1
|
Sung Y, Yu YC, Han JM. Nutrient sensors and their crosstalk. Exp Mol Med 2023; 55:1076-1089. [PMID: 37258576 PMCID: PMC10318010 DOI: 10.1038/s12276-023-01006-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 06/02/2023] Open
Abstract
The macronutrients glucose, lipids, and amino acids are the major components that maintain life. The ability of cells to sense and respond to fluctuations in these nutrients is a crucial feature for survival. Nutrient-sensing pathways are thus developed to govern cellular energy and metabolic homeostasis and regulate diverse biological processes. Accordingly, perturbations in these sensing pathways are associated with a wide variety of pathologies, especially metabolic diseases. Molecular sensors are the core within these sensing pathways and have a certain degree of specificity and affinity to sense the intracellular fluctuation of each nutrient either by directly binding to that nutrient or indirectly binding to its surrogate molecules. Once the changes in nutrient levels are detected, sensors trigger signaling cascades to fine-tune cellular processes for energy and metabolic homeostasis, for example, by controlling uptake, de novo synthesis or catabolism of that nutrient. In this review, we summarize the major discoveries on nutrient-sensing pathways and explain how those sensors associated with each pathway respond to intracellular nutrient availability and how these mechanisms control metabolic processes. Later, we further discuss the crosstalk between these sensing pathways for each nutrient, which are intertwined to regulate overall intracellular nutrient/metabolic homeostasis.
Collapse
Affiliation(s)
- Yulseung Sung
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Ya Chun Yu
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Jung Min Han
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea.
- Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, 03722, South Korea.
- POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| |
Collapse
|
2
|
The Aminoacyl-tRNA Synthetase and tRNA Expression Levels Are Deregulated in Cancer and Correlate Independently with Patient Survival. Curr Issues Mol Biol 2022; 44:3001-3017. [PMID: 35877431 PMCID: PMC9324904 DOI: 10.3390/cimb44070207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that load amino acids to their cognate tRNA molecules. The expression of certain ARSs and tRNAs has been shown to be deregulated in cancer, presumably to accommodate elevated protein synthesis requirements. In this work, the expression of cytoplasmic ARSs and tRNAs in ten TCGA cancers has been systematically examined. ARSs were found to be mostly upregulated in tumours and their upregulation often correlated with worse patient survival. tRNAs were found to be either upregulated or downregulated in tumours and their expression sometimes correlated to worse survival outcomes. However, although the expression of most ARSs and tRNAs was deregulated in tumours when compared to healthy adjacent tissues, only in a few cases, and independently, did it correlate to patient survival. These data point to the general uncoupling of concomitant ARS and tRNA expression deregulation and patient survival, highlighting the different ARS and tRNA requirements in cancers.
Collapse
|
3
|
Ju Y, Han L, Chen B, Luo Z, Gu Q, Xu J, Yang XL, Schimmel P, Zhou H. X-shaped structure of bacterial heterotetrameric tRNA synthetase suggests cryptic prokaryote functions and a rationale for synthetase classifications. Nucleic Acids Res 2021; 49:10106-10119. [PMID: 34390350 PMCID: PMC8464048 DOI: 10.1093/nar/gkab707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/14/2022] Open
Abstract
AaRSs (aminoacyl-tRNA synthetases) group into two ten-member classes throughout evolution, with unique active site architectures defining each class. Most are monomers or homodimers but, for no apparent reason, many bacterial GlyRSs are heterotetramers consisting of two catalytic α-subunits and two tRNA-binding β-subunits. The heterotetrameric GlyRS from Escherichia coli (EcGlyRS) was historically tested whether its α- and β-polypeptides, which are encoded by a single mRNA with a gap of three in-frame codons, are replaceable by a single chain. Here, an unprecedented X-shaped structure of EcGlyRS shows wide separation of the abutting chain termini seen in the coding sequences, suggesting strong pressure to avoid a single polypeptide format. The structure of the five-domain β-subunit is unique across all aaRSs in current databases, and structural analyses suggest these domains play different functions on α-subunit binding, ATP coordination and tRNA recognition. Moreover, the X-shaped architecture of EcGlyRS largely fits with a model for how two classes of tRNA synthetases arose, according to whether enzymes from opposite classes can simultaneously co-dock onto separate faces of the same tRNA acceptor stem. While heterotetrameric GlyRS remains the last structurally uncharacterized member of aaRSs, our study contributes to a better understanding of this ancient and essential enzyme family.
Collapse
Affiliation(s)
- Yingchen Ju
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lu Han
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bingyi Chen
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiteng Luo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Huihao Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
4
|
Warsi O, Knopp M, Surkov S, Jerlström Hultqvist J, Andersson DI. Evolution of a New Function by Fusion between Phage DNA and a Bacterial Gene. Mol Biol Evol 2021; 37:1329-1341. [PMID: 31977019 PMCID: PMC7182210 DOI: 10.1093/molbev/msaa007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mobile genetic elements, such as plasmids, phages, and transposons, are important sources for evolution of novel functions. In this study, we performed a large-scale screening of metagenomic phage libraries for their ability to suppress temperature-sensitivity in Salmonella enterica serovar Typhimurium strain LT2 mutants to examine how phage DNA could confer evolutionary novelty to bacteria. We identified an insert encoding 23 amino acids from a phage that when fused with a bacterial DNA-binding repressor protein (LacI) resulted in the formation of a chimeric protein that localized to the outer membrane. This relocalization of the chimeric protein resulted in increased membrane vesicle formation and an associated suppression of the temperature sensitivity of the bacterium. Both the host LacI protein and the extracellular 23-amino acid stretch are necessary for the generation of the novel phenotype. Furthermore, mutational analysis of the chimeric protein showed that although the native repressor function of the LacI protein is maintained in this chimeric structure, it is not necessary for the new function. Thus, our study demonstrates how a gene fusion between foreign DNA and bacterial DNA can generate novelty without compromising the native function of a given gene.
