1
|
Brandt R, Trushina NI, Bakota L. Much More Than a Cytoskeletal Protein: Physiological and Pathological Functions of the Non-microtubule Binding Region of Tau. Front Neurol 2020; 11:590059. [PMID: 33193056 PMCID: PMC7604284 DOI: 10.3389/fneur.2020.590059] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
Tau protein (MAPT) is classified as a microtubule-associated protein (MAP) and is believed to regulate the axonal microtubule arrangement. It belongs to the tau/MAP2/MAP4 family of MAPs that have a similar microtubule binding region at their carboxy-terminal half. In tauopathies, such as Alzheimer's disease, tau is distributed more in the somatodendritic compartment, where it aggregates into filamentous structures, the formation of which correlates with cognitive impairments in patients. While microtubules are the dominant interaction partners of tau under physiological conditions, tau has many additional interaction partners that can contribute to its physiological and pathological role. In particular, the amino-terminal non-microtubule binding domain (N-terminal projection region, NTR) of tau interacts with many partners that are involved in membrane organization. The NTR contains intrinsically disordered regions (IDRs) that show a strong evolutionary increase in the disorder and may have been the basis for the development of new, tau-specific interactions. In this review we discuss the functional organization of the tau protein and the special features of the tau non-microtubule binding region also in the connection with the results of Tau KO models. We consider possible physiological and pathological functions of tau's non-microtubule interactions, which could indicate that interactions mediated by tau's NTR and regulated by far-reaching functional interactions of the PRR and the extreme C-terminus of tau contribute to the pathological processes.
Collapse
Affiliation(s)
- Roland Brandt
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany.,Center for Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany.,Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | | | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
2
|
Wang X, Williams D, Müller I, Lemieux M, Dukart R, Maia IBL, Wang H, Woerman AL, Schmitt-Ulms G. Tau interactome analyses in CRISPR-Cas9 engineered neuronal cells reveal ATPase-dependent binding of wild-type but not P301L Tau to non-muscle myosins. Sci Rep 2019; 9:16238. [PMID: 31700063 PMCID: PMC6838314 DOI: 10.1038/s41598-019-52543-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 10/03/2019] [Indexed: 11/09/2022] Open
Abstract
Protein interactions of Tau are of interest in efforts to decipher pathogenesis in Alzheimer's disease, a subset of frontotemporal dementias, and other tauopathies. We CRISPR-Cas9 edited two human cell lines to generate broadly adaptable models for neurodegeneration research. We applied the system to inducibly express balanced levels of 3-repeat and 4-repeat wild-type or P301L mutant Tau. Following 12-h induction, quantitative mass spectrometry revealed the Parkinson's disease-causing protein DJ-1 and non-muscle myosins as Tau interactors whose binding to Tau was profoundly influenced by the presence or absence of the P301L mutation. The presence of wild-type Tau stabilized non-muscle myosins at higher steady-state levels. Strikingly, in human differentiated co-cultures of neuronal and glial cells, the preferential interaction of non-muscle myosins to wild-type Tau depended on myosin ATPase activity. Consistently, transgenic P301L Tau mice exhibited reduced phosphorylation of regulatory myosin light chains known to activate this ATPase. The direct link of Tau to non-muscle myosins corroborates independently proposed roles of Tau in maintaining dendritic spines and mitochondrial fission biology, two subcellular niches affected early in tauopathies.
Collapse
Affiliation(s)
- Xinzhu Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, M5T 2S8, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Ontario, M5S 1A8, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, M5T 2S8, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Ontario, M5S 1A8, Canada
| | - Iris Müller
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, M5T 2S8, Canada
| | - Mackenzie Lemieux
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, M5T 2S8, Canada
| | - Ramona Dukart
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Ontario, M5S 1A8, Canada
| | - Isabella B L Maia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, M5T 2S8, Canada
| | - Hansen Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, M5T 2S8, Canada
| | - Amanda L Woerman
- Department of Neurology, University of California San Francisco, California, 94158, USA
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, M5T 2S8, Canada. .,Department of Laboratory Medicine & Pathobiology, University of Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
3
|
Rösler TW, Tayaranian Marvian A, Brendel M, Nykänen NP, Höllerhage M, Schwarz SC, Hopfner F, Koeglsperger T, Respondek G, Schweyer K, Levin J, Villemagne VL, Barthel H, Sabri O, Müller U, Meissner WG, Kovacs GG, Höglinger GU. Four-repeat tauopathies. Prog Neurobiol 2019; 180:101644. [PMID: 31238088 DOI: 10.1016/j.pneurobio.2019.101644] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 02/08/2023]
Abstract
Tau is a microtubule-associated protein with versatile functions in the dynamic assembly of the neuronal cytoskeleton. Four-repeat (4R-) tauopathies are a group of neurodegenerative diseases defined by cytoplasmic inclusions predominantly composed of tau protein isoforms with four microtubule-binding domains. Progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease or glial globular tauopathy belong to the group of 4R-tauopathies. The present review provides an introduction in the current concept of 4R-tauopathies, including an overview of the neuropathological and clinical spectrum of these diseases. It describes the genetic and environmental etiological factors, as well as the contemporary knowledge about the pathophysiological mechanisms, including post-translational modifications, aggregation and fragmentation of tau, as well as the role of protein degradation mechanisms. Furthermore, current theories about disease propagation are discussed, involving different extracellular tau species and their cellular release and uptake mechanisms. Finally, molecular diagnostic tools for 4R-tauopathies, including tau-PET and fluid biomarkers, and investigational therapeutic strategies are presented. In summary, we report on 4R-tauopathies as overarching disease concept based on a shared pathophysiological concept, and highlight the challenges and opportunities on the way towards a causal therapy.
Collapse
Affiliation(s)
- Thomas W Rösler
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Amir Tayaranian Marvian
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Matthias Brendel
- Dept. of Nuclear Medicine, University of Munich, 81377 Munich, Germany
| | - Niko-Petteri Nykänen
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Matthias Höllerhage
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Sigrid C Schwarz
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | | | - Thomas Koeglsperger
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Gesine Respondek
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Kerstin Schweyer
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Johannes Levin
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Victor L Villemagne
- Dept. of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, 3084, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia; Dept. of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia
| | - Henryk Barthel
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Osama Sabri
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Ulrich Müller
- Institute for Human Genetics, University of Giessen, 35392 Giessen, Germany
| | - Wassilios G Meissner
- Service de Neurologie, CHU Bordeaux, 33000 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Dept. of Medicine, University of Otago, Christchurch, New Zealand; New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, 1090 Vienna, Austria; Dept. of Laboratory Medicine and Pathobiology, University of Toronto, Laboratory Medicine Program, University Health Network, Toronto, Canada; Tanz Centre for Research in Neurodegenerative Disease, Krembil Brain Institute, Toronto, Canada
| | - Günter U Höglinger
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany; Dept. of Neurology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
4
|
Götz J, Halliday G, Nisbet RM. Molecular Pathogenesis of the Tauopathies. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:239-261. [PMID: 30355155 DOI: 10.1146/annurev-pathmechdis-012418-012936] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The tauopathies constitute a group of diseases that have Tau inclusions in neurons or glia as their common denominator. In this review, we describe the biochemical and histological differences in Tau pathology that are characteristic of the spectrum of frontotemporal lobar degeneration as primary tauopathies and of Alzheimer's disease as a secondary tauopathy, as well as the commonalities and differences between the familial and sporadic forms. Furthermore, we discuss selected advances in transgenic animal models in delineating the different pathomechanisms of Tau.
