1
|
Shim KS, Song HK, Park M, Kim HJ, Jang S, Kim T, Kim KM. Reynoutria japonica consisted of emodin-8-β-D-glucoside ameliorates Dermatophagoides farinae extract-induced atopic dermatitis-like skin inflammation in mice by inhibiting JAK/STAT signaling. Biomed Pharmacother 2024; 176:116765. [PMID: 38788600 DOI: 10.1016/j.biopha.2024.116765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by skin barrier dysfunction and chronic inflammatory responses. Reynoutria japonica, known as Huzhang in traditional Chinese Medicine, can enhance blood circulation to eliminate wind pathogens and terminate coughing. Despite pharmacological evidence supporting the efficacy of R. japonica in suppressing edema-induced skin inflammation or connective tissue diseases, its pharmaceutical potential for treating AD-like skin inflammation remains unexplored. This study investigated the possible effects of R. japonica ethanol extract (RJE) on Dermatophagoides farinae extract (DfE)-induced AD-like skin inflammation in NC/Nga mice. To elucidate the underlying mechanisms by which RJE inhibits skin inflammation, we examined the effect of RJE on IFN-γ/TNF-α-induced signal transducer and activator of transcription (STAT) signaling in human epidermal keratinocytes (HEKs) and human dermal fibroblasts (HDFs). Our findings revealed that RJE mitigates DfE-induced AD-like symptoms and skin barrier disruptions in mouse skin lesions. Moreover, RJE attenuated DfE-induced mast cell infiltration and serum levels of inflammatory cytokines (IL-1α, IL-1β, IL-6, IL-23, IFN-γ, TNF-α, and GM-CSF). RJE also inhibited IFN-γ/TNF-α-induced chemokine levels and STAT3 phosphorylation in HEKs and HDFs. Virtual binding analysis of the RJE components suggested that emodin-8-β-D-glucoside binds to Janus kinase (JAK) 1/2, thereby suppressing STAT signaling, which was confirmed by Western blot analysis. In conclusion, our results suggest that RJE may alleviate DfE-induced skin barrier dysfunction by inhibiting JAK/STAT signaling and the proinflammatory immune response through the suppression of inflammatory mediators in AD-like skin disease. These findings suggest that RJE has potential as an effective therapy for AD management.
Collapse
Affiliation(s)
- Ki-Shuk Shim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Hyun-Kyung Song
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; Practical Research Division, Honam National Institute of Biological Resources, Gohadoan-gil 99, Mokpo, Jeollanam-do 58762, Republic of Korea
| | - Musun Park
- KM Data Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Hye Jin Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Seol Jang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea.
| | - Ki Mo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; Korean Convergence Medicine Major KIOM, University of Science & Technology (UST), Daejeon 34054, Republic of Korea.
| |
Collapse
|
2
|
Wang R, Wang S, Li Z, Luo Y, Zhao Y, Han Q, Rong XZ, Guo YX, Liu Y. PLEKHH2 binds β-arrestin1 through its FERM domain, activates FAK/PI3K/AKT phosphorylation, and promotes the malignant phenotype of non-small cell lung cancer. Cell Death Dis 2022; 13:858. [PMID: 36209201 PMCID: PMC9547923 DOI: 10.1038/s41419-022-05307-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022]
Abstract
PLEKHH2 is an important FERM domain containing-protein. However, the role of PLEKHH2 in human solid tumors has not been reported yet. We report that PLEKHH2 showed enhanced cytoplasmic expression in non-small cell lung cancer (NSCLC). Its overexpression was positively correlated with high TNM stage, low differentiation, lymphatic node metastasis, and poor prognosis. In A549 and H1299 cells, high expression of PLEKHH2 significantly promoted cell proliferation, migration, invasion, and increased the expression of proliferation- and invasion-related proteins. It also enhanced the phosphorylation of FAK and promoted the activity of the PI3K/AKT pathway. Immunofluorescence and co-immunoprecipitation analyses were performed to elucidate the molecular mechanism underlying PLEKHH2-mediated regulation of proliferation and invasion in lung cancer cells. Upon transfection of full length PLEKHH2 or its FERM domain, we observed enhanced binding of PLEKHH2 to β-arrestin1, whereas FAK- β-arrestin1 binding was diminished and this led to an increase in FAK phosphorylation. PLEKHH2-mutant plasmids without the FERM domain could not effectively promote its binding to β-arrestin1, activation of FAK phosphorylation, PI3K/AKT activation, or the malignant phenotype. Our findings suggested that PLEKHH2 is an important oncogene in NSCLC. PLEKHH2 binding to β-arrestin1 through the FERM domain competitively inhibits β-arrestin1 binding to FAK, which causes the dissociation of FAK from the FAK-β-arrestin1 complex. Furthermore, the dissociation of FAK promotes its autophosphorylation, activates the PI3K/AKT signaling pathway, and subsequently promotes lung cancer cell proliferation, migration, and invasion. These results provide evidence for the potential use of PLEKHH2 inhibition as an anticancer therapy.
