1
|
Almutairy AF, Alhamed AS, Grant SG, Falso MJ, Day BW, Simmons CR, Latimer JJ. Cancer-specific alterations in nuclear matrix proteins determined by multi-omics analyses of ductal carcinoma in situ. Front Oncol 2024; 14:1406946. [PMID: 39165691 PMCID: PMC11333849 DOI: 10.3389/fonc.2024.1406946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/20/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Breast cancer (BC) is the most common cancer affecting women in the United States. Ductal carcinoma in situ (DCIS) is the earliest identifiable pre-invasive BC lesion. Estimates show that 14 to 50% of DCIS cases progress to invasive BC. Methods Our objective was to identify nuclear matrix proteins (NMP) with specifically altered expression in DCIS and later stages of BC compared to non-diseased breast reduction mammoplasty and a contralateral breast explant culture using mass spectrometry and RNA sequencing to accurately identify aggressive DCIS. Results Sixty NMPs were significantly differentially expressed between the DCIS and non-diseased breast epithelium in an isogenic contralateral pair of patient-derived extended explants. Ten of the sixty showed significant mRNA expression level differences that matched the protein expression. These 10 proteins were similarly expressed in non-diseased breast reduction cells. Three NMPs (RPL7A, RPL11, RPL31) were significantly upregulated in DCIS and all other BC stages compared to the matching contralateral breast culture and an unrelated non-diseased breast reduction culture. RNA sequencing analyses showed that these three genes were increasingly upregulated with BC progression. Finally, we identified three NMPs (AHNAK, CDC37 and DNAJB1) that were significantly downregulated in DCIS and all other BC stages compared to the isogenically matched contralateral culture and the non-diseased breast reduction culture using both proteomics and RNA sequencing techniques. Discussion These genes should form the basis of, or contribute to, a molecular diagnostic panel that could identify DCIS lesions likely to be indolent and therefore not requiring aggressive treatment.
Collapse
Affiliation(s)
- Ali F. Almutairy
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
- AutoNation Institute for Breast Cancer Research and Care, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Abdullah S. Alhamed
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
- AutoNation Institute for Breast Cancer Research and Care, Nova Southeastern University, Fort Lauderdale, FL, United States
- Pharmacology Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Stephen G. Grant
- AutoNation Institute for Breast Cancer Research and Care, Nova Southeastern University, Fort Lauderdale, FL, United States
- Department of Public Health, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Miranda J. Falso
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Billy W. Day
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Colton R. Simmons
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
- AutoNation Institute for Breast Cancer Research and Care, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Jean J. Latimer
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
- AutoNation Institute for Breast Cancer Research and Care, Nova Southeastern University, Fort Lauderdale, FL, United States
- Department of Obstetrics and Gynecology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Latimer JJ, Alhamed A, Sveiven S, Almutairy A, Klimas NG, Abreu M, Sullivan K, Grant SG. Preliminary Evidence for a Hormetic Effect on DNA Nucleotide Excision Repair in Veterans with Gulf War Illness. Mil Med 2021; 185:e47-e52. [PMID: 31334811 PMCID: PMC7353836 DOI: 10.1093/milmed/usz177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
Introduction Veterans of the 1991 Gulf War were potentially exposed to a mixture of stress, chemicals and radiation that may have contributed to the persistent symptoms of Gulf War Illness (GWI). The genotoxic effects of some of these exposures are mediated by the DNA nucleotide excision repair (NER) pathway. We hypothesized that individuals with relatively low DNA repair capacity would suffer greater damage from cumulative genotoxic exposures, some of which would persist, causing ongoing problems. Materials and Methods Blood samples were obtained from symptomatic Gulf War veterans and age-matched controls. The unscheduled DNA synthesis assay, a functional measurement of NER capacity, was performed on cultured lymphocytes, and lymphocyte mRNA was extracted and analyzed by sequencing. Results Despite our hypothesis that GWI would be associated with DNA repair deficiency, NER capacity in lymphocytes from affected GWI veterans actually exhibited a significantly elevated level of DNA repair (p = 0.016). Both total gene expression and NER gene expression successfully differentiated individuals with GWI from unaffected controls. The observed functional increase in DNA repair capacity was accompanied by an overexpression of genes in the NER pathway, as determined by RNA sequencing analysis. Conclusion We suggest that the observed elevations in DNA repair capacity and NER gene expression are indicative of a “hormetic,” i.e., induced or adaptive protective response to battlefield exposures. Normally such effects are short-term, but in these individuals this response has resulted in a long-term metabolic shift that may also be responsible for the persistent symptoms of GWI.
