1
|
Wang Z, Friedrich MG, Truscott RJW, Schey KL. Identification of Age- and Cataract-Related Changes in High-Density Lens Protein Aggregates. Invest Ophthalmol Vis Sci 2025; 66:34. [PMID: 40408093 PMCID: PMC12118509 DOI: 10.1167/iovs.66.5.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/18/2025] [Indexed: 06/01/2025] Open
Abstract
Purpose Cataract is believed to be caused by protein-protein and protein-membrane aggregation in the eye lens. After middle age, there is extensive binding of crystallins to the lens cell membranes as evidenced by sedimentation at high densities. Multiple protein modifications have been linked with cataract, whereas others have been associated with aging. The purpose of this study was to characterize protein constituents within high density protein-membrane fractions from normal aged or cataractous lenses and to compare these proteins and their modifications. Methods The inner nuclear regions of cataract or age-matched normal lenses were homogenized and proteins were separated using sucrose density gradient centrifugation. The low-density fractions (LDFs) and high-density fractions (HDFs) were analyzed by mass spectrometry using both top-down matrix-assisted desorption/ionization-mass spectrometry (MALDI-MS) and bottom-up liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic methods. Quantification of low molecular weight crystallin peptides, deamidation, and isomerization were performed. Results Compared with normal aged-lenses, membrane-associated protein aggregates in high density fractions of cataract lenses exhibited significantly higher levels of γ-crystallins, as well as γS- and γD-crystallin C-terminal peptides. Deamidation of γ-crystallin, but not of β-crystallin, was increased in cataract lens membrane-bound aggregates. A very high level of Asp isomerization was detected in bound α-crystallins from both aged and cataract lenses. Conclusions Binding of crystallin aggregates to human lens cell membranes is associated with protein truncation, deamidation, and isomerization, and was observed in normal aged and cataract lenses. However, the protein aggregates bound to membranes in cataract lenses exhibit distinct modifications to γ-crystallins that may arise as a consequence of additional protein degradation.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Michael G. Friedrich
- Molecular Horizons Research Institute, University of Wollongong, Wollongong, Australia
| | - Roger J. W. Truscott
- Molecular Horizons Research Institute, University of Wollongong, Wollongong, Australia
| | - Kevin L. Schey
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| |
Collapse
|
2
|
Wu J, Chen S, Xu J, Xu W, Zheng S, Tian Q, Luo C, Chen X, Shentu X. Insight into Pathogenic Mechanism Underlying the Hereditary Cataract Caused by βB2-G149V Mutation. Biomolecules 2023; 13:biom13050864. [PMID: 37238733 DOI: 10.3390/biom13050864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/17/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Congenital cataracts account for approximately 5-20% of childhood blindness worldwide and 22-30% of childhood blindness in developing countries. Genetic disorders are the primary cause of congenital cataracts. In this work, we investigated the underlying molecular mechanism of G149V point missense mutation in βB2-crystallin, which was first identified in a three-generation Chinese family with two affected members diagnosed with congenital cataracts. Spectroscopic experiments were performed to determine the structural differences between the wild type (WT) and the G149V mutant of βB2-crystallin. The results showed that the G149V mutation significantly changed the secondary and tertiary structure of βB2-crystallin. The polarity of the tryptophan microenvironment and the hydrophobicity of the mutant protein increased. The G149V mutation made the protein structure loose and the interaction between oligomers was reduced, which decreased the stability of the protein. Furthermore, we compared βB2-crystallin WT and the G149V mutant with their biophysical properties under environmental stress. We found that the G149V mutation makes βB2-crystallin more sensitive to environmental stresses (oxidative stress, UV irradiation, and heat shock) and more likely to aggregate and form precipitation. These features might be important to the pathogenesis of βB2-crystallin G149V mutant related to congenital cataracts.
Collapse
Affiliation(s)
- Jing Wu
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310030, China
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310053, China
| | - Silong Chen
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310030, China
| | - Jingjie Xu
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310030, China
| | - Wanyue Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310030, China
| | - Sifan Zheng
- GKT School of Medical Education, King's College London, London SE1 1UL, UK
| | - Qing Tian
- Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310030, China
| | - Chenqi Luo
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310030, China
| | - Xiangjun Chen
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310030, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310030, China
| | - Xingchao Shentu
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310030, China
| |
Collapse
|
3
|
Quinlan RA, Clark JI. Insights into the biochemical and biophysical mechanisms mediating the longevity of the transparent optics of the eye lens. J Biol Chem 2022; 298:102537. [PMID: 36174677 PMCID: PMC9638808 DOI: 10.1016/j.jbc.2022.102537] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
In the human eye, a transparent cornea and lens combine to form the "refracton" to focus images on the retina. This requires the refracton to have a high refractive index "n," mediated largely by extracellular collagen fibrils in the corneal stroma and the highly concentrated crystallin proteins in the cytoplasm of the lens fiber cells. Transparency is a result of short-range order in the spatial arrangement of corneal collagen fibrils and lens crystallins, generated in part by post-translational modifications (PTMs). However, while corneal collagen is remodeled continuously and replaced, lens crystallins are very long-lived and are not replaced and so accumulate PTMs over a lifetime. Eventually, a tipping point is reached when protein aggregation results in increased light scatter, inevitably leading to the iconic protein condensation-based disease, age-related cataract (ARC). Cataracts account for 50% of vision impairment worldwide, affecting far more people than other well-known protein aggregation-based diseases. However, because accumulation of crystallin PTMs begins before birth and long before ARC presents, we postulate that the lens protein PTMs contribute to a "cataractogenic load" that not only increases with age but also has protective effects on optical function by stabilizing lens crystallins until a tipping point is reached. In this review, we highlight decades of experimental findings that support the potential for PTMs to be protective during normal development. We hypothesize that ARC is preventable by protecting the biochemical and biophysical properties of lens proteins needed to maintain transparency, refraction, and optical function.
Collapse
Affiliation(s)
- Roy A Quinlan
- Department of Biosciences, Durham University, South Road Science Site, Durham, United Kingdom; Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| | - John I Clark
- Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
4
|
Wang H, Tian Q, Xu J, Xu W, Yao K, Chen X. Cataract-causing G91del mutant destabilised βA3 heteromers formation linking with structural stability and cellular viability. Br J Ophthalmol 2021; 106:1473-1478. [PMID: 34489339 DOI: 10.1136/bjophthalmol-2021-320033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/27/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND/AIMS Congenital cataracts, which are genetically heterogeneous eye disorders, result in visual loss in childhood around the world. CRYBA1/BA3 serves as an abundant structural protein in the lens, and forms homomers and heteromers to maintain lens transparency. In previous study, we identified a common cataract-causing mutation, βA3-glycine at codon 91 (G91del) (c.271-273delGAG), which deleted a highly conserved G91del and led to perinuclear zonular cataract. In this study, we aimed to explore the underlying pathogenic mechanism of G91del mutation. METHODS Protein purification, size-exclusion chromatography, spectroscopy and molecular dynamics simulation assays were used to investigate the effects on the heteromers formation and the protein structural properties of βA3-crystallin caused by G91del mutation. Intracellular βA3-G91del overexpression, MTT (3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide) and cell apoptosis were used to investigate the cellular functions of βA3-G91del. RESULTS βA3-crystallin and βB2-crystallin could form heteromers, which have much more stable structures than βA3 homomers. Interestingly, βA3/βB2 heteromers improved their resistance against the thermal stress and the guanidine hydrochloride treatment. However, the pathogenic mutation βA3-G91del destroyed the interaction with βB2, and thereby decreased its structural stability as well as the resistance of thermal or chemical stress. What's more, the βA3-G91del mutation induced cell apoptosis and escaped from the protection of βB2-crystallin. CONCLUSIONS βA3/βB2 heteromers play an indispensable role in maintaining lens transparency, while the βA3-G91del mutation destabilises heteromers formation with βB2-crystallin, impairs cellular viability and induces cellular apoptosis. These all might contribute to cataract development.
Collapse
Affiliation(s)
- Huaxia Wang
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qing Tian
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingjie Xu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wanyue Xu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China .,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Schmid PWN, Lim NCH, Peters C, Back KC, Bourgeois B, Pirolt F, Richter B, Peschek J, Puk O, Amarie OV, Dalke C, Haslbeck M, Weinkauf S, Madl T, Graw J, Buchner J. Imbalances in the eye lens proteome are linked to cataract formation. Nat Struct Mol Biol 2021; 28:143-151. [PMID: 33432246 DOI: 10.1038/s41594-020-00543-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 11/04/2020] [Indexed: 01/29/2023]
Abstract
The prevalent model for cataract formation in the eye lens posits that damaged crystallin proteins form light-scattering aggregates. The α-crystallins are thought to counteract this process as chaperones by sequestering misfolded crystallin proteins. In this scenario, chaperone pool depletion would result in lens opacification. Here we analyze lenses from different mouse strains that develop early-onset cataract due to point mutations in α-, β-, or γ-crystallin proteins. We find that these mutant crystallins are unstable in vitro; in the lens, their levels are substantially reduced, and they do not accumulate in the water-insoluble fraction. Instead, all the other crystallin proteins, including the α-crystallins, are found to precipitate. The changes in protein composition and spatial organization of the crystallins observed in the mutant lenses suggest that the imbalance in the lenticular proteome and altered crystallin interactions are the bases for cataract formation, rather than the aggregation propensity of the mutant crystallins.
