [Accepted: 10/20/2010] [Indexed: 11/18/2022]
Abstract
Fanconi anemia (FA) is an inherited disease characterized by bone marrow failure, increased cancer risk and hypersensitivity to DNA cross-linking agents, implying a role for this pathway in the maintenance of genomic stability. The central player of the FA pathway is the multi-subunit E3 ubiquitin ligase complex activated through a replication- and DNA damage-dependent mechanism. A consequence of the activation of the complex is the monoubiquitylation of FANCD2 and FANCI, late term effectors in the maintenance of genome integrity. The details regarding the coordination of the FA-dependent response and the DNA replication process are still mostly unknown. We found, by yeast two-hybrid assay and co-immunoprecipitation in human cells, that the core complex subunit FANCF physically interacts with PSF2, a member of the GINS complex essential for both the initiation and elongation steps of DNA replication. In HeLa cells depleted for PSF2, we observed a decreased binding to chromatin of the FA core complex, suggesting that the GINS complex may have a role in either loading or stabilizing the FA core complex onto chromatin. Consistently, GINS and core complex bind chromatin contemporarily upon origin firing and PSF2 depletion sensitizes cells to DNA cross-linking agents. However, depletion of PSF2 is not sufficient to reduce monoubiquitylation of FANCD2 or its localization to nuclear foci following DNA damage. Our results suggest a novel crosstalk between DNA replication and the FA pathway.
Collapse
Affiliation(s)
- Emanuela Tumini
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | |
Collapse
|
20
|
Blalock WL, Bavelloni A, Piazzi M, Faenza I, Cocco L. A role for PKR in hematologic malignancies. J Cell Physiol 2010; 223:572-91. [PMID: 20232306 DOI: 10.1002/jcp.22092] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The double-stranded RNA-dependent kinase PKR has been described for many years as strictly a pro-apoptotic kinase. Recent data suggest that the main purpose of this kinase is damage control and repair following stress and, if all else fails, apoptosis. Aberrant activation of PKR has been reported in numerous neurodegenerative diseases and cancer. Although a subset of myelodysplastic syndromes (MDS) and chronic lymphocytic leukemia contain low levels of PKR expression and activity, elevated PKR activity and/or expression have been detected in a wide range of hematologic malignancies, from bone marrow failure disorders to acute leukemia. With the recent findings that cancers containing elevated PKR activity are highly sensitive to PKR inhibition, we explore the role of PKR in hematologic malignancies, signal transduction pathways affected by PKR, and how PKR may contribute to leukemic transformation.
Collapse
Affiliation(s)
- William L Blalock
- Department of Human Anatomical Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
21
|
Lyakhovich A, Surrallés J. Constitutive activation of caspase-3 and Poly ADP ribose polymerase cleavage in fanconi anemia cells. Mol Cancer Res 2010; 8:46-56. [PMID: 20068062 DOI: 10.1158/1541-7786.mcr-09-0373] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fanconi anemia (FA) is a rare syndrome characterized by developmental abnormalities, progressive bone marrow failure, and cancer predisposition. Cells from FA patients exhibit hypersensitivity to DNA cross-linking agents and oxidative stress that may trigger apoptosis. Damage-induced activation of caspases and poly ADP ribose polymerase (PARP) enzymes have been described for some of the FA complementation groups. Here, we show the constitutive activation of caspase-3 and PARP cleavage in the FA cells without exposure to exogenous DNA-damaging factors. These effects can be reversed in the presence of reactive oxygen species scavenger N-acetylcystein. We also show the accumulation of oxidized proteins in FA cells, which is accompanied by the tumor necrosis factor (TNF)-alpha oversecretion and the upregulation of early stress response kinases pERK1/2 and p-P38. Suppression of TNF-alpha secretion by the extracellular signal-regulated kinase inhibitor PD98059 results in reduction of caspase-3 cleavage, suggesting a possible mechanism of caspases-3 activation in FA cells. Thus, the current study is the first evidence demonstrating the damage-independent activation of caspase-3 and PARP in FA cells, which seems to occur through mitogen-activated protein kinase activation and TNF-alpha oversecretion.