Collapse
Affiliation(s)
- Omar Warsi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Michael Knopp
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Serhiy Surkov
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Vasu K, Ramachandiran I, Terenzi F, Khan D, China A, Khan K, Chechi A, Baleanu-Gogonea C, Gogonea V, Fox PL. The zinc-binding domain of mammalian prolyl-tRNA synthetase is indispensable for catalytic activity and organism viability. iScience 2021; 24:102215. [PMID: 33748704 PMCID: PMC7960942 DOI: 10.1016/j.isci.2021.102215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/26/2021] [Accepted: 02/17/2021] [Indexed: 01/10/2023] Open
Abstract
Aminoacyl-tRNA synthetases (AARS) participate in decoding the genome by catalyzing conjugation of amino acids to their cognate tRNAs. During evolution, biochemical and environmental conditions markedly influenced the sequence and structure of the 20 AARSs, revealing adaptations dictating canonical and orthogonal activities. Here, we investigate the function of the appended Zn2+-binding domain (ZBD) in the bifunctional AARS, glutamyl-prolyl-tRNA synthetase (GluProRS). We developed GluProRS mutant mice by CRISPR-Cas9 with a deletion of 29 C-terminal amino acids, including two of four Zn2+-coordinating cysteines. Homozygous ZBD mutant mice die before embryonic day 12.5, but heterozygous mice are healthy. ZBD disruption profoundly reduces GluProRS canonical function by dual mechanisms: it induces rapid proteasomal degradation of the protein and inhibits ProRS aminoacylation activity, likely by sub-optimal positioning of ATP in the spatially adjacent catalytic domain. Collectively, our studies reveal the ZBD as a critical determinant of ProRS activity and GluProRS stability in vitro and in vivo. Conserved zinc-binding domain (ZBD) of GluProRS is required for Pro-tRNA charging ZBD stabilizes GluProRS and positions C-terminal carboxylate in the catalytic site Embryonic lethality in mice with defective GluProRS ZBD reveals in vivo essentiality Locked nucleic acid qPCR assay for CRISPR-mediated screening of chimeric mutant mice
Collapse
Affiliation(s)
- Kommireddy Vasu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Iyappan Ramachandiran
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Fulvia Terenzi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Arnab China
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Aayushi Chechi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | - Valentin Gogonea
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
6
|
Yu YC, Han JM, Kim S. Aminoacyl-tRNA synthetases and amino acid signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118889. [PMID: 33091505 DOI: 10.1016/j.bbamcr.2020.118889] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are a family of evolutionarily conserved housekeeping enzymes used for protein synthesis that have pivotal roles in the ligation of tRNA with their cognate amino acids. Recent advances in the structural and functional studies of ARSs have revealed many previously unknown biological functions beyond the classical catalytic roles. Sensing the sufficiency of intracellular nutrients such as amino acids, ATP, and fatty acids is a crucial aspect for every living organism, and it is closely connected to the regulation of diverse cellular physiologies. Notably, among ARSs, leucyl-tRNA synthetase 1 (LARS1) has been identified to perform specifically as a leucine sensor upstream of the amino acid-sensing pathway and thus participates in the coordinated control of protein synthesis and autophagy for cell growth. In addition to LARS1, other types of ARSs are also likely involved in the sensing and signaling of their cognate amino acids inside cells. Collectively, this review focuses on the mechanisms of ARSs interacting within amino acid signaling and proposes the possible role of ARSs as general intracellular amino acid sensors.
Collapse
Affiliation(s)
- Ya Chun Yu
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea
| | - Jung Min Han
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea; Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, South Korea.
| | - Sunghoon Kim
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea; Medicinal Bioconvergence Research Center, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, South Korea.
| |
Collapse
|
7
|
Tang L, Qiu L, Liu C, Du G, Mo Z, Tang X, Mao Y. Transcriptomic Insights into Innate Immunity Responding to Red Rot Disease in Red Alga Pyropia yezoensis. Int J Mol Sci 2019; 20:E5970. [PMID: 31783543 PMCID: PMC6928737 DOI: 10.3390/ijms20235970] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 01/17/2023] Open
Abstract
Pyropia yezoensis, one of the most economically important marine algae, suffers from the biotic stress of the oomycete necrotrophic pathogen Pythium porphyrae. However, little is known about the molecular defensive mechanisms employed by Pyr. yezoensis during the infection process. In the present study, we defined three stages of red rot disease based on histopathological features and photosynthetic physiology. Transcriptomic analysis was carried out at different stages of infection to identify the genes related to the innate immune system in Pyr. yezoensis. In total, 2139 up-regulated genes and 1672 down-regulated genes were identified from all the infected groups. Pathogen receptor genes, including three lectin genes (pattern recognition receptors (PRRs)) and five genes encoding typical plant R protein domains (leucine rich repeat (LRR), nucleotide binding site (NBS), or Toll/interleukin-1 receptor (TIR)), were found to be up-regulated after infection. Several defense mechanisms that were typically regarded as PAMP-triggered immunity (PTI) in plants were induced during the infection. These included defensive and protective enzymes, heat shock proteins, secondary metabolites, cellulase, and protease inhibitors. As a part of the effector-triggered immunity (ETI), the expression of genes related to the ubiquitin-proteasome system (UPS) and hypersensitive cell death response (HR) increased significantly during the infection. The current study suggests that, similar to plants, Pyr. yezoensis possesses a conserved innate immune system that counters the invasion of necrotrophic pathogen Pyt. porphyrae. However, the innate immunity genes of Pyr. yezoensis appear to be more ancient in origin compared to those in higher plants.
Collapse
Affiliation(s)
- Lei Tang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (L.T.); (L.Q.); (C.L.); (G.D.); (X.T.)
| | - Liping Qiu
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (L.T.); (L.Q.); (C.L.); (G.D.); (X.T.)
| | - Cong Liu
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (L.T.); (L.Q.); (C.L.); (G.D.); (X.T.)
| | - Guoying Du
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (L.T.); (L.Q.); (C.L.); (G.D.); (X.T.)
| | - Zhaolan Mo
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xianghai Tang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (L.T.); (L.Q.); (C.L.); (G.D.); (X.T.)
| | - Yunxiang Mao
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (L.T.); (L.Q.); (C.L.); (G.D.); (X.T.)
- Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource (Ministry of Education), College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya 572022, China
| |
Collapse
|
8
|
Eswarappa SM, Potdar AA, Sahoo S, Sankar S, Fox PL. Metabolic origin of the fused aminoacyl-tRNA synthetase, glutamyl-prolyl-tRNA synthetase. J Biol Chem 2018; 293:19148-19156. [PMID: 30309984 DOI: 10.1074/jbc.ra118.004276] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/03/2018] [Indexed: 11/06/2022] Open
Abstract
About 1 billion years ago, in a single-celled holozoan ancestor of all animals, a gene fusion of two tRNA synthetases formed the bifunctional enzyme, glutamyl-prolyl-tRNA synthetase (EPRS). We propose here that a confluence of metabolic, biochemical, and environmental factors contributed to the specific fusion of glutamyl- (ERS) and prolyl- (PRS) tRNA synthetases. To test this idea, we developed a mathematical model that centers on the precursor-product relationship of glutamic acid and proline, as well as metabolic constraints on free glutamic acid availability near the time of the fusion event. Our findings indicate that proline content increased in the proteome during the emergence of animals, thereby increasing demand for free proline. Together, these constraints contributed to a marked cellular depletion of glutamic acid and its products, with potentially catastrophic consequences. In response, an ancient organism invented an elegant solution in which genes encoding ERS and PRS fused to form EPRS, forcing coexpression of the two enzymes and preventing lethal dysregulation. The substantial evolutionary advantage of this coregulatory mechanism is evidenced by the persistence of EPRS in nearly all extant animals.
