1
|
Pineda-Suazo D, Guillén-Chable F, Escobedo-Hinojosa WI, Galindo-Sánchez CE, Rosas C. Insights into Octopus maya cathepsins from metatranscriptome and genome: structure evolutionary relationships and functional role prediction in digestive processes. Biol Open 2025; 14:bio061778. [PMID: 40106538 PMCID: PMC12032550 DOI: 10.1242/bio.061778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
Physiological response to feeding is crucial for various production factors such as feed catabolism and growth. Despite growing significance in red Octopus maya aquaculture, large-scale commercial production is limited by not sufficiently knowing their nutritional needs, especially their digestive physiology. Since this species is carnivorous, one of the main feeding aspects is directed to protein digestion, but its enzymatic digestive repertoire has not been studied yet at genomic and transcriptomic levels. This study searched for protease enzymes encoded in O. maya genome and expressed in the transcriptome, allowing an initial annotation of genes involved in protein catabolism; 117 amino acid sequences related to 'octopus digestive enzymes' were retrieved from 66 available-species' genomes in the NCBI database, coding for cathepsins, papilins, and metalloproteases. Homology analysis identified 36 homologous sequences from O. maya transcriptome and three from its genome. Phylogenetic analysis grouped 37 of 39 sequences into 11 of 14 main clades, offering new insights into the evolutionary relationships and functional roles of these proteases. Phylogenetic and motif analyses resulted in selecting 19 amino acid O. maya sequences using multiple sequence alignment that were used to generate three-dimensional protein models. The obtained models revealed a diverse structural architecture among 16 modelled cathepsins; however, their catalytic potential to fully clarify their role in protein hydrolysis and cellular processes remains to be determined. Foundational data provides insights into biochemistry and physiology behind O. maya protein digestion. Further complementation of these results with enzymatic characterization of the identified proteases should allow for improved diet formulation in order to foster this species aquaculture.
Collapse
Affiliation(s)
- Daisy Pineda-Suazo
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias UNAM, Puerto de abrigo s/n Sisal, Mpio, Hunucmá, Yucatán 97356, México
| | - Francisco Guillén-Chable
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias UNAM, Puerto de abrigo s/n Sisal, Mpio, Hunucmá, Yucatán 97356, México
| | - Wendy Itzel Escobedo-Hinojosa
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de abrigo s/n, Sisal, Yucatán 97356, México
| | - Clara E. Galindo-Sánchez
- Departamento de Biotecnología Marina, Laboratorio de Genómica Funcional, CICESE, Ensenada, Baja California 22860, México
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias UNAM, Puerto de abrigo s/n Sisal, Mpio, Hunucmá, Yucatán 97356, México
| |
Collapse
|
2
|
Horn M, Bieliková L, Vostoupalová A, Švéda J, Mareš M. An update on proteases and protease inhibitors from trematodes. ADVANCES IN PARASITOLOGY 2024; 126:97-176. [PMID: 39448195 DOI: 10.1016/bs.apar.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Trematodes, a class of parasitic flatworms, are responsible for a variety of devastating diseases in humans and animals, with schistosomiasis and fascioliasis being prominent examples. Trematode proteolytic systems involved in the host-parasite interaction have emerged as key contributors to the success of trematodes in establishing and maintaining infections. This review concentrates on diverse proteases and protease inhibitors employed by trematodes and provides an update on recent advances in their molecular-level characterization, with a focus on function, structure, and therapeutic target potential.
Collapse
Affiliation(s)
- Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Bieliková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Vostoupalová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Švéda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Logan J, Pearson MS, Manda SS, Choi YJ, Field M, Eichenberger RM, Mulvenna J, Nagaraj SH, Fujiwara RT, Gazzinelli-Guimaraes P, Bueno L, Mati V, Bethony JM, Mitreva M, Sotillo J, Loukas A. Comprehensive analysis of the secreted proteome of adult Necator americanus hookworms. PLoS Negl Trop Dis 2020; 14:e0008237. [PMID: 32453752 PMCID: PMC7274458 DOI: 10.1371/journal.pntd.0008237] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 06/05/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022] Open
Abstract
The human hookworm Necator americanus infects more than 400 million people worldwide, contributing substantially to the poverty in these regions. Adult stage N. americanus live in the small intestine of the human host where they inject excretory/secretory (ES) products into the mucosa. ES products have been characterized at the proteome level for a number of animal hookworm species, but until now, the difficulty in obtaining sufficient live N. americanus has been an obstacle in characterizing the secretome of this important human pathogen. Herein we describe the ES proteome of N. americanus and utilize this information along with RNA Seq data to conduct the first proteogenomic analysis of a parasitic helminth, significantly improving the available genome and thereby generating a robust description of the parasite secretome. The genome annotation resulted in a revised prediction of 3,425 fewer genes than initially reported, accompanied by a significant increase in the number of exons and introns, total gene length and the percentage of the genome covered by genes. Almost 200 ES proteins were identified by LC-MS/MS with SCP/TAPS proteins, ‘hypothetical’ proteins and proteases among the most abundant families. These proteins were compared to commonly used model species of human parasitic infections, including Ancylostoma caninum, Nippostrongylus brasiliensis and Heligmosomoides polygyrus. SCP/TAPS proteins are immunogenic in nematode infections, so we expressed four of those identified in this study in recombinant form and showed that they are all recognized to varying degrees by serum antibodies from hookworm-infected subjects from a disease-endemic area of Brazil. Our findings provide valuable information on important families of proteins with both known and unknown functions that could be instrumental in host-parasite interactions, including protein families that might be key for parasite survival in the onslaught of robust immune responses, as well as vaccine and diagnostic targets. Hookworms infect hundreds of millions of people in tropical regions of the world. Adult worms reside in the small bowel where they feed on blood, causing iron-deficiency anemia when present in large numbers and contributing substantially to the poverty in these regions. Hookworms inject excretory/secretory (ES) products into the gut tissue when they feed, and while the protein constituents of ES products have been characterized for a number of animal hookworm species, difficulty in obtaining sufficient live human hookworms has thus far precluded characterization of the secreted proteome. Herein we describe the ES proteins of the major human hookworm, Necator americanus, and utilize this information to significantly improve the available genome sequence. Almost 200 ES proteins were identified and compared to the secreted proteomes of other parasitic roundworms to provide a molecular snapshot of the host-parasite interface. We produced recombinant forms of some of the identified proteins and showed that they are all recognized to varying degrees by antibodies from hookworm-infected subjects. Our work sheds light on important families of proteins that might be key for parasite survival in the human host, and presents a dataset that can now be mined in the search for vaccine, drug and diagnostic targets.