Collapse
Affiliation(s)
- Alex Lyakhovich
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | |
Collapse
|
22
|
Neveling K, Endt D, Hoehn H, Schindler D. Genotype-phenotype correlations in Fanconi anemia. Mutat Res 2009; 668:73-91. [PMID: 19464302 DOI: 10.1016/j.mrfmmm.2009.05.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 03/30/2009] [Accepted: 05/12/2009] [Indexed: 11/30/2022]
Abstract
Although still incomplete, we now have a remarkably detailed and nuanced picture of both phenotypic and genotypic components of the FA spectrum. Initially described as a combination of pancytopenia with a limited number of physical anomalies, it was later recognized that additional features were compatible with the FA phenotype, including a form without detectable malformations (Estren-Dameshek variant). The discovery of somatic mosaicism extended the boundaries of the FA phenotype to cases even without any overt hematological manifestations. This clinical heterogeneity was augmented by new conceptualizations. There was the realization of a constant risk for the development of myelodysplasia and certain malignancies, including acute myelogenous leukemia and squamous cell carcinoma, and there was the emergence of a distinctive cellular phenotype. A striking degree of genetic heterogeneity became apparent with the delineation of at least 12 complementation groups and the identification of their underlying genes. Although functional genetic insights have fostered the interpretation of many phenotypic features, surprisingly few stringent genotype-phenotype connections have emerged. In addition to myriad genetic alterations, less predictable influences are likely to modulate the FA phenotype, including modifier genes, environmental factors and chance effects. In reviewing the current status of genotype-phenotype correlations, we arrive at a unifying hypothesis to explain the remarkably wide range of FA phenotypes. Given the large body of evidence that genomic instability is a major underlying mechanism of accelerated ageing phenotypes, we propose that the numerous FA variants can be viewed as differential modulations and compression in time of intrinsic biological ageing.
Collapse
Affiliation(s)
- Kornelia Neveling
- Department of Human and Medical Genetics, University of Wurzburg, Biozentrum, Am Hubland, Wurzburg D-97074, Germany
| | | | | | | |
Collapse
|
23
|
Kontou M, Hirsch-Kauffmann M, Schweiger M. Impaired synthesis of heme oxygenase-1 in Fanconi anemia cells can be rescued by transfection of Fanconi wild-type cDNA. Biol Chem 2009; 389:1327-32. [PMID: 18713020 DOI: 10.1515/bc.2008.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fanconi anemia is a fatal, hereditary chromosome instability syndrome of early childhood with progressive pancytopenia and cancer-proneness. Hypersensitivity to alkylating agents points to DNA repair inefficiency. Excess reactive oxygen intermediates and hypersensitivity to oxygen, all features of Fanconi anemia cells, give evidence for a disturbed oxidative metabolism. Here, we report that expression of the inducible heme oxygenase-1, an essential antioxidative defense protein, is impaired in Fanconi anemia cells and can be reinstated with the transfection of Fanconi A wild-type cDNA. A causative interaction of Fanconi anemia proteins with transcription of selected proteins is indicated. The results enlighten the oxygen sensitivity in Fanconi anemia.
Collapse
Affiliation(s)
- Maria Kontou
- Institut für Biochemie und Molekularbiologie, Charité-Universitätsmedizin, Berlin, Campus Benjamin Franklin, Arnimallee 22, D-14195, Berlin, Germany
| | | | | |
Collapse
|
24
|
Scanlon TC, Gottlieb B, Durcan TM, Fon EA, Beitel LK, Trifiro MA. Isolation of human proteasomes and putative proteasome-interacting proteins using a novel affinity chromatography method. Exp Cell Res 2008; 315:176-89. [PMID: 19013454 DOI: 10.1016/j.yexcr.2008.10.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 10/24/2008] [Accepted: 10/24/2008] [Indexed: 02/02/2023]
Abstract
The proteasome is the primary subcellular organelle responsible for protein degradation. It is a dynamic assemblage of 34 core subunits and many differentially expressed, transiently interacting, modulatory proteins. This paper describes a novel affinity chromatography method for the purification of functional human holoproteasome complexes using mild conditions. Human proteasomes purified by this simple procedure maintained the ability to proteolytically process synthetic peptide substrates and degrade ubiquitinated parkin. Furthermore, the entire purification fraction was analyzed by mass spectrometry in order to identify proteasomal proteins and putative proteasome-interacting proteins. The mild purification conditions maintained transient physical interactions between holoproteasomes and a number of known modulatory proteins. In addition, several classes of putative interacting proteins co-purified with the proteasomes, including proteins with a role in the ubiquitin proteasome system for protein degradation or DNA repair. These results demonstrate the efficacy of using this affinity purification strategy for isolating functional human proteasomes and identifying proteins that may physically interact with human proteasomes.