Collapse
Affiliation(s)
- Sandeep M Eswarappa
- From the Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India,
| | - Alka A Potdar
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, and
| | - Sarthak Sahoo
- From the Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Santhosh Sankar
- From the Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Paul L Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
9
|
Fröhlich D, Suchowerska AK, Voss C, He R, Wolvetang E, von Jonquieres G, Simons C, Fath T, Housley GD, Klugmann M. Expression Pattern of the Aspartyl-tRNA Synthetase DARS in the Human Brain. Front Mol Neurosci 2018; 11:81. [PMID: 29615866 PMCID: PMC5869200 DOI: 10.3389/fnmol.2018.00081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/01/2018] [Indexed: 12/21/2022] Open
Abstract
Translation of mRNA into protein is an evolutionarily conserved, fundamental process of life. A prerequisite for translation is the accurate charging of tRNAs with their cognate amino acids, a reaction catalyzed by specific aminoacyl-tRNA synthetases. One of these enzymes is the aspartyl-tRNA synthetase DARS, which pairs aspartate with its corresponding tRNA. Missense mutations of the gene encoding DARS result in the leukodystrophy hypomyelination with brainstem and spinal cord involvement and leg spasticity (HBSL) with a distinct pattern of hypomyelination, motor abnormalities, and cognitive impairment. A thorough understanding of the DARS expression domains in the central nervous system is essential for the development of targeted therapies to treat HBSL. Here, we analyzed endogenous DARS expression on the mRNA and protein level in different brain regions and cell types of human post mortem brain tissue as well as in human stem cell derived neurons, oligodendrocytes, and astrocytes. DARS expression is significantly enriched in the cerebellum, a region affected in HBSL patients and important for motor control. Although obligatorily expressed in all cells, DARS shows a distinct expression pattern with enrichment in neurons but only low abundance in oligodendrocytes, astrocytes, and microglia. Our results reveal little homogeneity across the different cell types, largely matching previously published data in the murine brain. This human gene expression study will significantly contribute to the understanding of DARS gene function and HBSL pathology and will be instrumental for future development of animal models and targeted therapies. In particular, we anticipate high benefit from a gene replacement approach in neurons of HBSL mouse models, given the abundant endogenous DARS expression in this lineage cell.
Collapse
Affiliation(s)
- Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Alexandra K Suchowerska
- Neurodegenerative and Repair Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Carola Voss
- Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Ruojie He
- Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ernst Wolvetang
- Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Georg von Jonquieres
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Cas Simons
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Thomas Fath
- Neurodegenerative and Repair Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Gary D Housley
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
10
|
Abstract
Aminoacyl-tRNA synthetases (aaRSs) ligate amino acids to their cognate tRNAs, allowing them to decode the triplet code during translation. Through different mechanisms aaRSs also perform several non-canonical functions in transcription, translation, apoptosis, angiogenesis and inflammation. Drosophila has become a preferred system to model human diseases caused by mutations in aaRS genes, to dissect effects of reduced translation or non-canonical activities, and to study aminoacylation and translational fidelity. However, the lack of a systematic annotation of this gene family has hampered such studies. Here, we report the identification of the entire set of aaRS genes in the fly genome and we predict their roles based on experimental evidence and/or orthology. Further, we propose a new, systematic and logical nomenclature for aaRSs. We also review the research conducted on Drosophila aaRSs to date. Together, our work provides the foundation for further research in the fly aaRS field.
Collapse
Affiliation(s)
- Jiongming Lu
- a Institute of Cell Biology; University of Bern ; Bern , Switzerland
| | - Steven J Marygold
- b FlyBase; Department of Genetics; University of Cambridge ; Cambridge , UK
| | - Walid H Gharib
- c Interfaculty Bioinformatics Unit; University of Bern ; Bern , Switzerland
| | - Beat Suter
- a Institute of Cell Biology; University of Bern ; Bern , Switzerland
| |
Collapse
|
11
|
Aminoacyl-tRNA synthetase complexes in evolution. Int J Mol Sci 2015; 16:6571-94. [PMID: 25807264 PMCID: PMC4394549 DOI: 10.3390/ijms16036571] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/17/2015] [Accepted: 03/11/2015] [Indexed: 11/23/2022] Open
Abstract
Aminoacyl-tRNA synthetases are essential enzymes for interpreting the genetic code. They are responsible for the proper pairing of codons on mRNA with amino acids. In addition to this canonical, translational function, they are also involved in the control of many cellular pathways essential for the maintenance of cellular homeostasis. Association of several of these enzymes within supramolecular assemblies is a key feature of organization of the translation apparatus in eukaryotes. It could be a means to control their oscillation between translational functions, when associated within a multi-aminoacyl-tRNA synthetase complex (MARS), and nontranslational functions, after dissociation from the MARS and association with other partners. In this review, we summarize the composition of the different MARS described from archaea to mammals, the mode of assembly of these complexes, and their roles in maintenance of cellular homeostasis.
Collapse
|
12
|
Ray PS, Fox PL. Origin and evolution of glutamyl-prolyl tRNA synthetase WHEP domains reveal evolutionary relationships within Holozoa. PLoS One 2014; 9:e98493. [PMID: 24968216 PMCID: PMC4072531 DOI: 10.1371/journal.pone.0098493] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/02/2014] [Indexed: 02/05/2023] Open
Abstract
Repeated domains in proteins that have undergone duplication or loss, and sequence divergence, are especially informative about phylogenetic relationships. We have exploited divergent repeats of the highly structured, 50-amino acid WHEP domains that join the catalytic subunits of bifunctional glutamyl-prolyl tRNA synthetase (EPRS) as a sequence-informed repeat (SIR) to trace the origin and evolution of EPRS in holozoa. EPRS is the only fused tRNA synthetase, with two distinct aminoacylation activities, and a non-canonical translation regulatory function mediated by the WHEP domains in the linker. Investigating the duplications, deletions and divergence of WHEP domains, we traced the bifunctional EPRS to choanozoans and identified the fusion event leading to its origin at the divergence of ichthyosporea and emergence of filozoa nearly a billion years ago. Distribution of WHEP domains from a single species in two or more distinct clades suggested common descent, allowing the identification of linking organisms. The discrete assortment of choanoflagellate WHEP domains with choanozoan domains as well as with those in metazoans supported the phylogenetic position of choanoflagellates as the closest sister group to metazoans. Analysis of clustering and assortment of WHEP domains provided unexpected insights into phylogenetic relationships amongst holozoan taxa. Furthermore, observed gaps in the transition between WHEP domain groupings in distant taxa allowed the prediction of undiscovered or extinct evolutionary intermediates. Analysis based on SIR domains can provide a phylogenetic counterpart to palaentological approaches of discovering “missing links” in the tree of life.