Collapse
Affiliation(s)
- Jean J Latimer
- Department of Pharmaceutical Sciences, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328.,South University Drive, AutoNation Institute for Breast Cancer Research, 3321, Fort Lauderdale, FL 33328
| | - Abdullah Alhamed
- Department of Pharmaceutical Sciences, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328.,South University Drive, AutoNation Institute for Breast Cancer Research, 3321, Fort Lauderdale, FL 33328
| | - Stefanie Sveiven
- South University Drive, AutoNation Institute for Breast Cancer Research, 3321, Fort Lauderdale, FL 33328
| | - Ali Almutairy
- Department of Pharmaceutical Sciences, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328.,South University Drive, AutoNation Institute for Breast Cancer Research, 3321, Fort Lauderdale, FL 33328
| | - Nancy G Klimas
- Department of Clinical Immunology, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328.,Department of Medicine, Miami VA Healthcare System, 1201 NW 16th St, Miami, FL 33313
| | - Maria Abreu
- Department of Clinical Immunology, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, 715 Albany St, Boston, MA 02118
| | - Stephen G Grant
- South University Drive, AutoNation Institute for Breast Cancer Research, 3321, Fort Lauderdale, FL 33328.,Department of Public Health, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328
| |
Collapse
|
3
|
New Perspectives on Unscheduled DNA Synthesis: Functional Assay for Global Genomic DNA Nucleotide Excision Repair. Methods Mol Biol 2020; 2102:483-507. [PMID: 31989573 DOI: 10.1007/978-1-0716-0223-2_27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The unscheduled DNA synthesis (UDS) assay measures the ability of a cell to perform global genomic nucleotide excision repair (NER). This chapter provides instructions for the application of this technique by creating 6-4 photoproducts and pyrimidine dimers using UV-C (254 nm) irradiation. This procedure is designed specifically for quantification of the 6-4 photoproducts. Repair is quantified by the amount of radioactive thymidine incorporated during repair synthesis after this insult, and radioactivity is evaluated by grain counting after autoradiography. The results have been used to clinically diagnose human DNA repair deficiency disorders, and provide a basis for investigation of repair deficiency in human tissues or tumors. Genomic sequencing to establish the presence of specific mutations is also used now for clinical diagnosis of DNA repair deficiency syndromes. Few functional assays are available which directly measure the capacity to perform NER on the entire genome. Since live cells are required for this assay, explant culture techniques must be previously established. Host cell reactivation (HCR). As discussed in Chap. 28 is not an equivalent technique, as it measures only transcription-coupled repair (TCR) at active genes, a small subset of total NER. Our laboratory also explored the fluorescent label-based Click-iT assay that uses EdU as the label, rather than 3H thymidine. Despite emerging studies in the literature finding this assay to be useful for other purposes, we found that the EdU-based UDS assay was not consistent or reproducible compared with the 3H thymidine-based assay.