Collapse
Affiliation(s)
- Thomas C Scanlon
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Tremblay CS, Huang FF, Habi O, Huard CC, Godin C, Lévesque G, Carreau M. HES1 is a novel interactor of the Fanconi anemia core complex. Blood 2008; 112:2062-70. [PMID: 18550849 PMCID: PMC5154739 DOI: 10.1182/blood-2008-04-152710] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fanconi anemia (FA) proteins are thought to play a role in chromosome stability and repair of DNA cross-links; however, these functions may not fully explain the developmental abnormalities and bone marrow failure that are characteristic of FA individuals. Here we associate the FA proteins with the Notch1 developmental pathway through a direct protein-protein interaction between the FA core complex and the hairy enhancer of split 1 (HES1). HES1 interaction with FA core complex members is dependent on a functional FA pathway. Cells depleted of HES1 exhibit an FA-like phenotype that includes cellular hypersensitivity to mitomycin C (MMC) and lack of FANCD2 monoubiquitination and foci formation. HES1 is also required for proper nuclear localization or stability of some members of the core complex. Our results suggest that HES1 is a novel interacting protein of the FA core complex.
Collapse
Affiliation(s)
- Cédric S. Tremblay
- Unité de recherche en Pédiatrie, Centre de recherche du Centre Hospitalier de l’Université Laval, Québec, QC
| | - Feng F. Huang
- Unité de recherche en Pédiatrie, Centre de recherche du Centre Hospitalier de l’Université Laval, Québec, QC
| | - Ouassila Habi
- Unité de recherche en Pédiatrie, Centre de recherche du Centre Hospitalier de l’Université Laval, Québec, QC
| | - Caroline C. Huard
- Unité de recherche en Pédiatrie, Centre de recherche du Centre Hospitalier de l’Université Laval, Québec, QC
| | - Chantal Godin
- Unité de Neurosciences, Centre de recherche du Centre Hospitalier de l’Université Laval, Québec, QC
| | - Georges Lévesque
- Unité de Neurosciences, Centre de recherche du Centre Hospitalier de l’Université Laval, Québec, QC
- Département de Biologie Médicale, Université Laval, Québec, QC
| | - Madeleine Carreau
- Unité de recherche en Pédiatrie, Centre de recherche du Centre Hospitalier de l’Université Laval, Québec, QC
- Département de Pédiatrie, Université Laval, Québec, QC
| |
Collapse
|
26
|
Kwon DJ, Park CK, Yang BK, Cheong HT. Control of nuclear remodelling and subsequent in vitro development and methylation status of porcine nuclear transfer embryos. Reproduction 2008; 135:649-56. [DOI: 10.1530/rep-06-0387] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We attempted to control the nuclear remodelling of somatic cell nuclear transfer embryos (NTs) and examined their subsequent development and DNA methylation patterns in pigs. Porcine foetal fibroblasts were fused to enucleated oocytes treated with either 5 mM caffeine for 2.5 h or 0.5 mM vanadate for 0.5 h. After activation, NTs were cultured in vitro for 6 days to examine their development. The nuclear remodelling type of the reconstituted embryos was evaluated 1 h after fusion. Methylated DNA of in vitro-fertilised (IVF) embryos and NTs at various developmental stages and of donor cells was detected using a 5-methylcytosine (5-MeC) antibody. Caffeine-treated NTs induced premature chromosome condensation at a high rate (P<0.05), whereas most vanadate-treated NTs formed a pronucleus-like structure. Although cleavage rates to the two-cell stage did not differ among groups, delayed cleavage was observed in the vanadate-treated group. The blastocyst formation rate was significantly reduced by vanadate treatment compared with caffeine-treated and non-treated (control) NT groups (P<0.05). The apoptotic cell index of NT blastocysts was lower in the caffeine-treated group than in other groups (P<0.05). The methylation patterns were similar among NTs, but more hypermethylated DNA was observed at the four-cell stage of control and vanadate-treated NTs when compared with that in IVF embryos (P<0.05). Thus, the nuclear remodelling type controlled by caffeine or vanadate treatment can affect in vitro development and the methylation status of NTs in relation to nuclear reprogramming.