Collapse
Affiliation(s)
- Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St. Lucia Campus, Brisbane, Queensland 4072, Australia;
| | - Glenda Halliday
- Brain and Mind Centre and Central Clinical School, Sydney Medical School, University of Sydney, New South Wales 2006, Australia
| | - Rebecca M Nisbet
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St. Lucia Campus, Brisbane, Queensland 4072, Australia;
| |
Collapse
|
5
|
Guo T, Noble W, Hanger DP. Roles of tau protein in health and disease. Acta Neuropathol 2017; 133:665-704. [PMID: 28386764 PMCID: PMC5390006 DOI: 10.1007/s00401-017-1707-9] [Citation(s) in RCA: 630] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/26/2017] [Accepted: 03/26/2017] [Indexed: 01/18/2023]
Abstract
Tau is well established as a microtubule-associated protein in neurons. However, under pathological conditions, aberrant assembly of tau into insoluble aggregates is accompanied by synaptic dysfunction and neural cell death in a range of neurodegenerative disorders, collectively referred to as tauopathies. Recent advances in our understanding of the multiple functions and different locations of tau inside and outside neurons have revealed novel insights into its importance in a diverse range of molecular pathways including cell signalling, synaptic plasticity, and regulation of genomic stability. The present review describes the physiological and pathophysiological properties of tau and how these relate to its distribution and functions in neurons. We highlight the post-translational modifications of tau, which are pivotal in defining and modulating tau localisation and its roles in health and disease. We include discussion of other pathologically relevant changes in tau, including mutation and aggregation, and how these aspects impinge on the propensity of tau to propagate, and potentially drive neuronal loss, in diseased brain. Finally, we describe the cascade of pathological events that may be driven by tau dysfunction, including impaired axonal transport, alterations in synapse and mitochondrial function, activation of the unfolded protein response and defective protein degradation. It is important to fully understand the range of neuronal functions attributed to tau, since this will provide vital information on its involvement in the development and pathogenesis of disease. Such knowledge will enable determination of which critical molecular pathways should be targeted by potential therapeutic agents developed for the treatment of tauopathies.
Collapse
Affiliation(s)
- Tong Guo
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9NU, UK
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9NU, UK
| | - Diane P Hanger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9NU, UK.
| |
Collapse
|
6
|
Thomas-Jinu S, Gordon PM, Fielding T, Taylor R, Smith BN, Snowden V, Blanc E, Vance C, Topp S, Wong CH, Bielen H, Williams KL, McCann EP, Nicholson GA, Pan-Vazquez A, Fox AH, Bond CS, Talbot WS, Blair IP, Shaw CE, Houart C. Non-nuclear Pool of Splicing Factor SFPQ Regulates Axonal Transcripts Required for Normal Motor Development. Neuron 2017; 94:322-336.e5. [PMID: 28392072 PMCID: PMC5405110 DOI: 10.1016/j.neuron.2017.03.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/02/2017] [Accepted: 03/17/2017] [Indexed: 12/12/2022]
Abstract
Recent progress revealed the complexity of RNA processing and its association to human disorders. Here, we unveil a new facet of this complexity. Complete loss of function of the ubiquitous splicing factor SFPQ affects zebrafish motoneuron differentiation cell autonomously. In addition to its nuclear localization, the protein unexpectedly localizes to motor axons. The cytosolic version of SFPQ abolishes motor axonal defects, rescuing key transcripts, and restores motility in the paralyzed sfpq null mutants, indicating a non-nuclear processing role in motor axons. Novel variants affecting the conserved coiled-coil domain, so far exclusively found in fALS exomes, specifically affect the ability of SFPQ to localize in axons. They broadly rescue morphology and motility in the zebrafish mutant, but alter motor axon morphology, demonstrating functional requirement for axonal SFPQ. Altogether, we uncover the axonal function of the splicing factor SFPQ in motor development and highlight the importance of the coiled-coil domain in this process. Video Abstract
SFPQ splicing factor is present in motor axons Non-nuclear SFPQ is able to drive axon maturation and connectivity Loss of axonal SFPQ affects axonal morphology Coiled-coil domain of the protein is important for non-nuclear localization
Collapse
Affiliation(s)
- Swapna Thomas-Jinu
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Patricia M Gordon
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Triona Fielding
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Richard Taylor
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Bradley N Smith
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE5 8AF, UK
| | - Victoria Snowden
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Eric Blanc
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Caroline Vance
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE5 8AF, UK
| | - Simon Topp
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE5 8AF, UK
| | - Chun-Hao Wong
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE5 8AF, UK
| | - Holger Bielen
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Kelly L Williams
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Emily P McCann
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Garth A Nicholson
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; ANZAC Research Institute, University of Sydney, Concord Hospital, Sydney, NSW 2139, Australia
| | - Alejandro Pan-Vazquez
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Archa H Fox
- School of Anatomy, Physiology, and Human Biology, University of Western Australia, Crawley, WA 6009, Australia; Harry Perkins Institute for Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia; Centre for Medical Research, University of Western Australia, Crawley, WA 6009, Australia
| | - Charles S Bond
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA 6009, Australia
| | - William S Talbot
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ian P Blair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Christopher E Shaw
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE5 8AF, UK
| | - Corinne Houart
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK.
| |
Collapse
|
7
|
Fontaine SN, Sabbagh JJ, Baker J, Martinez-Licha CR, Darling A, Dickey CA. Cellular factors modulating the mechanism of tau protein aggregation. Cell Mol Life Sci 2015; 72:1863-79. [PMID: 25666877 DOI: 10.1007/s00018-015-1839-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/18/2014] [Accepted: 01/13/2015] [Indexed: 01/12/2023]
Abstract
Pathological accumulation of the microtubule-associated protein tau, in the form of neurofibrillary tangles, is a major hallmark of Alzheimer's disease, the most prevalent neurodegenerative condition worldwide. In addition to Alzheimer's disease, a number of neurodegenerative diseases, called tauopathies, are characterized by the accumulation of aggregated tau in a variety of brain regions. While tau normally plays an important role in stabilizing the microtubule network of the cytoskeleton, its dissociation from microtubules and eventual aggregation into pathological deposits is an area of intense focus for therapeutic development. Here we discuss the known cellular factors that affect tau aggregation, from post-translational modifications to molecular chaperones.