Collapse
Affiliation(s)
- Jayden Logan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Mark S. Pearson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Srikanth S. Manda
- Cancer Data Science Group, ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
- LifeBytes India Pvt Ltd, Whitefield, Bangalore, India
| | - Young-Jun Choi
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Matthew Field
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Ramon M. Eichenberger
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Jason Mulvenna
- QIMR-Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Shivashankar H. Nagaraj
- Institute of Health and Biomedical Innovation and Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ricardo T. Fujiwara
- Department of Parasitology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Pedro Gazzinelli-Guimaraes
- Department of Parasitology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lilian Bueno
- Department of Parasitology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vitor Mati
- Department of Health Sciences, Universidade Federal de Lavras, Lavras, Brazil
| | - Jeffrey M. Bethony
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC, United States of America
| | - Makedonka Mitreva
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Javier Sotillo
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- * E-mail: (JS); (AL)
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- * E-mail: (JS); (AL)
| |
Collapse
|
4
|
Jedličková L, Dvořáková H, Dvořák J, Kašný M, Ulrychová L, Vorel J, Žárský V, Mikeš L. Cysteine peptidases of Eudiplozoon nipponicum: a broad repertoire of structurally assorted cathepsins L in contrast to the scarcity of cathepsins B in an invasive species of haematophagous monogenean of common carp. Parasit Vectors 2018; 11:142. [PMID: 29510760 PMCID: PMC5840727 DOI: 10.1186/s13071-018-2666-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/22/2018] [Indexed: 01/30/2023] Open
Abstract
Background Cysteine peptidases of clan CA, family C1 account for a major part of proteolytic activity in the haematophagous monogenean Eudiplozoon nipponicum. The full spectrum of cysteine cathepsins is, however, unknown and their particular biochemical properties, tissue localisation, and involvement in parasite-host relationships are yet to be explored. Methods Sequences of cathepsins L and B (EnCL and EnCB) were mined from E. nipponicum transcriptome and analysed bioinformatically. Genes encoding two EnCLs and one EnCB were cloned and recombinant proteins produced in vitro. The enzymes were purified by chromatography and their activity towards selected substrates was characterised. Antibodies and specific RNA probes were employed for localisation of the enzymes/transcripts in tissues of E. nipponicum adults. Results Transcriptomic analysis revealed a set of ten distinct transcripts that encode EnCLs. The enzymes are significantly variable in their active sites, specifically the S2 subsites responsible for interaction with substrates. Some of them display unusual structural features that resemble cathepsins B and S. Two recombinant EnCLs had different pH activity profiles against both synthetic and macromolecular substrates, and were able to hydrolyse blood proteins and collagen I. They were localised in the haematin cells of the worm’s digestive tract and in gut lumen. The EnCB showed similarity with cathepsin B2 of Schistosoma mansoni. It displays molecular features typical of cathepsins B, including an occluding loop responsible for its exopeptidase activity. Although the EnCB hydrolysed haemoglobin in vitro, it was localised in the vitelline cells of the parasite and not the digestive tract. Conclusions To our knowledge, this study represents the first complex bioinformatic and biochemical characterisation of cysteine peptidases in a monogenean. Eudiplozoon nipponicum adults express a variety of CLs, which are the most abundant peptidases in the worms. The properties and localisation of the two heterologously expressed EnCLs indicate a central role in the (partially extracellular?) digestion of host blood proteins. High variability of substrate-binding sites in the set of EnCLs suggests specific adaptation to a range of biological processes that require proteolysis. Surprisingly, a single cathepsin B is expressed by the parasite and it is not involved in digestion, but probably in vitellogenesis. Electronic supplementary material The online version of this article (10.1186/s13071-018-2666-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lucie Jedličková
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic.