Collapse
|
27
|
Jacquemont C, Taniguchi T. Proteasome function is required for DNA damage response and fanconi anemia pathway activation. Cancer Res 2007; 67:7395-405. [PMID: 17671210 DOI: 10.1158/0008-5472.can-07-1015] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proteasome inhibitors sensitize tumor cells to DNA-damaging agents, including ionizing radiation (IR), and DNA cross-linking agents (melphalan and cisplatin) through unknown mechanisms. The Fanconi anemia pathway is a DNA damage-activated signaling pathway, which regulates cellular resistance to DNA cross-linking agents. Monoubiquitination and nuclear foci formation of FANCD2 are critical steps of the Fanconi anemia pathway. Here, we show that proteasome function is required for the activation of the Fanconi anemia pathway and for DNA damage signaling. Proteasome inhibitors (bortezomib and MG132) and depletion of 19S and 20S proteasome subunits (PSMD4, PSMD14, and PSMB3) inhibited monoubiquitination and/or nuclear foci formation of FANCD2, whereas depletion of DSS1/SHFM1, a subunit of the 19S proteasome that also directly binds to BRCA2, did not inhibit FANCD2 monoubiquitination or foci formation. On the other hand, DNA damage-signaling processes, such as IR-induced foci formation of phosphorylated ATM (phospho-ATM), 53BP1, NBS1, BRCA1, FANCD2, and RAD51, were delayed in the presence of proteasome inhibitors, whereas ATM autophosphorylation and nuclear foci formation of gammaH2AX, MDC1, and RPA were not inhibited. Furthermore, persistence of DNA damage and abrogation of the IR-induced G(1)-S checkpoint resulted from proteasome inhibition. In summary, we showed that the proteasome function is required for monoubiquitination of FANCD2, foci formation of 53BP1, phospho-ATM, NBS1, BRCA1, FANCD2, and RAD51. The dependence of specific DNA damage-signaling steps on the proteasome may explain the sensitization of tumor cells to DNA-damaging chemotherapeutic agents by proteasome inhibitors.
Collapse
Affiliation(s)
- Céline Jacquemont
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
28
|
Zhang Y, Zhou X, Huang P. Fanconi Anemia and Ubiquitination. J Genet Genomics 2007; 34:573-80. [PMID: 17643942 DOI: 10.1016/s1673-8527(07)60065-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 12/28/2006] [Indexed: 11/17/2022]
Abstract
Fanconi anemia (FA) is a rare recessive hereditary disease characterized clinically by congenital defects, progressive bone-marrow failure, and cancer predisposition. Cells from FA patients exhibit hypersensitivity to DNA cross-linking agents, such as mitomycin C (MMC). To date, at least 12 FA genes have been found deleted or mutated in FA cells, and 10 FA gene products form a core complex involved in FA/BRCA2 DNA repair pathway?FA pathway. The ubiquitin E3 ligase FANCL, an important factor of FA core complex, co-functions with a new ubiquitin conjugating enzyme UBE2T to catalyze the monoubiquitination of FANCD2. FANCD2-Ub binds BRCA2 to form a new complex located in chromatin foci and then take part in DNA repair process. The deubiquitylating enzyme USP1 removes the mono-ubiquitin from FANCD2-Ub following completion of the repair process, then restores the blocked cell cycle to normal order by shutting off the FA pathway. In a word, the FANCD2 activity adjusted exquisitely by ubiquitination and/or deubiquitination in vivo may co-regulate the FA pathway involving in variant DNA repair pathway.