Collapse
Affiliation(s)
- Rui Wang
- grid.412636.40000 0004 1757 9485Department of Pathology, College of Basic Medical Sciences and the First Hospital of China Medical University, Shenyang, 110122 P. R. China
| | - Si Wang
- grid.412449.e0000 0000 9678 1884Department of Medical Microbiology and Human Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122 P. R. China
| | - Zhen Li
- grid.412636.40000 0004 1757 9485Department of Pathology, College of Basic Medical Sciences and the First Hospital of China Medical University, Shenyang, 110122 P. R. China
| | - Yuan Luo
- grid.412636.40000 0004 1757 9485Department of Pathology, College of Basic Medical Sciences and the First Hospital of China Medical University, Shenyang, 110122 P. R. China
| | - Yue Zhao
- grid.412636.40000 0004 1757 9485Department of Pathology, College of Basic Medical Sciences and the First Hospital of China Medical University, Shenyang, 110122 P. R. China
| | - Qiang Han
- grid.412636.40000 0004 1757 9485Department of Pathology, College of Basic Medical Sciences and the First Hospital of China Medical University, Shenyang, 110122 P. R. China
| | - Xue-Zhu Rong
- grid.412636.40000 0004 1757 9485Department of Pathology, College of Basic Medical Sciences and the First Hospital of China Medical University, Shenyang, 110122 P. R. China
| | - Yao-Xing Guo
- grid.412636.40000 0004 1757 9485Department of Pathology, College of Basic Medical Sciences and the First Hospital of China Medical University, Shenyang, 110122 P. R. China
| | - Yang Liu
- grid.412636.40000 0004 1757 9485Department of Pathology, College of Basic Medical Sciences and the First Hospital of China Medical University, Shenyang, 110122 P. R. China
| |
Collapse
|
3
|
Liu M, Xiao CQ, Sun MW, Tan MJ, Hu LH, Yu Q. Xanthatin inhibits STAT3 and NF-κB signalling by covalently binding to JAK and IKK kinases. J Cell Mol Med 2019; 23:4301-4312. [PMID: 30993883 PMCID: PMC6533482 DOI: 10.1111/jcmm.14322] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/28/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
Aberrant activation of the signal transducer and activator of transcription 3 (STAT3) and the nuclear factor‐κB (NF‐κB) signalling pathways is associated with the development of cancer and inflammatory diseases. JAKs and IKKs are the key regulators in the STAT3 and NF‐κB signalling respectively. Therefore, the two families of kinases have been the major targets for developing drugs to regulate the two signalling pathways. Here, we report a natural compound xanthatin from the traditional Chinese medicinal herb Xanthium L. as a potent inhibitor of both STAT3 and NF‐κB signalling pathways. Our data demonstrated that xanthatin was a covalent inhibitor and its activities depended on its α‐methylene‐γ‐butyrolactone group. It preferentially interacted with the Cys243 of JAK2 and the Cys412 and Cys464 of IKKβ to inactivate their activities. In doing so, xanthatin preferentially inhibited the growth of cancer cell lines that have constitutively activated STAT3 and p65. These data suggest that xanthatin may be a promising anticancer and anti‐inflammation drug candidate.