Collapse
|
4
|
Dodda BR, Bondi CD, Hasan M, Clafshenkel WP, Gallagher KM, Kotlarczyk MP, Sethi S, Buszko E, Latimer JJ, Cline JM, Witt-Enderby PA, Davis VL. Co-administering Melatonin With an Estradiol-Progesterone Menopausal Hormone Therapy Represses Mammary Cancer Development in a Mouse Model of HER2-Positive Breast Cancer. Front Oncol 2019; 9:525. [PMID: 31355130 PMCID: PMC6636553 DOI: 10.3389/fonc.2019.00525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
Melatonin has numerous anti-cancer properties reported to influence cancer initiation, promotion, and metastasis. With the need for effective hormone therapies (HT) to treat menopausal symptoms without increasing breast cancer risk, co-administration of nocturnal melatonin with a natural, low-dose HT was evaluated in mice that develop primary and metastatic mammary cancer. Individually, melatonin (MEL) and estradiol-progesterone therapy (EPT) did not significantly affect mammary cancer development through age 14 months, but, when combined, the melatonin-estradiol-progesterone therapy (MEPT) significantly repressed tumor formation. This repression was due to effects on tumor incidence, but not latency. These results demonstrate that melatonin and the HT cooperate to decrease the mammary cancer risk. Melatonin and EPT also cooperate to alter the balance of the progesterone receptor (PR) isoforms by significantly increasing PRA protein expression only in MEPT mammary glands. Melatonin significantly suppressed amphiregulin transcripts in MEL and MEPT mammary glands, suggesting that amphiregulin together with the higher PRA:PRB balance and other factors may contribute to reducing cancer development in MEPT mice. Melatonin supplementation influenced mammary morphology by increasing tertiary branching in the mouse mammary glands and differentiation in human mammary epithelial cell cultures. Uterine weight in the luteal phase was elevated after long-term exposure to EPT, but not to MEPT, indicating that melatonin supplementation may reduce estrogen-induced uterine stimulation. Melatonin supplementation significantly decreased the incidence of grossly-detected lung metastases in MEL mice, suggesting that melatonin delays the formation of metastatic lesions and/or decreases aggressiveness in this model of HER2+ breast cancer. Mammary tumor development was similar in EPT and MEPT mice until age 8.6 months, but after 8.6 months, only MEPT continued to suppress cancer development. These data suggest that melatonin supplementation has a negligible effect in young MEPT mice, but is required in older mice to inhibit tumor formation. Since melatonin binding was significantly decreased in older mammary glands, irrespective of treatment, melatonin supplementation may overcome reduced melatonin responsiveness in the aged MEPT mice. Since melatonin levels are known to decline near menopause, nocturnal melatonin supplementation may also be needed in aging women to cooperate with HT to decrease breast cancer risk.
Collapse
Affiliation(s)
- Balasunder R Dodda
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Corry D Bondi
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Mahmud Hasan
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - William P Clafshenkel
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Katie M Gallagher
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Mary P Kotlarczyk
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Shalini Sethi
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Ethan Buszko
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Jean J Latimer
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - J Mark Cline
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Paula A Witt-Enderby
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States.,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vicki L Davis
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| |
Collapse
|
5
|
Abdelmegeed SM, Mohammed S. Canine mammary tumors as a model for human disease. Oncol Lett 2018; 15:8195-8205. [PMID: 29928319 PMCID: PMC6004712 DOI: 10.3892/ol.2018.8411] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/12/2018] [Indexed: 12/13/2022] Open
Abstract
Animal models for examining human breast cancer (HBC) carcinogenesis have been extensively studied and proposed. With the recent advent of immunotherapy, significant attention has been focused on the dog as a model for human cancer. Dogs develop mammary tumors and other cancer types spontaneously with an intact immune system, which exhibit a number of clinical and molecular similarities to HBC. In addition to the spontaneous tumor presentation, the clinical similarities between human and canine mammary tumors (CMT) include the age at onset, hormonal etiology and course of the diseases. Furthermore, factors that affect the disease outcome, including tumor size, stage and lymph node invasion, are similar in HBC and CMT. Similarly, the molecular characteristics of steroid receptor, epidermal growth factor, proliferation marker, metalloproteinase and cyclooxygenase expression, and the mutation of the p53 tumor suppressor gene in CMT, mimic HBC. Furthermore, ductal carcinomas in situ in human and canine mammary glands are particularly similar in their pathological, molecular and visual characteristics. These CMT characteristics and their similarities to HBC indicate that the dog could be an excellent model for the study of human disease. These similarities are discussed in detail in the present review, and are compared with the in vitro and other in vivo animal models available.