Collapse
Affiliation(s)
- Yingying Zhang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | | | | |
Collapse
|
29
|
Waterham HR, Wanders RJA. 23 as a Tool for Human Gene Function Discovery. METHODS IN MICROBIOLOGY 2007. [DOI: 10.1016/s0580-9517(06)36023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Larder R, Karali D, Nelson N, Brown P. Fanconi anemia A is a nucleocytoplasmic shuttling molecule required for gonadotropin-releasing hormone (GnRH) transduction of the GnRH receptor. Endocrinology 2006; 147:5676-89. [PMID: 16946016 PMCID: PMC1975762 DOI: 10.1210/en.2006-0383] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
GnRH binds its cognate G protein-coupled GnRH receptor (GnRHR) located on pituitary gonadotropes and drives expression of gonadotropin hormones. There are two gonadotropin hormones, comprised of a common alpha- and hormone-specific beta-subunit, which are required for gonadal function. Recently we identified that Fanconi anemia a (Fanca), a DNA damage repair gene, is differentially expressed within the LbetaT2 gonadotrope cell line in response to stimulation with GnRH. FANCA is mutated in more than 60% of cases of Fanconi anemia (FA), a rare genetically heterogeneous autosomal recessive disorder characterized by bone marrow failure, endocrine tissue cancer susceptibility, and infertility. Here we show that induction of FANCA protein is mediated by the GnRHR and that the protein constitutively adopts a nucleocytoplasmic intracellular distribution pattern. Using inhibitors to block nuclear import and export and a GnRHR antagonist, we demonstrated that GnRH induces nuclear accumulation of FANCA and green fluorescent protein (GFP)-FANCA before exporting back to the cytoplasm using the nuclear export receptor CRM1. Using FANCA point mutations that locate GFP-FANCA to the cytoplasm (H1110P) or functionally uncouple GFP-FANCA (Q1128E) from the wild-type nucleocytoplasmic distribution pattern, we demonstrated that wild-type FANCA was required for GnRH-induced activation of gonadotrope cell markers. Cotransfection of H1110P and Q1128E blocked GnRH activation of the alphaGsu and GnRHR but not the beta-subunit gene promoters. We conclude that nucleocytoplasmic shuttling of FANCA is required for GnRH transduction of the alphaGSU and GnRHR gene promoters and propose that FANCA functions as a GnRH-induced signal transducer.
Collapse
Affiliation(s)
- Rachel Larder
- Medical Research Council, Human Reproductive Sciences Unit, Centre for Reproductive Biology, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4JT, Scotland, United Kingdom
| | | | | | | |
Collapse
|
31
|
Abstract
Fanconi anaemia (FA) is a rare recessive disorder associated with chromosomal fragility, aplastic anaemia, congenital abnormalities and a high risk of cancer, including acute myeloid leukaemia and squamous cell carcinomas. The identification of 11 different FA genes has revealed a complex web of interacting proteins that are involved in the recognition or repair of DNA interstrand crosslinks and perhaps other forms of DNA damage. Bi-allelic mutations in BRCA2 are associated with a rare and highly cancer-prone form of FA, and the DNA helicase BRIP1 (formerly BACH1) is mutated in FA group J. There is little convincing evidence that FA heterozygotes are at increased risk of cancer, but larger studies are needed to address the possibility of modest risk effects. Somatic inactivation of the FA pathway by mutation or epigenetic silencing has been observed in several different types of sporadic cancer, and this may have important implications for targeted chemotherapy. Inhibition of this pathway represents a possible route to sensitization of tumours to DNA crosslinking drugs such as cisplatin.