Collapse
Affiliation(s)
- Sarah N Fontaine
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | | | | | | | | | | |
Collapse
|
8
|
Spears W, Furgerson M, Sweetnam JM, Evans P, Gearing M, Fechheimer M, Furukawa R. Hirano bodies differentially modulate cell death induced by tau and the amyloid precursor protein intracellular domain. BMC Neurosci 2014; 15:74. [PMID: 24929931 PMCID: PMC4084581 DOI: 10.1186/1471-2202-15-74] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/06/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hirano bodies are actin-rich paracrystalline inclusions found in brains of patients with Alzheimer's disease (AD), frontotemporal dementia (FTD), and in normal aged individuals. Although studies of post-mortem brain tissue provide clues of etiology, the physiological function of Hirano bodies remains unknown. A cell culture model was utilized to study the interactions of mutant tau proteins, model Hirano bodies, and GSK3β in human astrocytoma cells. RESULTS Most tau variants showed co-localization with model Hirano bodies. Cosedimentation assays revealed this interaction may be direct, as recombinant purified forms of tau are all capable of binding F-actin. Model Hirano bodies had no effect or enhanced cell death induced by tau in the absence of amyloid precursor protein intracellular domain (AICD). In the presence of AICD and tau, synergistic cell death was observed in most cases, and model Hirano bodies decreased this synergistic cell death, except for forms of tau that caused significant cell death in the presence of Hirano bodies only. A role for the kinase GSK3β is suggested by the finding that a dominant negative form of GSK3β reduces this synergistic cell death. A subset of Hirano bodies in brain tissue of both Alzheimer's disease and normal aged individuals was found to contain tau, with some Hirano bodies in Alzheimer's disease brains containing hyperphosphorylated tau. CONCLUSION The results demonstrate a complex interaction between tau and AICD involving activation of GSK3β in promoting cell death, and the ability of Hirano bodies to modulate this process.
Collapse
Affiliation(s)
- William Spears
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Matthew Furgerson
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | - Parker Evans
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Marla Gearing
- Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Marcus Fechheimer
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Ruth Furukawa
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Tenreiro S, Eckermann K, Outeiro TF. Protein phosphorylation in neurodegeneration: friend or foe? Front Mol Neurosci 2014; 7:42. [PMID: 24860424 PMCID: PMC4026737 DOI: 10.3389/fnmol.2014.00042] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/22/2014] [Indexed: 12/15/2022] Open
Abstract
Protein misfolding and aggregation is a common hallmark in neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and fronto-temporal dementia (FTD). In these disorders, the misfolding and aggregation of specific proteins occurs alongside neuronal degeneration in somewhat specific brain areas, depending on the disorder and the stage of the disease. However, we still do not fully understand the mechanisms governing protein aggregation, and whether this constitutes a protective or detrimental process. In PD, alpha-synuclein (aSyn) forms protein aggregates, known as Lewy bodies, and is phosphorylated at serine 129. Other residues have also been shown to be phosphorylated, but the significance of phosphorylation in the biology and pathophysiology of the protein is still controversial. In AD and in FTD, hyperphosphorylation of tau protein causes its misfolding and aggregation. Again, our understanding of the precise consequences of tau phosphorylation in the biology and pathophysiology of the protein is still limited. Through the use of a variety of model organisms and technical approaches, we are now gaining stronger insight into the effects of phosphorylation in the behavior of these proteins. In this review, we cover recent findings in the field and discuss how targeting phosphorylation events might be used for therapeutic intervention in these devastating diseases of the nervous system.
Collapse
Affiliation(s)
- Sandra Tenreiro
- Cell and Molecular Neuroscience Unit, Instituto de Medicina Molecular Lisboa, Portugal
| | - Katrin Eckermann
- Department of Neurology, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen Göttingen, Germany
| | - Tiago F Outeiro
- Cell and Molecular Neuroscience Unit, Instituto de Medicina Molecular Lisboa, Portugal ; Instituto de Fisiologia, Faculdade de Medicina da Universidade de Lisboa Lisboa, Portugal ; Department of NeuroDegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen Göttingen, Germany
| |
Collapse
|
10
|
Kimura T, Tsutsumi K, Taoka M, Saito T, Masuda-Suzukake M, Ishiguro K, Plattner F, Uchida T, Isobe T, Hasegawa M, Hisanaga SI. Isomerase Pin1 stimulates dephosphorylation of tau protein at cyclin-dependent kinase (Cdk5)-dependent Alzheimer phosphorylation sites. J Biol Chem 2013; 288:7968-7977. [PMID: 23362255 DOI: 10.1074/jbc.m112.433326] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases associated with the pathological aggregation of microtubule-associated protein Tau are classified as tauopathies. Alzheimer disease, the most common tauopathy, is characterized by neurofibrillary tangles that are mainly composed of abnormally phosphorylated Tau. Similar hyperphosphorylated Tau lesions are found in patients with frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) that is induced by mutations within the tau gene. To further understand the etiology of tauopathies, it will be important to elucidate the mechanism underlying Tau hyperphosphorylation. Tau phosphorylation occurs mainly at proline-directed Ser/Thr sites, which are targeted by protein kinases such as GSK3β and Cdk5. We reported previously that dephosphorylation of Tau at Cdk5-mediated sites was enhanced by Pin1, a peptidyl-prolyl isomerase that stimulates dephosphorylation at proline-directed sites by protein phosphatase 2A. Pin1 deficiency is suggested to cause Tau hyperphosphorylation in Alzheimer disease. Up to the present, Pin1 binding was only shown for two Tau phosphorylation sites (Thr-212 and Thr-231) despite the presence of many more hyperphosphorylated sites. Here, we analyzed the interaction of Pin1 with Tau phosphorylated by Cdk5-p25 using a GST pulldown assay and Biacore approach. We found that Pin1 binds and stimulates dephosphorylation of Tau at all Cdk5-mediated sites (Ser-202, Thr-205, Ser-235, and Ser-404). Furthermore, FTDP-17 mutant Tau (P301L or R406W) showed slightly weaker Pin1 binding than non-mutated Tau, suggesting that FTDP-17 mutations induce hyperphosphorylation by reducing the interaction between Pin1 and Tau. Together, these results indicate that Pin1 is generally involved in the regulation of Tau hyperphosphorylation and hence the etiology of tauopathies.