Collapse
Affiliation(s)
- Philipp W N Schmid
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Technische Universität München, Garching, Germany
| | - Nicole C H Lim
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Technische Universität München, Garching, Germany
- Faculty of Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Darussalam, Brunei
| | - Carsten Peters
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Technische Universität München, Garching, Germany
| | - Katrin C Back
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Technische Universität München, Garching, Germany
- Sandoz GmbH, Kundl, Austria
| | - Benjamin Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | | | - Bettina Richter
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Technische Universität München, Garching, Germany
| | - Jirka Peschek
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Technische Universität München, Garching, Germany
- Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Oliver Puk
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Diagnostik-Praxis für Humangenetik, Tübingen, Germany
| | - Oana V Amarie
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Dalke
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Haslbeck
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Technische Universität München, Garching, Germany
| | - Sevil Weinkauf
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Technische Universität München, Garching, Germany
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Technische Universität München, Garching, Germany.
| |
Collapse
|
6
|
Paviani V, Junqueira de Melo P, Avakin A, Di Mascio P, Ronsein GE, Augusto O. Human cataractous lenses contain cross-links produced by crystallin-derived tryptophanyl and tyrosyl radicals. Free Radic Biol Med 2020; 160:356-367. [PMID: 32858158 DOI: 10.1016/j.freeradbiomed.2020.08.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/19/2020] [Indexed: 01/13/2023]
Abstract
Protein insolubilization, cross-linking and aggregation are considered critical to the development of lens opacity in cataract. However, the information about the presence of cross-links other than disulfides in cataractous lenses is limited. A potential role for cross-links produced from tryptophanyl radicals in cataract development is suggested by the abundance of the UV light-sensitive Trp residues in crystallin proteins. Here we developed a LC-MS/MS approach to examine the presence of Trp-Trp, Trp-Tyr and Tyr-Tyr cross-links and of peptides containing Trp-2H (-2.0156 Da) in the lens of three patients diagnosed with advanced nuclear cataract. In the proteins of two of the lenses, we characterized intermolecular cross-links between βB2-Tyr153-Tyr104-βA3 and βB2-Trp150-Tyr139-βS. An additional intermolecular cross-link (βB2-Tyr61-Trp200-βB3) was present in the lens of the oldest patient. In the proteins of all three lenses, we characterized two intramolecular Trp-Trp cross-links (Trp123-Trp126 in βB1 and Trp81-Trp84 in βB2) and six peptides containing Trp -2H residues, which indicate the presence of additional Trp-Trp cross-links. Relevantly, we showed that similar cross-links and peptides with modified Trp-2H residues are produced in a time-dependent manner in bovine β-crystallin irradiated with a solar simulator. Therefore, different crystallin proteins cross-linked by crystalline-derived tryptophanyl and tyrosyl radicals are present in advanced nuclear cataract lenses and similar protein modifications can be promoted by solar irradiation even in the absence of photosensitizers. Overall, the results indicate that a role for Trp-Tyr and Trp-Trp cross-links in the development of human cataract is possible and deserves further investigation.
Collapse
Affiliation(s)
- Verônica Paviani
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes 748, 05508-000, São Paulo, Brazil
| | - Paulo Junqueira de Melo
- Hospital Das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar 255, 05403-000, São Paulo, Brazil
| | - Amaryllis Avakin
- Hospital Das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar 255, 05403-000, São Paulo, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes 748, 05508-000, São Paulo, Brazil
| | - Graziella Eliza Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes 748, 05508-000, São Paulo, Brazil.
| | - Ohara Augusto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes 748, 05508-000, São Paulo, Brazil.
| |
Collapse
|
7
|
Heruye SH, Maffofou Nkenyi LN, Singh NU, Yalzadeh D, Ngele KK, Njie-Mbye YF, Ohia SE, Opere CA. Current Trends in the Pharmacotherapy of Cataracts. Pharmaceuticals (Basel) 2020; 13:E15. [PMID: 31963166 PMCID: PMC7168925 DOI: 10.3390/ph13010015] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/23/2022] Open
Abstract
Cataracts, one of the leading causes of preventable blindness worldwide, refers to lens degradation that is characterized by clouding, with consequent blurry vision. As life expectancies improve, the number of people affected with cataracts is predicted to increase worldwide, especially in low-income nations with limited access to surgery. Although cataract surgery is considered safe, it is associated with some complications such as retinal detachment, warranting a search for cheap, pharmacological alternatives to the management of this ocular disease. The lens is richly endowed with a complex system of non-enzymatic and enzymatic antioxidants which scavenge reactive oxygen species to preserve lens proteins. Depletion and/or failure in this primary antioxidant defense system contributes to the damage observed in lenticular molecules and their repair mechanisms, ultimately causing cataracts. Several attempts have been made to counteract experimentally induced cataract using in vitro, ex vivo, and in vivo techniques. The majority of the anti-cataract compounds tested, including plant extracts and naturally-occurring compounds, lies in their antioxidant and/or free radical scavenging and/or anti-inflammatory propensity. In addition to providing an overview of the pathophysiology of cataracts, this review focuses on the role of various categories of natural and synthetic compounds on experimentally-induced cataracts.
Collapse
Affiliation(s)
- Segewkal H. Heruye
- Department of Pharmacology & Neuroscience, School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Leonce N. Maffofou Nkenyi
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Neetu U. Singh
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | | | - Kalu K. Ngele
- Department of Biology/Microbiology/Biotechnology, Federal University Ndufu Alike Ikwo, Abakaliki, Nigeria
| | - Ya-Fatou Njie-Mbye
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Sunny E. Ohia
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Catherine A. Opere
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
8
|
Schey KL, Wang Z, Friedrich MG, Garland DL, Truscott RJW. Spatiotemporal changes in the human lens proteome: Critical insights into long-lived proteins. Prog Retin Eye Res 2019; 76:100802. [PMID: 31704338 DOI: 10.1016/j.preteyeres.2019.100802] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022]
Abstract
The ocular lens is a unique tissue that contains an age gradient of cells and proteins ranging from newly differentiated cells containing newly synthesized proteins to cells and proteins that are as old as the organism. Thus, the ocular lens is an excellent model for studying long-lived proteins (LLPs) and the effects of aging and post-translational modifications on protein structure and function. Given the architecture of the lens, with young fiber cells in the outer cortex and the oldest cells in the lens nucleus, spatially-resolved studies provide information on age-specific protein changes. In this review, experimental strategies and proteomic methods that have been used to examine age-related and cataract-specific changes to the human lens proteome are described. Measured spatio-temporal changes in the human lens proteome are summarized and reveal a highly consistent, time-dependent set of modifications observed in transparent human lenses. Such measurements have led to the discovery of cataract-specific modifications and the realization that many animal systems are unsuitable to study many of these modifications. Mechanisms of protein modifications such as deamidation, racemization, truncation, and protein-protein crosslinking are presented and the implications of such mechanisms for other long-lived proteins in other tissues are discussed in the context of age-related neurological diseases. A comprehensive understanding of LLP modifications will enhance our ability to develop new therapies for the delay, prevention or reversal of age-related diseases.
Collapse
Affiliation(s)
- Kevin L Schey
- Department of Biochemistry, Vanderbilt University, USA.
| | - Zhen Wang
- Department of Biochemistry, Vanderbilt University, USA
| | - Michael G Friedrich
- Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| | | | - Roger J W Truscott
- Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| |
Collapse
|
9
|
Bisht A, Sharma M, Sharma S, Ali ME, Panda JJ. Carrier-free self-built aspirin nanorods as anti-aggregation agents towards alpha-crystallin-derived peptide aggregates: potential implications in non-invasive cataract therapy. J Mater Chem B 2019; 7:6945-6954. [PMID: 31613300 DOI: 10.1039/c9tb01435g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The aggregation of the α-crystallin protein is the pathological hallmark of cataract. In the current work, peptide fragments derived from native α-crystallin were synthesized and explored as a peptide-based crystallin aggregation model towards cataract. The anti-aggregation potential of aspirin was evaluated towards these peptide-generated aggregates as well as towards the α-crystallin aggregate. The results demonstrated that aspirin had the capacity to inhibit crystallin and crystallin-derived peptide aggregation and could act as a potential therapeutic agent in mitigating cataract. Computational studies were also carried out to study the interaction between the model peptides and aspirin. The results revealed the existence of molecular interactions between the peptides and aspirin, which had a significant impact on the secondary structure of the peptides and potentially modulated their assembly and aggregation behavior. The formation of self-built aspirin nanorods was also explored and their ability to inhibit the aggregation of model cataract peptides and α-crystallin aggregation was validated. These findings open up the possibility of using small molecule-based nanotherapeutics for cataract merely through topical applications, which can be beneficial to cataract patients.
Collapse
Affiliation(s)
- Anjali Bisht
- Institute of Nano Science and Technology, Mohali, Punjab-160062, India.
| | | | | | | | | |
Collapse
|
10
|
Forsythe HM, Vetter CJ, Jara KA, Reardon PN, David LL, Barbar EJ, Lampi KJ. Altered Protein Dynamics and Increased Aggregation of Human γS-Crystallin Due to Cataract-Associated Deamidations. Biochemistry 2019; 58:4112-4124. [PMID: 31490062 PMCID: PMC10693687 DOI: 10.1021/acs.biochem.9b00593] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Deamidation is a major age-related modification in the human lens that is highly prevalent in crystallins isolated from the insoluble fraction of cataractous lenses and also causes protein aggregation in vitro. However, the mechanism by which deamidation causes proteins to become insoluble is not known because only subtle structural changes were observed in vitro. We have identified Asn14 and Asn76 of γS-crystallin as highly deamidated in insoluble proteins isolated from aged lenses. These sites are on the surface of the N-terminal domain and were mimicked by replacing the Asn with Asp residues in order to generate recombinant human γS and deamidated mutants. Both N14D and N76D had increased light scattering compared to wild-type γS (WT) and increased aggregation during thermal-induced denaturation. Aggregation was enhanced by oxidized glutathione, suggesting deamidation may increase susceptibility to form disulfide bonds. These changes were correlated to changes in protein dynamics determined by NMR spectroscopy. Heteronuclear NMR spectroscopy was used to measure amide hydrogen exchange and 15N relaxation dynamics to identify regions with increased dynamics compared to γS WT. Residue-specific changes in solvent accessibility and dynamics were both near and distant from the sites of deamidation, suggesting that deamidation had both local and global effects on the protein structure at slow (ms to s) and fast (μs to ps) time scales. Thus, a potential mechanism for γS deamidation-induced insolubilization in cataractous lenses is altered dynamics due to local regions of unfolding and increased flexibility in both the N- and C-terminal domains particularly at surface helices. This conformational flexibility increases the likelihood of aggregation, which would be enhanced in the oxidizing cytoplasm of the aged and cataractous lens. The NMR data combined with the in vivo insolubility and in vitro aggregation findings support a model that deamidation drives changes in protein dynamics that facilitate protein aggregation associated with cataracts.