Collapse
Affiliation(s)
- Man Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Cheng-Qian Xiao
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Ming-Wei Sun
- University of Chinese Academy of Sciences, Beijing, PR China.,The Chemical Proteomics Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Min-Jia Tan
- University of Chinese Academy of Sciences, Beijing, PR China.,The Chemical Proteomics Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Li-Hong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Qiang Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
4
|
Benton CB, Boddu PC, DiNardo CD, Bose P, Wang F, Assi R, Pemmaraju N, KC D, Pierce S, Patel K, Konopleva M, Ravandi F, Garcia‐Manero G, Kadia TM, Cortes J, Kantarjian HM, Andreeff M, Verstovsek S. Janus kinase 2 variants associated with the transformation of myeloproliferative neoplasms into acute myeloid leukemia. Cancer 2019; 125:1855-1866. [DOI: 10.1002/cncr.31986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/20/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Christopher B. Benton
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Prajwal C. Boddu
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Courtney D. DiNardo
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Prithviraj Bose
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Feng Wang
- Department of Genomic Medicine The University of Texas MD Anderson Cancer Center Houston Texas
| | - Rita Assi
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Naveen Pemmaraju
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Devendra KC
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Sherry Pierce
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Keyur Patel
- Department of Hematopathology The University of Texas MD Anderson Cancer Center Houston Texas
| | - Marina Konopleva
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Farhad Ravandi
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | | | - Tapan M. Kadia
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Jorge Cortes
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Hagop M. Kantarjian
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Michael Andreeff
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Srdan Verstovsek
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| |
Collapse
|
5
|
Liu M, Xiao C, Sun M, Tan M, Hu L, Yu Q. Parthenolide Inhibits STAT3 Signaling by Covalently Targeting Janus Kinases. Molecules 2018; 23:molecules23061478. [PMID: 29921758 PMCID: PMC6100543 DOI: 10.3390/molecules23061478] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 01/05/2023] Open
Abstract
Aberrant activations of the STAT3 (signal transducer and activator of transcription 3) signaling pathway are associated with cancer and inflammatory diseases. Three of the four Janus kinases, JAK1, JAK2, and Tyk2, are the major upstream kinases of STAT3 in responses to cytokine stimulations. Among them, JAK2 is the key kinase in the IL-6-induced STAT3 phosphorylation. Here we report the mechanisms of a natural compound parthenolide from the medicinal herb Feverfew in regulating the JAK/STAT3 signaling. We found that parthenolide was a potent inhibitor of JAKs. It covalently modified the Cys178, Cys243, Cys335, and Cys480 of JAK2 and suppressed its kinase activity. It also interacted with other JAKs in a similar fashion. The binding of parthenolide to JAKs was selective. It preferentially bound to the JAKs, but not to the abundant proteins, such as tubulin and actin. Parthenolide also induced reactive oxygen species (ROS), but the increased ROS did not seem to contribute to the inhibition of JAK/STAT3 signaling. Furthermore, parthenolide inhibited the IL-6-induced cancer cell migration and preferentially inhibited the growth of cancer cells that had constitutively activated STAT3. Our study suggests a novel strategy to inactivate JAKs and provides a promising anti-inflammation and anticancer drug candidate.
Collapse
Affiliation(s)
- Man Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chengqian Xiao
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Mingwei Sun
- University of Chinese Academy of Sciences, Beijing 100049, China.
- The Chemical Proteomics Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Minjia Tan
- University of Chinese Academy of Sciences, Beijing 100049, China.
