1
|
Tsurukawa FK, Mao Y, Sanchez-Villalobos C, Khanna N, Crasto CJ, Lawrence JJ, Pal R. Cross study transcriptomic investigation of Alzheimer's brain tissue discoveries and limitations. Sci Rep 2025; 15:16041. [PMID: 40341634 PMCID: PMC12062235 DOI: 10.1038/s41598-025-01017-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 05/02/2025] [Indexed: 05/10/2025] Open
Abstract
Developing effective treatments for Alzheimer's disease (AD) likely requires a deep understanding of molecular mechanisms. Integration of transcriptomic datasets and developing innovative computational analyses may yield novel molecular targets with broad applicability. The motivation for this study was conceived from two main observations: (a) most transcriptomic analyses of AD data consider univariate differential expression analysis, and (b) insights are often not transferable across studies. We designed a machine learning-based framework that can elucidate interpretable multivariate relationships from multiple human AD studies to discover robust transcriptomic AD biomarkers transferable across multiple studies. Our analysis of three human hippocampus datasets revealed multiple robust synergistic associations from unrelated pathways along with inconsistencies of gene associations across different studies. Our study underscores the utility of developing AI-assisted next-gen metrics for integration, robustness, and generalization and also highlights the potential benefit of elucidating molecular mechanisms and pathways that are important in targeting a single population.
Collapse
Affiliation(s)
- Fernando Koiti Tsurukawa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Yixiang Mao
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Cesar Sanchez-Villalobos
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Nishtha Khanna
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, 79409, USA
| | - Chiquito J Crasto
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, 79409, USA
| | - J Josh Lawrence
- Department of Pharmacology and Neuroscience, Garrison Institute on Aging, Center of Excellence for Translational Neuroscience and Therapeutics, and Center of Excellence in Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| | - Ranadip Pal
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
2
|
Lu J, Zhao RX, Xiong FR, Zhu JJ, Shi TT, Zhang YC, Peng GX, Yang JK. All-potassium channel CRISPR screening reveals a lysine-specific pathway of insulin secretion. Mol Metab 2024; 80:101885. [PMID: 38246588 PMCID: PMC10847698 DOI: 10.1016/j.molmet.2024.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
OBJECTIVE Genome-scale CRISPR-Cas9 knockout coupled with single-cell RNA sequencing (scRNA-seq) has been used to identify function-related genes. However, this method may knock out too many genes, leading to low efficiency in finding genes of interest. Insulin secretion is controlled by several electrophysiological events, including fluxes of KATP depolarization and K+ repolarization. It is well known that glucose stimulates insulin secretion from pancreatic β-cells, mainly via the KATP depolarization channel, but whether other nutrients directly regulate the repolarization K+ channel to promote insulin secretion is unknown. METHODS We used a system involving CRISPR-Cas9-mediated knockout of all 83 K+ channels and scRNA-seq in a pancreatic β cell line to identify genes associated with insulin secretion. RESULTS The expression levels of insulin genes were significantly increased after all-K+ channel knockout. Furthermore, Kcnb1 and Kcnh6 were the two most important repolarization K+ channels for the increase in high-glucose-dependent insulin secretion that occurred upon application of specific inhibitors of the channels. Kcnh6 currents, but not Kcnb1 currents, were reduced by one of the amino acids, lysine, in both transfected cells, primary cells and mice with β-cell-specific deletion of Kcnh6. CONCLUSIONS Our function-related CRISPR screen with scRNA-seq identifies Kcnh6 as a lysine-specific channel.
Collapse
Affiliation(s)
- Jing Lu
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Ru-Xuan Zhao
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Feng-Ran Xiong
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Juan-Juan Zhu
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Ting-Ting Shi
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Ying-Chao Zhang
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Gong-Xin Peng
- Center for Bioinformatics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100740, China
| | - Jin-Kui Yang
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China.
| |
Collapse
|
3
|
Wu LY, Song YJ, Zhang CL, Liu J. K V Channel-Interacting Proteins in the Neurological and Cardiovascular Systems: An Updated Review. Cells 2023; 12:1894. [PMID: 37508558 PMCID: PMC10377897 DOI: 10.3390/cells12141894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
KV channel-interacting proteins (KChIP1-4) belong to a family of Ca2+-binding EF-hand proteins that are able to bind to the N-terminus of the KV4 channel α-subunits. KChIPs are predominantly expressed in the brain and heart, where they contribute to the maintenance of the excitability of neurons and cardiomyocytes by modulating the fast inactivating-KV4 currents. As the auxiliary subunit, KChIPs are critically involved in regulating the surface protein expression and gating properties of KV4 channels. Mechanistically, KChIP1, KChIP2, and KChIP3 promote the translocation of KV4 channels to the cell membrane, accelerate voltage-dependent activation, and slow the recovery rate of inactivation, which increases KV4 currents. By contrast, KChIP4 suppresses KV4 trafficking and eliminates the fast inactivation of KV4 currents. In the heart, IKs, ICa,L, and INa can also be regulated by KChIPs. ICa,L and INa are positively regulated by KChIP2, whereas IKs is negatively regulated by KChIP2. Interestingly, KChIP3 is also known as downstream regulatory element antagonist modulator (DREAM) because it can bind directly to the downstream regulatory element (DRE) on the promoters of target genes that are implicated in the regulation of pain, memory, endocrine, immune, and inflammatory reactions. In addition, all the KChIPs can act as transcription factors to repress the expression of genes involved in circadian regulation. Altered expression of KChIPs has been implicated in the pathogenesis of several neurological and cardiovascular diseases. For example, KChIP2 is decreased in failing hearts, while loss of KChIP2 leads to increased susceptibility to arrhythmias. KChIP3 is increased in Alzheimer's disease and amyotrophic lateral sclerosis, but decreased in epilepsy and Huntington's disease. In the present review, we summarize the progress of recent studies regarding the structural properties, physiological functions, and pathological roles of KChIPs in both health and disease. We also summarize the small-molecule compounds that regulate the function of KChIPs. This review will provide an overview and update of the regulatory mechanism of the KChIP family and the progress of targeted drug research as a reference for researchers in related fields.