Collapse
Affiliation(s)
- C G Mathew
- King's College London School of Medicine, Division of Genetics and Molecular Medicine, Guy's Hospital, London, UK.
| |
Collapse
|
32
|
Kerr MC, Lindsay MR, Luetterforst R, Hamilton N, Simpson F, Parton RG, Gleeson PA, Teasdale RD. Visualisation of macropinosome maturation by the recruitment of sorting nexins. J Cell Sci 2006; 119:3967-80. [PMID: 16968745 DOI: 10.1242/jcs.03167] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report that phosphoinositol-binding sorting nexin 5 (SNX5) associates with newly formed macropinosomes induced by EGF stimulation. We used the recruitment of GFP-SNX5 to macropinosomes to track their maturation. Initially, GFP-SNX5 is sequestered to discrete subdomains of the macropinosome; these subdomains are subsequently incorporated into highly dynamic, often branched, tubular structures. Time-lapse videomicroscopy revealed the highly dynamic extension of SNX5-labelled tubules and their departure from the macropinosome body to follow predefined paths towards the perinuclear region of the cell, before fusing with early endosomal acceptor membranes. The extension and departure of these tubular structures occurs rapidly over 5-10 minutes and is dependent upon intact microtubules. As the tubular structures depart from the macropinosome there is a reduction in the surface area and an increase in tension of the limiting membrane of the macropinosome. In addition to the recruitment of SNX5 to the macropinosome, Rab5, SNX1 and EEA1 are also recruited by newly formed macropinosomes, followed by the accumulation of Rab7. SNX5 forms heterodimers with SNX1 and this interaction is required for endosome association of SNX5. We propose that the departure of SNX5-positive tubules represents a rapid mechanism of recycling components from macropinosomes thereby promoting their maturation into Rab7-positive structures. Collectively these findings provide a detailed real-time characterisation of the maturation process of the macropinocytic endosome.
Collapse
Affiliation(s)
- Markus C Kerr
- Institute for Molecular Bioscience and ARC Centre in Bioinformatics, University of Queensland, St. Lucia, QLD 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Meyer S, Barber LM, White DJ, Will AM, Birch JM, Kohler JA, Ersfeld K, Blom E, Joenje H, Eden TOB, Malcolm Taylor G. Spectrum and significance of variants and mutations in the Fanconi anaemia group G gene in children with sporadic acute myeloid leukaemia. Br J Haematol 2006; 133:284-92. [PMID: 16643430 DOI: 10.1111/j.1365-2141.2006.05985.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Childhood acute myeloid leukaemia (AML) is uncommon. Children with Fanconi anaemia (FA), however, have a very high risk of developing AML. FA is a rare inherited disease caused by mutations in at least 12 genes, of which Fanconi anaemia group G gene (FANCG) is one of the commonest. To address to what extent FANCG variants contribute to sporadic childhood AML, we determined the spectrum of FANCG sequence variants in 107 children diagnosed with sporadic AML, using polymerase chain reaction (PCR), fluorescent single-strand conformational polymorphism (SSCP) and sequencing methodologies. The significance of variants was determined by frequency analysis and assessment of evolutionary conservation. Seven children (6.5%) carried variants in FANCG. Two of these carried two variants, including the known IVS2 + 1G>A mutation with the novel missense mutation S588F, and R513Q with the intronic deletion IVS12-38 (-28)_del11, implying that these patients might have been undiagnosed FA patients. R513Q, which affects a semi-conserved amino acid, was carried in two additional children with AML. Although not significant, the frequency of R513Q was higher in children with AML than unselected cord bloods. While FANCG mutation carrier status does not predispose to sporadic AML, the identification of unrecognised FA patients implies that FA presenting with primary AML in childhood is more common than suspected.