| | - Hana Dvořáková
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Jan Dvořák
- Medical Biology Centre, School of Biological Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.,Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague 6, Czech Republic
| | - Martin Kašný
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Lenka Ulrychová
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Jiří Vorel
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Faculty of Science, Charles University, Průmyslová 595, Vestec, 25250, Czech Republic
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| |
Collapse
|
5
|
Angiostrongylus cantonensis: a review of its distribution, molecular biology and clinical significance as a human pathogen. Parasitology 2016; 143:1087-118. [PMID: 27225800 DOI: 10.1017/s0031182016000652] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Angiostrongylus cantonensis is a metastrongyloid nematode found widely in the Asia-Pacific region, and the aetiological agent of angiostrongyliasis; a disease characterized by eosinophilic meningitis. Rattus rats are definitive hosts of A. cantonensis, while intermediate hosts include terrestrial and aquatic molluscs. Humans are dead-end hosts that usually become infected upon ingestion of infected molluscs. A presumptive diagnosis is often made based on clinical features, a history of mollusc consumption, eosinophilic pleocytosis in cerebral spinal fluid, and advanced imaging such as computed tomography. Serological tests are available for angiostrongyliasis, though many tests are still under development. While there is no treatment consensus, therapy often includes a combination of anthelmintics and corticosteroids. Angiostrongyliasis is relatively rare, but is often associated with morbidity and sometimes mortality. Recent reports suggest the parasites' range is increasing, leading to fatalities in regions previously considered Angiostrongylus-free, and sometimes, delayed diagnosis in newly invaded regions. Increased awareness of angiostrongyliasis would facilitate rapid diagnosis and improved clinical outcomes. This paper summarizes knowledge on the parasites' life cycle, clinical aspects and epidemiology. The molecular biology of Angiostrongylus spp. is also discussed. Attention is paid to the significance of angiostrongyliasis in Australia, given the recent severe cases reported from the Sydney region.
Collapse
|
6
|
Ansell BRE, Schnyder M, Deplazes P, Korhonen PK, Young ND, Hall RS, Mangiola S, Boag PR, Hofmann A, Sternberg PW, Jex AR, Gasser RB. Insights into the immuno-molecular biology of Angiostrongylus vasorum through transcriptomics--prospects for new interventions. Biotechnol Adv 2013; 31:1486-500. [PMID: 23895945 DOI: 10.1016/j.biotechadv.2013.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/28/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
Abstract
Angiostrongylus vasorum is a metastrongyloid nematode of dogs and other canids of major clinical importance in many countries. In order to gain first insights into the molecular biology of this worm, we conducted the first large-scale exploration of its transcriptome, and predicted essential molecules linked to metabolic and biological processes as well as host immune responses. We also predicted and prioritized drug targets and drug candidates. Following Illumina sequencing (RNA-seq), 52.3 million sequence reads representing adult A. vasorum were assembled and annotated. The assembly yielded 20,033 contigs, which encoded proteins with 11,505 homologues in Caenorhabditis elegans, and additional 2252 homologues in various other parasitic helminths for which curated data sets were publicly available. Functional annotation was achieved for 11,752 (58.6%) proteins predicted for A. vasorum, including peptidases (4.5%) and peptidase inhibitors (1.6%), protein kinases (1.7%), G protein-coupled receptors (GPCRs) (1.5%) and phosphatases (1.2%). Contigs encoding excretory/secretory and immuno-modulatory proteins represented some of the most highly transcribed molecules, and encoded enzymes that digest haemoglobin were conserved between A. vasorum and other blood-feeding nematodes. Using an essentiality-based approach, drug targets, including neurotransmitter receptors, an important chemosensory ion channel and cysteine proteinase-3 were predicted in A. vasorum, as were associated small molecular inhibitors/activators. Future transcriptomic analyses of all developmental stages of A. vasorum should facilitate deep explorations of the molecular biology of this important parasitic nematode and support the sequencing of its genome. These advances will provide a foundation for exploring immuno-molecular aspects of angiostrongylosis and have the potential to underpin the discovery of new methods of intervention.
Collapse
Affiliation(s)
- Brendan R E Ansell
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ni F, Wang Y, Zhang J, Yu L, Fang W, Luo D. Cathepsin B-like and hemoglobin-type cysteine proteases: stage-specific gene expression in Angiostrongy cantonensis. Exp Parasitol 2012; 131:433-41. [PMID: 22668746 DOI: 10.1016/j.exppara.2012.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/22/2012] [Accepted: 05/28/2012] [Indexed: 10/28/2022]
Abstract
Three cysteine protease genes, cathepsin B-like enzyme gene 1, 2 (AC-cathB-1, AC-cathB-2) and hemoglobin-type cysteine protease gene (AC-hem) were isolated and described from Angiostrongylus cantonensis adult. The deduced amino acid sequence of Ac-cathB-1 and AC-cathB-2 contain all of the conserved regions of cathepsin B. AC-cathB-2 is similar to a host intrusion-related cysteine protease B from Parelaphostrongylus tenuis, and the AC-hem shares high similarity to legumain from Haemonchus contortus. AC-cathB-1 was expressed significantly higher in L1 as compared with AC-hem, the AC-cathB-2 followed; AC-cathB-2 transcripts in L3 were found increased rapidly and obviously abundant, suggesting that AC-cathB-1 and AC-cathB-2 may play an important role in intermediate and final host invasion, separately. The cysteine protease genes were more or less expressed in adult stage excepted for AC-cathB-2. As the AC-cathB-1 and AC-hem highly expressed in adult worms, suggesting AC-hem may activate AC-cathB-1 which involved in the host invasion and feeding process.