Collapse
Affiliation(s)
- Le-Yi Wu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yu-Juan Song
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Jie Liu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| |
Collapse
|
4
|
Kv4.1, a Key Ion Channel For Low Frequency Firing of Dentate Granule Cells, Is Crucial for Pattern Separation. J Neurosci 2020; 40:2200-2214. [PMID: 32047055 DOI: 10.1523/jneurosci.1541-19.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 12/30/2019] [Accepted: 01/23/2020] [Indexed: 11/21/2022] Open
Abstract
The dentate gyrus (DG) in the hippocampus may play key roles in remembering distinct episodes through pattern separation, which may be subserved by the sparse firing properties of granule cells (GCs) in the DG. Low intrinsic excitability is characteristic of mature GCs, but ion channel mechanisms are not fully understood. Here, we investigated ionic channel mechanisms for firing frequency regulation in hippocampal GCs using male and female mice, and identified Kv4.1 as a key player. Immunofluorescence analysis showed that Kv4.1 was preferentially expressed in the DG, and its expression level determined by Western blot analysis was higher at 8-week than 3-week-old mice, suggesting a developmental regulation of Kv4.1 expression. With respect to firing frequency, GCs are categorized into two distinctive groups: low-frequency (LF) and high-frequency (HF) firing GCs. Input resistance (R in) of most LF-GCs is lower than 200 MΩ, suggesting that LF-GCs are fully mature GCs. Kv4.1 channel inhibition by intracellular perfusion of Kv4.1 antibody increased firing rates and gain of the input-output relationship selectively in LF-GCs with no significant effect on resting membrane potential and R in, but had no effect in HF-GCs. Importantly, mature GCs from mice depleted of Kv4.1 transcripts in the DG showed increased firing frequency, and these mice showed an impairment in contextual discrimination task. Our findings suggest that Kv4.1 expression occurring at late stage of GC maturation is essential for low excitability of DG networks and thereby contributes to pattern separation.SIGNIFICANCE STATEMENT The sparse activity of dentate granule cells (GCs), which is essential for pattern separation, is supported by high inhibitory inputs and low intrinsic excitability of GCs. Low excitability of GCs is thought to be attributable to a high K+ conductance at resting membrane potentials, but this study identifies Kv4.1, a depolarization-activated K+ channel, as a key ion channel that regulates firing of GCs without affecting resting membrane potentials. Kv4.1 expression is developmentally regulated and Kv4.1 currents are detected only in mature GCs that show low-frequency firing, but not in less mature high-frequency firing GCs. Furthermore, mice depleted of Kv4.1 transcripts in the dentate gyrus show impaired pattern separation, suggesting that Kv4.1 is crucial for sparse coding and pattern separation.
Collapse
|
5
|
Atia J, McCloskey C, Shmygol AS, Rand DA, van den Berg HA, Blanks AM. Reconstruction of Cell Surface Densities of Ion Pumps, Exchangers, and Channels from mRNA Expression, Conductance Kinetics, Whole-Cell Calcium, and Current-Clamp Voltage Recordings, with an Application to Human Uterine Smooth Muscle Cells. PLoS Comput Biol 2016; 12:e1004828. [PMID: 27105427 PMCID: PMC4841602 DOI: 10.1371/journal.pcbi.1004828] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 02/23/2016] [Indexed: 11/28/2022] Open
Abstract
Uterine smooth muscle cells remain quiescent throughout most of gestation, only generating spontaneous action potentials immediately prior to, and during, labor. This study presents a method that combines transcriptomics with biophysical recordings to characterise the conductance repertoire of these cells, the ‘conductance repertoire’ being the total complement of ion channels and transporters expressed by an electrically active cell. Transcriptomic analysis provides a set of potential electrogenic entities, of which the conductance repertoire is a subset. Each entity within the conductance repertoire was modeled independently and its gating parameter values were fixed using the available biophysical data. The only remaining free parameters were the surface densities for each entity. We characterise the space of combinations of surface densities (density vectors) consistent with experimentally observed membrane potential and calcium waveforms. This yields insights on the functional redundancy of the system as well as its behavioral versatility. Our approach couples high-throughput transcriptomic data with physiological behaviors in health and disease, and provides a formal method to link genotype to phenotype in excitable systems. We accurately predict current densities and chart functional redundancy. For example, we find that to evoke the observed voltage waveform, the BK channel is functionally redundant whereas hERG is essential. Furthermore, our analysis suggests that activation of calcium-activated chloride conductances by intracellular calcium release is the key factor underlying spontaneous depolarisations. A well-known problem in electrophysiologal modeling is that the parameters of the gating kinetics of the ion channels cannot be uniquely determined from observed behavior at the cellular level. One solution is to employ simplified “macroscopic” currents that mimic the behavior of aggregates of distinct entities at the protein level. The gating parameters of each channel or pump can be determined by studying it in isolation, leaving the general problem of finding the densities at which the channels occur in the plasma membrane. We propose an approach, which we apply to uterine smooth muscle cells, whereby we constrain the list of possible entities by means of transcriptomics and chart the indeterminacy of the problem in terms of the kernel of the corresponding linear transformation. A graphical representation of this kernel visualises the functional redundancy of the system. We show that the role of certain conductances can be fulfilled, or compensated for, by suitable combinations of other conductances; this is not always the case, and such “non-substitutable” conductances can be regarded as functionally non-redundant. Electrogenic entities belonging to the latter category are suitable putative clinical targets.
Collapse
Affiliation(s)
- Jolene Atia
- Division of Reproductive Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Conor McCloskey
- Division of Reproductive Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Anatoly S. Shmygol
- Division of Reproductive Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | | | - Andrew M. Blanks
- Division of Reproductive Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Whyment AD, Coderre E, Wilson JMM, Renaud LP, O'Hare E, Spanswick D. Electrophysiological, pharmacological and molecular profile of the transient outward rectifying conductance in rat sympathetic preganglionic neurons in vitro. Neuroscience 2011; 178:68-81. [PMID: 21211550 DOI: 10.1016/j.neuroscience.2010.12.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 12/27/2010] [Accepted: 12/30/2010] [Indexed: 01/13/2023]
Abstract
Transient outward rectifying conductances or A-like conductances in sympathetic preganglionic neurons (SPN) are prolonged, lasting for hundreds of milliseconds to seconds and are thought to play a key role in the regulation of SPN firing frequency. Here, a multidisciplinary electrophysiological, pharmacological and molecular single-cell rt-PCR approach was used to investigate the kinetics, pharmacological profile and putative K+ channel subunits underlying the transient outward rectifying conductance expressed in SPN. SPN expressed a 4-aminopyridine (4-AP) sensitive transient outward rectification with significantly longer decay kinetics than reported for many other central neurons. The conductance and corresponding current in voltage-clamp conditions was also sensitive to the Kv4.2 and Kv4.3 blocker phrixotoxin-2 (1-10 μM) and the blocker of rapidly inactivating Kv channels, pandinotoxin-Kα (50 nM). The conductance and corresponding current was only weakly sensitive to the Kv1 channel blocker tityustoxin-Kα and insensitive to dendrotoxin I (200 nM) and the Kv3.4 channel blocker BDS-II (1 μM). Single-cell RT-PCR revealed mRNA expression for the α-subunits Kv4.1 and Kv4.3 in the majority and Kv1.5 in less than half of SPN. mRNA for accessory β-subunits was detected for Kvβ2 in all SPN with differential expression of mRNA for KChIP1, Kvβ1 and Kvβ3 and the peptidase homologue DPP6. These data together suggest that the transient outwardly rectifying conductance in SPN is mediated by members of the Kv4 subfamily (Kv4.1 and Kv4.3) in association with the β-subunit Kvβ2. Differential expression of the accessory β subunits, which may act to modulate channel density and kinetics in SPN, may underlie the prolonged and variable time-course of this conductance in these neurons.