Collapse
Affiliation(s)
- Somaia M Abdelmegeed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Sulma Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
6
|
Latimer JJ, Majekwana VJ, Pabón-Padín YR, Pimpley MR, Grant SG. Regulation and disregulation of mammalian nucleotide excision repair: a pathway to nongermline breast carcinogenesis. Photochem Photobiol 2014; 91:493-500. [PMID: 25393451 DOI: 10.1111/php.12387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/27/2014] [Indexed: 12/13/2022]
Abstract
Nucleotide excision repair (NER) is an important modulator of disease, especially in constitutive deficiencies such as the cancer predisposition syndrome Xeroderma pigmentosum. We have found profound variation in NER capacity among normal individuals, between cell-types and during carcinogenesis. NER is a repair system for many types of DNA damage, and therefore many types of genotoxic carcinogenic exposures, including ultraviolet light, products of organic combustion, metals and oxidative stress. Because NER is intimately related to cellular metabolism, requiring components of both the DNA replicative and transcription machinery, it has a narrow range of functional viability. Thus, genes in the NER pathway are expressed at the low levels manifested by, for example, nuclear transcription factors. As NER activity and gene expression vary by cell-type, it is inherently epigenetically regulated. Furthermore, this epigenetic modulation is disregulated during sporadic breast carcinogenesis. Loss of NER is one basis of genomic instability, a required element in cellular transformation, and one that potentially influences response to therapy. In this study, we demonstrate differences in NER capacity in eight adult mouse tissues, and place this result into the context of our previous work on mouse extraembryonic tissues, normal human tissues and sporadic early stage human breast cancer.
Collapse
Affiliation(s)
- Jean J Latimer
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL
| | | | | | | | | |
Collapse
|
7
|
Latimer JJ, Kelly CM. Unscheduled DNA synthesis: the clinical and functional assay for global genomic DNA nucleotide excision repair. Methods Mol Biol 2014; 1105:511-32. [PMID: 24623250 DOI: 10.1007/978-1-62703-739-6_36] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The unscheduled DNA synthesis (UDS) assay measures the ability of a cell to perform global genomic nucleotide excision repair (NER). This chapter provides instructions for the application of this technique by creating 6-4 photoproducts and pyrimidine dimers using UV-C irradiation. This procedure is designed specifically for quantification of the 6-4 photoproducts. Repair is quantified by the amount of radioactive thymidine incorporated during repair synthesis after this insult, and radioactivity is evaluated by grain counting after autoradiography. The results are used to clinically diagnose human DNA repair deficiency disorders and provide a basis for investigation of repair deficiency in human tissues or tumors. No other functional assay is available that directly measures the capacity to perform NER on the entire genome without the use of specific antibodies. Since live cells are required for this assay, explant culture techniques must be previously established. Host cell reactivation (HCR), as discussed in Chapter 37, is not an equivalent technique, as it measures only transcription-coupled repair (TCR) at active genes, a small subset of total NER.
Collapse
Affiliation(s)
- Jean J Latimer
- Department of Pharmaceutical Sciences, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale-Davie, FL, 33314-7796, USA,
| | | |
Collapse
|
8
|
Bajpayee M, Pandey AK, Parmar D, Dhawan A. Current Status of Short-Term Tests for Evaluation of Genotoxicity, Mutagenicity, and Carcinogenicity of Environmental Chemicals and NCEs. Toxicol Mech Methods 2012; 15:155-80. [PMID: 20021080 DOI: 10.1080/15376520590945667] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The advent of the industrial revolution has seen a significant increase in the number of new chemical entities (NCEs) released in the environment. It becomes imperative to check the toxic potential of NCEs to nontarget species before they are released for commercial purposes because some of these may exert genotoxicity, mutagenicity, or carcinogenicity. Exposure to such compounds produces chemical changes in DNA, which are generally repaired by the DNA repair enzymes. However, DNA damage and its fixation may occur in the form of gene mutations, chromosomal damage, and numerical chromosomal changes and recombination. This may affect the incidence of heritable mutations in man and may be transferred to the progeny or lead to the development of cancer. Hence, adequate tests on NCEs have to be undertaken for the risk assessment and hazard prediction. Compounds that are positive in tests that detect such damages have the potential to be human mutagens/carcinogens. Only long-term animal bioassays, involving lifetime studies on animals, were used earlier to classify substances as mutagens/carcinogens. These tests were cumbersome and time consuming and required a lot of facilities and personnel. Short-term tests, therefore, were brought into practice. A "battery" of three to four of these short-term tests has been proposed now by a number of regulatory authorities for the classification of compounds as mutagenic or carcinogenic. This review deals with the current status of these short-term tests.