Collapse
Affiliation(s)
- Partho Sarothi Ray
- Department of Cellular and Molecular Medicine, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, Unites States of America
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Paul L. Fox
- Department of Cellular and Molecular Medicine, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, Unites States of America
- * E-mail:
| |
Collapse
|
13
|
Pang YLJ, Poruri K, Martinis SA. tRNA synthetase: tRNA aminoacylation and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:461-80. [PMID: 24706556 DOI: 10.1002/wrna.1224] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 01/14/2014] [Accepted: 02/06/2014] [Indexed: 01/20/2023]
Abstract
The aminoacyl-tRNA synthetases are prominently known for their classic function in the first step of protein synthesis, where they bear the responsibility of setting the genetic code. Each enzyme is exquisitely adapted to covalently link a single standard amino acid to its cognate set of tRNA isoacceptors. These ancient enzymes have evolved idiosyncratically to host alternate activities that go far beyond their aminoacylation role and impact a wide range of other metabolic pathways and cell signaling processes. The family of aminoacyl-tRNA synthetases has also been suggested as a remarkable scaffold to incorporate new domains that would drive evolution and the emergence of new organisms with more complex function. Because they are essential, the tRNA synthetases have served as pharmaceutical targets for drug and antibiotic development. The recent unfolding of novel important functions for this family of proteins offers new and promising pathways for therapeutic development to treat diverse human diseases.
Collapse
Affiliation(s)
- Yan Ling Joy Pang
- Department of Biochemistry, University of Illinois at Urbana, Urbana, IL, USA
| | | | | |
Collapse
|
14
|
Pedroni MJ, Luu TNK, Lau AOT. Babesia bovis: a bipartite signal directs the glutamyl-tRNA synthetase to the apicoplast. Exp Parasitol 2012; 131:261-6. [PMID: 22561041 PMCID: PMC3377962 DOI: 10.1016/j.exppara.2012.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/14/2012] [Accepted: 04/18/2012] [Indexed: 12/03/2022]
Abstract
Babesia bovis contains a prokaryotic derived organelle known as the apicoplast. Many participants of the metabolic pathways within the apicoplast are encoded in the nuclear genome and post-translationally imported with the help of a bipartite signal. Recently, an all encompassing algorithm was derived to predict apicoplast targeted proteins for many non-Plasmodium apicomplexans in which it reported the presence of 260 apicoplast targeted proteins in Babesia. One of these proteins is glutamyl tRNA synthetase (GltX). This study investigates if the putative bipartite signal of GltX alone is sufficient to direct proteins into the apicoplast. Using a transient transfection system consisting of a green fluorescent protein as the reporter, we tested the signal and transit portions of the bipartite signal in apicoplastic transport. We first identified the transcript of gltX to be expressed during the asexual blood stages and subsequently confirmed that the complete bipartite signal is responsible for directing the reporter protein into a compartment distinct from the nucleus and the mitochondrion. As GltX bipartite signal successfully guided the reporter protein into the apicoplast, our finding implies that it also directs native GltX into the same organelle.
Collapse
Affiliation(s)
- Monica J Pedroni
- Program of Genomics, Department of Veterinary Microbiology & Pathology, Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA
| | | | | |
Collapse
|
15
|
Mutuality in Discrete and Compositional Information: Perspectives for Synthetic Genetic Codes. Cognit Comput 2011. [DOI: 10.1007/s12559-011-9116-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
16
|
Havrylenko S, Legouis R, Negrutskii B, Mirande M. Caenorhabditis elegans evolves a new architecture for the multi-aminoacyl-tRNA synthetase complex. J Biol Chem 2011; 286:28476-87. [PMID: 21685384 DOI: 10.1074/jbc.m111.254037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MARS is an evolutionary conserved supramolecular assembly of aminoacyl-tRNA synthetases found in eukaryotes. This complex was thought to be ubiquitous in the deuterostome and protostome clades of bilaterians because similar complexes were isolated from arthropods and vertebrates. However, several features of the component enzymes suggested that in the nematode Caenorhabditis elegans, a species grouped with arthropods in modern phylogeny, this complex might not exist, or should display a significantly different structural organization. C. elegans was also taken as a model system to study in a multicellular organism amenable to experimental approaches, the reason for existence of these supramolecular entities. Here, using a proteomic approach, we have characterized the components of MARS in C. elegans. We show that this organism evolved a specific structural organization of this complex, which contains several bona fide components of the MARS complexes known so far, but also displays significant variations. These data highlight molecular evolution events that took place after radiation of bilaterians. Remarkably, it shows that expansion of MARS assembly in metazoans is not linear, but is the result of additions but also of subtractions along evolution. We then undertook an experimental approach, using inactivation of the endogenous copy of methionyl-tRNA synthetase by RNAi and expression of transgenic variants, to understand the role in complex assembly and the in vivo functionality, of the eukaryotic-specific domains appended to aminoacyl-tRNA synthetases. We show that rescue of the worms and assembly of transgenic variants into MARS rest on the presence of these appended domains.
Collapse
Affiliation(s)
- Svitlana Havrylenko
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
17
|
Gottlieb A, Frenkel-Morgenstern M, Safro M, Horn D. Common peptides study of aminoacyl-tRNA synthetases. PLoS One 2011; 6:e20361. [PMID: 21647378 PMCID: PMC3103580 DOI: 10.1371/journal.pone.0020361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 04/30/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Aminoacyl tRNA synthetases (aaRSs) constitute an essential enzyme super-family, providing fidelity of the translation process of mRNA to proteins in living cells. They are common to all kingdoms and are of utmost importance to all organisms. It is thus of great interest to understand the evolutionary relationships among them and underline signature motifs defining their common domains. RESULTS We utilized the Common Peptides (CPs) framework, based on extracted deterministic motifs from all aaRSs, to study family-specific properties. We identified novel aaRS-class related signatures that may supplement the current classification methods and provide a basis for identifying functional regions specific to each aaRS class. We exploited the space spanned by the CPs in order to identify similarities between aaRS families that are not observed using sequence alignment methods, identifying different inter-aaRS associations across different kingdom of life. We explored the evolutionary history of the aaRS families and evolutionary origins of the mitochondrial aaRSs. Lastly, we showed that prevalent CPs significantly overlap known catalytic and binding sites, suggesting that they have meaningful functional roles, as well as identifying a motif shared between aaRSs and a the Biotin-[acetyl-CoA carboxylase] synthetase (birA) enzyme overlapping binding sites in both families. CONCLUSIONS The study presents the multitude of ways to exploit the CP framework in order to extract meaningful patterns from the aaRS super-family. Specific CPs, discovered in this study, may play important roles in the functionality of these enzymes. We explored the evolutionary patterns in each aaRS family and tracked remote evolutionary links between these families.