- The Chemical Proteomics Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Qiang Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Patel M, Ikeda S, Pilat SR, Kurzrock R. JAK1 Genomic Alteration Associated With Exceptional Response to Siltuximab in Cutaneous Castleman Disease. JAMA Dermatol 2017; 153:449-452. [PMID: 28241173 DOI: 10.1001/jamadermatol.2016.5554] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Importance Castleman disease (CD) is an ultrarare, interleukin-6 (IL-6)-driven lymphoproliferative disorder whose underlying molecular alterations are unknown. Siltuximab (anti-IL-6 antibody) is approved for treatment of this disease. To our knowledge, genomic sequencing of CD has not been reported. Objective To investigate and identify molecular aberration(s) that help explain the exceptional response to siltuximab in a patient with cutaneous CD. Design, Setting, and Participants This case study examines data from comprehensive genomic profiling (using targeted next-generation sequencing) of tissue from a patient with cutaneous CD who demonstrated an exceptional response to siltuximab treated at a National Cancer Institute-designated Comprehensive Cancer Center. Interventions Intravenous siltuximab 12 mg/kg every 3 weeks. Tissue from the patient was interrogated by next-generation sequencing (405 genes). Serum was evaluated for IL-6 levels by enzyme-linked immunoassay. Main Outcomes and Measures Identification of pretreatment serum IL-6 levels and somatic variants that may explain the exceptional response to siltuximab in this patient with cutaneous CD. Results Patient pretreatment serum IL-6 levels were normal. Treatment with siltuximab resulted in a complete response lasting 7 years. Next-generation sequencing demonstrated a JAK1V310I missense mutation. Janus Kinase 1 (JAK1) is a crucial signaling component of the IL-6/IL-6 receptor/gp130 machinery. JAK1V310I may induce a conformation change with functional activation effect leading to enhanced sensitivity to the IL-6 ligand. Conclusions and Relevance Our observations suggest that a JAK1 alteration may explain the underlying biology of a patient's cutaneous CD, as well as the patient's exceptional response to siltuximab.
Collapse
Affiliation(s)
- Maulik Patel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla
| | - Sadakatsu Ikeda
- Cancer Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Susan R Pilat
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, Division of Hematology/Oncology, Department of Medicine, University of California-San Diego, La Jolla
| |
Collapse
|
7
|
Minter MR, Zhang M, Ates RC, Taylor JM, Crack PJ. Type-1 interferons contribute to oxygen glucose deprivation induced neuro-inflammation in BE(2)M17 human neuroblastoma cells. J Neuroinflammation 2014; 11:43. [PMID: 24602263 PMCID: PMC3995960 DOI: 10.1186/1742-2094-11-43] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/21/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Hypoxic-ischaemic injuries such as stroke and traumatic brain injury exhibit features of a distinct neuro-inflammatory response in the hours and days post-injury. Microglial activation, elevated pro-inflammatory cytokines and macrophage infiltration contribute to core tissue damage and contribute to secondary injury within a region termed the penumbra. Type-1 interferons (IFNs) are a super-family of pleiotropic cytokines that regulate pro-inflammatory gene transcription via the classical Jak/Stat pathway; however their role in hypoxia-ischaemia and central nervous system neuro-inflammation remains unknown. Using an in vitro approach, this study investigated the role of type-1 IFN signalling in an inflammatory setting induced by oxygen glucose deprivation (OGD). METHODS Human BE(2)M17 neuroblastoma cells or cells expressing a type-1 interferon-α receptor 1 (IFNAR1) shRNA or negative control shRNA knockdown construct were subjected to 4.5 h OGD and a time-course reperfusion period (0 to 24 h). Q-PCR was used to evaluate IFNα, IFNβ, IL-1β, IL-6 and TNF-α cytokine expression levels. Phosphorylation of signal transducers and activators of transcription (STAT)-1, STAT-3 and cleavage of caspase-3 was detected by western blot analysis. Post-OGD cellular viability was measured using a MTT assay. RESULTS Elevated IFNα and IFNβ expression was detected during reperfusion post-OGD in parental M17 cells. This correlated with enhanced phosphorylation of STAT-1, a downstream type-1 IFN signalling mediator. Significantly, ablation of type-1 IFN signalling, through IFNAR1 knockdown, reduced IFNα, IFNβ, IL-6 and TNF-α expression in response to OGD. In addition, MTT assay confirmed the IFNAR1 knockdown cells were protected against OGD compared to negative control cells with reduced pro-apoptotic cleaved caspase-3 levels. CONCLUSIONS This study confirms a role for type-1 IFN signalling in the neuro-inflammatory response following OGD in vitro and suggests its modulation through therapeutic blockade of IFNAR1 may be beneficial in reducing hypoxia-induced neuro-inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Peter John Crack
- Department of Pharmacology, University of Melbourne, 8th floor, Medical building, Grattan St, Parkville 3010, VIC, Australia.