Collapse
Affiliation(s)
- Mahima Bajpayee
- Developmental Toxicology Division, Industrial Toxicology Research Center, M.G. Marg, LucknowIndia
| | | | | | | |
Collapse
|
9
|
Nucleotide excision repair deficiency is intrinsic in sporadic stage I breast cancer. Proc Natl Acad Sci U S A 2010; 107:21725-30. [PMID: 21118987 DOI: 10.1073/pnas.0914772107] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The molecular etiology of breast cancer has proven to be remarkably complex. Most individual oncogenes are disregulated in only approximately 30% of breast tumors, indicating that either very few molecular alterations are common to the majority of breast cancers, or that they have not yet been identified. In striking contrast, we now show that 19 of 19 stage I breast tumors tested with the functional unscheduled DNA synthesis assay exhibited a significant deficiency of DNA nucleotide excision repair (NER) capacity relative to normal epithelial tissue from disease-free controls (n = 23). Loss of DNA repair capacity, including the complex, damage-comprehensive NER pathway, results in genomic instability, a hallmark of carcinogenesis. By microarray analysis, mRNA expression levels for 20 canonical NER genes were reduced in representative tumor samples versus normal. Significant reductions were observed in 19 of these genes analyzed by the more sensitive method of RNase protection. These results were confirmed at the protein level for five NER gene products. Taken together, these data suggest that NER deficiency may play an important role in the etiology of sporadic breast cancer, and that early-stage breast cancer may be intrinsically susceptible to genotoxic chemotherapeutic agents, such as cis-platinum, whose damage is remediated by NER. In addition, reduced NER capacity, or reduced expression of NER genes, could provide a basis for the development of biomarkers for the identification of tumorigenic breast epithelium.
Collapse
|
10
|
Burger K, Matt K, Kieser N, Gebhard D, Bergemann J. A modified fluorimetric host cell reactivation assay to determine the repair capacity of primary keratinocytes, melanocytes and fibroblasts. BMC Biotechnol 2010; 10:46. [PMID: 20569452 PMCID: PMC2900224 DOI: 10.1186/1472-6750-10-46] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 06/22/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Host Cell Reactivation Assay (HCRA) is widely used to identify circumstances and substances affecting the repair capacity of cells, however, it is restricted by the transfection procedure used and the sensitivity of the detection method. Primary skin cells are particularly difficult to transfect, and therefore sensitive methods are needed to detect any variations due to the cell-type or inter-individual differences or changes induced by diverse substances.A sensitive and repeatable method to detect the repair capacity of skin cells would be useful in two different aspects: On the one hand, to identify substances influencing the repair capacity in a positive manner (these substances could be promising ingredients for cosmetic products) and on the other hand, to exclude the negative effects of substances on the repair capacity (this could serve as one step further towards replacing or at least reducing animal testing). RESULTS In this paper, we present a rapid and sensitive assay to determine the repair capacity of primary keratinocytes, melanocytes and fibroblasts based on two wave-length Green Fluorescent Protein (GFP) and DsRed reporter technology in order to test different substances and their potential to influence the DNA repair capacity. For the detection of plasmid restoration, we used FACS technology, which, in comparison to luminometer technology, is highly sensitive and allows single cell based analysis.The usefulness of this assay and studying the repair capacity is demonstrated by the evidence that DNA repair is repressed by Cyclosporin A in fibroblasts. CONCLUSIONS The methodology described in this paper determines the DNA repair capacity in different types of human skin cells. The described transfection protocol is suitable for the transfection of melanocytes, keratinocytes and fibroblasts, reaching efficacies suitable for the detection of the restored plasmids by FACS technology. Therefore the repair capacity of different cell types can be compared with each other. The described assay is also highly flexible, and the activity of other repair mechanisms can be determined using modifications of this method.