Collapse
Affiliation(s)
- Assaf Gottlieb
- The Balvatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | |
Collapse
|
18
|
Havrylenko S, Legouis R, Negrutskii B, Mirande M. Methionyl-tRNA synthetase from Caenorhabditis elegans: a specific multidomain organization for convergent functional evolution. Protein Sci 2011; 19:2475-84. [PMID: 20954242 DOI: 10.1002/pro.529] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Methionyl-tRNA synthetase (MetRS) is a multidomain protein that specifically binds tRNAMet and catalyzes the synthesis of methionyl-tRNAMet. The minimal, core enzyme found in Aquifex aeolicus is made of a catalytic domain, which catalyzes the aminoacylation reaction, and an anticodon-binding domain, which promotes tRNA-protein association. In eukaryotes, additional domains are appended in cis or in trans to the core enzyme and increase the stability of the tRNA-protein complexes. Eventually, as observed for MetRS from Homo sapiens, the C-terminal appended domain causes a slow release of aminoacyl-tRNA and establishes a limiting step in the global aminoacylation reaction. Here, we report that MetRS from the nematode Caenorhabditis elegans displays a new type of structural organization. Its very C-terminal appended domain is related to the oligonucleotide binding-fold-based tRNA-binding domain (tRBD) recovered at the C-terminus of MetRS from plant, but, in the nematode enzyme, this domain is separated from the core enzyme by an insertion domain. Gel retardation and tRNA aminoacylation experiments show that MetRS from nematode is functionally related to human MetRS despite the fact that their appended tRBDs have distinct structural folds, and are not orthologs. Thus, functional convergence of human and nematode MetRS is the result of parallel and convergent evolution that might have been triggered by the selective pressure to invent processivity of tRNA handling in translation in higher eukaryotes.
Collapse
Affiliation(s)
- Svitlana Havrylenko
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 91190 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
19
|
Ray PS, Sullivan JC, Jia J, Francis J, Finnerty JR, Fox PL. Evolution of function of a fused metazoan tRNA synthetase. Mol Biol Evol 2010; 28:437-47. [PMID: 20829344 DOI: 10.1093/molbev/msq246] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The origin and evolution of multidomain proteins are driven by diverse processes including fusion/fission, domain shuffling, and alternative splicing. The 20 aminoacyl-tRNA synthetases (AARS) constitute an ancient conserved family of multidomain proteins. The glutamyl-prolyl tRNA synthetase (EPRS) of bilaterian animals is unique among AARSs, containing two functional enzymes catalyzing ligation of glutamate and proline to their cognate transfer RNAs (tRNAs). The ERS and PRS catalytic domains in multiple bilaterian taxa are linked by variable number of helix-turn-helix domains referred to as WHEP-TRS domains. In addition to its canonical aminoacylation activities, human EPRS exhibits a noncanonical function as an inflammation-responsive regulator of translation. Recently, we have shown that the WHEP domains direct this auxiliary function of human EPRS by interacting with an mRNA stem-loop element (interferon-gamma-activated inhibitor of translation [GAIT] element). Here, we show that EPRS is present in the cnidarian Nematostella vectensis, which pushes the origin of the fused protein back to the cnidarian-bilaterian ancestor, 50-75 My before the origin of the Bilateria. Remarkably, the Nematostella EPRS mRNA is alternatively spliced to yield three isoforms with variable number and sequence of WHEP domains and with distinct RNA-binding activities. Whereas one isoform containing a single WHEP domain binds tRNA, a second binds both tRNA and GAIT element RNA. However, the third isoform contains two WHEP domains and like the human ortholog binds specifically to GAIT element RNA. These results suggest that alternative splicing of WHEP domains in the EPRS gene of the cnidarian-bilaterian ancestor gave rise to a novel molecular function of EPRS conserved during metazoan evolution.
Collapse
Affiliation(s)
- Partho Sarothi Ray
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, USA
| | | | | | | | | | | |
Collapse
|
20
|
Lee SC, Corradi N, Doan S, Dietrich FS, Keeling PJ, Heitman J. Evolution of the sex-related locus and genomic features shared in microsporidia and fungi. PLoS One 2010; 5:e10539. [PMID: 20479876 PMCID: PMC2866331 DOI: 10.1371/journal.pone.0010539] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 04/15/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Microsporidia are obligate intracellular, eukaryotic pathogens that infect a wide range of animals from nematodes to humans, and in some cases, protists. The preponderance of evidence as to the origin of the microsporidia reveals a close relationship with the fungi, either within the kingdom or as a sister group to it. Recent phylogenetic studies and gene order analysis suggest that microsporidia share a particularly close evolutionary relationship with the zygomycetes. METHODOLOGY/PRINCIPAL FINDINGS Here we expanded this analysis and also examined a putative sex-locus for variability between microsporidian populations. Whole genome inspection reveals a unique syntenic gene pair (RPS9-RPL21) present in the vast majority of fungi and the microsporidians but not in other eukaryotic lineages. Two other unique gene fusions (glutamyl-prolyl tRNA synthetase and ubiquitin-ribosomal subunit S30) that are present in metazoans, choanoflagellates, and filasterean opisthokonts are unfused in the fungi and microsporidians. One locus previously found to be conserved in many microsporidian genomes is similar to the sex locus of zygomycetes in gene order and architecture. Both sex-related and sex loci harbor TPT, HMG, and RNA helicase genes forming a syntenic gene cluster. We sequenced and analyzed the sex-related locus in 11 different Encephalitozoon cuniculi isolates and the sibling species E. intestinalis (3 isolates) and E. hellem (1 isolate). There was no evidence for an idiomorphic sex-related locus in this Encephalitozoon species sample. According to sequence-based phylogenetic analyses, the TPT and RNA helicase genes flanking the HMG genes are paralogous rather than orthologous between zygomycetes and microsporidians. CONCLUSION/SIGNIFICANCE The unique genomic hallmarks between microsporidia and fungi are independent of sequence based phylogenetic comparisons and further contribute to define the borders of the fungal kingdom and support the classification of microsporidia as unusual derived fungi. And the sex/sex-related loci appear to have been subject to frequent gene conversion and translocations in microsporidia and zygomycetes.