| |
Collapse
|
8
|
Activating Janus kinase pseudokinase domain mutations in myeloproliferative and other blood cancers. Biochem Soc Trans 2013; 41:1048-54. [DOI: 10.1042/bst20130084] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The discovery of the highly prevalent activating JAK (Janus kinase) 2 V617F mutation in myeloproliferative neoplasms, and of other pseudokinase domain-activating mutations in JAK2, JAK1 and JAK3 in blood cancers, prompted great interest in understanding how pseudokinase domains regulate kinase domains in JAKs. Recent functional and mutagenesis studies identified residues required for the V617F mutation to induce activation. Several X-ray crystal structures of either kinase or pseudokinase domains including the V617F mutant of JAK2 pseudokinase domains are now available, and a picture has emerged whereby the V617F mutation induces a defined conformational change around helix C of JH (JAK homology) 2. Effects of mutations on JAK2 can be extrapolated to JAK1 and TYK2 (tyrosine kinase 2), whereas JAK3 appears to be different. More structural information of the full-length JAK coupled to cytokine receptors might be required in order to define the structural basis of JH1 activation by JH2 mutants and eventually obtain mutant-specific inhibitors.
Collapse
|
9
|
Haan C, Haan S. Co-immunoprecipitation protocol to investigate cytokine receptor-associated proteins, e.g., Janus kinases or other associated signaling proteins. Methods Mol Biol 2013; 967:21-38. [PMID: 23296719 DOI: 10.1007/978-1-62703-242-1_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Jak binding to cytokine receptors has been shown to be a complex and tight interaction. When studying loss-of-function or gain-of-function mutants of the Jaks or cytokine receptors it is often necessary to know if a certain mutant still associates correctly in the context of the signaling complex. The standard technique to show interaction of Jaks with cytokine receptors or other signalling molecules is Co-immunoprecipitation. Here we describe our protocol and discuss different pitfalls that can be encountered during the procedure.
Collapse
Affiliation(s)
- Claude Haan
- Life Sciences Research Unit, University of Luxembourg, Luxembourg, UK,
| | | |
Collapse
|
10
|
Subramaniam A, Shanmugam MK, Perumal E, Li F, Nachiyappan A, Dai X, Swamy SN, Ahn KS, Kumar AP, Tan BKH, Hui KM, Sethi G. Potential role of signal transducer and activator of transcription (STAT)3 signaling pathway in inflammation, survival, proliferation and invasion of hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2012; 1835:46-60. [PMID: 23103770 DOI: 10.1016/j.bbcan.2012.10.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/18/2012] [Accepted: 10/21/2012] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies, and is also the fourth most common cancer worldwide with around 700,000 new cases each year. Currently, first line chemotherapeutic drugs used for HCC include fluorouracil, cisplatin, doxorubicin, paclitaxel and mitomycin, but most of these are non-selective cytotoxic molecules with significant side effects. Sorafenib is the only approved targeted therapy by the U.S. Food and Drug Administration for HCC treatment, but patients suffer from various kinds of adverse effects, including hypertension. The signal-transducer-and-activator-of-transcription 3 (STAT3) protein, one of the members of STATs transcription factor family, has been implicated in signal transduction by different cytokines, growth factors and oncogenes. In normal cells, STAT3 activation is tightly controlled to prevent dysregulated gene transcription, whereas constitutively activated STAT3 plays an important role in tumorigenesis through the upregulation of genes involved in anti-apoptosis, proliferation and angiogenesis. Thus, pharmacologically safe and effective agents that can block STAT3 activation have the potential both for the prevention and treatment of HCC. In the present review, we discuss the possible role of STAT3 signaling cascade and its interacting partners in the initiation of HCC and also analyze the role of various STAT3 regulated genes in HCC progression, inflammation, survival, invasion and angiogenesis.