Collapse
Affiliation(s)
- Katharina Burger
- Department of Biomedical Engineering, University of Applied Sciences, Anton-Günther-Strasse 51, 72488 Sigmaringen, Germany
| | | | | | | | | |
Collapse
|
11
|
Monsees GM, Kraft P, Chanock SJ, Hunter DJ, Han J. Comprehensive screen of genetic variation in DNA repair pathway genes and postmenopausal breast cancer risk. Breast Cancer Res Treat 2010; 125:207-14. [PMID: 20496165 DOI: 10.1007/s10549-010-0947-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 05/10/2010] [Indexed: 12/17/2022]
Abstract
Mistakes in DNA repair can result in sustained damage and genetic instability. We comprehensively evaluated common variants in DNA repair pathway genes for their association with postmenopausal breast cancer risk with and without respect to estrogen receptor (ER) and progesterone receptor (PR) subtypes. In this study of 1,145 prospectively ascertained breast cancer cases and 1,142 matched controls from the Nurses' Health Study Cancer Genetic Markers of Susceptibility project, we evaluated 1,314 common genetic variants in 68 candidate genes. These variants were chosen to represent five DNA repair pathways including base excision repair, nucleotide excision repair, double-strand break repair (homologous recombination and non-homologous end-joining), direct reversal repair, and mismatch repair, along with candidate DNA polymerases, Fanconi Anemia complementation groups, and other genes relevant to DNA damage recognition and response. Main effects, pathway effects, and pair-wise interactions were evaluated using Logistic Regression, and the Admixture Maximum Likelihood (AML) and Kernel Machine tests. Eight linked loci within XRCC4 were associated with susceptibility to PR- breast cancer (main effect p-values corrected for multiple testing at the within-gene level < 0.04). These loci drove the association between the non-homologous end-joining pathway, and PR- breast cancer (AML p-value for the full pathway = 0.002; p-value when the eight loci were removed = 0.86). A Kernel machine test of no linear or quadratic effects, or pairwise interaction, yielded a p-value of 0.85. Common variation alone in DNA repair genes plays at most a small role in determining postmenopausal breast cancer risk among women of European ancestry.
Collapse
Affiliation(s)
- Genevieve M Monsees
- Program in Molecular and Genetic Epidemiology, Department of Epidemiology, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
12
|
Latimer JJ, Johnson JM, Miles TD, Dimsdale JM, Edwards RP, Kelley JL, Grant SG. Cell-type-specific level of DNA nucleotide excision repair in primary human mammary and ovarian epithelial cell cultures. Cell Tissue Res 2008; 333:461-7. [PMID: 18575893 DOI: 10.1007/s00441-008-0645-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 05/13/2008] [Indexed: 12/21/2022]
Abstract
DNA repair, a fundamental function of cellular metabolism, has long been presumed to be constitutive and equivalent in all cells. However, we have previously shown that normal levels of nucleotide excision repair (NER) can vary by 20-fold in a tissue-specific pattern. We have now successfully established primary cultures of normal ovarian tissue from seven women by using a novel culture system originally developed for breast epithelial cells. Epithelial cells in these cultures aggregated to form three-dimensional structures called "attached ovarian epispheres". The availability of these actively proliferating cell cultures allowed us to measure NER functionally and quantitatively by the unscheduled DNA synthesis (UDS) assay, a clinical test used to diagnose constitutive deficiencies in NER capacity. We determined that ovarian epithelial cells manifested an intermediate level of NER capacity in humans, viz., only 25% of that of foreskin fibroblasts, but still 2.5-fold higher than that of peripheral blood lymphocytes. This level of DNA repair capacity was indistinguishable from that of normal breast epithelial cells, suggesting that it might be characteristic of the epithelial cell type. Similar levels of NER activity were observed in cultures established from a disease-free known carrier of a BRCA1 truncation mutation, consistent with previous normal results shown in breast epithelium and blood lymphocytes. These results establish that at least three "normal" levels of such DNA repair occur in human tissues, and that NER capacity is epigenetically regulated during cell differentiation and development.
Collapse
Affiliation(s)
- Jean J Latimer
- Center for Environmental Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Burger K, Kieser N, Gallinat S, Mielke H, Knott S, Bergemann J. The influence of folic acid depletion on the Nucleotide Excision Repair capacity of human dermal fibroblasts measured by a modified Host Cell Reactivation Assay. Biofactors 2007; 31:181-90. [PMID: 18997281 DOI: 10.1002/biof.5520310305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Animal and human studies have shown that low levels of folic acid are associated with an impaired DNA Repair Capacity (DRC) and an increased cancer risk. However, the molecular evidence that folic acid enhances the DRC of cultured human cells is still limited because of a paucity of in vitro studies. We investigated the effect of folic acid depletion in vitro on the DRC of human dermal fibroblasts derived from 17 donors of different ages. To assess the cellular Nucleotide Excision DRC, we used a modified Host Cell-Reactivation Assay (HCRA), adapted to the Fluorescence Activated Cell Sorting (FACS)-technology, which is highly sensitive in comparison to luminometer-technology and allows single cell based analysis. We used DsRed as a reporter (irradiated with UVC light) and pEGFP to control the performance of the transformations. Folic acid had a statistically significant effect on the DRC in all of the 17 donors, however, the levels varied considerably between individuals (2.0-19.6%). When the effect of folic acid substituted on the DRC was compared to donor age, we observed that there was less DNA repair in old donors compared to the younger donors, although this was only significant at lower levels.