Collapse
Affiliation(s)
- Soo Chan Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Nicolas Corradi
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Sylvia Doan
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Fred S. Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
| | - Patrick J. Keeling
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
21
|
Haen KM, Pett W, Lavrov DV. Parallel Loss of Nuclear-Encoded Mitochondrial Aminoacyl-tRNA Synthetases and mtDNA-Encoded tRNAs in Cnidaria. Mol Biol Evol 2010; 27:2216-9. [DOI: 10.1093/molbev/msq112] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
22
|
Mukhopadhyay R, Jia J, Arif A, Ray PS, Fox PL. The GAIT system: a gatekeeper of inflammatory gene expression. Trends Biochem Sci 2009; 34:324-31. [PMID: 19535251 DOI: 10.1016/j.tibs.2009.03.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/26/2009] [Accepted: 03/26/2009] [Indexed: 12/25/2022]
Abstract
Functionally related genes are coregulated by specific RNA-protein interactions that direct transcript-selective translational control. In myeloid cells, interferon (IFN)-gamma induces formation of the heterotetrameric, IFN-gamma-activated inhibitor of translation (GAIT) complex comprising glutamyl-prolyl tRNA synthetase (EPRS), NS1-associated protein 1 (NSAP1), ribosomal protein L13a and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). This complex binds defined 3' untranslated region elements within a family of inflammatory mRNAs and suppresses their translation. IFN-gamma-dependent phosphorylation, and consequent release of EPRS and L13a from the tRNA multisynthetase complex and 60S ribosomal subunit, respectively, regulates GAIT complex assembly. EPRS recognizes and binds target mRNAs, NSAP1 negatively regulates RNA binding, and L13a inhibits translation initiation by binding eukaryotic initiation factor 4G. Repression of a post-transcriptional regulon by the GAIT system might contribute to the resolution of chronic inflammation.
Collapse
Affiliation(s)
- Rupak Mukhopadhyay
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, OH 44195, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed, essential enzymes responsible for performing the first step of protein synthesis. Specifically, ARSs attach amino acids to their cognate tRNA molecules in the cytoplasm and mitochondria. Recent studies have demonstrated that mutations in genes encoding ARSs can result in neurodegeneration, raising many questions about the role of these enzymes (and protein synthesis in general) in neuronal function. In this review, we summarize the current knowledge of genetic diseases that are associated with mutations in ARS-encoding genes, discuss the potential pathogenic mechanisms underlying these disorders, and point to likely areas of future research that will advance our understanding about the role of ARSs in genetic diseases.
Collapse
Affiliation(s)
- Anthony Antonellis
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
24
|
Guimarães RC, Moreira CHC, de Farias ST. A self-referential model for the formation of the genetic code. Theory Biosci 2008; 127:249-70. [PMID: 18493811 DOI: 10.1007/s12064-008-0043-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 04/11/2008] [Indexed: 10/22/2022]
Abstract
A model for the formation of the genetic code is presented where protein synthesis is directed initially by tRNA dimers. Proteins that are resistant to degradation and efficient RNA-binders protect the RNAs. Replication becomes elongational producing poly-tRNAs from which the mRNAs and ribosomes are derived. Attributions are successively fixed to tRNAs paired through the perfect palindromic anticodons, with the same bases at the extremities (5'ANA: UNU 3'; GNG: CNC; principal dinucleotides, pDiN). The 5' degeneracy is then developed. The first pairs to be encoded correspond to the hydropathy correlation outliers (Gly-CC: Pro-GG and Ser-GA: Ser-CU) and to the sector of homogeneous pDiN, composed by two pyrimidines or two purines. These amino acids are preferred in the N-ends of proteins, stabilizers of proteins against catabolism and strong RNA-binders. The next pairs complete the sector of homogeneous pDiN (Asp, Glu-UC: Leu-AG and Asn, Lys-UU: Phe-AA). This set of nine amino acids forms the protein cores with the predominant aperiodic conformation. Next enter the pairs with mixed pDiN (one purine and one pyrimidine), the RY attributions composing the protein N-ends and the YR attributions the C-ends. The last pair contains the main punctuation signs (Ile, Met, iMet-AU: Tyr, Stop-UA). The model indicates that genetic information emerged during the process of formation of the coding/decoding system and that genes were defined by the proteins. Stable proteins constructed the nucleoprotein system by binding to the RNAs that produced them. In this circular rationale, genes are memories in a metabolic system for production of proteins that stabilize it. The simplicity and the highly deterministic character of the process suggest that the Last Universal Common Ancestor populations could be composed, in early stages, of lineages bearing similar genetic codes.
Collapse
Affiliation(s)
- Romeu Cardoso Guimarães
- Dept. Biologia Geral, Inst. Ciências Biológicas, Univ. Federal de Minas Gerais, Belo Horizonte, MG , 31270.901, Brazil.
| | | | | |
Collapse
|
25
|
WHEP domains direct noncanonical function of glutamyl-Prolyl tRNA synthetase in translational control of gene expression. Mol Cell 2008; 29:679-90. [PMID: 18374644 DOI: 10.1016/j.molcel.2008.01.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 11/20/2007] [Accepted: 01/02/2008] [Indexed: 12/19/2022]
Abstract
The heterotetrameric GAIT complex suppresses translation of selected mRNAs in interferon-gamma-activated monocytic cells. Specificity is dictated by glutamyl-prolyl tRNA synthetase (EPRS) binding to a 3'UTR element in target mRNAs. EPRS consists of two synthetase cores joined by a linker containing three WHEP domains of unknown function. Here we show the critical role of EPRS WHEP domains in targeting and regulating GAIT complex binding to RNA. The upstream WHEP pair directs high-affinity binding to GAIT element-bearing mRNAs, while the overlapping, downstream pair binds NSAP1, which inhibits mRNA binding. Interaction of EPRS with ribosomal protein L13a and GAPDH induces a conformational switch that rescues mRNA binding and restores translational control. Total reconstitution from purified components indicates that the four GAIT proteins are necessary and sufficient for self-assembly of a functional complex. Our results establish the essentiality of WHEP domains in the noncanonical function of EPRS in regulating inflammatory gene expression.
Collapse
|
26
|
Sakharkar KR, Sakharkar MK, Chow VTK. Gene fusion in Helicobacter pylori: making the ends meet. Antonie van Leeuwenhoek 2006; 89:169-80. [PMID: 16541196 DOI: 10.1007/s10482-005-9021-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 10/24/2005] [Indexed: 11/26/2022]
Abstract
Fusion genes have been reported as a means of enabling the development of novel or enhanced functions. In this report, we analyzed fusion genes in the genomes of two Helicobacter pylori strains (26695 and J99) and identified 32 fusion genes that are present as neighbours in one strain (components) and are fused in the second (composite), and vice-versa. The mechanism for each case of gene fusion is explored. 28 out of 32 genes identified as fusion products in this analysis were reported as essential genes in the previously documented transposon mutagenesis of H. pylori strain G27. This observation suggests the potential of the products of fusion genes as putative microbial drug targets. These results underscore the utility of bacterial genomic sequence comparisons for understanding gene evolution and for in silico drug target identification in the post-genomic era.