Collapse
Affiliation(s)
| | - Calvin J. Vetter
- Integrative Biosciences, Oregon Health & Science University, Portland, OR
| | - Kayla Ann Jara
- Biochemistry & Biophysics, Oregon State University, Corvallis, OR
| | - Patrick N. Reardon
- Nuclear Magnetic Resonance Facility, Oregon State University, Corvallis, OR
| | - Larry L. David
- Biochemistry & Molecular Biology, Oregon Health & Science University, Portland, OR
| | - Elisar J. Barbar
- Biochemistry & Biophysics, Oregon State University, Corvallis, OR
| | - Kirsten J. Lampi
- Integrative Biosciences, Oregon Health & Science University, Portland, OR
| |
Collapse
|
11
|
Abstract
Cataract is a major cause of blindness worldwide. It is characterized by lens opacification and is accompanied by extensive posttranslational modifications (PTMs) in various proteins. PTMs play an essential role in lens opacification. Several PTMs have been described in proteins isolated from relatively old human lenses, including phosphorylation, deamidation, racemization, truncation, acetylation, and methylation. An overwhelming majority of previous cataract proteomic studies have exclusively focused on crystallin proteins, which are the most abundant proteome components of the lens. To investigate the proteome of cataract markers, this chapter focuses on the proteomic research on the functional relevance of the major PTMs in crystallins of human cataractous lenses. Elucidating the role of these modifications in cataract formation has been a challenging task because they are among the most difficult PTMs to study analytically. The proteomic status of some amides presents similar properties in normal aged and cataractous lenses, whereas some may undergo greater PTMs in cataract. Therefore, it is of great importance to review the current proteomic research on crystallins, the major protein markers in different types of cataract, to elucidate the pathogenesis of this major human-blinding condition.
Collapse
Affiliation(s)
- Keke Zhang
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Myopia, Ministry of Health PR China, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiangjia Zhu
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Myopia, Ministry of Health PR China, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Lu
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Myopia, Ministry of Health PR China, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Karunakaran R, Srikumar PS. A molecular dynamics approach to explore the structural characterization of cataract causing mutation R58H on human γD crystallin. Mol Cell Biochem 2018. [PMID: 29532225 DOI: 10.1007/s11010-018-3342-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The crystallins are a family of monomeric proteins present in the mammalian lens and mutations in these proteins cause various forms of cataracts. The aim of our current study is to emphasize the structural characterization of aggregation propensity of mutation R58H on γD crystallin using molecular dynamics (MD) approach. MD result revealed that difference in the sequence level display a wide variation in the backbone atomic position, and thus exhibits rigid conformational dynamics. Changes in the flexibility of residues favoured to increase the number of intra-molecular hydrogen bonds in mutant R58H. Moreover, notable changes in the hydrogen bonding interaction resulted to cause the misfolding of mutant R58H by introducing α-helix. Principal component analysis (PCA) result suggested that mutant R58H showed unusual conformational dynamics along the two principal components when compared to the wild-type (WT)-γD crystallin. In a nutshell, the increased surface hydrophobicity could be the cause of self-aggregation of mutant R58H leading to aculeiform cataract.
Collapse
Affiliation(s)
- Rohini Karunakaran
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Semeling, Bedong, Kedah, Malaysia.
| | - P S Srikumar
- Unit of Psychiatry, Faculty of Medicine, AIMST University, Bedong, Malaysia
| |
Collapse
|
13
|
Zhao WJ, Yan YB. Increasing susceptibility to oxidative stress by cataract-causing crystallin mutations. Int J Biol Macromol 2018; 108:665-673. [DOI: 10.1016/j.ijbiomac.2017.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 11/24/2022]
|
14
|
Kumar V, Gour S, Peter OS, Gandhi S, Goyal P, Pandey J, Harsolia RS, Yadav JK. Effect of Green Tea Polyphenol Epigallocatechin-3-gallate on the Aggregation of αA(66-80) Peptide, a Major Fragment of αA-crystallin Involved in Cataract Development. Curr Eye Res 2017. [DOI: 10.1080/02713683.2017.1324628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Vijay Kumar
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh Ajmer, Rajasthan, India
| | - Shalini Gour
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh Ajmer, Rajasthan, India
| | - Ocan Simon Peter
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh Ajmer, Rajasthan, India
| | - Shraddha Gandhi
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh Ajmer, Rajasthan, India
| | - Pankaj Goyal
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh Ajmer, Rajasthan, India
| | - Janmejay Pandey
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh Ajmer, Rajasthan, India
| | - Ram Swaroop Harsolia
- Department of Ophthalmology, Jawaharlal Nehru Medical College and Hospital, Ajmer, Rajasthan, India
| | - Jay Kant Yadav
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh Ajmer, Rajasthan, India
| |
Collapse
|
15
|
Xi Z, Whitley MJ, Gronenborn AM. Human βB2-Crystallin Forms a Face-en-Face Dimer in Solution: An Integrated NMR and SAXS Study. Structure 2017; 25:496-505. [PMID: 28238532 DOI: 10.1016/j.str.2017.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/23/2017] [Accepted: 01/31/2017] [Indexed: 10/20/2022]
Abstract
βγ-Crystallins are long-lived eye lens proteins that are crucial for lens transparency and refractive power. Each βγ-crystallin comprises two homologous domains, which are connected by a short linker. γ-Crystallins are monomeric, while β-crystallins crystallize as dimers and multimers. In the crystal, human βB2-crystallin is a domain-swapped dimer while the N-terminally truncated βB1-crystallin forms a face-en-face dimer. Combining and integrating data from multi-angle light scattering, nuclear magnetic resonance, and small-angle X-ray scattering of full-length and terminally truncated human βB2-crystallin in solution, we show that both these βB2-crystallin proteins are dimeric, possess C2 symmetry, and are more compact than domain-swapped dimers. Importantly, no inter-molecular paramagnetic relaxation enhancement effects compatible with domain swapping were detected. Our collective experimental results unambiguously demonstrate that, in solution, human βB2-crystallin is not domain swapped and exhibits a face-en-face dimer structure similar to the crystal structure of truncated βB1-crystallin.
Collapse
Affiliation(s)
- Zhaoyong Xi
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Matthew J Whitley
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
16
|
Zhang X. Detergents: Friends not foes for high-performance membrane proteomics toward precision medicine. Proteomics 2016; 17. [PMID: 27633951 DOI: 10.1002/pmic.201600209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/31/2016] [Accepted: 09/13/2016] [Indexed: 01/05/2023]
Abstract
Precision medicine, particularly therapeutics, emphasizes the atomic-precise, dynamic, and systems visualization of human membrane proteins and their endogenous modifiers. For years, bottom-up proteomics has grappled with removing and avoiding detergents, yet faltered at the therapeutic-pivotal membrane proteins, which have been tackled by classical approaches and are known for decades refractory to single-phase aqueous or organic denaturants. Hydrophobicity and aggregation commonly challenge tissue and cell lysates, biofluids, and enriched samples. Frequently, expected membrane proteins and peptides are not identified by shotgun bottom-up proteomics, let alone robust quantitation. This review argues the cause of this proteomic crisis is not detergents per se, but the choice of detergents. Recently, inclusion of compatible detergents for membrane protein extraction and digestion has revealed stark improvements in both quantitative and structural proteomics. This review analyzes detergent properties behind recent proteomic advances, and proposes that rational use of detergents may reconcile outstanding membrane proteomics dilemmas, enabling ultradeep coverage and minimal artifacts for robust protein and endogenous PTM measurements. The simplicity of detergent tools confers bottom-up membrane proteomics the sophistication toward precision medicine.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Skinner C, Miraldi Utz V. Pharmacological approaches to restoring lens transparency: Real world applications. Ophthalmic Genet 2016; 38:201-205. [PMID: 27648776 DOI: 10.1080/13816810.2016.1214971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cataract is the most common cause of blindness and a major cause of visual impairment worldwide. As the world's population ages, cataract-induced visual impairment is of increasing prevalence, and treatment is limited to those with access to surgical care. While cataracts are mainly a disease of the elderly, infantile cataracts lead to lifelong visual impairment if untreated. Even in those with surgical treatment early in life, visual prognosis is often guarded. Consequently, there is an increasing impetus for alternative therapeutic modalities. Makley and Zhao utilize two different experimental approaches to identify novel pharmacological substances able to improve lens transparency by reducing aggregation of crystalline proteins. These data support an alternative to surgical correction that may be applied to adult patients without access to surgical care as well as address the unique challenges of infantile cataracts.
Collapse
Affiliation(s)
- Cassandra Skinner
- a University of Cincinnati College of Medicine , Cincinnati , Ohio , USA
| | - Virginia Miraldi Utz
- a University of Cincinnati College of Medicine , Cincinnati , Ohio , USA.,b Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center , Cincinnati , Ohio , USA.,c Department of Ophthalmology , University of Cincinnati , Cincinnati , Ohio , USA
| |
Collapse
|
18
|
Takata T, Fujii N. Isomerization of Asp residues plays an important role in αA-crystallin dissociation. FEBS J 2016; 283:850-9. [PMID: 26700637 DOI: 10.1111/febs.13635] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/08/2015] [Accepted: 12/18/2015] [Indexed: 11/29/2022]
Abstract
Aged cataract formation is caused by the accumulative precipitation of lens proteins incorporating diverse post-translational modifications. α-Crystallin, a major structural and functional lens protein, consists of a large polymeric structure that is dissociated and insolubilized with accumulative post-translational modifications. One such modification, isomerization of Asp, was recently identified in αB-crystallin monomers derived from aged lens. However, the distributions of Asp isomers in each lens fraction remain unknown. Here, α-crystallin fractions from aged lens were separated into heteropolymeric and monomeric forms to determine the Asp isomerization ratios in each fraction. Lens of four different ages were homogenized and centrifuged, and the soluble fraction was applied to size-exclusion chromatography. The heteropolymeric α-crystallin and monomeric crystallin fractions were obtained and concentrated. After trypsin digestion, each fraction was independently applied to liquid chromatography equipped with mass spectrometry to extract α-crystallin-derived peptides containing Asp isomers. The results showed that Asp58, Asp84 and Asp151 of αA-crystallin were highly isomerized in the monomeric fraction, but not isomerized to the same level in the heteropolymeric fraction. Each type of Asp isomerization increased in an age-dependent manner, was site-specific and was similar to previous results from lens water-insoluble fractions. These results imply that isomerization of Asp residues leads to dissociation of αA-crystallin from the heteropolymeric state and induces insolubilization in aged lens. Taken together, our findings suggest that isomerization of Asp might disrupt the higher order polymeric state of α-crystallin, resulting in decreased solubility and function, ultimately contributing to lens protein impairment and cataract formation with aging.