Collapse
Affiliation(s)
- Fang Ni
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | | | | | | | | | | |
Collapse
|
8
|
Cheng M, Yang X, Li Z, He H, Qu Z, He A, Wu Z, Zhan X. Cloning and characterization of a novel cathepsin B-like cysteine proteinase from Angiostrongylus cantonensis. Parasitol Res 2012; 110:2413-22. [PMID: 22215189 DOI: 10.1007/s00436-011-2780-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 12/09/2011] [Indexed: 11/27/2022]
Abstract
Cysteine protease plays a key role in host-parasite interactions. In this study, we identified a novel gene encoding a cathepsin B-like cysteine protease (AcCBL1) from the cDNA library of Angiostrongysus cantonensis fourth-stage larvae (L4) and characterized its biological role in the parasite. Sequence and phylogeny analysis showed that AcCBL1 is related to other cathepsin B family members with the conserved catalytic triad (Cys, His, Asn) and diagnostic occluding loop. In addition, the sequence contains a specific "hemoglobinase motif" and might have a hemoglobinase (Hb)-degrading function. The recombinant AcCBL1 (rAcCBL1) exhibited the protease activity by gelation SDS/PAGE assay; rAcCBL1 can cleave the fluorogenic substrate Z-Arg-Arg-AMC, and the optimum pH was 5.5. The enzyme can hydrolyse several host proteins including Hb and human IgG in acidic pH, but low levels of hydrolysis were observed in neutral pH. Reverse transcription polymerase chain reaction revealed that AcCBL1 expression was detected throughout various developmental stages, L3, L4, adult male and female worms. Western blotting analysis indicated that AcCBL1 was an excretory/secretory product of L4 in mature form of protease. Immunolocalization demonstrated that AcCBL1 was mainly localized in the intestine of L4. These results suggest that rAcCBL1 may play an important role in the parasite nutrition uptake.
Collapse
Affiliation(s)
- Mei Cheng
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 2nd Zhongshan Road, Guangzhou, 510080, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Cathepsin B from the white shrimp Litopenaeus vannamei: cDNA sequence analysis, tissues-specific expression and biological activity. Comp Biochem Physiol B Biochem Mol Biol 2012; 161:32-40. [DOI: 10.1016/j.cbpb.2011.09.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/05/2011] [Accepted: 09/09/2011] [Indexed: 11/21/2022]
|
10
|
Chen W, Wang X, Li X, Lv X, Zhou C, Deng C, Lei H, Men J, Fan Y, Liang C, Yu X. Molecular characterization of cathepsin B from Clonorchis sinensis excretory/secretory products and assessment of its potential for serodiagnosis of clonorchiasis. Parasit Vectors 2011; 4:149. [PMID: 21794140 PMCID: PMC3163202 DOI: 10.1186/1756-3305-4-149] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 07/27/2011] [Indexed: 01/16/2023] Open
Abstract
Background Cathepsin cysteine proteases play multiple roles in the life cycle of parasites such as food uptake, immune invasion and pathogenesis, making them valuable targets for diagnostic assays, vaccines and drugs. The purpose of this study was to identify a cathepsin B of Clonorchis sinensis (CsCB) and to investigate its diagnostic value for human helminthiases. Results The predicted amino acid sequence of the cathepsin B of C. sinensis shared 63%, 52%, 50% identity with that of Schistosoma japonicum, Homo sapiens and Fasciola hepatica, respectively. Sequence encoding proenzyme of CsCB was overexpressed in Escherichia coli. Reverse transcription PCR experiments revealed that CsCB transcribed in both adult worm and metacercaria of C. sinensis. CsCB was identified as a C. sinensis excretory/secretory product by immunoblot assay, which was consistent with immunohistochemical localization showing that CsCB was especially expressed in the intestine of C. sinensis adults. Both ELISA and western blotting analysis showed recombinant CsCB could react with human sera from clonorchiasis and other helminthiases. Conclusions Our findings revealed that secreted CsCB may play an important role in the biology of C. sinensis and could be a diagnostic candidate for helminthiases.
Collapse
Affiliation(s)
- Wenjun Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cathepsins B1 and B2 of Trichobilharzia SPP., bird schistosomes causing cercarial dermatitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:136-54. [PMID: 21660663 DOI: 10.1007/978-1-4419-8414-2_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Trichobilharzia regenti and T. szidati are schistosomes that infect birds. although T. regenti/T. szidati can only complete their life cycle in specific bird hosts (waterfowl), their larvae-cercariae are able to penetrate, transform and then migrate as schistosomula in nonspecific hosts (e.g., mouse, man). Peptidases are among the key molecules produced by these schistosomes that enable parasite invasion and survival within the host and include cysteine peptidases such as cathepsins B1 and B2. These enzymes are indispensable bio-catalysts in a number of basal biological processes and host-parasite interactions, e.g., tissue invasion/migration, nutrition and immune evasion. Similar biochemical and functional characteristics were observed for cathepsins B1 and B2 in bird schistosomes (T. regenti, T. szidati) and also for their homologs in human schistosomes (Schistosoma mansoni, S. japonicum). Therefore, data obtained in the research of bird schistosomes can also be exploited for the control of human schistosomes such as the search for targets of novel chemotherapeutic drugs and vaccines.
Collapse
|
12
|
Knox D. Proteases in blood-feeding nematodes and their potential as vaccine candidates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:155-76. [PMID: 21660664 DOI: 10.1007/978-1-4419-8414-2_10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Parasitic nematodes express and secrete a variety of proteases which they use for many purposes including the penetration of host tissues, digestion of host protein for nutrients, evasion of host immune responses and for internal processes such as tissue catabolism and apoptosis. For these broad reasons they have been examined as possible parasite control targets. Blood-feeding nematodes such as the barber-pole worm Haemonchus contortus that infect sheep and goats and the hookworms, Ancylostoma spp. and Necator americanus, affecting man, use an array of endo- and exopeptidases to digest the blood meal. Haemoglobin digestion occurs by an ordered and partly conserved proteolytic cascade. These proteases are accessible to host immune responses which can block enzyme function and lead to parasite expulsion and/or death. Thus they are receiving attention as components of vaccines against several parasitic nematodes of social and economic importance.