Collapse
Affiliation(s)
- A D Whyment
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | | | | | | | | | | |
Collapse
|
7
|
Fransén E, Tigerholm J. Role of A-type potassium currents in excitability, network synchronicity, and epilepsy. Hippocampus 2010; 20:877-87. [PMID: 19777555 DOI: 10.1002/hipo.20694] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A range of ionic currents have been suggested to be involved in distinct aspects of epileptogenesis. Based on pharmacological and genetic studies, potassium currents have been implicated, in particular the transient A-type potassium current (K(A)). Epileptogenic activity comprises a rich repertoire of characteristics, one of which is synchronized activity of principal cells as revealed by occurrences of for instance fast ripples. Synchronized activity of this kind is particularly efficient in driving target cells into spiking. In the recipient cell, this synchronized input generates large brief compound excitatory postsynaptic potentials (EPSPs). The fast activation and inactivation of K(A) lead us to hypothesize a potential role in suppression of such EPSPs. In this work, using computational modeling, we have studied the activation of K(A) by synaptic inputs of different levels of synchronicity. We find that K(A) participates particularly in suppressing inputs of high synchronicity. We also show that the selective suppression stems from the current's ability to become activated by potentials with high slopes. We further show that K(A) suppresses input mimicking the activity of a fast ripple. Finally, we show that the degree of selectivity of K(A) can be modified by changes to its kinetic parameters, changes of the type that are produced by the modulatory action of KChIPs and DPPs. We suggest that the wealth of modulators affecting K(A) might be explained by a need to control cellular excitability in general and suppression of responses to synchronicity in particular. Wealso suggest that compounds changing K(A)-kinetics may be used to pharmacologically improve epileptic status.
Collapse
Affiliation(s)
- Erik Fransén
- Department of Computational Biology, School of Computer Science and Communication, Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden.
| | | |
Collapse
|
8
|
Abstract
Since the first discovery of Kvbeta-subunits more than 15 years ago, many more ancillary Kv channel subunits were characterized, for example, KChIPs, KCNEs, and BKbeta-subunits. The ancillary subunits are often integral parts of native Kv channels, which, therefore, are mostly multiprotein complexes composed of voltage-sensing and pore-forming Kvalpha-subunits and of ancillary or beta-subunits. Apparently, Kv channels need the ancillary subunits to fulfill their many different cell physiological roles. This is reflected by the large structural diversity observed with ancillary subunit structures. They range from proteins with transmembrane segments and extracellular domains to purely cytoplasmic proteins. Ancillary subunits modulate Kv channel gating but can also have a great impact on channel assembly, on channel trafficking to and from the cellular surface, and on targeting Kv channels to different cellular compartments. The importance of the role of accessory subunits is further emphasized by the number of mutations that are associated in both humans and animals with diseases like hypertension, epilepsy, arrhythmogenesis, periodic paralysis, and hypothyroidism. Interestingly, several ancillary subunits have in vitro enzymatic activity; for example, Kvbeta-subunits are oxidoreductases, or modulate enzymatic activity, i.e., KChIP3 modulates presenilin activity. Thus different modes of beta-subunit association and of functional impact on Kv channels can be delineated, making it difficult to extract common principles underlying Kvalpha- and beta-subunit interactions. We critically review present knowledge on the physiological role of ancillary Kv channel subunits and their effects on Kv channel properties.
Collapse
Affiliation(s)
- Olaf Pongs
- Institut für Neurale Signalverarbeitung, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany.
| | | |
Collapse
|
9
|
Boland LM, Drzewiecki MM, Timoney G, Casey E. Inhibitory effects of polyunsaturated fatty acids on Kv4/KChIP potassium channels. Am J Physiol Cell Physiol 2009; 296:C1003-14. [PMID: 19261906 DOI: 10.1152/ajpcell.00474.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kv4/K channel interacting protein (KChIP) potassium channels are a major class of rapidly inactivating K(+) channels in neurons and cardiac muscle. Modulation of Kv4/KChIP channels by polyunsaturated fatty acids (PUFAs) is important in the regulation of cellular excitability and the induction of activity-dependent synaptic plasticity. Using the Xenopus laevis oocyte expression system, we studied the inhibition by PUFAs of the peak outward K(+) current and the accompanying increase in the rate of current inactivation of rKv4.2/rKChIP1b. Inhibitory effects do not depend on KChIP coexpression since Kv4.2 channels lacking an NH(2)-terminal KChIP association region were substantially inhibited by PUFAs and showed strong kinetic modulation. PUFAs accelerated both the fast and slow time constants that describe the kinetics of Kv4/KChIP inactivation. The time course of entry into closed inactivated states was facilitated by PUFAs, but steady-state inactivation and recovery from inactivation were unaltered. PUFA inhibition of Kv4/KChIP current was not use dependent. The concentration-response relationship for arachidonic acid (AA) inhibition of Kv4/KChIP channels mimicked that for activation of TRAAK channels. Internal serum albumin largely prevents the inhibitory effects of externally applied AA, and the membrane-impermeant AA-CoA is inactive when applied externally. Overall, our data suggest that PUFAs inhibit Kv4/KChIP channels by facilitating inactivation from open and closed gating states and that access of the fatty acid to the internal leaflet of the membrane is important. These results improve our understanding of the mechanisms for the inhibitory effects of PUFAs on Kv4/KChIP channel function.