Collapse
Affiliation(s)
- Kishore R Sakharkar
- Programme in Infectious Diseases, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Kent Ridge 117597, Singapore
| | | | | |
Collapse
|
27
|
Yiting Y, Lei L, Sakharkar MK, Kangueane P. Insight into gene fusion from molecular dynamics simulation of fused and un-fused IGPS (Imidazole Glycerol Phosphate Synthetase). Bioinformation 2006; 1:99-104. [PMID: 17611615 PMCID: PMC1904513 DOI: 10.6026/97320630001099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2006] [Accepted: 02/27/2006] [Indexed: 11/23/2022] Open
Abstract
Gene fusion produces proteins with novel structural architectures during evolution. Recent comparative genome analysis shows several cases of fusion/fission across distant phylogeny. However, the selection forces driving gene fusion are not fully understood due to the lack of structural, dynamics and kinetics data. Available structural data at PDB (protein databank) contains limited cases of structural pairs describing fused and un-fused structures. Nonetheless, we identified a pair of IGPS (imidazole glycerol phosphate synthetase) structures (comprising of HisF - glutaminase unit and HisH - cyclase unit) from S. cerevisiae (SC) and T. thermophilus (TT). The HisF-HisH structural units are domains in SC and subunits in TT. Hence, they are fused in SC and un-fused in TT. Subsequently, a domain-domain interface is formed in SC and a subunit-subunit interface in TT between HisF and HisH. Our interest is to document the structure and dynamics differences between fused and un-fused IGPS. Therefore, we probed into the structures of fused IGPS in SC and un-fused IGPS in TT using molecular dynamics simulation for 5ns. Simulation shows that fused IGPS in SC has larger interface area between HisF-HisH and greater radius of gyration compared to un-fused IGPS in TT. These structural features for the first time demonstrate the evolutionary advantage in generating proteins with novel structural architecture through gene fusion.
Collapse
Affiliation(s)
- Yu Yiting
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50, Nanyang Avenue,
Singapore 639798
| | - Li Lei
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50, Nanyang Avenue,
Singapore 639798
| | - Meena Kishore Sakharkar
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50, Nanyang Avenue,
Singapore 639798
| | - Pandjassarame Kangueane
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50, Nanyang Avenue,
Singapore 639798
| |
Collapse
|
28
|
Prigent V, Thierry JC, Poch O, Plewniak F. DbW: automatic update of a functional family-specific multiple alignment. Bioinformatics 2004; 21:1437-42. [PMID: 15598832 DOI: 10.1093/bioinformatics/bti218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Recent advances in gene sequencing have provided complete sequence information for a number of genomes and as a result the amount of data in the sequence databases is growing at an exponential rate. We introduce here a new program, DbW, to automate the update of a functional family-specific multiple alignment that tries to include relevant sequences. The program is based on the use of different sources of information: sequences and annotations in databases. RESULTS The advantages of DbW are demonstrated using the 20 families of aminoacyl-tRNA synthetases, where DbW detects a maximum of homologous sequences in the Swiss-Prot and SPTREMBL databases. The global specificity of DbW in this test is 98.4% (1.6% of the sequences included in the alignment did not belong to the family according to their function), and the global sensitivity of DbW is estimated to be 95.2%. Thus, DbW provides a reliable basis for the many applications that rely on accurate multiple alignments, e.g. functional residue identification, 2D/3D structure prediction or homology modeling. AVAILABILITY The DbW software is available for download at ftp://ftp-igbmc.u-strasbg.fr/pub/DbW/DbW.tar and online at http://titus.u-strasbg.fr/DbW CONTACT: prigent@igbmc.u-strasbg.fr.
Collapse
Affiliation(s)
- V Prigent
- Laboratoire de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, (CNRS/INSERM/ULP) BP 10142, 67404 Illkirch, Cedex, France.
| | | | | | | |
Collapse
|
29
|
Golinelli-Cohen MP, Zakrzewska A, Mirande M. Complementation of yeast Arc1p by the p43 component of the human multisynthetase complex does not require its association with yeast MetRS and GluRS. J Mol Biol 2004; 340:15-27. [PMID: 15184019 DOI: 10.1016/j.jmb.2004.04.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 04/16/2004] [Accepted: 04/20/2004] [Indexed: 10/26/2022]
Abstract
Yeast Arc1p, human p43 and plant methionyl-tRNA synthetase (MetRS) possess an EMAPII-like domain capable of non-specific interactions with tRNA. Arc1p interacts with MetRS (MES1) and GluRS and operates as a tRNA-interacting factor (tIF) in trans of these two synthetases. In plant MetRS, the EMAPII-like domain is fused to the catalytic core of the synthetase and acts as a cis-acting tIF for aminoacylation. We observed that the catalytic core of plant MetRS expressed from a centromeric plasmid cannot complement a yeast arc1(-) mes1(-) strain. Overexpression of the mutant enzyme from a high-copy number plasmid restored cell growth, suggesting that deletion of its C-terminal tIF domain was responsible for the poor aminoacylation efficiency of that enzyme in vivo. Accordingly, expression of full-size plant MetRS from a centromeric plasmid, but also of fusion proteins between its catalytic core and the EMAPII-like domains of yeast Arc1p or of human p43 restored cell viability. These data showed that homologous tIF domains from different origins are interchangeable and may act indifferently in trans or in cis of the catalytic domain of a synthetase. Unexpectedly, co-expression of Arc1p with the catalytic core of plant MetRS restored cell viability as well, even though Arc1p did not associate with plant MetRS. Because Arc1p also interacts with yeast GluRS, restoration of cell growth could be due at least in part to its role of cofactor for that enzyme. However, co-expression of human p43, a tIF that did not associate with plant MetRS or with yeast GluRS and MetRS, also restored cell viability of a yeast strain that expressed the catalytic core of plant MetRS. These results show that p43 and Arc1p are able to facilitate tRNA aminoacylation in vivo even if they do not interact physically with the synthetases. We propose that p43/Arc1p may be involved in sequestering tRNAs in the cytoplasm of eukaryotic cells, thereby increasing their availability for protein synthesis.