Collapse
Affiliation(s)
- David Knox
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, Scotland, UK.
| |
Collapse
|
13
|
Muleke CI, Ruofeng Y, Lixin X, Xinwen B, Xiangrui L. Cloning and sequence analysis ofHemonchus ContortusHC58cDNA. ACTA ACUST UNITED AC 2009; 18:176-83. [PMID: 17454001 DOI: 10.1080/10425170600751496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The complete coding sequence of Hemonchus contortus HC58cDNA was generated by rapid amplification of cDNA ends and polymerase chain reaction using primers based on the 5' and 3' ends of the parasite mRNA, accession no. AF305964. The HC58cDNA gene was 851 bp long, with open reading frame of 717 bp, precursors to 239 amino acids coding for approximately 27 kDa protein. Analysis of amino acid sequence revealed conserved residues of cysteine, histidine, asparagine, occluding loop pattern, hemoglobinase motif and glutamine of the oxyanion hole characteristic of cathepsin B like proteases (CBL). Comparison of the predicted amino acid sequences showed the protein shared 33.5-58.7% identity to cathepsin B homologues in the papain clan CA family (family C1). Phylogenetic analysis revealed close evolutionary proximity of the protein sequence to counterpart sequences in the CBL, suggesting that HC58cDNA was a member of the papain family.
Collapse
Affiliation(s)
- Charles I Muleke
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | | | | | | | | |
Collapse
|
14
|
Investigation of the regulation of transcriptional changes in Ancylostoma caninum larvae following serum activation, with a focus on the insulin-like signalling pathway. Vet Parasitol 2008; 159:139-48. [PMID: 19054616 DOI: 10.1016/j.vetpar.2008.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 09/30/2008] [Accepted: 10/09/2008] [Indexed: 12/23/2022]
Abstract
The exit from dauer in the free-living nematode Caenorhabditis elegans is under the control of a single amphidial neuron (ASJ) of the insulin-like signalling pathway. Mutations of this pathway have the ability to suppress entry into the dauer stage. It has been postulated that insulin-like signalling plays a significant role in the response to serum stimulation in vitro of the third-stage larvae (L3s) of the canine hookworm Ancylostoma caninum. To test for the possible involvement of the insulin-like signalling cascade in the response to serum stimulation, the effects of two signalling stimulants (8-bromo cGMP and arecoline) and four inhibitors, namely 4,7-phenanthroline, phosphoinositide-3 kinase (PI3K), Akt inhibitor IV and rapamycin on feeding and on levels of selected activation-associated mRNAs in serum-stimulated L3s were explored. L3s of A. caninum were pre-incubated with or without the appropriate inhibitor/agonist. Following serum-stimulation, the feeding activity was assessed. The transcription levels of a number of activation-associated mRNAs linked to particular expressed sequence tags (ESTs) were investigated by reverse transcription, real-time PCR (rtPCR). The treatment of worms with 4,7-phenanthroline completely suppressed feeding and significantly reduced the differential levels of most activation-associated mRNAs, whereas the treatment with cGMP resulted in the resumption of feeding in almost 85% of the L3s and yielded a specific transcriptional profile consistent with that following serum stimulation. The treatment of L3s with arecoline resulted in the resumption of feeding in approximately 85% of L3s, but did not result in a transcriptomic profile consistent with activation. A complete reduction in feeding was recorded in the presence of the PI3K inhibitor LY294002 (1mM) and resulted in a pronounced dampening of differential transcription in response to serum stimulation for the molecules examined. Akt inhibitor IV resulted in a approximately 70% reduction in feeding but had almost no effect on the level of any of the activation-associated mRNAs studied. Rapamycin was shown to have a weak effect on feeding, and several of the mRNAs studied exhibited greater than expected transcription following treatment. The complexities of activation-associated transcription could not be addressed using the current approach. A larger number of mRNAs needs to be investigated in order to predict or identify regulatory mechanisms proposed to function in the insulin-like signalling pathway in A. caninum.
Collapse
|
15
|
Ranjit N, Zhan B, Stenzel DJ, Mulvenna J, Fujiwara R, Hotez PJ, Loukas A. A family of cathepsin B cysteine proteases expressed in the gut of the human hookworm, Necator americanus. Mol Biochem Parasitol 2008; 160:90-9. [DOI: 10.1016/j.molbiopara.2008.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 04/10/2008] [Accepted: 04/11/2008] [Indexed: 12/01/2022]
|
16
|
Dolecková K, Kasný M, Mikes L, Cartwright J, Jedelský P, Schneider EL, Dvorák J, Mountford AP, Craik CS, Horák P. The functional expression and characterisation of a cysteine peptidase from the invasive stage of the neuropathogenic schistosome Trichobilharzia regenti. Int J Parasitol 2008; 39:201-11. [PMID: 18708063 PMCID: PMC2625449 DOI: 10.1016/j.ijpara.2008.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/04/2008] [Accepted: 06/06/2008] [Indexed: 11/03/2022]
Abstract
A transcriptional product of a gene encoding cathepsin B-like peptidase in the bird schistosome Trichobilharzia regenti was identified and cloned. The enzyme was named TrCB2 due to its 77% sequence similarity to cathepsin B2 from the important human parasite Schistosoma mansoni. The zymogen was expressed in the methylotropic yeast Pichia pastoris; procathepsin B2 underwent self-processing in yeast media. The peptidolytic activity of the recombinant enzyme was characterised using synthetic fluorogenic peptide substrates at optimal pH 6.0. Functional studies using different specific inhibitors proved the typical cathepsin B-like nature of the enzyme. The S(2) subsite specificity profile of recombinant TrCB2 was obtained. Using monospecific antibodies against the recombinant enzyme, the presence of cathepsin B2 was confirmed in extracts from cercariae (infective stage) and schistosomula (early post-cercarial stage) of T. regenti on Western blots. Also, cross-reactivity was observed between T. regenti and S. mansoni cathepsins B2 in extracts of cercariae, schistosomula or adults. In T. regenti, the antisera localised the enzyme to post-acetabular penetration glands of cercariae implying an important role in the penetration of host skin. The ability of recombinant TrCB2 to degrade skin, serum and nervous tissue proteins was evident. Elastinolytic activity suggests that the enzyme might functionally substitute the histolytic role of the serine class elastase known from S. mansoni and Schistosoma haematobium but not found in Schistosoma japonicum or in bird schistosomes.