Collapse
Affiliation(s)
- Linda M Boland
- Dept. of Biology, Univ. of Richmond, Richmond, VA 23173, USA.
| | | | | | | |
Collapse
|
10
|
Su T, Cong W, Long Y, Luo A, Sun W, Deng W, Liao W. Altered expression of voltage-gated potassium channel 4.2 and voltage-gated potassium channel 4-interacting protein, and changes in intracellular calcium levels following lithium-pilocarpine-induced status epilepticus. Neuroscience 2008; 157:566-76. [DOI: 10.1016/j.neuroscience.2008.09.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 09/16/2008] [Accepted: 09/19/2008] [Indexed: 11/16/2022]
|
11
|
Van Hoorick D, Raes A, Snyders DJ. The aromatic cluster in KCHIP1b affects Kv4 inactivation gating. J Physiol 2007; 583:959-69. [PMID: 17640927 PMCID: PMC2277206 DOI: 10.1113/jphysiol.2007.139550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The KChIP1b splice variant has been shown to induce slow recovery from inactivation for Kv4.2 whereas KChIP1a enhanced the recovery. Both splice variants differ only by the insertion of the exon1b, rich in aromatic residues (5/11). We analysed in detail the modifications of Kv4.2 gating induced by the KChIP1b splice variant and the role for the aromatic cluster in KChIP1b in inducing these changes. By substituting alanine for the aromatic residues individually or in combination, we could convert the KChIP1b recovery behaviour into that of KChIP1a. The replacement of one or two aromatic residues resulted in a partial restitution of the KChIP1a recovery behaviour. When three aromatic residues were replaced in the exon1b, the recovery from inactivation was fast with time constants that were similar to those obtained with KChIP1a. Moreover, similar findings were observed for closed state inactivation and for the voltage dependence of inactivation. Thus, reduction of the side chain bulkiness in exon1b resulted in the conversion of the KChIP1b phenotype into the KChIP1a phenotype. These results indicate that the aromatic cluster in exon1b modulates the transitions towards and from the closed inactivated states and the steady state distribution over the respective states.
Collapse
Affiliation(s)
- D Van Hoorick
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | | | | |
Collapse
|
12
|
Abstract
Triggered activity in cardiac muscle and intracellular Ca2+ have been linked in the past. However, today not only are there a number of cellular proteins that show clear Ca2+ dependence but also there are a number of arrhythmias whose mechanism appears to be linked to Ca2+-dependent processes. Thus we present a systematic review of the mechanisms of Ca2+ transport (forward excitation-contraction coupling) in the ventricular cell as well as what is known for other cardiac cell types. Second, we review the molecular nature of the proteins that are involved in this process as well as the functional consequences of both normal and abnormal Ca2+ cycling (e.g., Ca2+ waves). Finally, we review what we understand to be the role of Ca2+ cycling in various forms of arrhythmias, that is, those associated with inherited mutations and those that are acquired and resulting from reentrant excitation and/or abnormal impulse generation (e.g., triggered activity). Further solving the nature of these intricate and dynamic interactions promises to be an important area of research for a better recognition and understanding of the nature of Ca2+ and arrhythmias. Our solutions will provide a more complete understanding of the molecular basis for the targeted control of cellular calcium in the treatment and prevention of such.
Collapse
Affiliation(s)
- Henk E D J Ter Keurs
- Department of Medicine, Physiology and Biophysics, University of Calgary, Alberta, Canada
| | | |
Collapse
|
13
|
Pioletti M, Findeisen F, Hura GL, Minor DL. Three-dimensional structure of the KChIP1-Kv4.3 T1 complex reveals a cross-shaped octamer. Nat Struct Mol Biol 2006; 13:987-95. [PMID: 17057713 PMCID: PMC3018330 DOI: 10.1038/nsmb1164] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 10/03/2006] [Indexed: 11/09/2022]
Abstract
Brain I(A) and cardiac I(to) currents arise from complexes containing Kv4 voltage-gated potassium channels and cytoplasmic calcium-sensor proteins (KChIPs). Here, we present X-ray crystallographic and small-angle X-ray scattering data that show that the KChIP1-Kv4.3 N-terminal cytoplasmic domain complex is a cross-shaped octamer bearing two principal interaction sites. Site 1 comprises interactions between a unique Kv4 channel N-terminal hydrophobic segment and a hydrophobic pocket formed by displacement of the KChIP H10 helix. Site 2 comprises interactions between a T1 assembly domain loop and the KChIP H2 helix. Functional and biochemical studies indicate that site 1 influences channel trafficking, whereas site 2 affects channel gating, and that calcium binding is intimately linked to KChIP folding and complex formation. Together, the data resolve how Kv4 channels and KChIPs interact and provide a framework for understanding how KChIPs modulate Kv4 function.
Collapse
Affiliation(s)
- Marta Pioletti
- Cardiovascular Research Institute, Department of Biochemistry, California Institute for Quantitative Biomedical Research, University of California, San Francisco, California 94143-2532, USA
| | | | | | | |
Collapse
|
14
|
Salvador-Recatalà V, Gallin WJ, Abbruzzese J, Ruben PC, Spencer AN. A potassium channel (Kv4) cloned from the heart of the tunicate Ciona intestinalis and its modulation by a KChIP subunit. ACTA ACUST UNITED AC 2006; 209:731-47. [PMID: 16449567 DOI: 10.1242/jeb.02032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Voltage-gated ion channels of the Kv4 subfamily produce A-type currents whose properties are tuned by accessory subunits termed KChIPs, which are a family of Ca2+ sensor proteins. By modifying expression levels and the intrinsic biophysical properties of Kv4 channels, KChIPs modulate the excitability properties of neurons and myocytes. We studied how a Kv4 channel from a tunicate, the first branching clade of the chordates, is modulated by endogenous KChIP subunits. BLAST searches in the genome of Ciona intestinalis identified a single Kv4 gene and a single KChIP gene, implying that the diversification of both genes occurred during early vertebrate evolution, since the corresponding mammalian gene families are formed by several paralogues. In this study we describe the cloning and characterization of a tunicate Kv4 channel, CionaKv4, and a tunicate KChIP subunit, CionaKChIP. We demonstrate that CionaKChIP strongly modulates CionaKv4 by producing larger currents that inactivate more slowly than in the absence of the KChIP subunit. Furthermore, CionaKChIP shifted the midpoints of activation and inactivation and slowed deactivation and recovery from inactivation of CionaKv4. Modulation by CionaKChIP requires the presence of the intact N terminus of CionaKv4 because, except for a minor effect on inactivation, CionaKChIP did not modulate CionaKv4 channels that lacked amino acids 2-32. In summary, our results suggest that modulation of Kv4 channels by KChIP subunits is an ancient mechanism for modulating electrical excitability.