Collapse
Affiliation(s)
- Takumi Takata
- Department of Biochemistry, Tokyo University of Pharmacy and Life Sciences, Japan
| | - Noriko Fujii
- Research Reactor Institute, Kyoto University, Osaka, Japan
| |
Collapse
|
19
|
Tiwary E, Hegde S, Purushotham S, Deivanayagam C, Srivastava O. Interaction of βA3-Crystallin with Deamidated Mutants of αA- and αB-Crystallins. PLoS One 2015; 10:e0144621. [PMID: 26657544 PMCID: PMC4691197 DOI: 10.1371/journal.pone.0144621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/22/2015] [Indexed: 11/18/2022] Open
Abstract
Interaction among crystallins is required for the maintenance of lens transparency. Deamidation is one of the most common post-translational modifications in crystallins, which results in incorrect interaction and leads to aggregate formation. Various studies have established interaction among the α- and β-crystallins. Here, we investigated the effects of the deamidation of αA- and αB-crystallins on their interaction with βA3-crystallin using surface plasmon resonance (SPR) and fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM-FRET) methods. SPR analysis confirmed adherence of WT αA- and WT αB-crystallins and their deamidated mutants with βA3-crystallin. The deamidated mutants of αA–crystallin (αA N101D and αA N123D) displayed lower adherence propensity for βA3-crystallin relative to the binding affinity shown by WT αA-crystallin. Among αB-crystallin mutants, αB N78D displayed higher adherence propensity whereas αB N146D mutant showed slightly lower binding affinity for βA3-crystallin relative to that shown by WT αB-crystallin. Under the in vivo condition (FLIM-FRET), both αA-deamidated mutants (αA N101D and αA N123D) exhibited strong interaction with βA3-crystallin (32±4% and 36±4% FRET efficiencies, respectively) compared to WT αA-crystallin (18±4%). Similarly, the αB N78D and αB N146D mutants showed strong interaction (36±4% and 22±4% FRET efficiencies, respectively) with βA3-crystallin compared to 18±4% FRET efficiency of WT αB-crystallin. Further, FLIM-FRET analysis of the C-terminal domain (CTE), N-terminal domain (NTD), and core domain (CD) of αA- and αB-crystallins with βA3-crystallin suggested that interaction sites most likely reside in the αA CTE and αB NTD regions, respectively, as these domains showed the highest FRET efficiencies. Overall, results suggest that similar to WT αA- and WTαB-crystallins, the deamidated mutants showed strong interactionfor βA3-crystallin. Variable in vitro and in vivo interactions are most likely due to the mutant’s large size oligomers, reduced hydrophobicity, and altered structures. Together, the results suggest that deamidation of α-crystallin may facilitate greater interaction and the formation of large oligomers with other crystallins, and this may contribute to the cataractogenic mechanism.
Collapse
Affiliation(s)
- Ekta Tiwary
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Shylaja Hegde
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Sangeetha Purushotham
- Department of Vision Sciences/Centre for Structural Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Champion Deivanayagam
- Department of Vision Sciences/Centre for Structural Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Om Srivastava
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
- * E-mail:
| |
Collapse
|
20
|
Effect of Asp 96 isomerization on the properties of a lens αB-crystallin-derived short peptide. J Pharm Biomed Anal 2015; 116:139-44. [DOI: 10.1016/j.jpba.2015.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/28/2015] [Accepted: 06/10/2015] [Indexed: 11/21/2022]
|
21
|
Kim I, Saito T, Fujii N, Kanamoto T, Chatake T, Fujii N. Site specific oxidation of amino acid residues in rat lens γ-crystallin induced by low-dose γ-irradiation. Biochem Biophys Res Commun 2015; 466:622-8. [PMID: 26385181 DOI: 10.1016/j.bbrc.2015.09.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/13/2015] [Indexed: 11/29/2022]
Abstract
Although cataracts are a well-known age-related disease, the mechanism of their formation is not well understood. It is currently thought that eye lens proteins become abnormally aggregated, initially causing clumping that scatters the light and interferes with focusing on the retina, and ultimately resulting in a cataract. The abnormal aggregation of lens proteins is considered to be triggered by various post-translational modifications, such as oxidation, deamidation, truncation and isomerization, that occur during the aging process. Such modifications, which are also generated by free radical and reactive oxygen species derived from γ-irradiation, decrease crystallin solubility and lens transparency, and ultimately lead to the development of a cataract. In this study, we irradiated young rat lenses with low-dose γ-rays and extracted the water-soluble and insoluble protein fractions. The water-soluble and water-insoluble lens proteins were digested with trypsin, and the resulting peptides were analyzed by LC-MS. Specific oxidation sites of methionine, cysteine and tryptophan in rat water-soluble and -insoluble γE and γF-crystallin were determined by one-shot analysis. The oxidation sites in rat γE and γF-crystallin resemble those previously identified in γC and γD-crystallin from human age-related cataracts. Our study on modifications of crystallins induced by ionizing irradiation may provide useful information relevant to human senile cataract formation.
Collapse
Affiliation(s)
- Ingu Kim
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takeshi Saito
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan
| | - Norihiko Fujii
- Radioisotope Research Center, Teikyo University, Kaga Itabashi-ku, Tokyo 173-8605, Japan
| | - Takashi Kanamoto
- Department of Ophthalmology, Hiroshima Memorial Hospital, Honkawacho, Naka-ku, Hiroshima 730-0802, Japan
| | - Toshiyuki Chatake
- Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan
| | - Noriko Fujii
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan.
| |
Collapse
|
22
|
Liu Y, Carver JA, Ho LH, Elias AK, Musgrave IF, Pukala TL. Hemin as a generic and potent protein misfolding inhibitor. Biochem Biophys Res Commun 2014; 454:295-300. [DOI: 10.1016/j.bbrc.2014.10.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/13/2014] [Indexed: 11/15/2022]
|
23
|
Bhanuramanand K, Ahmad S, Rao NM. Engineering deamidation-susceptible asparagines leads to improved stability to thermal cycling in a lipase. Protein Sci 2014; 23:1479-90. [PMID: 25043738 DOI: 10.1002/pro.2516] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 01/15/2023]
Abstract
At high temperatures, protein stability is influenced by chemical alterations; most important among them is deamidation of asparagines. Deamidation kinetics of asparagines depends on the local sequence, solvent, pH, temperature, and the tertiary structure. Suitable replacement of deamidated asparagines could be a viable strategy to improve deamidation-mediated loss in protein properties, specifically protein thermostability. In this study, we have used nano RP-HPLC coupled ESI MS/MS approach to identify residues susceptible to deamidation in a lipase (6B) on heat treatment. Out of 15 asparagines and six glutamines in 6B, only five asparagines were susceptible to deamidation at temperatures higher than 75°C. These five positions were subjected to site saturation mutagenesis followed by activity screen to identify the most suitable substitutions. Only three of the five asparagines were found to be tolerant to substitutions. Best substitutions at these positions were combined into a mutant. The resultant lipase (mutC) has near identical secondary structure and improved thermal tolerance as compared to its parent. The triple mutant has shown almost two-fold higher residual activity compared to 6B after four cycles at 90°C. MutC has retained more than 50% activity even after incubation at 100°C. Engineering asparagines susceptible to deamidation would be a potential strategy to improve proteins to withstand very high temperatures.
Collapse
Affiliation(s)
- K Bhanuramanand
- Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007, India
| | | | | |
Collapse
|
24
|
Lampi KJ, Wilmarth PA, Murray MR, David LL. Lens β-crystallins: the role of deamidation and related modifications in aging and cataract. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:21-31. [PMID: 24613629 DOI: 10.1016/j.pbiomolbio.2014.02.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 11/26/2022]
Abstract
Crystallins are the major proteins in the lens of the eye and function to maintain transparency of the lens. Of the human crystallins, α, β, and γ, the β-crystallins remain the most elusive in their structural significance due to their greater number of subunits and possible oligomer formations. The β-crystallins are also heavily modified during aging. This review focuses on the functional significance of deamidation and the related modifications of racemization and isomerization, the major modifications in β-crystallins of the aged human lens. Elucidating the role of these modifications in cataract formation has been slow, because they are analytically among the most difficult post-translational modifications to study. Recent results suggest that many amides deamidate to similar extent in normal aged and cataractous lenses, while others may undergo greater deamidation in cataract. Mimicking deamidation at critical structural regions induces structural changes that disrupt the stability of the β-crystallins and lead to their aggregation in vitro. Deamidations at the surface disrupt interactions with other crystallins. Additionally, the α-crystallin chaperone is unable to completely prevent deamidated β-crystallins from insolubilization. Therefore, deamidation of β-crystallins may enhance their precipitation and light scattering in vivo contributing to cataract formation. Future experiments are needed to quantify differences in deamidation rates at all Asn and Gln residues within crystallins from aged and cataractous lenses, as well as racemization and isomerization which potentially perturb protein structure greater than deamidation alone. Quantitative data is greatly needed to investigate the importance of these major age-related modifications in cataract formation.
Collapse
Affiliation(s)
- Kirsten J Lampi
- Oregon Health & Science University, Integrative Biosciences, 611 SW Campus Drive, Portland, OR 97239, USA.
| | - Phillip A Wilmarth
- Oregon Health & Science University, Biochemistry and Molecular Biology, 3181 Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Matthew R Murray
- Oregon Health & Science University, Integrative Biosciences, 611 SW Campus Drive, Portland, OR 97239, USA
| | - Larry L David
- Oregon Health & Science University, Biochemistry and Molecular Biology, 3181 Sam Jackson Park Road, Portland, OR 97239-3098, USA
| |
Collapse
|
25
|
Fujii N, Sakaue H, Sasaki H, Fujii N. A rapid, comprehensive liquid chromatography-mass spectrometry (LC-MS)-based survey of the Asp isomers in crystallins from human cataract lenses. J Biol Chem 2012; 287:39992-40002. [PMID: 23007399 DOI: 10.1074/jbc.m112.399972] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cataracts are caused by clouding of the eye lens and may lead to partial or total loss of vision. The mechanism of cataract development, however, is not well understood. It is thought that abnormal aggregates of lens proteins form with age, causing loss of lens clarity and development of the cataract. Lens proteins are composed of soluble α-, β-, and γ-crystallins, and as long lived proteins, they undergo post-translational modifications including isomerization, deamidation, and oxidation, which induce insolubilization, aggregation, and loss of function that may lead to cataracts. Therefore, analysis of post-translational modifications of individual amino acid residues in proteins is important. However, detection of the optical isomers of amino acids formed in these proteins is difficult because optical resolution is only achieved using complex methodology. In this study, we describe a new method for the analysis of isomerization of individual Asp residues in proteins using LC-MS and the corresponding synthetic peptides containing the Asp isomers. This makes it possible to analyze isomers of Asp residues in proteins precisely and quickly. We demonstrate that Asp-58, -76, -84, and -151 of αA-crystallin and Asp-62 and -96 of αB-crystallin are highly converted to lβ-, dβ-, and dα-isomers. The amount of isomerization of Asp is greater in the insoluble fraction at all Asp sites in lens proteins, therefore indicating that isomerization of these Asp residues affects the higher order structure of the proteins and contributes to the increase in aggregation, insolubilization, and disruption of function of proteins in the lens, leading to the cataract.