Collapse
Affiliation(s)
- Katerina Dolecková
- Department of Parasitology, Faculty of Science, Charles University in Prague, Vinicná 7, 12844 Prague 2, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Profiling of proteolytic enzymes in the gut of the tick Ixodes ricinus reveals an evolutionarily conserved network of aspartic and cysteine peptidases. Parasit Vectors 2008; 1:7. [PMID: 18348719 PMCID: PMC2289814 DOI: 10.1186/1756-3305-1-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 03/18/2008] [Indexed: 11/26/2022] Open
Abstract
Background Ticks are vectors for a variety of viral, bacterial and parasitic diseases in human and domestic animals. To survive and reproduce ticks feed on host blood, yet our understanding of the intestinal proteolytic machinery used to derive absorbable nutrients from the blood meal is poor. Intestinal digestive processes are limiting factors for pathogen transmission since the tick gut presents the primary site of infection. Moreover, digestive enzymes may find practical application as anti-tick vaccine targets. Results Using the hard tick, Ixodes ricinus, we performed a functional activity scan of the peptidase complement in gut tissue extracts that demonstrated the presence of five types of peptidases of the cysteine and aspartic classes. We followed up with genetic screens of gut-derived cDNA to identify and clone genes encoding the cysteine peptidases cathepsins B, L and C, an asparaginyl endopeptidase (legumain), and the aspartic peptidase, cathepsin D. By RT-PCR, expression of asparaginyl endopeptidase and cathepsins B and D was restricted to gut tissue and to those developmental stages feeding on blood. Conclusion Overall, our results demonstrate the presence of a network of cysteine and aspartic peptidases that conceivably operates to digest host blood proteins in a concerted manner. Significantly, the peptidase components of this digestive network are orthologous to those described in other parasites, including nematodes and flatworms. Accordingly, the present data and those available for other tick species support the notion of an evolutionary conservation of a cysteine/aspartic peptidase system for digestion that includes ticks, but differs from that of insects relying on serine peptidases.
Collapse
|
18
|
Nisbet AJ, Redmond DL, Matthews JB, Watkins C, Yaga R, Jones JT, Nath M, Knox DP. Stage-specific gene expression in Teladorsagia circumcincta (Nematoda: Strongylida) infective larvae and early parasitic stages. Int J Parasitol 2007; 38:829-38. [PMID: 18062971 DOI: 10.1016/j.ijpara.2007.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 10/10/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
Abstract
Suppression subtractive hybridisation was used to enrich genes expressed in a stage-specific manner in infective, exsheathed L3s (xL3) versus early L4s of the ovine nematode, Teladorsagia circumcincta prior to gene expression profiling by microarray. The 769 cDNA sequences obtained from the xL3-enriched library contained 361 unique sequences, with 292 expressed sequence tags (ESTs) being represented once ("singletons") and 69 sequences which were represented more than once (overlapping and non-overlapping "contigs"). The L4-enriched EST dataset contained 472 unique sequences, with 314 singletons and 158 contigs. Of these 833 sequences, 85% of the xL3 sequences and 86% of the L4 sequences exhibited homology to known genes or ESTs derived from other species of nematode. Quantitative differential expression (P<0.05) was demonstrated for 563 (68%) of the ESTs by microarray. Within the L3-specific dataset, more than 30% of the transcripts represented the enzyme, guanosine-5'-triphosphate (GTP)-cyclohydrolase, which is the first and rate-limiting enzyme of the tetrahydrobiopterin synthesis pathway and may be involved in critical elements of larval development. In L4s, proteolytic enzymes were highly up-regulated, as were collagens and a number of previously characterised secretory proteins, reflecting the rapid growth of these larvae in abomasal glands. Nucleotide sequence data reported in this paper are available in the EMBL, GenBank and DDJB databases under accession numbers AM 743198-AM 744942.
Collapse
Affiliation(s)
- Alasdair J Nisbet
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Muleke CI, Ruofeng Y, Lixin X, Yanming S, Xiangrui L. Characterization of HC58cDNA, a putative cysteine protease from the parasite Haemonchus contortus. J Vet Sci 2006; 7:249-55. [PMID: 16871019 PMCID: PMC3242124 DOI: 10.4142/jvs.2006.7.3.249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Because of the complexity of the cathepsin B-like (CBL) family, an information on the biological and biochemical characteristics of individual CBL genes is lacking. In this study, we investigated the degradative effects of the recombinant HC58 protein isolated from Haemonchus contortus parasites on protein substrates over a broad pH range in vitro. This protein, which hydrolyzed the synthetic peptide substrates Z-FR-AMC and Z-RR-AMC, had characteristics of the cysteine protease class of proteins. In the acidic pH range, the isolated protein actively degraded hemoglobin (Hb), the heavy chain of goat immunoglobulin G, and azocasein. By contrast, it degraded fibrinogen in the alkaline pH range. These activities were strongly inhibited in the presence of the cysteine protease inhibitor E-64. While the protein digested Hb, it did not induce the agglutination of erythrocytes from its natural host. These results suggest that the HC58 protein may play a role in the nutrition of this parasite.