Collapse
|
15
|
Yuan W, Burkhalter A, Nerbonne JM. Functional role of the fast transient outward K+ current IA in pyramidal neurons in (rat) primary visual cortex. J Neurosci 2005; 25:9185-94. [PMID: 16207878 PMCID: PMC6725755 DOI: 10.1523/jneurosci.2858-05.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A molecular genetic approach was exploited to directly test the hypothesis that voltage-gated K+ (Kv) channel pore-forming (alpha) subunits of the Kv4 subfamily encode the fast transient outward K+ current (IA) in cortical pyramidal neurons and to explore the functional role of IA in shaping action potential waveforms and in controlling repetitive firing in these cells. Using the biolistic gene gun, cDNAs encoding a mutant Kv4.2 alpha subunit (Kv4.2W362F), which functions as a dominant negative (Kv4.2DN), and enhanced green fluorescent protein (EGFP) were introduced in vitro into neurons isolated from postnatal rat primary visual cortex. Whole-cell voltage-clamp recordings obtained from EGFP-positive pyramidal neurons revealed that IA is selectively eliminated in cells expressing Kv4.2DN. The densities and properties of the other Kv currents are unaffected. In neurons expressing Kv4.2DN, input resistances are increased and the (current) thresholds for action potential generation are decreased. In addition, action potential durations are prolonged, the amplitudes of afterhyperpolarizations are reduced, and the responses to prolonged depolarizing inputs are altered markedly in cells expressing Kv 4.2DN. At low stimulus intensities, firing rates are increased in Kv4.2DN-expressing cells, whereas at high stimulus intensities, Kv4.2DN-expressing cells adapt strongly. Together, these results demonstrate that Kv4alpha subunits encode IA channels and that IA plays a pivotal role in shaping the waveforms of individual action potentials and in controlling repetitive firing in visual cortical pyramidal neurons.
Collapse
Affiliation(s)
- Weilong Yuan
- Department of Molecular Biology and Pharmacology, Washington University Medical School, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
16
|
Boyden PA, ter Keurs H. Would modulation of intracellular Ca2+ be antiarrhythmic? Pharmacol Ther 2005; 108:149-79. [PMID: 16038982 DOI: 10.1016/j.pharmthera.2005.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 03/22/2005] [Indexed: 01/10/2023]
Abstract
Under several types of conditions, reversal of steps of excitation-contraction coupling (RECC) can give rise to nondriven electrical activity. In this review we explore those conditions for several cardiac cell types (SA, atrial, Purkinje, ventricular cells). We find that abnormal spontaneous Ca2+ release from intracellular Ca2+ stores, aberrant Ca2+ influx from sarcolemmal channels or abnormal Ca2+ surges in nonuniform muscle can be the initiators of the RECC. Often, with such increases in Ca2+, spontaneous Ca2+ waves occur and lead to membrane depolarizations. Because the change in membrane voltage is produced by Ca2+-dependent changes in ion channel function, we also review here what is known about the molecular interaction of Ca2+ and several Ca2+-dependent processes, including the intracellular Ca2+ release channels implicated in the genetic basis of some forms of human arrhythmias. Finally, we review what is known about the effectiveness of several agents in modifying such Ca2+-dependent arrhythmias.
Collapse
Affiliation(s)
- Penelope A Boyden
- Department of Pharmacology, Center for Molecular Therapeutics, Columbia University, NY 10032, USA.
| | | |
Collapse
|
17
|
Rong Y, Wang T, Morgan JI. Identification of candidate Purkinje cell-specific markers by gene expression profiling in wild-type and pcd(3J) mice. ACTA ACUST UNITED AC 2005; 132:128-45. [PMID: 15582153 DOI: 10.1016/j.molbrainres.2004.10.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2004] [Indexed: 10/26/2022]
Abstract
The identification of mRNAs that have restricted expression patterns in the brain represents powerful tools with which to characterize and manipulate the nervous system. Here, we describe a strategy using microarray technology (Affymetrix Mouse Genome 430 2.0 Arrays) to identify mRNA transcripts that are candidate markers of cerebellar Purkinje neurons. Initially, gene expression profiles were compared between cerebella of 4-month-old Purkinje cell degeneration (pcd(3J)) mice, in which most Purkinje cells had already degenerated and wild-type littermates with a normal complement of Purkinje neurons. Of 14,563 probe sets expressed in wild-type cerebellum, 797 showed a significant (p<0.0001) reduction in pcd(3J) mice. These probes could represent transcripts with varying levels of specificity for Purkinje cells as well as transcripts in other cell types that decline as a secondary consequence of Purkinje cell loss. Ranking of the probe signals revealed that well-known Purkinje cell-specific transcripts such as calbindin and L7/pcp2 clustered in a group that was <33% of wild-type levels. Therefore, to identify potentially new Purkinje cell-specific transcripts that cluster with the known markers, more stringent selection criteria were applied (<33% of wild-type signal and p<0.0001). With these criteria, 55 independent transcripts were identified of which 33 were annotated genes and 22 were ESTs and RIKEN cDNAs. A literature search revealed that 25 of the 33 annotated genes were expressed in Purkinje cells, with no data being available on the other 8. Thus, the additional 8 annotated and 22 un-annotated genes are clustered with many genes expressed in Purkinje cells making them candidate markers. To confirm the microarray data, eight representative annotated genes were selected including five reported to be in Purkinje neurons and three for which no data was available. Semi-quantitative RT-PCR demonstrated reduced expression of all eight transcripts in cerebella from pcd(3J) mice. The promoters of genes expressed selectively in subsets of neurons can be used to direct heterologous gene expression in transgenic mice and the more restricted the expression pattern the greater their utility. Therefore, microarray analysis was used to assess expression levels of all 55 transcripts in cerebral cortex, striatum, substantia nigra and ventral tegmental area. This permitted the identification of a set of genes whose promoters might have utility for selectively targeting gene expression to cerebellar Purkinje cells.
Collapse
Affiliation(s)
- Yongqi Rong
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 332 N. Lauderdale Street, Memphis, TN 38105, United States
| | | | | |
Collapse
|
18
|
Hatano N, Ohya S, Muraki K, Clark RB, Giles WR, Imaizumi Y. Two arginines in the cytoplasmic C-terminal domain are essential for voltage-dependent regulation of A-type K+ current in the Kv4 channel subfamily. J Biol Chem 2003; 279:5450-9. [PMID: 14645239 DOI: 10.1074/jbc.m302034200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Contributions of the C-terminal domain of Kv4.3 to the voltage-dependent gating of A-type K+ current (IA) were examined by (i) making mutations in this region, (ii) heterologous expression in HEK293 cells, and (iii) detailed voltage clamp analyses. Progressive deletions of the C terminus of rat Kv4.3M (to amino acid 429 from the N terminus) did not markedly change the inactivation time course of IA but shifted the voltage dependence of steady state inactivation in the negative direction to a maximum of -17 mV. Further deletions (to amino acid 420) shifted this parameter in the positive direction, suggesting a critical role for the domain 429-420 in the voltage-dependent regulation of IA. There are four positively charged amino acids in this domain: Lys423, Lys424, Arg426, and Arg429. The replacement of the two arginines with alanines (R2A) resulted in -23 and -13 mV shifts of inactivation and activation, respectively. Additional replacement of the two lysines with alanines did not result in further shifts. Single replacements of R426A or R429A induced -15 and -10 mV shifts of inactivation, respectively. R2A did not significantly change the inactivation rate but did markedly change the voltage dependence of recovery from inactivation. These two arginines are conserved in Kv4 subfamily, and alanine replacement of Arg429 and Arg432 in Kv4.2 gave essentially the same results. These effects of R2A were not modulated by co-expression of the K+ channel beta subunit, KChIPs. In conclusion, the two arginines in the cytosolic C-terminal domain of alpha-subunits of Kv4 subfamily strongly regulate the voltage dependence of channel activation, inactivation, and recovery.