Collapse
Affiliation(s)
- Taeko Kimura
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Koji Tsutsumi
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Masato Taoka
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Taro Saito
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | | | - Koichi Ishiguro
- Mitsubishi Kagaku Institute of Life Science, Machida, Tokyo 194-8511, Japan
| | - Florian Plattner
- University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070
| | - Takafumi Uchida
- Department of Molecular Cell Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 981-8555, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Masato Hasegawa
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Shin-Ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
11
|
Orr ME, Pitstick R, Canine B, Ashe KH, Carlson GA. Genotype-specific differences between mouse CNS stem cell lines expressing frontotemporal dementia mutant or wild type human tau. PLoS One 2012; 7:e39328. [PMID: 22723997 PMCID: PMC3377636 DOI: 10.1371/journal.pone.0039328] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 05/22/2012] [Indexed: 12/16/2022] Open
Abstract
Stem cell (SC) lines that capture the genetics of disease susceptibility provide new research tools. To assess the utility of mouse central nervous system (CNS) SC-containing neurosphere cultures for studying heritable neurodegenerative disease, we compared neurosphere cultures from transgenic mice that express human tau with the P301L familial frontotemporal dementia (FTD) mutation, rTg(tau(P301L))4510, with those expressing comparable levels of wild type human tau, rTg(tau(wt))21221. rTg(tau(P301L))4510 mice express the human tau(P301L) variant in their forebrains and display cellular, histological, biochemical and behavioral abnormalities similar to those in human FTD, including age-dependent differences in tau phosphorylation that distinguish them from rTg(tau(wt))21221 mice. We compared FTD-hallmark tau phosphorylation in neurospheres from rTg(tau(P301L))4510 mice and from rTg(tau(wt))21221 mice. The tau genotype-specific phosphorylation patterns in neurospheres mimicked those seen in mice, validating use of neurosphere cultures as models for studying tau phosphorylation. Genotype-specific tau phosphorylation was observed in 35 independent cell lines from individual fetuses; tau in rTg(tau(P301L))4510 cultures was hypophosphorylated in comparison with rTg(tau(wt))21221 as was seen in young adult mice. In addition, there were fewer human tau-expressing cells in rTg(tau(P301L))4510 than in rTg(tau(wt))21221 cultures. Following differentiation, neuronal filopodia-spine density was slightly greater in rTg(tau(P301L))4510 than rTg(tau(wt))21221 and control cultures. Together with the recapitulation of genotype-specific phosphorylation patterns, the observation that neurosphere lines maintained their cell line-specific-differences and retained SC characteristics over several passages supports the utility of SC cultures as surrogates for analysis of cellular disease mechanisms.
Collapse
Affiliation(s)
- Miranda E. Orr
- McLaughlin Research Institute, Great Falls, Montana, United States of America
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana, United States of America
| | - Rose Pitstick
- McLaughlin Research Institute, Great Falls, Montana, United States of America
| | - Brenda Canine
- McLaughlin Research Institute, Great Falls, Montana, United States of America
| | - Karen H. Ashe
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States of America
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - George A. Carlson
- McLaughlin Research Institute, Great Falls, Montana, United States of America
| |
Collapse
|
12
|
Ray P, Kar A, Fushimi K, Havlioglu N, Chen X, Wu JY. PSF suppresses tau exon 10 inclusion by interacting with a stem-loop structure downstream of exon 10. J Mol Neurosci 2011; 45:453-66. [PMID: 21881826 DOI: 10.1007/s12031-011-9634-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 08/17/2011] [Indexed: 01/24/2023]
Abstract
Microtubule binding protein Tau has been implicated in a wide range of neurodegenerative disorders collectively classified as tauopathies. Exon 10 of the human tau gene, which codes for a microtubule binding repeat region, is alternatively spliced to form Tau protein isoforms containing either four or three microtubule binding repeats, Tau4R and Tau3R, respectively. The levels of different Tau splicing isoforms are fine-tuned by alternative splicing with the ratio of Tau4R/Tau3R maintained approximately at one in adult neurons. Mutations that disrupt tau exon 10 splicing regulation cause an imbalance of different tau splicing isoforms and have been associated with tauopathy. To search for factors interacting with tau pre-messenger RNA (pre-mRNA) and regulating tau exon 10 alternative splicing, we performed a yeast RNA-protein interaction screen and identified polypyrimidine tract binding protein associated splicing factor (PSF) as a candidate tau exon 10 splicing regulator. UV crosslinking experiments show that PSF binds to the stem-loop structure at the 5' splice site downstream of tau exon 10. This PSF-interacting RNA element is distinct from known PSF binding sites previously identified in other genes. Overexpression of PSF promotes tau exon 10 exclusion, whereas down-regulation of the endogenous PSF facilitates exon 10 inclusion. Immunostaining shows that PSF is expressed in the human brain regions affected by tauopathy. Our data reveal a new player in tau exon 10 alternative splicing regulation and uncover a previously unknown mechanism of PSF in regulating tau pre-mRNA splicing.
Collapse
Affiliation(s)
- Payal Ray
- Department of Neurology, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
13
|
Gauthier-Kemper A, Weissmann C, Golovyashkina N, Sebö-Lemke Z, Drewes G, Gerke V, Heinisch JJ, Brandt R. The frontotemporal dementia mutation R406W blocks tau's interaction with the membrane in an annexin A2-dependent manner. ACTA ACUST UNITED AC 2011; 192:647-61. [PMID: 21339331 PMCID: PMC3044115 DOI: 10.1083/jcb.201007161] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Changes of the microtubule-associated protein tau are central in Alzheimer's disease (AD) and frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17). However, the functional consequence of the FTDP-17 tau mutation R406W, which causes a tauopathy clinically resembling AD, is not well understood. We find that the R406W mutation does not affect microtubule interaction but abolishes tau's membrane binding. Loss of binding is associated with decreased trapping at the tip of neurites and increased length fluctuations during process growth. Tandem affinity purification tag purification and mass spectrometry identify the calcium-regulated plasma membrane-binding protein annexin A2 (AnxA2) as a potential interaction partner of tau. Consistently, wild-type tau but not R406W tau interacts with AnxA2 in a heterologous yeast expression system. Sequestration of Ca(2+) or knockdown of AnxA2 abolishes the differential trapping of wild-type and R406W tau. We suggest that the pathological effect of the R406W mutation is caused by impaired membrane binding, which involves a functional interaction with AnxA2 as a membrane-cytoskeleton linker.
Collapse
|
14
|
RNA helicase p68 (DDX5) regulates tau exon 10 splicing by modulating a stem-loop structure at the 5' splice site. Mol Cell Biol 2011; 31:1812-21. [PMID: 21343338 DOI: 10.1128/mcb.01149-10] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Regulation of tau exon 10 splicing plays an important role in tauopathy. One of the cis elements regulating tau alternative splicing is a stem-loop structure at the 5' splice site of tau exon 10. The RNA helicase(s) modulating this stem-loop structure was unknown. We searched for splicing regulators interacting with this stem-loop region using an RNA affinity pulldown-coupled mass spectrometry approach and identified DDX5/RNA helicase p68 as an activator of tau exon 10 splicing. The activity of p68 in stimulating tau exon 10 inclusion is dependent on RBM4, an intronic splicing activator. RNase H cleavage and U1 protection assays suggest that p68 promotes conformational change of the stem-loop structure, thereby increasing the access of U1snRNP to the 5' splice site of tau exon 10. This study reports the first RNA helicase interacting with a stem-loop structure at the splice site and regulating alternative splicing in a helicase-dependent manner. Our work uncovers a previously unknown function of p68 in regulating tau exon 10 splicing. Furthermore, our experiments reveal functional interaction between two splicing activators for tau exon 10, p68 binding at the stem-loop region and RBM4 interacting with the intronic splicing enhancer region.