Collapse
Affiliation(s)
- Charles I Muleke
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu 210095, P R China.
| | | | | | | | | |
Collapse
|
20
|
Choi JH, Lee JH, Yu HS, Jeong HJ, Kim J, Hong YC, Kong HH, Chung DI. Molecular and biochemical characterization of hemoglobinase, a cysteine proteinase, in Paragonimus westermani. THE KOREAN JOURNAL OF PARASITOLOGY 2006; 44:187-96. [PMID: 16969056 PMCID: PMC2532661 DOI: 10.3347/kjp.2006.44.3.187] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The mammalian trematode Paragonimus westermani is a typical digenetic parasite, which can cause paragonimiasis in humans. Host tissues and blood cells are important sources of nutrients for development, growth and reproduction of P. westermani. In this study, a cDNA clone encoding a 47 kDa hemoglobinase of P. westermani was characterized by sequencing analysis, and its localization was investigated immunohistochemically. The phylogenetic tree prepared based on the hemoglobinase gene showed high homology with hemoglobinases of Fasciola hepatica and Schistosoma spp. Moreover, recombinant P. westermani hemoglobinase degradaded human hemoglobin at acidic pH (from 3.0 to 5.5) and its activity was almost completely inhibited by E-64, a cysteine proteinase inhibitor. Immunohistochemical studies showed that P. westermani hemoglobinase was localized in the epithelium of the adult worm intestine implying that the protein has a specific function. These observations suggest that hemoglobinase may act as a digestive enzyme for acquisition of nutrients from host hemoglobin. Further investigations may provide insights into hemoglobin catabolism in P. westermani.
Collapse
Affiliation(s)
- Joon-Hyuck Choi
- Department of Parasitology, Kyungpook National University School of Medicine, Daegu, Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Yatsuda AP, Bakker N, Krijgsveld J, Knox DP, Heck AJR, de Vries E. Identification of secreted cysteine proteases from the parasitic nematode Haemonchus contortus detected by biotinylated inhibitors. Infect Immun 2006; 74:1989-93. [PMID: 16495580 PMCID: PMC1418636 DOI: 10.1128/iai.74.3.1989-1993.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Seven cathepsin B-like cysteine proteases (CBLs) were identified from the immunoprotective excretory-secretory products of Haemonchus contortus. Two-dimensional (2-D) zymography and biotinylated inhibitors were employed to localize active CBLs in 2-D protein gels. Mass spectrometry provided the identification of AC-4, HMCP1, HMCP2, and GCP7 as well as three novel CBLs encoded by clustered expressed sequence tags.
Collapse
Affiliation(s)
- Ana P Yatsuda
- Division of Infection Biology, Department of Infectious Diseases and Immunology, Utrecht University, Yalelaan, 1, 3584CL, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Oliver EM, Skuce PJ, McNair CM, Knox DP. Identification and characterization of an asparaginyl proteinase (legumain) from the parasitic nematode, Haemonchus contortus. Parasitology 2006; 133:237-44. [PMID: 16650340 DOI: 10.1017/s0031182006000229] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 02/27/2006] [Accepted: 02/28/2006] [Indexed: 11/06/2022]
Abstract
Asparaginyl proteinases (or legumains) are a recently identified, novel class of cysteine proteinase which specifically hydrolyse peptide bonds after asparagine residues. Legumains have been implicated in the activation of cysteine proteases, particularly cathepsin B-like proteinases which are thought to help degrade the bloodmeal in blood-feeding helminths such as schistosomes, hookworms and other nematode species. An EST sequence representing a full-length legumain was identified from the Haemonchus contortus dataset. This encoded a protein with a predicted Mr of 49 kDa, the amino acid sequence of which showed good homology (34-40% identity) to legumains from Schistosoma mansoni, human and rat and contained a legumain-like active site. RT-PCR indicated that the legumain transcript was expressed from the L4 life-cycle stage onwards. The coding sequence was expressed in E. coli and antibodies to the resultant recombinant protein indicated that the enzyme was expressed in the microvillar surface of the intestinal cells. Legumain activity was detected in extracts of the adult parasite but not the host protective Thiol-Sepharose-binding fraction, although it was detectable in the latter by immunoblot. Activity was relatively insensitive to E64, an inhibitor of cysteine proteinases and completely inhibited by the alkylating agent, N-ethylmaleimide, consistent with inhibitor effects on previously characterized legumains.
Collapse
Affiliation(s)
- E M Oliver
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | | | | | | |
Collapse
|
23
|
Duffy MS, Cevasco DK, Zarlenga DS, Sukhumavasi W, Appleton JA. Cathepsin B homologue at the interface between a parasitic nematode and its intermediate host. Infect Immun 2006; 74:1297-304. [PMID: 16428779 PMCID: PMC1360336 DOI: 10.1128/iai.74.2.1297-1304.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parelaphostrongylus tenuis is a parasitic nematode that causes a debilitating neurologic disease in many North American cervids and domestic livestock species. We produced a PCR-based cDNA library from infective larvae (L3) in order to identify molecules that mediate parasitism. A dominant 1,250-bp amplicon encoded a homologue of cathepsin B cysteine proteases. The sequence incorporated a C29G substitution in the putative active site. Antibodies generated against a recombinant form detected the native protein (PtCPR-1) in Western blot assays of L3, but not adult worm, extracts. Immunohistochemical methods revealed that PtCPR-1 synthesis was restricted to larval stages within the snail intermediate host (Triodopsis sp.), beginning as early as 2 days postinfection (dpi) of snails. The protein was present in the intestine and luminal contents and was lost from larvae over time. Concurrent studies showed that larvae induced an immune response in snails beginning at 1 dpi. Layers of hemocytes encapsulated larvae immediately after infection, and granuloma-like structures formed around parasites in chronic infections. Loss of PtCPR-1 from L3 and its accumulation in host tissues coincided with degeneration of granuloma architecture 90 to 105 dpi. Fully developed L3 emerged from the snail at this time. Our data implicate PtCPR-1 in larval development and possibly in the emergence of P. tenuis from the intermediate host. Emerged L3 survived desiccation and cold stress, suggesting that they could remain infectious in the environment. Molecules promoting emergence would facilitate dispersal of L3 and increase the likelihood of transmission to definitive hosts.