Collapse
Affiliation(s)
- Noriyuki Hatano
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Ren X, Shand SH, Takimoto K. Effective association of Kv channel-interacting proteins with Kv4 channel is mediated with their unique core peptide. J Biol Chem 2003; 278:43564-70. [PMID: 12928444 DOI: 10.1074/jbc.m302337200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kv channel-interacting proteins (KChIPs) and neuronal calcium sensor-1 (NCS-1) have been shown to interact with Kv4 channel alpha-subunits to regulate the expression and/or gating of these channels. Here we examine the specificity and sites of these proteins for interaction with Kv channel proteins. Immunoprecipitation and green fluorescent protein imaging show that KChIPs (but not NCS-1) effectively bind to Kv4.3 protein and localize at the plasma membrane when channel proteins are coexpressed. Analysis with chimeric proteins between KChIP2 and NCS-1 reveals that the three regions of KChIP2 (the linker between the first and second EF hands, the one between the third and fourth EF hands, and the C-terminal peptide after the fourth EF hand) are necessary and sufficient for its effective binding to Kv4.3 protein. The chimera with these three KChIP2 portions slowed inactivation and facilitated recovery from inactivation of Kv4.3 current. These results indicate that the sequence difference in these three regions between KChIPs and NCS-1 determines the specificity and affinity for interaction with Kv4 protein. Because the three identified regions surround the large hydrophobic crevice based on the NCS-1 crystal structure, this crevice may be the association site of KChIPs for the channel protein.
Collapse
Affiliation(s)
- Xiaomeng Ren
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
20
|
Boland LM, Jiang M, Lee SY, Fahrenkrug SC, Harnett MT, O'Grady SM. Functional properties of a brain-specific NH2-terminally spliced modulator of Kv4 channels. Am J Physiol Cell Physiol 2003; 285:C161-70. [PMID: 12646414 DOI: 10.1152/ajpcell.00416.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kv4/K channel-interacting protein (KChIP) potassium channels are a major class of rapidly inactivating K channels in brain and heart. Considering the importance of alternative splicing to the quantitative features of KChIP gating modulation, a previously uncharacterized splice form of KChIP1 was functionally characterized. The KChIP1b splice variant differs from the previously characterized KChIP1a splice form by the inclusion of a novel amino-terminal region that is encoded by an alternative exon that is conserved in mouse, rat, and human genes. The expression of KChIP1b mRNA was high in brain but undetectable in heart or liver by RT-PCR. In cerebellar tissue, KChIP1b and KChIP1a transcripts were expressed at nearly equal levels. Coexpression of KChIP1b or KChIP1a with Kv4.2 channels in oocytes slowed K current decay and destabilized open-inactivated channel gating. Like other KChIP subunits, KChIP1b increased Kv4.2 current amplitude and KChIP1b also shifted Kv4.2 conductance-voltage curves by -10 mV. The development of Kv4.2 channel inactivation accessed from closed gating states was faster with KChIP1b coexpression. Deletion of the novel amino-terminal region in KChIP1b selectively altered the subunit's modulation of Kv4.2 closed inactivation gating. The role of the KChIP1b NH2-terminal region was further confirmed by direct comparison of the properties of the NH2-terminal deletion mutant and the KChIP1a subunit, which is encoded by a transcript that lacks the novel exon. The features of KChIP1b modulation of Kv4 channels are likely to be conserved in mammals and demonstrate a role for the KChIP1 NH2-terminal region in the regulation of closed inactivation gating.
Collapse
Affiliation(s)
- Linda M Boland
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Lee SY, Maniak PJ, Ingbar DH, O'Grady SM. Adult alveolar epithelial cells express multiple subtypes of voltage-gated K+ channels that are located in apical membrane. Am J Physiol Cell Physiol 2003; 284:C1614-24. [PMID: 12606310 DOI: 10.1152/ajpcell.00429.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Whole cell perforated patch-clamp experiments were performed with adult rat alveolar epithelial cells. The holding potential was -60 mV, and depolarizing voltage steps activated voltage-gated K(+) (Kv) channels. The voltage-activated currents exhibited a mean reversal potential of -32 mV. Complete activation was achieved at -10 mV. The currents exhibited slow inactivation, with significant variability in the time course between cells. Tail current analysis revealed cell-to-cell variability in K(+) selectivity, suggesting contributions of multiple Kv alpha-subunits to the whole cell current. The Kv channels also displayed steady-state inactivation when the membrane potential was held at depolarized voltages with a window current between -30 and 5 mV. Analysis of RNA isolated from these cells by RT-PCR revealed the presence of eight Kv alpha-subunits (Kv1.1, Kv1.3, Kv1.4, Kv2.2, Kv4.1, Kv4.2, Kv4.3, and Kv9.3), three beta-subunits (Kvbeta1.1, Kvbeta2.1, and Kvbeta3.1), and two K(+) channel interacting protein (KChIP) isoforms (KChIP2 and KChIP3). Western blot analysis with available Kv alpha-subunit antibodies (Kv1.1, Kv1.3, Kv1.4, Kv4.2, and Kv4.3) showed labeling of 50-kDa proteins from alveolar epithelial cells grown in monolayer culture. Immunocytochemical analysis of cells from monolayers showed that Kv1.1, Kv1.3, Kv1.4, Kv4.2, and Kv4.3 were localized to the apical membrane. We conclude that expression of multiple Kv alpha-, beta-, and KChIP subunits explains the variability in inactivation gating and K(+) selectivity observed between cells and that Kv channels in the apical membrane may contribute to basal K(+) secretion across the alveolar epithelium.