Collapse
Affiliation(s)
- Marie-Pierre Golinelli-Cohen
- Laboratoire d'Enzymologie et Biochimie Structurales, UPR 9063 du Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France
| | | | | |
Collapse
|
30
|
Klipcan L, Safro M. Amino acid biogenesis, evolution of the genetic code and aminoacyl-tRNA synthetases. J Theor Biol 2004; 228:389-96. [PMID: 15135037 DOI: 10.1016/j.jtbi.2004.01.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Revised: 01/19/2004] [Accepted: 01/27/2004] [Indexed: 12/01/2022]
Abstract
The aminoacyl-tRNA synthetases (aaRSs) ensure the fidelity of the translation of the genetic code, covalently attaching appropriate amino acids to the corresponding nucleic acid adaptor molecules-tRNA. The fundamental role of aminoacylation reaction catalysed by aaRSs implies that representatives of the family are thought to be among the earliest proteins to appear. Based on sequence analysis and catalytic domain structure, aaRSs have been partitioned into two classes of 10 enzymes each. However, based on the structural and sequence data only, it will not be easily understood that the present partitioning is not governed by chance. Our findings suggest that organization of amino acid biosynthetic pathways and clustering of aaRSs into different classes are intimately related to one another. A plausible explanation for such a relationship is dictated by early link between aaRSs and amino acids biosynthetic proteins. The aaRSs catalytic cores are highly relevant to the ancient metabolic reactions, namely, amino acids and cofactors biosynthesis. In particular we show that class II aaRSs mostly associated with the primordial amino acids, while class I aaRSs are usually related to amino acids evolved lately. Reasoning from this we propose a possible chronology of genetic code evolution.
Collapse
Affiliation(s)
- Liron Klipcan
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
31
|
Francin M, Mirande M. Functional dissection of the eukaryotic-specific tRNA-interacting factor of lysyl-tRNA synthetase. J Biol Chem 2003; 278:1472-9. [PMID: 12417586 DOI: 10.1074/jbc.m208802200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the cytoplasm of higher eukaryotic cells, aminoacyl-tRNA synthetases (aaRSs) have polypeptide chain extensions appended to conventional prokaryotic-like synthetase domains. The supplementary domains, referred to as tRNA-interacting factors (tIFs), provide the core synthetases with potent tRNA-binding capacities, a functional requirement related to the low concentration of free tRNA prevailing in the cytoplasm of eukaryotic cells. Lysyl-tRNA synthetase is a component of the multi-tRNA synthetase complex. It exhibits a lysine-rich N-terminal polypeptide extension that increases its catalytic efficiency. The functional characterization of this new type of tRNA-interacting factor has been conducted. Here we describe the systematic substitution of the 13 lysine or arginine residues located within the general RNA-binding domain of hamster LysRS made of 70 residues. Our data show that three lysine and one arginine residues are major building blocks of the tRNA-binding site. Their mutation into alanine led to a reduced affinity for tRNA(3)(Lys) or minimalized tRNA mimicking the acceptor-TPsiC stem-loop of tRNA(3)(Lys) and a decrease in catalytic efficiency similar to that observed after a complete deletion of the N-terminal domain. Moreover, covalent continuity between the tRNA-binding and core domain is a prerequisite for providing LysRS with a tRNA binding capacity. Thus, our results suggest that the ability of LysRS to promote tRNA(Lys) networking during translation or to convey tRNA(3)(Lys) into the human immunodeficiency virus type 1 viral particles rests on the addition in evolution of this tRNA-interacting factor.
Collapse
Affiliation(s)
- Mathilde Francin
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | |
Collapse
|
32
|
Kaminska M, Shalak V, Mirande M. The appended C-domain of human methionyl-tRNA synthetase has a tRNA-sequestering function. Biochemistry 2001; 40:14309-16. [PMID: 11714285 DOI: 10.1021/bi015670b] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An ancillary RNA-binding domain is appended to the C-terminus of human methionyl-tRNA synthetase. It comprises a helix-turn-helix (HTH) motif related to the repeated units of the linker region of bifunctional glutamyl-prolyl-tRNA synthetase, and a specific C-terminal KGKKKK lysine-rich cluster (LRC). Here we show by gel retardation and tRNA aminoacylation experiments that these two regions are important for tRNA binding. However, the two pieces of this bipartite RNA-binding domain are functionally distinct. Analysis of MetRS mutant enzymes revealed that the HTH motif is more specifically endowed with a tRNA-sequestering activity and confers on MetRS a rate-limiting dissociation of aminoacylated tRNA. Elongation factor EF-1alpha enhanced the turnover in the aminoacylation reaction. In contrast, the LRC region is most probably involved in accelerating the association step of deacylated tRNA. These two nonredundant RNA-binding motifs strengthen tRNA binding by the synthetase. The native form of MetRS, containing the C-terminal RNA-binding domain, behaves as a processive enzyme; release of the reaction product is not spontaneous, but may be synchronized with the subsequent step of the tRNA cycle through EF-1alpha-assisted dissociation of Met-tRNA(Met). Therefore, the eukaryotic-specific C-domain of human MetRS may have a dual function. It may ensure an efficient capture of tRNA(Met) under conditions of suboptimal deacylated tRNA concentration prevailing in vivo, and may instigate direct transfer of aminoacylated tRNA from the synthetase to elongation factor EF-1alpha.
Collapse
Affiliation(s)
- M Kaminska
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | | | |
Collapse
|
33
|
Kaminska M, Deniziak M, Kerjan P, Barciszewski J, Mirande M. A recurrent general RNA binding domain appended to plant methionyl-tRNA synthetase acts as a cis-acting cofactor for aminoacylation. EMBO J 2000; 19:6908-17. [PMID: 11118226 PMCID: PMC305886 DOI: 10.1093/emboj/19.24.6908] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2000] [Revised: 10/19/2000] [Accepted: 10/20/2000] [Indexed: 11/12/2022] Open
Abstract
The cDNA encoding rice methionyl-tRNA synthetase was isolated. The protein exhibited a C-terminal polypeptide appended to a classical MetRS domain. This supplementary domain is related to endothelial monocyte activating polypeptide II (EMAPII), a cytokine produced in mammals after cleavage of p43, a component of the multisynthetase complex. It is also related to Arc1p and Trbp111, two tRNA binding proteins. We expressed rice MetRS and a derivative with a deletion of its EMAPII-like domain. Band-shift analysis showed that this extra-domain provides MetRS with non-specific tRNA binding properties. The EMAPII-like domain contributed a 10-fold decrease in K:(M) for tRNA in the aminoacylation reaction catalyzed by the native enzyme, as compared with the C-terminally truncated MetRS. Consequently, the EMAPII domain provides MetRS with a better catalytic efficiency at the free tRNA concentration prevailing in vivo. This domain binds the acceptor minihelix of tRNA(Met) and facilitates its aminoacylation. These results suggest that the EMAPII module could be a relic of an ancient tRNA binding domain that was incorporated into primordial synthetases for aminoacylation of RNA minihelices taken as the ancestor of modern tRNA.
Collapse
Affiliation(s)
- M Kaminska
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|