Collapse
|
15
|
Vanhelmont T, Vandebroek T, De Vos A, Terwel D, Lemaire K, Anandhakumar J, Franssens V, Swinnen E, Van Leuven F, Winderickx J. Serine-409 phosphorylation and oxidative damage define aggregation of human protein tau in yeast. FEMS Yeast Res 2011; 10:992-1005. [PMID: 20662935 DOI: 10.1111/j.1567-1364.2010.00662.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Unraveling the biochemical and genetic alterations that control the aggregation of protein tau is crucial to understand the etiology of tau-related neurodegenerative disorders. We expressed wild type and six clinical frontotemporal dementia with parkinsonism (FTDP) mutants of human protein tau in wild-type yeast cells and cells lacking Mds1 or Pho85, the respective orthologues of the tau kinases GSK3β and cdk5. We compared tau phosphorylation with the levels of sarkosyl-insoluble tau (SinT), as a measure for tau aggregation. The deficiency of Pho85 enhanced significantly the phosphorylation of serine-409 (S409) in all tau mutants, which coincided with marked increases in SinT levels. FTDP mutants tau-P301L and tau-R406W were least phosphorylated at S409 and produced the lowest levels of SinT, indicating that S409 phosphorylation is a direct determinant for tau aggregation. This finding was substantiated by the synthetic tau-S409A mutant that failed to produce significant amounts of SinT, while its pseudophosphorylated counterpart tau-S409E yielded SinT levels higher than or comparable to wild-type tau. Furthermore, S409 phosphorylation reduced the binding of protein tau to preformed microtubules. The highest SinT levels were found in yeast cells subjected to oxidative stress and with mitochondrial dysfunction. Under these conditions, the aggregation of tau was enhanced although the protein is less phosphorylated, suggesting that additional mechanisms are involved. Our results validate yeast as a prime model to identify the genetic and biochemical factors that contribute to the pathophysiology of human tau.
Collapse
Affiliation(s)
- Thomas Vanhelmont
- Laboratory of Functional Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sun Q, Gamblin TC. Pseudohyperphosphorylation causing AD-like changes in tau has significant effects on its polymerization. Biochemistry 2009; 48:6002-11. [PMID: 19459590 DOI: 10.1021/bi900602h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The microtubule-associated protein tau, in a hyperphosphorylated form, aggregates into insoluble paired-helical filaments (PHFs) in Alzheimer's disease (AD) and other tauopathies. In AD, there is approximately 8 mol of phosphate per mole of tau distributed among approximately 30 PHF phosphorylation sites as compared to 2-3 mol of phosphate per mole in normal brain. In AD, kinases such as glycogen synthase kinase-3beta (GSK-3beta) are believed to be involved in the generation of hyperphosphorylated tau. However, the functional consequences of hyperphosphorylation on the microtubule binding and polymerization of tau are not well understood. To address this question, we have generated pseudohyperphosphorylation mutants consisting of six and seven sites in the proline-rich region and carboxy terminus of tau by amino acid substitution. In addition, several single, double, and triple pseudophosphorylation mutants were also generated. Pseudophosphorylation of tau decreases its affinity for microtubules, and pseudohyperphosphorylated forms of tau do not have significantly decreased levels of microtubule binding as compared to single and double sites. Three pseudohyperphosphorylated forms of tau with altered sodium dodecyl sulfate-polyacrylamide gel electrophoresis migration have a greater effect on its inducer-mediated polymerization, slowing the rate of nucleation and elongation. On the basis of the observations that pseudohyperphosphorylated tau has decreased affinity for microtubules and reduced inducer-initiated rates of nucleation and polymerization, we propose that this combination could be the cause of the increased cytotoxicity of hyperphosphorylated tau in Alzheimer's disease and also explain the potentially beneficial role of tau polymerization and NFT formation.
Collapse
Affiliation(s)
- Qian Sun
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | |
Collapse
|
17
|
Yotsumoto K, Saito T, Asada A, Oikawa T, Kimura T, Uchida C, Ishiguro K, Uchida T, Hasegawa M, Hisanaga SI. Effect of Pin1 or microtubule binding on dephosphorylation of FTDP-17 mutant Tau. J Biol Chem 2009; 284:16840-16847. [PMID: 19401603 PMCID: PMC2719320 DOI: 10.1074/jbc.m109.003277] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 04/25/2009] [Indexed: 01/04/2023] Open
Abstract
Neurodegenerative tauopathies, including Alzheimer disease, are characterized by abnormal hyperphosphorylation of the microtubule-associated protein Tau. One group of tauopathies, known as frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), is directly associated with mutations of the gene tau. However, it is unknown why mutant Tau is highly phosphorylated in the patient brain. In contrast to in vivo high phosphorylation, FTDP-17 Tau is phosphorylated less than wild-type Tau in vitro. Because phosphorylation is a balance between kinase and phosphatase activities, we investigated dephosphorylation of mutant Tau proteins, P301L and R406W. Tau phosphorylated by Cdk5-p25 was dephosphorylated by protein phosphatases in rat brain extracts. Compared with wild-type Tau, R406W was dephosphorylated faster and P301L slower. The two-dimensional phosphopeptide map analysis suggested that faster dephosphorylation of R406W was due to a lack of phosphorylation at Ser-404, which is relatively resistant to dephosphorylation. We studied the effect of the peptidyl-prolyl isomerase Pin1 or microtubule binding on dephosphorylation of wild-type Tau, P301L, and R406W in vitro. Pin1 catalyzes the cis/trans isomerization of phospho-Ser/Thr-Pro sequences in a subset of proteins. Dephosphorylation of wild-type Tau was reduced in brain extracts of Pin1-knockout mice, and this reduction was not observed with P301L and R406W. On the other hand, binding to microtubules almost abolished dephosphorylation of wild-type and mutant Tau proteins. These results demonstrate that mutation of Tau and its association with microtubules may change the conformation of Tau, thereby suppressing dephosphorylation and potentially contributing to the etiology of tauopathies.
Collapse
Affiliation(s)
- Kensuke Yotsumoto
- From the Department of Biological Sciences, Faculty of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397
| | - Taro Saito
- From the Department of Biological Sciences, Faculty of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397
| | - Akiko Asada
- From the Department of Biological Sciences, Faculty of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397
| | - Takayuki Oikawa
- From the Department of Biological Sciences, Faculty of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397; Laboratory of Molecular Neurobiology, Tokyo Metropolitan Institute of Psychiatry, Kamikitazawa, Setagaya, Tokyo 156-8585
| | - Taeko Kimura
- From the Department of Biological Sciences, Faculty of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397
| | - Chiyoko Uchida
- University Health Center, Ibaraki University, Mito, Ibaraki 310-8512
| | - Koichi Ishiguro
- Mitsubishi Kagaku Institute of Life Science, Machida, Tokyo 194-8511
| | - Takafumi Uchida
- Department of Molecular Cell Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 981-8555, Japan
| | - Masato Hasegawa
- Laboratory of Molecular Neurobiology, Tokyo Metropolitan Institute of Psychiatry, Kamikitazawa, Setagaya, Tokyo 156-8585
| | - Shin-Ichi Hisanaga
- From the Department of Biological Sciences, Faculty of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397.