Collapse
Affiliation(s)
- Michael S Duffy
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
24
|
Caffrey CR, McKerrow JH, Salter JP, Sajid M. Blood ‘n’ guts: an update on schistosome digestive peptidases. Trends Parasitol 2004; 20:241-8. [PMID: 15105025 DOI: 10.1016/j.pt.2004.03.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Conor R Caffrey
- Sandler Center for Basic Research in Parasitic Diseases, Box 0511, University of California-San Francisco, San Francisco, CA 94143, USA.
| | | | | | | |
Collapse
|
25
|
Morales FC, Furtado DR, Rumjanek FD. The N-terminus moiety of the cystatin SmCys from Schistosoma mansoni regulates its inhibitory activity in vitro and in vivo. Mol Biochem Parasitol 2004; 134:65-73. [PMID: 14747144 DOI: 10.1016/j.molbiopara.2003.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The complete sequence of SmCys, a cystatin expressed by Schistosoma mansoni, was obtained. Constructs of SmCys consisting of deletions of 10 and 20 amino acid residues from the N-terminal of the full length recombinant protein, were cloned in the pQE-30 vector, expressed in Escherichia coli and assayed for inhibitory activity against papain. Kinetic analysis showed that SmCys -10 and SmCys -20 had K(i) values of 0.7391 and 4.9154, respectively, as compared to 0.0647, displayed by the full length recombinant. Protease inhibition by SmCys was also observed in vivo. When the recombinant products were incubated during 7 days with live schistosomula in the presence of red blood cells, only the full length product could completely inhibit the formation of haemozoin, a dark pigment formed as a by-product of haemoglobin digestion. The sequence data of the recombinant SmCys proteins were used for the construction of molecular models, which were then subjected to molecular dynamics for 2ns. In comparison to the full length, the models corresponding to the truncated constructs, showed a distinctive change on the surface charge distribution. This parameter was more pronounced in SmCys -20, which also displayed a significant displacement of the inhibitory domain, a result which could explain the kinetic data in terms of the loss of attachment sites. These changes correlated well with the progressive lack of inhibition observed for the recombinant deletion constructs, in vitro and in vivo.
Collapse
Affiliation(s)
- Fabiana Carvalho Morales
- Departamento de Bioquímica Médica, ICB/CCS, Universidade Federal do io de Janeiro, Ilha do Fundão, CEP 21941-590, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
26
|
Pedra JHF, Brandt A, Li HM, Westerman R, Romero-Severson J, Pollack RJ, Murdock LL, Pittendrigh BR. Transcriptome identification of putative genes involved in protein catabolism and innate immune response in human body louse (Pediculicidae: Pediculus humanus). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:1135-1143. [PMID: 14563364 DOI: 10.1016/s0965-1748(03)00133-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Genomics information relating to human body lice is surprisingly scarce, and this has constrained studies of their physiology, immunology and vector biology. To identify novel body louse genes, we used engorged adult lice to generate a cDNA library. Initially, 1152 clones were screened for inserts, edited for removal of vector sequences and base pairs of poor quality, and viewed for splicing variations, gene families and polymorphism. Computational methods identified 506 inferred open reading frames including the first predicted louse defensin. The inferred defensin aligns well with other insect defensins and has highly conserved cysteine residues, as are known for other defensin sequences. Two cysteine and five serine proteinases were categorized according to their inferred catalytic sites. We also discovered seven putative ubiquitin-pathway genes and four iron metabolizing deduced enzymes. Finally, glutathione-S-transferases and cytochrome P450 genes were among the detoxification enzymes found. Results from this first systematic effort to discover human body louse genes should promote further studies in Phthiraptera and lice.
Collapse
Affiliation(s)
- Joao H F Pedra
- Indiana Center for Insect Genomics, University of Notre Dame, Notre Dame, IN 46556-0369, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Williamson AL, Brindley PJ, Knox DP, Hotez PJ, Loukas A. Digestive proteases of blood-feeding nematodes. Trends Parasitol 2003; 19:417-23. [PMID: 12957519 DOI: 10.1016/s1471-4922(03)00189-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Blood-feeding parasites employ a battery of proteolytic enzymes to digest the contents of their bloodmeal. Host haemoglobin is a major substrate for these proteases and, therefore, a driving force in the evolution of parasite-derived proteolytic enzymes. This review will focus on the digestive proteases of the major blood-feeding nematodes - hookworms (Ancylostoma spp. and Necator americanus) and the ruminant parasite, Haemonchus contortus - but also compares and contrasts these proteases with recent findings from schistosomes and malaria parasites. Haematophagous nematodes express proteases of different mechanistic classes in their intestines, many of which have proven or putative roles in degradation of haemoglobin and other proteins involved in nutrition. Moreover, the fine specificity of the relationships between digestive proteases and their substrate proteins provides a new molecular paradigm for understanding host-parasite co-evolution. Numerous laboratories are actively investigating these molecules as antiparasite vaccine targets.
Collapse
Affiliation(s)
- Angela L Williamson
- Department of Microbiology and Tropical Medicine, George Washington University Medical Center, Washington DC 20037, USA
| | | | | | | | | |
Collapse
|