Collapse
Affiliation(s)
- Katharina Burger
- Department of Biomedical Engineering, University of Applied Sciences, Sigmaringen, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Le Jan C, Bellaton C, Greenland T, Mornex JF. Mammary transmission of caprine arthritis encephalitis virus: a 3D model for in vitro study. ACTA ACUST UNITED AC 2005; 45:513-23. [PMID: 16045898 DOI: 10.1051/rnd:2005035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Transmission of Caprine Arthritis Encephalitis virus (CAEV) from the mother to offspring is principally mediated by infected cells from colostrum and milk. The infection of the dam is often sub-clinical, and results in increased cellularity of milk, sometimes exacerbated by bacterial co-infections. Although monocytes are the major viral host cells, several other cell types, including epithelial mammary cells, fibroblasts and endothelial cells show low levels of in vivo infection. In vitro, however, all phenotypes of mammary gland cells are individually highly sensitive to CAEV infection. This suggests that local mechanisms act to control viral expression. Our goal is to analyse the mechanisms regulating local virus infection, including the physiological status of the mammary gland and bacterial co-infections. In this work, we present the development of a model for the in vitro reconstitution of mammary gland tissue using 3D cultures in Matrigel. Mononuclear cells from the blood are added to the 3D cultures in vitro. In these experimental conditions, the mammary cells spontaneously organize into mammospheres. Blood leucocytes migrate into the culture gel, and localize particularly at the periphery of the mammospheres. Mammospheres were susceptible to infection in vitro by CAEV, as shown by a cytopathic effect and expression of late CAEV antigen p30. This model will allow the in vitro study of virus expression, transfer of infection to mammary gland cells and interactions between the mammary gland cells, infected monocytes and immunocompetent cells. It will allow the study of mechanisms participating in the control of passage of pathogens into milk, according to the physiological and CAEV-infection status of the animal, microenvironment and the presence of bacterial co-infections.
Collapse
Affiliation(s)
- Christian Le Jan
- UMR 754, Rétrovirus et Pathologie Comparée, INRA/ENVL/UCBL/EPHE, Université Claude Bernard Lyon 1, IFR 128 Biosciences Lyon Gerland, France.
| | | | | | | |
Collapse
|
15
|
Latimer JJ, Rubinstein WS, Johnson JM, Kanbour-Shakir A, Vogel VG, Grant SG. Haploinsufficiency for BRCA1 is associated with normal levels of DNA nucleotide excision repair in breast tissue and blood lymphocytes. BMC MEDICAL GENETICS 2005; 6:26. [PMID: 15955237 PMCID: PMC1215484 DOI: 10.1186/1471-2350-6-26] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Accepted: 06/14/2005] [Indexed: 12/17/2022]
Abstract
Background Screening mammography has had a positive impact on breast cancer mortality but cannot detect all breast tumors. In a small study, we confirmed that low power magnetic resonance imaging (MRI) could identify mammographically undetectable tumors by applying it to a high risk population. Tumors detected by this new technology could have unique etiologies and/or presentations, and may represent an increasing proportion of clinical practice as new screening methods are validated and applied. A very important aspect of this etiology is genomic instability, which is associated with the loss of activity of the breast cancer-predisposing genes BRCA1 and BRCA2. In sporadic breast cancer, however, there is evidence for the involvement of a different pathway of DNA repair, nucleotide excision repair (NER), which remediates lesions that cause a distortion of the DNA helix, including DNA cross-links. Case presentation We describe a breast cancer patient with a mammographically undetectable stage I tumor identified in our MRI screening study. She was originally considered to be at high risk due to the familial occurrence of breast and other types of cancer, and after diagnosis was confirmed as a carrier of a Q1200X mutation in the BRCA1 gene. In vitro analysis of her normal breast tissue showed no differences in growth rate or differentiation potential from disease-free controls. Analysis of cultured blood lymphocyte and breast epithelial cell samples with the unscheduled DNA synthesis (UDS) assay revealed no deficiency in NER. Conclusion As new breast cancer screening methods become available and cost effective, patients such as this one will constitute an increasing proportion of the incident population, so it is important to determine whether they differ from current patients in any