| |
Collapse
|
18
|
Voss K, Gamblin TC. GSK-3beta phosphorylation of functionally distinct tau isoforms has differential, but mild effects. Mol Neurodegener 2009; 4:18. [PMID: 19409104 PMCID: PMC2683827 DOI: 10.1186/1750-1326-4-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 05/02/2009] [Indexed: 12/30/2022] Open
Abstract
Background Tau protein exists as six different isoforms that differ by the inclusion or exclusion of exons 2, 3 and 10. Exon 10 encodes a microtubule binding repeat, thereby resulting in three isoforms with three microtubule binding repeats (3R) and three isoforms that have four microtubule binding repeats (4R). In normal adult brain, the relative amounts of 3R tau and 4R tau are approximately equal. These relative protein levels are preserved in Alzheimer's disease, although in other neurodegenerative tauopathies such as progressive supranuclear palsy, corticobasal degeneration and Pick's disease, the ratio of 3R:4R is frequently altered. Because tau isoforms are not equally involved in these diseases, it is possible that they either have inherently unique characteristics owing to their primary structures or that post-translational modification, such as phosphorylation, differentially affects their properties. Results We have determined the effects of phosphorylation by a kinase widely believed to be involved in neurodegenerative processes, glycogen synthase kinase-3β (GSK-3β), on the microtubule binding and inducer-initiated polymerization of these isoforms in vitro. We have found that each isoform has a unique microtubule binding and polymerization profile that is altered by GSK-3β. GSK-3β phosphorylation had differential effects on the isoforms although there were similarities between isoforms and the effects were generally mild. Conclusion These results indicate that tau phosphorylation by a single kinase can have isoform specific outcomes. The mild nature of these changes, however, makes it unlikely that differential effects of GSK-3β phosphorylation on the isoforms are causative in neurodegenerative disease. Instead, the inherent differences in the isoform interactions themselves and local conditions in the diseased cells are likely the major determinant of isoform involvement in various neurodegenerative disorders.
Collapse
Affiliation(s)
- Kellen Voss
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA.
| | | |
Collapse
|
19
|
Han D, Qureshi HY, Lu Y, Paudel HK. Familial FTDP-17 missense mutations inhibit microtubule assembly-promoting activity of tau by increasing phosphorylation at Ser202 in vitro. J Biol Chem 2009; 284:13422-13433. [PMID: 19304664 DOI: 10.1074/jbc.m901095200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Alzheimer disease (AD), frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) and other tauopathies, tau accumulates and forms paired helical filaments (PHFs) in the brain. Tau isolated from PHFs is phosphorylated at a number of sites, migrates as approximately 60-, 64-, and 68-kDa bands on SDS-gel, and does not promote microtubule assembly. Upon dephosphorylation, the PHF-tau migrates as approximately 50-60-kDa bands on SDS-gels in a manner similar to tau that is isolated from normal brain and promotes microtubule assembly. The site(s) that inhibits microtubule assembly-promoting activity when phosphorylated in the diseased brain is not known. In this study, when tau was phosphorylated by Cdk5 in vitro, its mobility shifted from approximately 60-kDa bands to approximately 64- and 68-kDa bands in a time-dependent manner. This mobility shift correlated with phosphorylation at Ser(202), and Ser(202) phosphorylation inhibited tau microtubule-assembly promoting activity. When several tau point mutants were analyzed, G272V, P301L, V337M, and R406W mutations associated with FTDP-17, but not nonspecific mutations S214A and S262A, promoted Ser(202) phosphorylation and mobility shift to a approximately 68-kDa band. Furthermore, Ser(202) phosphorylation inhibited the microtubule assembly-promoting activity of FTDP-17 mutants more than of WT. Our data indicate that FTDP-17 missense mutations, by promoting phosphorylation at Ser(202), inhibit the microtubule assembly-promoting activity of tau in vitro, suggesting that Ser(202) phosphorylation plays a major role in the development of NFT pathology in AD and related tauopathies.
Collapse
Affiliation(s)
- Dong Han
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Hamid Y Qureshi
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Yifan Lu
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Hemant K Paudel
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital McGill University, Montreal, Quebec H3T 1E2, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3T 1E2, Canada.
| |
Collapse
|
20
|
Han D, Paudel HK. FTDP-17 missense mutations site-specifically inhibit as well as promote dephosphorylation of microtubule-associated protein tau by protein phosphatases of HEK-293 cell extract. Neurochem Int 2008; 54:14-27. [PMID: 18992292 DOI: 10.1016/j.neuint.2008.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 08/14/2008] [Accepted: 09/13/2008] [Indexed: 11/28/2022]
Abstract
FTDP-17 missense tau mutations: G272V, P301L, V337M and R406W promote tau phosphorylation in human and transgenic mice brains by interfering with the tau phosphorylation/dephosphorylation balance. The effect of FTDP-17 mutations on tau phosphorylation by different kinases has been studied previously. However, it is not known how various FTDP-17 mutations affect tau dephosphorylation by phosphoprotein phosphatases. In this study we have observed that when transfected into HEK-293 cells, tau is phosphorylated on various sites that are also phosphorylated in diseased human brains. When transfected cells are lysed and incubated, endogenously phosphorylated tau is dephosphorylated by cellular protein phosphatase 1 (PP1), phosphatase 2A (PP2A) and phosphatase 2B (PP2B), which are also present in the lysate. By using this assay and specific inhibitors of PP1, PP2A and PP2B, we have observed that the G272V mutation promotes tau dephosphorylation by PP2A at Ser(396/404), Ser(235), Thr(231), Ser(202/205) and Ser(214) and by PP2B at Ser(214) but inhibits dephosphorylation by PP2B at Ser(396/404). The P301L mutation promotes tau dephosphorylation at Thr(231) by PP1 and at Ser(396/404), Thr(231), Ser(235) and Ser(202/205) by PP2A but inhibits dephosphorylation at Ser(214) by PP2B. The V337M mutation promotes tau dephosphorylation at Ser(235), Thr(231) and Ser(202/205) by PP2A and at Ser(202/205) by PP2B whereas the R406W mutation promotes tau dephosphorylation at Ser(396/404) by PP1, PP2A and PP2B but inhibits dephosphorylation at Ser(202/205) and Ser(235) by PP1 and PP2A, respectively. Our results indicate that each FTDP-17 tau mutation not only site-specifically inhibits tau dephosphorylation on some sites but also promotes dephosphorylation by phosphatases on other sites.