Collapse
Affiliation(s)
- Norihiko Fujii
- Research Reactor Institute, Kyoto University Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | | | | | | |
Collapse
|
26
|
Moreau KL, King JA. Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends Mol Med 2012; 18:273-82. [PMID: 22520268 DOI: 10.1016/j.molmed.2012.03.005] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/01/2012] [Accepted: 03/14/2012] [Indexed: 11/16/2022]
Abstract
The transparency of the eye lens depends on maintaining the native tertiary structures and solubility of the lens crystallin proteins over a lifetime. Cataract, the leading cause of blindness worldwide, is caused by protein aggregation within the protected lens environment. With age, covalent protein damage accumulates through pathways thought to include UV radiation, oxidation, deamidation, and truncations. Experiments suggest that the resulting protein destabilization leads to partially unfolded, aggregation-prone intermediates and the formation of insoluble, light-scattering protein aggregates. These aggregates either include or overwhelm the protein chaperone content of the lens. Here, we review the causes of cataract and nonsurgical methods being investigated to inhibit or delay cataract development, including natural product-based therapies, modulators of oxidation, and protein aggregation inhibitors.
Collapse
Affiliation(s)
- Kate L Moreau
- Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, 68-330, Cambridge, MA 02139, USA
| | | |
Collapse
|
27
|
Ji F, Jung J, Gronenborn AM. Structural and biochemical characterization of the childhood cataract-associated R76S mutant of human γD-crystallin. Biochemistry 2012; 51:2588-96. [PMID: 22394327 DOI: 10.1021/bi300199d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although a number of γD-crystallin mutations are associated with cataract formation, there is not a clear understanding of the molecular mechanism(s) that lead to this protein deposition disease. As part of our ongoing studies on crystallins, we investigated the recently discovered Arg76 to Ser (R76S) mutation that is correlated with childhood cataract in an Indian family. We expressed the R76S γD-crystallin protein in E. coli, characterized it by CD, fluorescence, and NMR spectroscopy, and determined its stability with respect to thermal and chemical denaturation. Surprisingly, no significant biochemical or biophysical differences were observed between the wild-type protein and the R76S variant, except a lowered pI (6.8 compared to the wild-type value of 7.4). NMR assessment of the R76S γD-crystallin solution structure, by RDCs, and of its motional properties, by relaxation measurements, also revealed a close resemblance to wild-type crystallin. Further, kinetic unfolding/refolding experiments for R76S and wild-type protein showed similar degrees of off-pathway aggregation suppression by αB-crystallin. Overall, our results suggest that neither structural nor stability changes in the protein are responsible for the R76S γD-crystallin variant's association with cataract. However, the change in pI and the associated surface charge or the altered nature of the amino acid could influence interactions with other lens protein species.
Collapse
Affiliation(s)
- Fangling Ji
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | | | | |
Collapse
|
28
|
Fujii N, Kawaguchi T, Sasaki H, Fujii N. Simultaneous Stereoinversion and Isomerization at the Asp-4 Residue in βB2-Crystallin from the Aged Human Eye Lenses. Biochemistry 2011; 50:8628-35. [DOI: 10.1021/bi200983g] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Norihiko Fujii
- Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494,
Japan
| | - Takehiro Kawaguchi
- Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494,
Japan
| | - Hiroshi Sasaki
- Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa 920-0293,
Japan
| | - Noriko Fujii
- Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494,
Japan
| |
Collapse
|
29
|
Takata T, Smith JP, Arbogast B, David LL, Lampi KJ. Solvent accessibility of betaB2-crystallin and local structural changes due to deamidation at the dimer interface. Exp Eye Res 2010; 91:336-46. [PMID: 20639133 PMCID: PMC2926248 DOI: 10.1016/j.exer.2010.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Revised: 05/24/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
Abstract
In the lens of the eye the ordered arrangement of the major proteins, the crystallins, contributes to lens transparency. Members of the beta/gamma-crystallin family share common beta-sheet rich domains and hydrophobic regions at the monomer-monomer or domain-domain interfaces. Disruption of these interfaces, due to post-translational modifications, such as deamidation, decreases the stability of the crystallins. Previous experiments have failed to define the structural changes associated with this decreased stability. Using hydrogen/deuterium exchange with mass spectrometry (HDMS), deamidation-induced local structural changes in betaB2-crystallin were identified. Deamidation was mimicked by replacing glutamines with glutamic acids at homologous residues 70 and 162 in the monomer-monomer interface of the betaB2-crystallin dimer. The exchange-in of deuterium was determined from 15 s to 24 h and the global and local changes in solvent accessibility were measured. In the wild type betaB2-crystallin (WT), only about 20% of the backbone amide hydrogen was exchanged, suggesting an overall low accessibility of betaB2-crystallin in solution. This is consistent with a tightly packed domain structure observed in the crystal structure. Deuterium levels were initially greater in N-terminal domain (N-td) peptides than in homologous peptides in the C-terminal domain (C-td). The more rapid incorporation suggests a greater solvent accessibility of the N-td. In the betaB2-crystallin crystal structure, interface Gln are oriented towards their opposite domain. When deamidation was mimicked at Gln70 in the N-td, deuterium levels increased at the interface peptide in the C-td. A similar effect in the N-td was not observed when deamidation was mimicked at the homologous residue, Gln162, in the C-td. This difference in the mutants can be explained by deamidation at Gln70 disrupting the more compact C-td and increasing the solvent accessibility in the C-td interface peptides. When deamidation was mimicked at both interface Gln, deuterium incorporation increased in the C-td, similar to deamidation at Gln70 alone. In addition, deuterium incorporation was decreased in the N-td in an outside loop peptide adjacent to the mutation site. This decreased accessibility may be due to newly exposed charge groups facilitating ionic interactions or to peptides becoming more buried when other regions became more exposed. The highly sensitive HDMS methods used here detected local structural changes in solution that had not been previously identified and provide a mechanism for the associated decrease in stability due to deamidation. Changes in accessibility due to deamidation at the interface led to structural perturbations elsewhere in the protein. The cumulative effects of multiple deamidation sites perturbing the structure both locally and distant from the site of deamidation may contribute to aggregation and precipitation during aging and cataractogenesis in the lens.
Collapse
Affiliation(s)
- Takumi Takata
- Oregon Health and Science University, Integrative Biosciences, 611 SW Campus Drive, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
30
|
Li X, Lin C, O'Connor PB. Glutamine deamidation: differentiation of glutamic acid and gamma-glutamic acid in peptides by electron capture dissociation. Anal Chem 2010; 82:3606-15. [PMID: 20373761 PMCID: PMC2872026 DOI: 10.1021/ac9028467] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Due to its much slower deamidation rate compared to that of asparagine (Asn), studies on glutamine (Gln) deamidation have been scarce, especially on the differentiation of its isomeric deamidation products: alpha- and gamma-glutamic acid (Glu). It has been shown previously that electron capture dissociation (ECD) can be used to generate diagnostic ions for the deamidation products of Asn: aspartic acid (Asp) and isoaspartic acid (isoAsp). The current study explores the possibility of an extension of this ECD based method to the differentiation of the alpha- and gamma-Glu residues, using three human Crystallin peptides (alphaA (1-11), betaB2 (4-14), and gammaS (52-71)) and their potentially deamidated forms as model peptides. It was found that the z(*)-72 ions can be used to both identify the existence and locate the position of the gamma-Glu residues. When the peptide contains a charge carrier near its N-terminus, the c+57 and c+59 ions may also be generated at the gamma-Glu residue. It was unclear whether formation of these N-terminal diagnostic ions is specific to the Pro-gamma-Glu sequence. Unlike the Asp containing peptides, the Glu containing peptides generally do not produce diagnostic side chain loss ions, due to the instability of the resulting radical. The presence of Glu residue(s) may be inferred from the observation of a series of z(n)(*)-59 ions, although it was neither site specific nor without interference from the gamma-Glu residues. Finally, several interference peaks exist in the ECD spectra, which highlights the importance of the use of high performance mass spectrometers for confident identification of gamma-Glu residues.
Collapse
Affiliation(s)
- Xiaojuan Li
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Cheng Lin
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Peter B. O'Connor
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
- Department of Chemistry, University of Warwick, Coventry, UK
| |
Collapse
|
31
|
Friedrich MG, Truscott RJW. Large-scale binding of α-crystallin to cell membranes of aged normal human lenses: a phenomenon that can be induced by mild thermal stress. Invest Ophthalmol Vis Sci 2010; 51:5145-52. [PMID: 20435594 DOI: 10.1167/iovs.10-5261] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE With age, large amounts of crystallins become associated with fiber cell membranes in the human lens nucleus, and it has been proposed that this binding of protein may lead to the obstruction of membrane pores and the onset of a barrier to diffusion. This study focused on membrane binding within the barrier region and the outermost lens cortex. METHODS Human lenses across the age range were used, and the interaction of crystallins with membranes was examined using sucrose density gradient centrifugation, two-dimensional gel electrophoresis, and amine-reactive isobaric tagging technology. Lipids were quantified using shotgun lipidemics. RESULTS Binding of proteins to cell membranes in the barrier region was found to be different from that in the lens nucleus because in the barrier and outer cortical regions, only one high-density band formed. Most of the membrane-associated protein in this high-density band was α-crystallin. Mild thermal stress of intact young lenses led to pronounced membrane binding of proteins and yielded a sucrose density pattern in all lens regions that appeared to be identical with that from older lenses. CONCLUSIONS α-Crystallin is the major protein that binds to cell membranes in the barrier region of lenses after middle age. Exposure of young human lenses to mild thermal stress results in large-scale binding of α-crystallin to cell membranes. The density gradient profiles of such heated lenses appear to be indistinguishable from those of older normal lenses. The data support the hypothesis that temperature may be a factor responsible for age-related changes to the human lens.