Collapse
Affiliation(s)
- Stefan Meyer
- Department of Paediatric Haematology and Oncology, Central Manchester and Manchester Children's University Hospital and Christie Hospital NHS Trusts, Manchester, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
A rare genetic disease, Fanconi anemia (FA), now attracts broader attention from cancer biologists and basic researchers in the DNA repair and ubiquitin biology fields as well as from hematologists. FA is a chromosome instability syndrome characterized by childhood-onset aplastic anemia, cancer or leukemia susceptibility, and cellular hypersensitivity to DNA crosslinking agents. Identification of 11 genes for FA has led to progress in the molecular understanding of this disease. FA proteins, including a ubiquitin ligase (FANCL), a monoubiquitinated protein (FANCD2), a helicase (FANCJ/BACH1/BRIP1), and a breast/ovarian cancer susceptibility protein (FANCD1/BRCA2), appear to cooperate in a pathway leading to the recognition and repair of damaged DNA. Molecular interactions among FA proteins and responsible proteins for other chromosome instability syndromes (BLM, NBS1, MRE11, ATM, and ATR) have also been found. Furthermore, inactivation of FA genes has been observed in a wide variety of human cancers in the general population. These findings have broad implications for predicting the sensitivity and resistance of tumors to widely used anticancer DNA crosslinking agents (cisplatin, mitomycin C, and melphalan). Here, we summarize recent progress in the molecular biology of FA and discuss roles of the FA proteins in DNA repair and cancer biology.
Collapse
Affiliation(s)
- Toshiyasu Taniguchi
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
35
|
Pagano G, Degan P, d'Ischia M, Kelly FJ, Nobili B, Pallardó FV, Youssoufian H, Zatterale A. Oxidative stress as a multiple effector in Fanconi anaemia clinical phenotype. Eur J Haematol 2005; 75:93-100. [PMID: 16000125 DOI: 10.1111/j.1600-0609.2005.00507.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fanconi anaemia (FA) is a genetic disease characterised by bone marrow failure with excess risk of myelogenous leukaemia and solid tumours. A widely accepted notion in FA research invokes a deficiency of response to DNA damage as the fundamental basis of the 'crosslinker sensitivity' observed in this disorder. However, such an isolated defect cannot readily account for the full cellular and clinical phenotype, which includes a number of other abnormalities, such as malformations, endocrinopathies, and typical skin spots. An extensive body of evidence pointing toward an involvement of oxidative stress in the FA phenotype includes the following: (i) In vitro and ex vivo abnormalities in a number of redox status endpoints; (ii) the functions of several FA proteins in protecting cells from oxidative stress; (iii) redox-related toxicity mechanisms of the xenobiotics evoking excess toxicity in FA cells. The clinical features in FA and the in vivo abnormalities of redox parameters are here reconsidered in view of the pleiotropic clinical phenotype and known biochemical and molecular links to an in vivo prooxidant state, which causes oxidative damage to biomolecules, resulting in an excessive number of acquired abnormalities that may overwhelm the cellular repair capacity rather than a primary deficiency in DNA repair. FA may thus represent a unique model disease in testing the integration between the acquisition of macromolecular damage as a result of oxidative stress and the ability of the mammalian cell to respond effectively to such damage.
Collapse
Affiliation(s)
- Giovanni Pagano
- Centre for Research, Innovation and Technological Transfer in Oncology and Life Sciences, Mercogliano (AV), Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Geiger H, Rennebeck G, Van Zant G. Regulation of hematopoietic stem cell aging in vivo by a distinct genetic element. Proc Natl Acad Sci U S A 2005; 102:5102-7. [PMID: 15788535 PMCID: PMC555968 DOI: 10.1073/pnas.0408654102] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Until recently, stem cells were thought to be endowed with unlimited self-renewal capacity and, thus, assumed exempt from aging. But accumulating evidence over the past decade compellingly argues that a measurable and progressive replicative impairment in the hematopoietic, intestinal, and muscle stem cell activity exists from adulthood to old age, resulting in a decline in stem cell function and rendering stem cell aging as the possible link between cellular aging and organismal aging. By using a previously uncharacterized congenic animal model to study genetic regulation of hematopoietic stem cell aging, we have demonstrated definitively that a locus on murine chromosome 2 regulates hematopoietic stem cell aging. In addition to demonstrating that hematopoietic stem cell aging is regulated by a distinct genetic element, experimental evidence links the response of hematopoietic stem cells to DNA double-strand breaks to cellular aging, suggesting DNA integrity influences stem cell aging.