Collapse
Affiliation(s)
- Dong Han
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
21
|
Asuni AA, Boutajangout A, Quartermain D, Sigurdsson EM. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci 2007; 27:9115-29. [PMID: 17715348 PMCID: PMC6672191 DOI: 10.1523/jneurosci.2361-07.2007] [Citation(s) in RCA: 393] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Immunotherapies for various neurodegenerative diseases have recently emerged as a promising approach for clearing pathological protein conformers in these disorders. This type of treatment has not been assessed in models that develop neuronal tau aggregates as observed in frontotemporal dementia and Alzheimer's disease. Here, we present that active immunization with a phosphorylated tau epitope, in P301L tangle model mice, reduces aggregated tau in the brain and slows progression of the tangle-related behavioral phenotype. Females had more tau pathology than males but were also more receptive to the immunotherapy. The tau antibodies generated in these animals recognized pathological tau on brain sections. Performance on behavioral assays that require extensive motor coordination correlated with tau pathology in corresponding brain areas, and antibody levels against the immunogen correlated inversely with tau pathology. Interestingly, age-dependent autoantibodies that recognized recombinant tau protein but not the immunogen were detected in the P301L mice. To confirm that anti-tau antibodies could enter the brain and bind to pathological tau, FITC-tagged antibodies purified from a P301L mouse, with a high antibody titer against the immunogen, were injected into the carotid artery of P301L mice. These antibodies were subsequently detected within the brain and colocalized with PHF1 and MC1 antibodies that recognize pathological tau. Currently, no treatment is available for clearing tau aggregates. Our present findings may lead to a novel therapy targeting one of the major hallmarks of Alzheimer's disease and frontotemporal dementia.
Collapse
Affiliation(s)
| | | | | | - Einar M. Sigurdsson
- Departments of Psychiatry
- Pathology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
22
|
Rankin CA, Sun Q, Gamblin TC. Tau phosphorylation by GSK-3beta promotes tangle-like filament morphology. Mol Neurodegener 2007; 2:12. [PMID: 17598919 PMCID: PMC1936422 DOI: 10.1186/1750-1326-2-12] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 06/28/2007] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Neurofibrillary tangles (NFTs) are intraneuronal aggregates associated with several neurodegenerative diseases including Alzheimer's disease. These abnormal accumulations are primarily comprised of fibrils of the microtubule-associated protein tau. During the progression of NFT formation, disperse and non-interacting tau fibrils become stable aggregates of tightly packed and intertwined filaments. Although the molecular mechanisms responsible for the conversion of disperse tau filaments into tangles of filaments are not known, it is believed that some of the associated changes in tau observed in Alzheimer's disease, such as phosphorylation, truncation, ubiquitination, glycosylation or nitration, may play a role. RESULTS We have investigated the effects of tau phosphorylation by glycogen synthase kinase-3beta (GSK-3beta) on tau filaments in an in vitro model system. We have found that phosphorylation by GSK-3beta is sufficient to cause tau filaments to coalesce into tangle-like aggregates similar to those isolated from Alzheimer's disease brain. CONCLUSION These results suggest that phosphorylation of tau by GSK-3beta promotes formation of tangle-like filament morphology. The in vitro cell-free experiments described here provide a new model system to study mechanisms of NFT development. Although the severity of dementia has been found to correlate with the presence of NFTs, there is some question as to the identity of the neurotoxic agents involved. This model system will be beneficial in identifying intermediates or side reaction products that might be neurotoxic.
Collapse
Affiliation(s)
- Carolyn A Rankin
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Qian Sun
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Truman C Gamblin
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
23
|
Tatebayashi Y, Planel E, Chui DH, Sato S, Miyasaka T, Sahara N, Murayama M, Kikuchi N, Yoshioka K, Rivka R, Takashima A. c-jun N-terminal kinase hyperphosphorylates R406W tau at the PHF-1 site during mitosis. FASEB J 2006; 20:762-4. [PMID: 16478768 DOI: 10.1096/fj.05-4362fje] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tauopathies such as Alzheimer disease (AD) probably involve a type of phosphorylation imbalance causing the accumulation of abnormally hyperphosphorylated tau in neurons and/or glias. Investigation of R406W tau mutation may provide insight into such abnormal tau hyperphosphorylation, since this mutation causes AD-like dementia and tauopathy in humans and because it has the unique ability to reduce tau phosphorylation in vitro and in cultured cells. Here we show that R406W mutation primarily disrupts tau phosphorylation at Ser404, a priming phosphorylation site of glycogen synthase kinase-3beta (GSK-3beta), thereby reducing subsequent GSK-3beta-mediated phosphorylation at the PHF-1 site (mostly Ser396). In contrast, c-jun N-terminal kinase (JNK) as activated in the mitotic phase directly hyperphosphorylates R406W tau at the PHF-1 site. This was confirmed by PHF-1 hyperphosphorylation of R406W tau in mitotic cells, its association with cytoplasmic JNK activation, and its inhibition by a JNK inhibitor, SP600125. These data unveil the unknown mechanisms of physiological tau phosphorylation at the PHF-1 site and suggest that cytoplasmic JNK activation may play an important role in the abnormal tau hyperphosphorylation associated with R406W tau mutation and in AD.
Collapse
Affiliation(s)
- Yoshitaka Tatebayashi
- Laboratory for Alzheimer's Disease, Brain Science Institute, The Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sakaue F, Saito T, Sato Y, Asada A, Ishiguro K, Hasegawa M, Hisanaga SI. Phosphorylation of FTDP-17 mutant tau by cyclin-dependent kinase 5 complexed with p35, p25, or p39. J Biol Chem 2005; 280:31522-9. [PMID: 15994305 DOI: 10.1074/jbc.m504792200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the major pathological hallmarks of Alzheimer disease is neurofibrillary tangles. Neurofibrillary tangles are bundles of paired helical filaments composed of hyperphosphorylated tau. Cyclin-dependent kinase 5 (Cdk5) is one of the tau protein kinases that increase paired helical filament epitopes in tau by phosphorylation. Recently, various mutations of tau have been identified in frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). Here, we investigated the phosphorylation of FTDP-17 mutant tau proteins, K257T, P301L, P301S, and R406W, by Cdk5 complexed with p35, p25, or p39 in vitro and in cultured cells. The extent of phosphorylation by all Cdk5 species was slightly lower in mutant tau than in wild-type tau. Major phosphorylation sites, including Ser202, Ser235, and Ser404, were the same among the wild-type, K257T, P301L, and P301S tau proteins phosphorylated by any Cdk5. On the other hand, R406W tau was less phosphorylated at Ser404 than were the other variants. This was not due to the simple replacement of amino acid Arg406 with Trp close to the phosphorylation site, because Ser404 in a R406W peptide was equally phosphorylated in a wild-type peptide. The decreased phosphorylation of mutant tau by Cdk5s was canceled when tau protein bound to microtubules was phosphorylated. These results indicate that FTDP-17 mutations do not affect the phosphorylatability of tau by Cdk5 complexed with p35, p25, or p39 and may explain part of the discrepancy reported previously between in vivo and in vitro phosphorylation of FTDP-17 tau mutants.