Collapse
|
32
|
Ichiba H, Nakamoto M, Yajima T, Takayama M, Fukushima T. Analysis of oxidation process of cholecystokinin octapeptide with reactive oxygen species by high-performance liquid chromatography and subsequent electrospray ionization mass spectrometry. Biomed Chromatogr 2010; 24:140-7. [PMID: 19517450 DOI: 10.1002/bmc.1262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The C-terminal octapeptide of cholecystokinin (CCK8) includes some easily oxidizable amino acids. The oxidation of CCK8 by reactive oxygen species (ROS) such as hydrogen peroxide (H(2)O(2)) and hydroxyl radicals (OH(*)) was investigated using reversed-phase high performance liquid chromatography (RP-HPLC) and subsequent electrospray ionization mass spectrometry. The mechanism of oxidation of CCK8 in the H(2)O(2) system differed from that of CCK8 in the Fenton system, in which OH(*) are produced. In the H(2)O(2) system, (28)Met and (31)Met were oxidized to methionine sulfoxide, and no further oxidation or degradation/hydrolysis occurred. On the other hand, in the Fenton system, (28)Met and (31)Met residues were oxidized to methionine sulfone via the formation of methionine sulfoxide. In addition, the oxidized product was observed at the Trp residue but not at the Tyr residue, and small peptide fragments from CCK8 were observed in the Fenton system. From these results, it was concluded that (28)Met and (31)Met residues of CCK8 are susceptible to oxidation by ROS.
Collapse
Affiliation(s)
- Hideaki Ichiba
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan
| | | | | | | | | |
Collapse
|
33
|
Hains PG, Truscott RJW. Age-dependent deamidation of lifelong proteins in the human lens. Invest Ophthalmol Vis Sci 2010; 51:3107-14. [PMID: 20053973 DOI: 10.1167/iovs.09-4308] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Deamidation is a common posttranslational modification in human lens crystallins and may be a key factor in the age-related denaturation of such lifelong proteins. The aim of this study was to identify the sites of deamidation in older lenses. METHODS High-performance liquid chromatography/mass spectrometry of tryptic digests was used to identify sites of deamidation in the major human lens crystallins. Older normal and age-matched cataractous lenses were compared with fetal lenses. RESULTS Approximately equal numbers of glutamine and asparagine residues were deamidated in older lenses; however, the extent of deamidation of Asn was three times greater than that of Gln (Asn, 22.6% +/- 3.6%; Gln, 6.6% +/- 1.3%). Individual crystallins differed markedly in their extent of deamidation, and deamidated residues were typically localized within discrete regions of the polypeptides. A large percentage (42%) of the sites of deamidation were characterized by the presence of a basic amino acid one residue removed from the original Gln or Asn. At nine such sites, the extent of Asn deamidation averaged 50% in aged lenses. There were few differences in deamidation between crystallins of aged normal and nuclear cataractous lenses. CONCLUSIONS Equal numbers of Asn and Gln residues are deamidated in crystallins from aged normal and cataractous lenses. Deamidation of Asn/Gln in lifelong proteins, such as those in the lens, may be governed to a significant degree by base-catalyzed processes.
Collapse
Affiliation(s)
- Peter G Hains
- Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
34
|
Ichiba H, Ogawa T, Yajima T, Fukushima T. Analysis of hydroxyl radical-induced oxidation process of glucagon by reversed-phase HPLC and ESI-MS/MS. Biomed Chromatogr 2009; 23:1051-8. [PMID: 19402179 DOI: 10.1002/bmc.1222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Structural modification of a polypeptide hormone, glucagon, by a hydroxyl radical in vitro was investigated by reversed-phase high-performance liquid chromatography (RP-HPLC), and the oxidized site of glucagon was detected by electrospray ionization tandem mass spectrometry (ESI-MS/MS). It was shown that (27)methionine (Met) was oxidized to (27)Met sulfoxide by hydroxyl radical, and the production rate of (27)Met sulfoxide was faster than that by hydrogen peroxide. In addition, production of (27)Met sulfoxide enantiomer was confirmed by RP-HPLC analysis. cAMP production in a HepG2 cell induced by (27)Met sulfoxide glucagon was reduced to approximately 75% as compared with that induced by the native form of glucagon.
Collapse
Affiliation(s)
- Hideaki Ichiba
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan
| | | | | | | |
Collapse
|
35
|
Wilmarth PA, Riviere MA, David LL. Techniques for accurate protein identification in shotgun proteomic studies of human, mouse, bovine, and chicken lenses. J Ocul Biol Dis Infor 2009; 2:223-234. [PMID: 20157357 PMCID: PMC2816815 DOI: 10.1007/s12177-009-9042-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Accepted: 11/06/2009] [Indexed: 01/22/2023] Open
Abstract
Analysis of shotgun proteomics datasets requires techniques to distinguish correct peptide identifications from incorrect identifications, such as linear discriminant functions and target/decoy protein databases. We report an efficient, flexible proteomic analysis workflow pipeline that implements these techniques to control both peptide and protein false discovery rates. We demonstrate its performance by analyzing two-dimensional liquid chromatography separations of lens proteins from human, mouse, bovine, and chicken lenses. We compared the use of International Protein Index databases to UniProt databases and no-enzyme SEQUEST searches to tryptic searches. Sequences present in the International Protein Index databases allowed detection of several novel crystallins. An alternate start codon isoform of betaA4 was found in human lens. The minor crystallin gammaN was detected for the first time in bovine and chicken lenses. Chicken gammaS was identified and is the first member of the gamma-crystallin family observed in avian lenses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12177-009-9042-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Phillip A. Wilmarth
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239 USA
| | - Michael A. Riviere
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239 USA
| | - Larry L. David
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239 USA
| |
Collapse
|
36
|
Nakajima E, David LL, Riviere MA, Azuma M, Shearer TR. Human and monkey lenses cultured with calcium ionophore form alphaB-crystallin lacking the C-terminal lysine, a prominent feature of some human cataracts. Invest Ophthalmol Vis Sci 2009; 50:5828-36. [PMID: 19608539 PMCID: PMC3057958 DOI: 10.1167/iovs.09-4015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Elevation of lens calcium occurs in both human and experimental animal cataracts, and opacification may result from calcium-activated proteolysis. The purpose of the present study was to determine whether calcium accumulation in cultured human and Macaca mulatta lenses results in proteolysis of crystallins, the major lens proteins. METHODS Two-dimensional electrophoresis and mass spectrometry were used to construct detailed maps of human and monkey lens crystallins so that proteolysis after calcium accumulation could be monitored and the altered crystallins identified. Human and macaque lenses cultured in A23187 showed elevated lenticular calcium and superficial cortical opacities. The carboxypeptidase E (CPE) gene is expressed in human lens, and its presence in lens fibers was demonstrated by Western blot. To investigate whether CPE could cause similar truncation, purified alphaB-crystallin and CPE were incubated in vitro. RESULTS The major change observed in the crystallins of these cultured lenses was the accumulation of alphaB(1-174)-crystallin resulting from the loss of a C-terminal lysine. This result was significant, because similar appearance of alphaB(1-174) is a prominent change in some human cataracts. alphaB-crystallin and CPE incubation result in the formation of alphaB(1-174)-crystallin. This truncation was specific to alphaB(1-174)-crystallin, since other crystallins were not proteolyzed. Although a weaker activator than zinc, calcium activated CPE in vitro. CONCLUSIONS Since zinc concentrations did not increase during culture in A23187, calcium uptake in the lens may be responsible for CPE activation and alphaB(1-174) formation during cataract.
Collapse
Affiliation(s)
- Emi Nakajima
- Laboratory of Ocular Sciences, Senju Pharmaceutical Corporation Limited, Beaverton, Oregon 97006, USA.
| | | | | | | | | |
Collapse
|
37
|
Sharma KK, Santhoshkumar P. Lens aging: effects of crystallins. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1790:1095-108. [PMID: 19463898 PMCID: PMC2743770 DOI: 10.1016/j.bbagen.2009.05.008] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Revised: 05/01/2009] [Accepted: 05/13/2009] [Indexed: 02/01/2023]
Abstract
The primary function of the eye lens is to focus light on the retina. The major proteins in the lens--alpha, beta, and gamma-crystallins--are constantly subjected to age-related changes such as oxidation, deamidation, truncation, glycation, and methylation. Such age-related modifications are cumulative and affect crystallin structure and function. With time, the modified crystallins aggregate, causing the lens to increasingly scatter light on the retina instead of focusing light on it and causing the lens to lose its transparency gradually and become opaque. Age-related lens opacity, or cataract, is the major cause of blindness worldwide. We review deamidation, and glycation that occur in the lenses during aging keeping in mind the structural and functional changes that these modifications bring about in the proteins. In addition, we review proteolysis and discuss recent observations on how crystallin fragments generated in vivo, through their anti-chaperone activity may cause crystallin aggregation in aging lenses. We also review hyperbaric oxygen treatment induced guinea pig and 'humanized' ascorbate transporting mouse models as suitable options for studies on age-related changes in lens proteins.
Collapse
Affiliation(s)
- K Krishna Sharma
- Department of Ophthalmology, University of Missouri-Columbia, 1 Hospital Drive, Columbia, MO 65212, USA.
| | | |
Collapse
|
38
|
Moreau KL, King J. Hydrophobic core mutations associated with cataract development in mice destabilize human gammaD-crystallin. J Biol Chem 2009; 284:33285-95. [PMID: 19758984 PMCID: PMC2785171 DOI: 10.1074/jbc.m109.031344] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The human eye lens is composed of fiber cells packed with crystallins up to 450 mg/ml. Human γD-crystallin (HγD-Crys) is a monomeric, two-domain protein of the lens central nucleus. Both domains of this long lived protein have double Greek key β-sheet folds with well packed hydrophobic cores. Three mutations resulting in amino acid substitutions in the γ-crystallin buried cores (two in the N-terminal domain (N-td) and one in the C-terminal domain (C-td)) cause early onset cataract in mice, presumably an aggregated state of the mutant crystallins. It has not been possible to identify the aggregating precursor within lens tissues. To compare in vivo cataract-forming phenotypes with in vitro unfolding and aggregation of γ-crystallins, mouse mutant substitutions were introduced into HγD-Crys. The mutant proteins L5S, V75D, and I90F were expressed and purified from Escherichia coli. WT HγD-Crys unfolds in vitro through a three-state pathway, exhibiting an intermediate with the N-td unfolded and the C-td native-like. L5S and V75D in the N-td also displayed three-state unfolding transitions, with the first transition, unfolding of the N-td, shifted to significantly lower denaturant concentrations. I90F destabilized the C-td, shifting the overall unfolding transition to lower denaturant concentrations. During thermal denaturation, the mutant proteins exhibited lowered thermal stability compared with WT. Kinetic unfolding experiments showed that the N-tds of L5S and V75D unfolded faster than WT. I90F was globally destabilized and unfolded more rapidly. These results support models of cataract formation in which generation of partially unfolded species are precursors to the aggregated cataractous states responsible for light scattering.