Collapse
Affiliation(s)
- Hartmut Geiger
- Division of Experimental Hematology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| | | | | |
Collapse
|
37
|
Thompson LH, Hinz JM, Yamada NA, Jones NJ. How Fanconi anemia proteins promote the four Rs: replication, recombination, repair, and recovery. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 45:128-142. [PMID: 15668941 DOI: 10.1002/em.20109] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The genetically complex disease Fanconi anemia (FA) comprises cancer predisposition, developmental defects, and bone marrow failure due to elevated apoptosis. The FA cellular phenotype includes universal sensitivity to DNA crosslinking damage, symptoms of oxidative stress, and reduced mutability at the X-linked HPRT gene. In this review article, we present a new heuristic molecular model that accommodates these varied features of FA cells. In our view, the FANCA, -C, and -G proteins, which are both cytoplasmic and nuclear, have an integrated dual role in which they sense and convey information about cytoplasmic oxidative stress to the nucleus, where they participate in the further assembly and functionality of the nuclear core complex (NCCFA= FANCA/B/C/E/F/G/L). In turn, NCCFA facilitates DNA replication at sites of base damage and strand breaks by performing the critical monoubiquitination of FANCD2, an event that somehow helps stabilize blocked and broken replication forks. This stabilization facilitates two kinds of processes: translesion synthesis at sites of blocking lesions (e.g., oxidative base damage), which produces point mutations by error-prone polymerases, and homologous recombination-mediated restart of broken forks, which arise spontaneously and when crosslinks are unhooked by the ERCC1-XPF endonuclease. In the absence of the critical FANCD2 monoubiquitination step, broken replication forks further lose chromatid continuity by collapsing into a configuration that is more difficult to restart through recombination and prone to aberrant repair through nonhomologous end joining. Thus, the FA regulatory pathway promotes chromosome integrity by monitoring oxidative stress and coping efficiently with the accompanying oxidative DNA damage during DNA replication.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
| | | | | | | |
Collapse
|
38
|
Krogan NJ, Lam MHY, Fillingham J, Keogh MC, Gebbia M, Li J, Datta N, Cagney G, Buratowski S, Emili A, Greenblatt JF. Proteasome Involvement in the Repair of DNA Double-Strand Breaks. Mol Cell 2004; 16:1027-34. [PMID: 15610744 DOI: 10.1016/j.molcel.2004.11.033] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 08/17/2004] [Accepted: 10/21/2004] [Indexed: 11/23/2022]
Abstract
Affinity purification of the yeast 19S proteasome revealed the presence of Sem1 as a subunit. Its human homolog, DSS1, was found likewise to copurify with the human 19S proteasome. DSS1 is known to associate with the tumor suppressor protein BRCA2 involved in repair of DNA double-strand breaks (DSBs). We demonstrate that Sem1 is required for efficient repair of an HO-generated yeast DSB using both homologous recombination (HR) and nonhomologous end joining (NHEJ) pathways. Deletion of SEM1 or genes encoding other nonessential 19S or 20S proteasome subunits also results in synthetic growth defects and hypersensitivity to genotoxins when combined with mutations in well-established DNA DSB repair genes. Chromatin immunoprecipitation showed that Sem1 is recruited along with the 19S and 20S proteasomes to a DSB in vivo, and this recruitment is dependent on components of both the HR and NHEJ repair pathways, suggesting a direct role of the proteasome in DSB repair.
Collapse
Affiliation(s)
- Nevan J Krogan
- Banting and Best Department of Medical Research, University of Toronto, 112 College Street, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Fanconi anaemia (FA) is an autosomal recessive chromosomal instability disorder, which is characterized by congenital abnormalities, defective haemopoiesis and a high risk of developing acute myeloid leukaemia and certain solid tumours. It can be caused by mutations in at least eight different genes. Molecular studies have established that a common pathway exists, both between the FA proteins and other proteins involved in DNA damage repair such as NBS1, ATM, BRCA1 and BRCA2. This review summarizes the general clinical and specific haematological features and the current management of FA. Recent molecular advances will also be discussed in the context of the cellular and clinical FA phenotype, with particular emphasis on the haematological aspects of the condition.
Collapse
|