Collapse
Affiliation(s)
- Fumika Sakaue
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachiohji, Tokyo 192-039, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Frontotemporal dementia with parkinsonism linked to Chromosome 17. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
26
|
Zhang B, Higuchi M, Yoshiyama Y, Ishihara T, Forman MS, Martinez D, Joyce S, Trojanowski JQ, Lee VMY. Retarded axonal transport of R406W mutant tau in transgenic mice with a neurodegenerative tauopathy. J Neurosci 2004; 24:4657-67. [PMID: 15140937 PMCID: PMC6729383 DOI: 10.1523/jneurosci.0797-04.2004] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intracellular accumulations of filamentous tau inclusions are neuropathological hallmarks of neurodegenerative diseases known as tauopathies. The discovery of multiple pathogenic tau gene mutations in many kindreds with familial frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) unequivocally confirmed the central role of tau abnormalities in the etiology of neurodegenerative disorders. To examine the effects of tau gene mutations and the role of tau abnormalities in neurodegenerative tauopathies, transgenic (Tg) mice were engineered to express the longest human tau isoform (T40) with or without the R406W mutation (RW and hWT Tg mice, respectively) that is pathogenic for FTDP-17 in several kindreds. RW but not hWT tau Tg mice developed an age-dependent accumulation of insoluble filamentous tau aggregates in neuronal perikarya of the cerebral cortex, hippocampus, cerebellum, and spinal cord. Significantly, CNS axons in RW mice contained reduced levels of tau when compared with hWT mice, and this was linked to retarded axonal transport and increased accumulation of an insoluble pool of RW but not hWT tau. Furthermore, RW but not hWT mice demonstrated neurodegeneration and a reduced lifespan. These data indicate that the R406W mutation causes reduced binding of this mutant tau to microtubules, resulting in slower axonal transport. This altered tau function caused by the RW mutation leads to increased accumulation and reduced solubility of RW tau in an age-dependent manner, culminating in the formation of filamentous intraneuronal tau aggregates similar to that observed in tauopathy patients.
Collapse
Affiliation(s)
- Bin Zhang
- The Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, and Institute on Aging, The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4283, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Giasson BI, Sampathu DM, Wilson CA, Vogelsberg-Ragaglia V, Mushynski WE, Lee VMY. The environmental toxin arsenite induces tau hyperphosphorylation. Biochemistry 2002; 41:15376-87. [PMID: 12484777 DOI: 10.1021/bi026813c] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abnormally hyperphosphorylated tau polymers known as paired helical filaments constitute one of the major characteristic lesions that lead to the demise of neurons in Alzheimer's disease. Here, we demonstrate that the environmental toxin arsenite causes a significant increase in the phosphorylation of several amino acid residues (Thr-181, Ser-202, Thr-205, Thr-231, Ser-262, Ser-356, Ser-396, and Ser-404) in tau, which are also hyperphosphorylated under pathological conditions. Complementary phosphopeptide mapping revealed a dramatic increase in the (32)P-labeling of many peptides in tau following arsenite treatment. Although arsenite activates extracellular-signal regulated kinases-1/-2 and stress-activated protein kinases, these enzymes did not contribute to the arsenite-increased phosphorylation, nor did they appear to normally modify tau in vivo. Tau phosphorylation induced by arsenite did not involve glycogen synthase kinase-3 or protein phosphatase-1 or -2, but the activity responsible for tau hyperphosphorylation could be inhibited with the protein kinase inhibitor roscovitine. The effects of arsenite on the phosphorylation of some tau mutations (DeltaKappa280, V337M, and R406W) associated with frontal-temporal dementia with parkinsonism linked to chromosome 17 was analyzed. The unchallenged and arsenite-induced phosphorylation of some mutant proteins, especially R406W, was altered at several phosphorylation sites, indicating that these mutations can significantly affect the structure of tau in vivo. Although the major kinase(s) involved in aberrant tau phosphorylation remains elusive, these results indicate that environmental factors, such as arsenite, may be involved in the cascade leading to deregulation of tau function associated with neurodegeneration.
Collapse
Affiliation(s)
- Benoit I Giasson
- University of Pennsylvania School of Medicine, Third Floor Maloney Building, 3600 Spruce Street, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
28
|
DeTure M, Ko LW, Easson C, Yen SH. Tau assembly in inducible transfectants expressing wild-type or FTDP-17 tau. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1711-22. [PMID: 12414518 PMCID: PMC1850799 DOI: 10.1016/s0002-9440(10)64448-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Conditional expression systems for 4-repeat wild-type (WT) tau or the corresponding mutants V337M and R406W were established in human neuroglioma H4 cells to study the effect of tau mutations on the physicochemical properties of tau, and to develop a cellular model for the formation of filamentous tau characteristic of frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) and Alzheimer's disease. Upon induction tau expression increased, reaching maximal levels at 5 to 7 days. WT tau was phosphorylated at amino acids T181, S202/T205, T231, and S396/S404. The R406W mutation decreased tau phosphorylation at each of these sites as did the V337M mutation except for S396/S404 sites that increased. Most tau in postnuclear cell lysates was recovered in the supernatant fraction after centrifugation at 200,000 x g. The amount of tau in the pellet fraction increased more in mutant transfectants compared to WT when the induction was extended beyond 5 days. This particulate tau could be partially extracted with salt, Triton X-100, or sarkosyl. Of the transfectants, R406W had the highest proportion of sarkosyl-insoluble tau by day 7. This insoluble fraction was thioflavin S-positive and contained 15- to 5-nm-wide filaments with tau immunoreactivities. The R406W filaments were more abundant than those detected in similar preparations from WT or V337M transfectants. At the light microscopy level, most tau was found with microtubules, or diffusely distributed in the cytoplasm, but none of this appeared thioflavin S-positive. The results suggest that conditional tau transfectants are in a pretangle stage making them an attractive model system for studying intracellular tangle accumulation and for testing potential therapeutic agents as inhibitors for tau aggregation.
Collapse
Affiliation(s)
- Michael DeTure
- Department of Neuroscience, Mayo Clinic Jacksonville, Florida, USA
| | | | | | | |
Collapse
|
29
|
Delobel P, Flament S, Hamdane M, Jakes R, Rousseau A, Delacourte A, Vilain JP, Goedert M, Buée L. Functional characterization of FTDP-17 tau gene mutations through their effects on Xenopus oocyte maturation. J Biol Chem 2002; 277:9199-205. [PMID: 11756436 DOI: 10.1074/jbc.m107716200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
tau gene mutations cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Here we have used Xenopus oocyte maturation as an indicator of microtubule function. We show that wild-type four-repeat Tau protein inhibits maturation in a concentration-dependent manner, whereas three-repeat Tau has no effect. Of the seven four-repeat Tau proteins with FTDP-17 mutations tested, five (G272V, DeltaK280, P301L, P301S, and V337M) failed to interfere significantly with oocyte maturation, demonstrating a greatly reduced ability to interact with microtubules. One mutant protein (R406W) almost behaved like wild-type Tau, and one (S305N) inhibited maturation more strongly than wild-type Tau. With the exception of R406W, wild-type Tau and all the mutants studied were similarly phosphorylated during the Xenopus oocyte maturation, and this was independent of their effects on this process. Data obtained with R406W and S305N may be related to charge changes (phosphorylation and basic amino acids). Our results demonstrate variable effects of FTDP-17 mutations on microtubules in an intact cell situation. Those findings establish Xenopus oocyte maturation as a system allowing the study of the functional effects of tau gene mutations in a quantitative manner.
Collapse
Affiliation(s)
- Patrice Delobel
- INSERM U422, Institut de Médecine Prédictive et Recherche Thérapeutique, 59045 Lille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2001; 36:838-848. [PMID: 11473409 DOI: 10.1002/jms.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|