Collapse
Affiliation(s)
- Kate L Moreau
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
39
|
Gupta R, Srivastava OP. Identification of interaction sites between human betaA3- and alphaA/alphaB-crystallins by mammalian two-hybrid and fluorescence resonance energy transfer acceptor photobleaching methods. J Biol Chem 2009; 284:18481-92. [PMID: 19401464 DOI: 10.1074/jbc.m109.013789] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our recent study has shown that betaA3-crystallin along with betaB1- and betaB2-crystallins were part of high molecular weight complex obtained from young, old, and cataractous lenses suggesting potential interactions between alpha- and beta-crystallins (Srivastava, O. P., Srivastava, K., and Chaves, J. M. (2008) Mol. Vis. 14, 1872-1885). To investigate this further, this study was carried out to determine the interaction sites of betaA3-crystallin with alphaA- and alphaB-crystallins. The study employed a mammalian two-hybrid method, an in vivo assay to determine the regions of betaA3-crystallin that interact with alphaA- and alphaB-crystallins. Five regional truncated mutants of betaA3-crystallin were generated using specific primers with deletions of N-terminal extension (NT) (named betaA3-NT), N-terminal extension plus motif I (named betaA3-NT + I), N-terminal extension plus motifs I and II (named betaA3-NT + I + II), motif III plus IV (named betaA3-III + IV), and motif IV (named betaA3-IV). The mammalian two-hybrid studies were complemented with fluorescence resonance energy transfer acceptor photobleaching studies using the above described mutant proteins, fused with DsRed (Red) and AcGFP fluorescent proteins. The results showed that the motifs III and IV of betaA3-crystallin were interactive with alphaA-crystallin, and motifs II and III of betaA3-crystallin primarily interacted with alphaB-crystallin.
Collapse
Affiliation(s)
- Ratna Gupta
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama 35294-4390, USA
| | | |
Collapse
|
40
|
Zhang J, Yan H, Harding JJ, Liu ZX, Wang X, Ruan YS. Identification of the primary targets of carbamylation in bovine lens proteins by mass spectrometry. Curr Eye Res 2009; 33:963-76. [PMID: 19085379 DOI: 10.1080/02713680802455959] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Carbamylation, an important post-translational modification of proteins, inevitably causes conformational changes of lens proteins. It may increase aggregation between crystallin molecules and disrupt the close packing required for transparency thus leading to cataract. The aim of this study was to isolate the primary targets of carbamylation in the lens and identify them by mass spectrometry. MATERIALS AND METHODS Fresh intact bovine lenses were incubated with 100 mM potassium cyanate for 7 days. The proteins in the water-soluble fractions from the normal control and the cyanate-modified lens proteins were separated by two-dimensional (2-D) gel electrophoresis with identification after silver staining. Protein spots that differed between the normal and carbamylated groups were selected for further analysis using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). RESULTS The 2-D gel results showed that the major lens proteins were in the section of pI 5-8, with relative molecular masses of 20-35 kDa, and changes in the carbamylated fraction like strings of beads indicating modification. The mass spectrometry analysis and a database search identified carbamylated proteins originating from alphaA-crystallin, betaB2- and gammaS-(betaS)-crystallins. CONCLUSIONS These crystallins may be vulnerable proteins targeted by carbamylation. The accumulated aggregation and loss of chaperone activity may contribute to cataract formation.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | |
Collapse
|
41
|
Takata T, Oxford JT, Demeler B, Lampi KJ. Deamidation destabilizes and triggers aggregation of a lens protein, betaA3-crystallin. Protein Sci 2008; 17:1565-75. [PMID: 18567786 PMCID: PMC2525517 DOI: 10.1110/ps.035410.108] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 12/25/2022]
Abstract
Protein aggregation is a hallmark of several neurodegenerative diseases and also of cataracts. The major proteins in the lens of the eye are crystallins, which accumulate throughout life and are extensively modified. Deamidation is the major modification in the lens during aging and cataracts. Among the crystallins, the betaA3-subunit has been found to have multiple sites of deamidation associated with the insoluble proteins in vivo. Several sites were predicted to be exposed on the surface of betaA3 and were investigated in this study. Deamidation was mimicked by site-directed mutagenesis at Q42 and N54 on the N-terminal domain, N133 and N155 on the C-terminal domain, and N120 in the peptide connecting the domains. Deamidation altered the tertiary structure without disrupting the secondary structure or the dimer formation of betaA3. Deamidations in the C-terminal domain and in the connecting peptide decreased stability to a greater extent than deamidations in the N-terminal domain. Deamidation at N54 and N155 also disrupted the association with the betaB1-subunit. Sedimentation velocity experiments integrated with high-resolution analysis detected soluble aggregates at 15%-20% in all deamidated proteins, but not in wild-type betaA3. These aggregates had elevated frictional ratios, suggesting that they were elongated. The detection of aggregates in vitro strongly suggests that deamidation may contribute to protein aggregation in the lens. A potential mechanism may include decreased stability and/or altered interactions with other beta-subunits. Understanding the role of deamidation in the long-lived crystallins has important implications in other aggregation diseases.
Collapse
Affiliation(s)
- Takumi Takata
- Department of Integrative Biosciences, School of Dentistry, Oregon Health and Science University, Portland, Oregon 97239-3098, USA
| | | | | | | |
Collapse
|
42
|
Proteomic analysis of the oxidation of cysteine residues in human age-related nuclear cataract lenses. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1959-64. [PMID: 18761110 DOI: 10.1016/j.bbapap.2008.07.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 06/20/2008] [Accepted: 07/22/2008] [Indexed: 11/21/2022]
Abstract
Loss of protein thiols is a key feature associated with the onset of age-related nuclear cataract (ARNC), however, little is known about the specific sites of oxidation of the crystallins. We investigated cysteine residues in ARNC lenses and compared them with age-matched normal lenses. Proteomic analysis of tryptic digests revealed ten cysteine residues in older normal lenses that showed no significant oxidation compared to foetal counterparts (Cys 170 in betaA1/3-crystallin, Cys 32 in betaA4-crystallin, Cys 79 in betaB1-crystallin, Cys 22, Cys 78/79, C153 in gammaC-crystallin and Cys 22, Cys 24 and Cys 26 in gammaS-crystallin). Although these thiols were not oxidised in normal lenses past the 6th decade, they were present largely as disulphides in the ARNC lenses. By contrast, two cysteine residues, Cys 41 in gammaC-crystallin and Cys 18 in gammaD-crystallin, were not oxidised, even in advanced ARNC lenses. These cysteines are buried deep within the protein and any unfolding associated with cataract must be insufficient to expose them to the oxidative environment present in the centre of advanced ARNC lenses. The vast majority of the loss of protein thiol observed in such lenses is due to disulphide bond formation.
Collapse
|
43
|
Boros S, Wilmarth PA, Kamps B, de Jong WW, Bloemendal H, Lampi K, Boelens WC. Tissue transglutaminase catalyzes the deamidation of glutamines in lens betaB(2)- and betaB(3)-crystallins. Exp Eye Res 2008; 86:383-93. [PMID: 18184610 DOI: 10.1016/j.exer.2007.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 11/16/2007] [Accepted: 11/19/2007] [Indexed: 10/22/2022]
Abstract
Tissue transglutaminase (tTG) is a Ca(2+)-dependent enzyme catalyzing the formation of covalent crosslinks between peptide-bound glutamine and lysine residues. Lens crystallins, including alphaB-crystallin and several beta-crystallins, are in vitro substrates for tTG. In both human and bovine fetal lens extracts treated with commercially available guinea pig liver tTG we detected the formation of high molecular weight (HMW) aggregates containing crosslinked betaB(2)- and betaA(3)-crystallin. More interestingly, 2D-gel electrophoresis combined with mass spectrometry analysis revealed that glutamines present in the N-terminal arms of betaB(2)- and betaB(3)-crystallins deamidate readily in the presence of tTG. We found that both tTG-catalyzed crosslinking and deamidation disrupt the beta-crystallin complex, suggesting that these tTG-catalyzed modifications can influence the macromolecular assembly of lens crystallins. These data together suggest that tTG can contribute to the age-related deamidation of glutamine residues of lens crystallins.
Collapse
Affiliation(s)
- Sandor Boros
- Department of Biomolecular Chemistry 271, Nijmegen Center for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
44
|
Hains PG, Truscott RJW. Post-translational modifications in the nuclear region of young, aged, and cataract human lenses. J Proteome Res 2007; 6:3935-43. [PMID: 17824632 DOI: 10.1021/pr070138h] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The urea-soluble proteins from the nucleus of two young, two aged, and two early-stage nuclear cataract lenses were subjected to tryptic digestion and analysis by 2D LC-MS/MS. Several novel post-translational modifications were identified. Deamidation was, by far, the most common modification. A number of differences were found in cataract compared to normal lenses, most notably an increase in the number of oxidized tryptophan residues. Semiquantitative analysis revealed that there appeared to be a trend toward increased levels of deamidation with age; however, there was no apparent increase upon the onset of nuclear cataract. This is in contrast to Trp oxidation, where an increase in the extent of modification was apparent in cataract lenses when compared to aged normal lenses. These findings suggest Trp oxidation may be involved in nuclear cataract development.