clinically important ways. Despite her status as a BRCA1 mutation carrier, and her mammographically dense breast tissue, we did not find increased cell proliferation or deficient differentiation potential in breast epithelial cells from this patient which might have contributed to her cancer susceptibility. Although NER deficiency has been demonstrated repeatedly in blood samples from sporadic breast cancer patients, analysis of blood cultured lymphocytes and breast epithelial cells for this patient proves definitively that heterozygosity for inactivation of BRCA1 does not intrinsically confer this type of genetic instability. These data suggest that the mechanism of genomic instability driving the carcinogenic process may be fundamentally different in hereditary and sporadic breast cancer, resulting in different genotoxic susceptibilities, oncogene mutations, and a different molecular pathogenesis.
Collapse
Affiliation(s)
- Jean J Latimer
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Biochemistry and Molecular Genetics Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Research Institute, Magee-Womens Hospital, Pittsburgh, PA, USA
| | - Wendy S Rubinstein
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Evanston Northwestern Healthcare Center for Medical Genetics, Evanston, IL, USA
| | - Jennifer M Johnson
- Biochemistry and Molecular Genetics Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amal Kanbour-Shakir
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Victor G Vogel
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen G Grant
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Biochemistry and Molecular Genetics Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Research Institute, Magee-Womens Hospital, Pittsburgh, PA, USA
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Kelly CM, Latimer JJ. Unscheduled DNA synthesis: a functional assay for global genomic nucleotide excision repair. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2005; 291:303-20. [PMID: 15502232 PMCID: PMC4751077 DOI: 10.1385/1-59259-840-4:303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The unscheduled DNA synthesis (UDS) assay measures a cell's ability to perform global genomic nucleotide excision repair (NER). This chapter provides instructions for the application of this technique in living cells by creating 6-4 photoproducts and pyrimidine dimers using UVC irradiation, then allowing for their repair. Repair is quantified by the amount of radioactive thymidine incorporated after this insult, and the length of time allowed for this incorporation is specific for repair of particular lesions. Radioactivity is evaluated by grain counting after autoradiography. The results are used to diagnosis repair-deficient disorders clinically and provide a basis for investigation of repair deficiency in human tissues or tumors. At the present time, no other functional assay is available that directly measures the capacity to perform NER on the entire genome without the use of specific antibodies. Since live cells are required for this assay, explant culture techniques must be previously established. Host cell reactivation, as discussed in Chapter 28, is not an equivalent technique, as it specifically measures transcription-coupled repair at active genes, a subset of total NER.
Collapse
Affiliation(s)
- Crystal M Kelly
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
17
|
Johnson JM, Latimer JJ. Analysis of DNA repair using transfection-based host cell reactivation. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2005; 291:321-35. [PMID: 15502233 PMCID: PMC4860737 DOI: 10.1385/1-59259-840-4:321] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Host cell reactivation (HCR) is a transfection-based assay in which intact cells repair damage localized to exogenous DNA. This chapter provides instructions for the application of this technique using UV irradiation as a source of damage to a luciferase reporter plasmid. Through measurement of the activity of a reporter enzyme, the amount of damaged plasmid that a cell can "reactivate" or repair and express can be quantitated. Different DNA repair pathways can be analyzed by this technique by damaging the reporter plasmid in different ways. Because it involves repair of a transcriptionally active gene, when applied to UV damage the HCR assay measures the capacity of the host cells to perform transcription-coupled repair (TCR), a subset of the overall nucleotide excision repair pathway that specifically targets transcribed gene sequences.
Collapse
Affiliation(s)
- Jennifer M Johnson
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, PA, USA
| | | |
Collapse
|