Collapse
Affiliation(s)
- So Yeong Lee
- Department of Physiology, University of Minnesota, St. Paul 55108, USA
| | | | | | | |
Collapse
|
22
|
Amberg GC, Koh SD, Imaizumi Y, Ohya S, Sanders KM. A-type potassium currents in smooth muscle. Am J Physiol Cell Physiol 2003; 284:C583-95. [PMID: 12556357 DOI: 10.1152/ajpcell.00301.2002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A-type currents are voltage-gated, calcium-independent potassium (Kv) currents that undergo rapid activation and inactivation. Commonly associated with neuronal and cardiac cell-types, A-type currents have also been identified and characterized in vascular, genitourinary, and gastrointestinal smooth muscle cells. This review examines the molecular identity, biophysical properties, pharmacology, regulation, and physiological function of smooth muscle A-type currents. In general, this review is intended to facilitate the comparison of A-type currents present in different smooth muscles by providing a comprehensive report of the literature to date. This approach should also aid in the identification of areas of research requiring further attention.
Collapse
Affiliation(s)
- Gregory C Amberg
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno 89557, USA
| | | | | | | | | |
Collapse
|
23
|
Nadal MS, Ozaita A, Amarillo Y, Vega-Saenz de Miera E, Ma Y, Mo W, Goldberg EM, Misumi Y, Ikehara Y, Neubert TA, Rudy B. The CD26-related dipeptidyl aminopeptidase-like protein DPPX is a critical component of neuronal A-type K+ channels. Neuron 2003; 37:449-61. [PMID: 12575952 DOI: 10.1016/s0896-6273(02)01185-6] [Citation(s) in RCA: 269] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Subthreshold-activating somatodendritic A-type potassium channels have fundamental roles in neuronal signaling and plasticity which depend on their unique cellular localization, voltage dependence, and kinetic properties. Some of the components of A-type K(+) channels have been identified; however, these do not reproduce the properties of the native channels, indicating that key molecular factors have yet to be unveiled. We purified A-type K(+) channel complexes from rat brain membranes and found that DPPX, a protein of unknown function that is structurally related to the dipeptidyl aminopeptidase and cell adhesion protein CD26, is a novel component of A-type K(+) channels. DPPX associates with the channels' pore-forming subunits, facilitates their trafficking and membrane targeting, reconstitutes the properties of the native channels in heterologous expression systems, and is coexpressed with the pore-forming subunits in the somatodendritic compartment of CNS neurons.
Collapse
Affiliation(s)
- Marcela S Nadal
- Department of Physiology and Neuroscience and Department of Biochemistry, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Amberg GC, Koh SD, Hatton WJ, Murray KJ, Monaghan K, Horowitz B, Sanders KM. Contribution of Kv4 channels toward the A-type potassium current in murine colonic myocytes. J Physiol 2002; 544:403-15. [PMID: 12381814 PMCID: PMC2290598 DOI: 10.1113/jphysiol.2002.025163] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A rapidly inactivating K(+) current (A-type current; I(A)) present in murine colonic myocytes is important in maintaining physiological patterns of slow wave electrical activity. The kinetic profile of colonic I(A) resembles that of Kv4-derived currents. We examined the contribution of Kv4 alpha-subunits to I(A) in the murine colon using pharmacological, molecular and immunohistochemical approaches. The divalent cation Cd(2+) decreased peak I(A) and shifted the voltage dependence of activation and inactivation to more depolarized potentials. Similar results were observed with La(3+). Colonic I(A) was sensitive to low micromolar concentrations of flecainide (IC(50) = 11 microM). Quantitative PCR indicated that in colonic and jejunal tissue, Kv4.3 transcripts demonstrate greater relative abundance than transcripts encoding Kv4.1 or Kv4.2. Antibodies revealed greater Kv4.3-like immunoreactivity than Kv4.2-like immunoreactivity in colonic myocytes. Kv4-like immunoreactivity was less evident in jejunal myocytes. To address this finding, we examined the expression of K(+) channel-interacting proteins (KChIPs), which act as positive modulators of Kv4-mediated currents. Qualitative PCR identified transcripts encoding the four known members of the KChIP family in isolated colonic and jejunal myocytes. However, the relative abundance of KChIP transcript was 2.6-fold greater in colon tissue than in jejunum, as assessed by quantitative PCR, with KChIP1 showing predominance. This observation is in accordance with the amplitude of the A-type current present in these two tissues, where colonic myocytes possess densities twice that of jejunal myocytes. From this we conclude that Kv4.3, in association with KChIP1, is the major molecular determinant of I(A) in murine colonic myocytes.
Collapse
Affiliation(s)
- Gregory C Amberg
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Wang S, Patel SP, Qu Y, Hua P, Strauss HC, Morales MJ. Kinetic properties of Kv4.3 and their modulation by KChIP2b. Biochem Biophys Res Commun 2002; 295:223-9. [PMID: 12150935 DOI: 10.1016/s0006-291x(02)00658-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
KChIPs are a family of Kv4 K(+) channel ancillary subunits whose effects usually include slowing of inactivation, speeding of recovery from inactivation, and increasing channel surface expression. We compared the effects of the 270 amino acid KChIP2b on Kv4.3 and a Kv4.3 inner pore mutant [V(399, 401)I]. Kv4.3 showed fast inactivation with a bi-exponential time course in which the fast time constant predominated. KChIP2b expressed with wild-type Kv4.3 slowed the fast time constant of inactivation; however, the overall rate of inactivation was faster due to reduction of the contribution of the slow inactivation phase. Introduction of [V(399, 401)I] slowed both time constants of inactivation less than 2-fold. Inactivation was incomplete after 20s pulse durations. Co-expression of KChIP2b with Kv4.3 [V(399, 401)I] slowed inactivation dramatically. KChIP2b increased the rate of recovery from inactivation 7.6-fold in the wild-type channel and 5.7-fold in Kv4.3 [V(399,401)I]. These data suggest that inner pore structure is an important factor in the modulatory effects of KChIP2b on Kv4.3 K(+) channels.
Collapse
Affiliation(s)
- Shimin Wang
- Department of Physiology and Biophysics, University at Buffalo-SUNY, NY 14214, Buffalo, USA
| | | | | | | | | | | |
Collapse
|
26
|
Wong W, Newell EW, Jugloff DGM, Jones OT, Schlichter LC. Cell surface targeting and clustering interactions between heterologously expressed PSD-95 and the Shal voltage-gated potassium channel, Kv4.2. J Biol Chem 2002; 277:20423-30. [PMID: 11923279 DOI: 10.1074/jbc.m109412200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kv4.2 is a voltage-gated potassium channel that is critical in controlling the excitability of myocytes and neurons. Processes that influence trafficking and surface distribution patterns of Kv4.2 will affect its ability to contribute to cellular functions. The scaffolding/clustering protein PSD-95 regulates trafficking and distribution of several receptors and Shaker family Kv channels. We therefore investigated whether the C-terminal valine-serine-alanine-leucine (VSAL) of Kv4.2 is a novel binding motif for PSD-95. By using co-immunoprecipitation assays, we determined that full-length Kv4.2 and PSD-95 interact when co-expressed in mammalian cell lines. Mutation analysis in this heterologous expression system showed that the VSAL motif of Kv4.2 is necessary for PSD-95 binding. PSD-95 increased the surface expression of Kv4.2 protein and caused it to cluster, as shown by deconvolution microscopy and biotinylation assays. Deleting the C-terminal VSAL motif of Kv4.2 eliminated these effects, as did substituting a palmitoylation-deficient PSD-95 mutant. In addition to these effects of PSD-95 on Kv4.2 distribution, the channel itself promoted redistribution of PSD-95 to the cell surface in the heterologous expression system. This work represents the first evidence that a member of the Shal subfamily of Kv channels can bind to PSD-95, with functional consequences.