Collapse
Affiliation(s)
- Peter G Hains
- Save Sight Institute, University of Sydney, Sydney, NSW, 2001, Australia
| | | |
Collapse
|
45
|
Takata T, Oxford JT, Lampi KJ. Deamidation alters the structure and decreases the stability of human lens betaA3-crystallin. Biochemistry 2007; 46:8861-71. [PMID: 17616172 PMCID: PMC2597435 DOI: 10.1021/bi700487q] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
According to the World Health Organization, cataracts account for half of the blindness in the world, with the majority occurring in developing countries. A cataract is a clouding of the lens of the eye due to light scattering of precipitated lens proteins or aberrant cellular debris. The major proteins in the lens are crystallins, and they are extensively deamidated during aging and cataracts. Deamidation has been detected at the domain and monomer interfaces of several crystallins during aging. The purpose of this study was to determine the effects of two potential deamidation sites at the predicted interface of the betaA3-crystallin dimer on its structure and stability. The glutamine residues at the reported in vivo deamidation sites of Q180 in the C-terminal domain and at the homologous site Q85 in the N-terminal domain were substituted with glutamic acid residues by site-directed mutagenesis. Far-UV and near-UV circular dichroism spectroscopy indicated that there were subtle differences in the secondary structure and more notable differences in the tertiary structure of the mutant proteins compared to that of the wild type betaA3-crystallin. The Q85E/Q180E mutant also was more susceptible to enzymatic digestion, suggesting increased solvent accessibility. These structural changes in the deamidated mutants led to decreased stability during unfolding in urea and increased precipitation during heat denaturation. When simulating deamidation at both residues, there was a further decrease in stability and loss of cooperativity. However, multiangle-light scattering and quasi-elastic light scattering experiments showed that dimer formation was not disrupted, nor did higher-order oligomers form. These results suggest that introducing charges at the predicted domain interface in the betaA3 homodimer may contribute to the insolubilization of lens crystallins or favor other, more stable, crystallin subunit interactions.
Collapse
Affiliation(s)
- Takumi Takata
- Department of Integrative Biosciences, School of Dentistry, Oregon Health & Science University, 611 SW Campus Dr., Portland, Oregon 97239-3098, Phone (503) 494 - 8620, Fax (503) 494 - 8554
| | - Julie T. Oxford
- Boise State University, Department of Biology, 1910 University Dr., Boise, Idaho 83725
| | - Kirsten J. Lampi
- Department of Integrative Biosciences, School of Dentistry, Oregon Health & Science University, 611 SW Campus Dr., Portland, Oregon 97239-3098, Phone (503) 494 - 8620, Fax (503) 494 - 8554
| |
Collapse
|
46
|
Wilmarth PA, Tanner S, Dasari S, Nagalla SR, Riviere MA, Bafna V, Pevzner PA, David LL. Age-related changes in human crystallins determined from comparative analysis of post-translational modifications in young and aged lens: does deamidation contribute to crystallin insolubility? J Proteome Res 2006; 5:2554-66. [PMID: 17022627 PMCID: PMC2536618 DOI: 10.1021/pr050473a] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have employed recently developed blind modification search techniques to generate the most comprehensive map of post-translational modifications (PTMs) in human lens constructed to date. Three aged lenses, two of which had moderate cataract, and one young control lens were analyzed using multidimensional liquid chromatography mass spectrometry. In total, 491 modification sites in lens proteins were identified. There were 155 in vivo PTM sites in crystallins: 77 previously reported sites and 78 newly detected PTM sites. Several of these sites had modifications previously undetected by mass spectrometry in lens including carboxymethyl lysine (+58 Da), carboxyethyl lysine (+72 Da), and an arginine modification of +55 Da with yet unknown chemical structure. These new modifications were observed in all three aged lenses but were not found in the young lens. Several new sites of cysteine methylation were identified indicating this modification is more extensive in lens than previously thought. The results were used to estimate the extent of modification at specific sites by spectral counting. We tested the long-standing hypothesis that PTMs contribute to age-related loss of crystallin solubility by comparing spectral counts between the water-soluble and water-insoluble fractions of the aged lenses and found that the extent of deamidation was significantly increased in the water-insoluble fractions. On the basis of spectral counting, the most abundant PTMs in aged lenses were deamidations and methylated cysteines with other PTMs present at lower levels.
Collapse
Affiliation(s)
- P A Wilmarth
- Department of Integrative Biosciences, School of Dentistry, Oregon Health and Science University, 611 South West Campus Drive, Portland, Oregon 97239, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Flaugh SL, Mills IA, King J. Glutamine deamidation destabilizes human gammaD-crystallin and lowers the kinetic barrier to unfolding. J Biol Chem 2006; 281:30782-93. [PMID: 16891314 DOI: 10.1074/jbc.m603882200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human eye lens transparency requires life long stability and solubility of the crystallin proteins. Aged crystallins have high levels of covalent damage, including glutamine deamidation. Human gammaD-crystallin (HgammaD-Crys) is a two-domain beta-sheet protein of the lens nucleus. The two domains interact through interdomain side chain contacts, including Gln-54 and Gln-143, which are critical for stability and folding of the N-terminal domain of HgammaD-Crys. To test the effects of interface deamidation on stability and folding, single and double glutamine to glutamate substitutions were constructed. Equilibrium unfolding/refolding experiments of the proteins were performed in guanidine hydrochloride at pH 7.0, 37 degrees C, or urea at pH 3.0, 20 degrees C. Compared with wild type, the deamidation mutants were destabilized at pH 7.0. The proteins populated a partially unfolded intermediate that likely had a structured C-terminal domain and unstructured N-terminal domain. However, at pH 3.0, equilibrium unfolding transitions of wild type and the deamidation mutants were indistinguishable. In contrast, the double alanine mutant Q54A/Q143A was destabilized at both pH 7.0 and 3.0. Thermal stabilities of the deamidation mutants were also reduced at pH 7.0. Similarly, the deamidation mutants lowered the kinetic barrier to unfolding of the N-terminal domain. These data indicate that interface deamidation decreases the thermodynamic stability of HgammaD-Crys and lowers the kinetic barrier to unfolding due to introduction of a negative charge into the domain interface. Such effects may be significant for cataract formation by inducing protein aggregation or insolubility.
Collapse
Affiliation(s)
- Shannon L Flaugh
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
48
|
Marín-Vinader L, Onnekink C, van Genesen ST, Slingsby C, Lubsen NH. In vivo heteromer formation. Expression of soluble betaA4-crystallin requires coexpression of a heteromeric partner. FEBS J 2006; 273:3172-82. [PMID: 16774643 DOI: 10.1111/j.1742-4658.2006.05326.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The beta-crystallins are a family of long-lived, abundant structural proteins that are coexpressed in the vertebrate lens. As beta-crystallins form heteromers, a process that involves transient exposure of hydrophobic interfaces, we have examined whether in vivobeta-crystallin assembly is enhanced by protein chaperones, either small heat shock proteins, Hsp27 or alphaB-crystallin, or Hsp70. We show here that betaA4-crystallin is abundantly expressed in HeLa cells, but rapidly degraded, irrespective of the presence of Hsp27, alphaB-crystallin or Hsp70. Degradation is even enhanced by Hsp70. Coexpression of betaA4-crystallin with betaB2-crystallin yielded abundant soluble betaA4-betaB2-crystallin heteromers; betaB1-crystallin was much less effective in solubilizing betaA4-crystallin. As betaB2-crystallin competed for betaA4-crystallin with Hsp70 and the proteasomal degradation pathway, betaB2-crystallin probably captures an unstable betaA4-crystallin intermediate. We suggest that the proper folding of betaA4-crystallin is not mediated by general chaperones but requires a heteromeric partner, which then also acts as a dedicated chaperone towards betaA4-crystallin.
Collapse
|
49
|
Takata T, Shimo-Oka T, Kojima M, Miki K, Fujii N. Differential analysis of d-β-Asp-containing proteins found in normal and infrared irradiated rabbit lens. Biochem Biophys Res Commun 2006; 344:263-71. [PMID: 16630575 DOI: 10.1016/j.bbrc.2006.03.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 03/20/2006] [Indexed: 12/26/2022]
Abstract
Although proteins are generally composed of l-alpha-amino acids, d-beta-aspartic acid (Asp)-containing proteins have been reported in various elderly tissues. Our previous study detected several d-beta-Asp-containing proteins in a rabbit lens derived from epithelial cell line by Western blot analysis of a 2D-gel using a polyclonal antibody that is highly specific for d-beta-Asp-containing proteins. The identity of each spot was subsequently determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and the Ms-Fit online database searching algorithm. In this study, we discovered novel d-beta-Asp-containing proteins from rabbit lens. The results indicate that beta-crystallin A3, beta-crystallin A4, beta-crystallin B1, beta-crystallin B2, beta-crystallin B3, gamma-crystallin C, gamma-crystallin D, and lambda-crystallin in rabbit lens contain d-beta-Asp residues. Furthermore, the occurrence of d-beta-Asp residues increases with infrared ray (IR) irradiation. Additionally, some d-beta-Asp-containing proteins only appear after IR irradiation. One such protein is the alpha-enolase, which shows homology to tau-crystallin.
Collapse
Affiliation(s)
- Takumi Takata
- Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan, Osaka 590-0494, Japan
| | | | | | | | | |
Collapse
|
50
|
Lampi KJ, Amyx KK, Ahmann P, Steel EA. Deamidation in human lens betaB2-crystallin destabilizes the dimer. Biochemistry 2006; 45:3146-53. [PMID: 16519509 PMCID: PMC2533042 DOI: 10.1021/bi052051k] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two major determinants of the transparency of the lens are protein-protein interactions and stability of the crystallins, the structural proteins in the lens. betaB2 is the most abundant beta-crystallin in the human lens and is important in formation of the complex interactions of lens crystallins. betaB2 readily forms a homodimer in vitro, with interacting residues across the monomer-monomer interface conserved among beta-crystallins. Due to their long life spans, crystallins undergo an unusually large number of modifications, with deamidation being a major factor. In this study the effects of two potential deamidation sites at the monomer-monomer interface on dimer formation and stability were determined. Glutamic acid substitutions were constructed to mimic the effects of previously reported deamidations at Q162 in the C-terminal domain and at Q70, its N-terminal homologue. The mutants had a nativelike secondary structure similar to that of wild type betaB2 with differences in tertiary structure for the double mutant, Q70E/Q162E. Multiangle light scattering and quasi-elastic light scattering experiments showed that dimer formation was not interrupted. In contrast, equilibrium unfolding and refolding in urea showed destabilization of the mutants, with an inflection in the transition of unfolding for the double mutant suggesting a distinct intermediate. These results suggest that deamidation at critical sites destabilizes betaB2 and may disrupt the function of betaB2 in the lens.
Collapse
Affiliation(s)
- Kirsten J Lampi
- Department of Integrative Biosciences, School of Dentistry, Oregon Health & Science University, 611 SW Campus Drive, Portland, Oregon 97239-3098, USA.
| | | | | | | |
Collapse
|