Collapse
Affiliation(s)
- Wei Wong
- Division of Cellular and Molecular Biology, Toronto Western Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada
| | | | | | | | | |
Collapse
|
27
|
Nadal MS, Amarillo Y, Vega-Saenz de Miera E, Rudy B. Evidence for the presence of a novel Kv4-mediated A-type K(+) channel-modifying factor. J Physiol 2001; 537:801-9. [PMID: 11744756 PMCID: PMC2279007 DOI: 10.1111/j.1469-7793.2001.00801.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. Subthreshold-operating transient (A-type) K(+) currents (I(SA)s) are important in regulating neuronal firing frequency and in the modulation of incoming signals in dendrites. It is now known that Kv4 proteins are the principal, or pore-forming, subunits of the channels mediating I(SA)s(.) In addition, accessory subunits of Kv4 channels have also been identified. These either have no effect or slow down the inactivation kinetics of Kv4 channels. However, in many neuronal populations the I(SA) is faster, not slower, than the current generated by channels containing only Kv4 proteins. 2. Evidence is presented for the presence in rat cerebellar mRNA of transcripts encoding a molecular factor, termed KAF, that accelerates the kinetics of Kv4 channels. Size-fractionation of cerebellar mRNA in sucrose gradients separated the high molecular weight mRNAs (4-7 kb) encoding KAF from the low molecular weight ones (1.5-3 kb) encoding factors that slow down the inactivation kinetics of Kv4 channels. The latter were identified as KChIPs using anti-KChIP antisense oligonucleotides. 3. Both anti-KChIP and anti-Kv4 antisense oligonucleotides failed to eliminate KAF's activity from the high molecular weight mRNA fraction, thus suggesting that KAF might be a novel subunit(s) that can contribute to generating native I(SA) channel diversity. 4. The time course of the currents expressed by KAF-modified Kv4 channels resembles more closely the time course of the native I(SA) in cerebellar granule cells.
Collapse
Affiliation(s)
- M S Nadal
- Department of Physiology and Neuroscience, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|
28
|
Nakamura TY, Pountney DJ, Ozaita A, Nandi S, Ueda S, Rudy B, Coetzee WA. A role for frequenin, a Ca2+-binding protein, as a regulator of Kv4 K+-currents. Proc Natl Acad Sci U S A 2001; 98:12808-13. [PMID: 11606724 PMCID: PMC60135 DOI: 10.1073/pnas.221168498] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Frequenin, a Ca(2+)-binding protein, has previously been implicated in the regulation of neurotransmission, possibly by affecting ion channel function. Here, we provide direct evidence that frequenin is a potent and specific modulator of Kv4 channels, the principal molecular components of subthreshold activating A-type K(+) currents. Frequenin increases Kv4.2 current amplitudes (partly by enhancing surface expression of Kv4.2 proteins) and it slows the inactivation time course in a Ca(2+)-dependent manner. It also accelerates recovery from inactivation. Closely related Ca(2+)-binding proteins, such as neurocalcin and visinin-like protein (VILIP)-1 have no such effects. Specificity for Kv4 currents is suggested because frequenin does not modulate Kv1.4 or Kv3.4 currents. Frequenin has negligible effects on Kv4.1 current inactivation time course. By using chimeras made from Kv4.2 and Kv4.1 subunits, we determined that the differential effects of frequenin are mediated by means of the Kv4 N terminus. Immunohistochemical analysis demonstrates that frequenin and Kv4.2 channel proteins are coexpressed in similar neuronal populations and have overlapping subcellular localizations in brain. Coimmunoprecipitation experiments demonstrate that a physical interaction occurs between these two proteins in brain membranes. Together, our data provide strong support for the concept that frequenin may be an important Ca(2+)-sensitive regulatory component of native A-type K(+) currents.
Collapse
Affiliation(s)
- T Y Nakamura
- Department of Pediatric Cardiology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Liss B, Franz O, Sewing S, Bruns R, Neuhoff H, Roeper J. Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChip3.1 transcription. EMBO J 2001; 20:5715-24. [PMID: 11598014 PMCID: PMC125678 DOI: 10.1093/emboj/20.20.5715] [Citation(s) in RCA: 245] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The activity of dopaminergic (DA) substantia nigra (SN) neurons is essential for voluntary movement control. An intrinsic pacemaker in DA SN neurons generates their tonic spontaneous activity, which triggers dopamine release. We show here, by combining multiplex and quantitative real-time single-cell RT- PCR with slice patch-clamp electrophysiology, that an A-type potassium channel mediated by Kv4.3 and KChip3 subunits has a key role in pacemaker control. The number of active A-type potassium channels is not only tightly associated with the pacemaker frequency of individual DA SN neurons, but is also highly correlated with their number of Kv4.3L (long splice variant) and KChip3.1 (long splice variant) mRNA molecules. Consequently, the variation of Kv4alpha and Kv4beta subunit transcript numbers is sufficient to explain the full spectrum of spontaneous pacemaker frequencies in identified DA SN neurons. This linear coupling between Kv4alpha as well as Kv4beta mRNA abundance, A-type channel density and pacemaker frequency suggests a surprisingly simple molecular mechanism for how DA SN neurons tune their variable firing rates by transcriptional control of ion channel genes.
Collapse
Affiliation(s)
- Birgit Liss
- Medical Research Council, Anatomical Neuropharmacology Unit, Department of Pharmacology, Oxford University, Oxford OX1 3TH, UK and Centre for Molecular Neurobiology, 20246 Hamburg, Germany
Corresponding authors e-mail: or
| | | | | | | | | | - Jochen Roeper
- Medical Research Council, Anatomical Neuropharmacology Unit, Department of Pharmacology, Oxford University, Oxford OX1 3TH, UK and Centre for Molecular Neurobiology, 20246 Hamburg, Germany
Corresponding authors e-mail: or
| |
Collapse
|