Collapse
Affiliation(s)
- Aruljothi Subramaniam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sayyah J, Gnanasambandan K, Kamarajugadda S, Tsuda S, Caldwell-Busby J, Sayeski PP. Phosphorylation of Y372 is critical for Jak2 tyrosine kinase activation. Cell Signal 2011; 23:1806-15. [PMID: 21726629 DOI: 10.1016/j.cellsig.2011.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/20/2011] [Indexed: 01/09/2023]
Abstract
Jak2 tyrosine kinase plays an important role in cytokine mediated signal transduction. There are 49 tyrosine residues in Jak2 and phosphorylation of some of these are known to play important roles in the regulation of Jak2 kinase activity. Here, using mass spectrometry, we identified tyrosine residues Y372 and Y373 as novel sites of Jak2 phosphorylation. Mutation of Y372 to F (Y372F) significantly inhibited Jak2 phosphorylation, including that of Y1007, whereas the Jak2-Y373F mutant displayed only modest reduction in phosphorylation. Relative to Jak2-WT, the ability of Jak2-Y372F to bind to and phosphorylate STAT1 was decreased, resulting in reduced Jak2-mediated downstream gene transcription. While the Y372F mutation had no effect on receptor-independent, hydrogen peroxide-mediated Jak2 activation, it impaired interferon-gamma (IFNγ) and epidermal growth factor (EGF)-dependent Jak2 activation. Interestingly however, the Y372F mutant exhibited normal receptor binding properties. Finally, co-expression of SH2-Bβ only partially restored the activation of the Jak2-Y372F mutant suggesting that the mechanism whereby phosphorylation of Y372 is important for Jak2 activation is via dimerization. As such, our results indicate that Y372 plays a critical yet differential role in Jak2 activation and function via a mechanism involving Jak2 dimerization and stabilization of the active conformation.
Collapse
Affiliation(s)
- Jacqueline Sayyah
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
12
|
Putters J, da Silva Almeida AC, van Kerkhof P, van Rossum AGSH, Gracanin A, Strous GJ. Jak2 is a negative regulator of ubiquitin-dependent endocytosis of the growth hormone receptor. PLoS One 2011; 6:e14676. [PMID: 21347402 PMCID: PMC3036580 DOI: 10.1371/journal.pone.0014676] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 01/13/2011] [Indexed: 12/04/2022] Open
Abstract
Background Length and intensity of signal transduction via cytokine receptors is precisely regulated. Degradation of certain cytokine receptors is mediated by the ubiquitin ligase SCF(βTrCP). In several instances, Janus kinase (Jak) family members can stabilise their cognate cytokine receptors at the cell surface. Principal Findings In this study we show in Hek293 cells that Jak2 binding to the growth hormone receptor prevents endocytosis in a non-catalytic manner. Following receptor activation, the detachment of phosphorylated Jak2 induces down-regulation of the growth hormone receptor by SCF(βTrCP). Using γ2A human fibroblast cells we show that both growth hormone-induced and constitutive growth hormone receptor endocytosis depend on the same factors, strongly suggesting that the modes of endocytosis are identical. Different Jak2 RNA levels in HepG2, IM9 and Hek293 cells indicate the importance of cellular concentration on growth hormone receptor function. Both Jak2 and βTrCP bind to neighbouring linear motifs in the growth hormone receptor tail without the requirement of modifications, indicating that growth hormone sensitivity is regulated by the cellular level of non-committed Jak2. Conclusions/Significance As signal transduction of many cytokine receptors depends on Jak2, the study suggests an integrative role of Jak2 in cytokine responses based on its enzyme activity as well as its stabilising properties towards the receptors.
Collapse
Affiliation(s)
- Joyce Putters
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ana C. da Silva Almeida
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht, The Netherlands
- Drug Discovery Factory BV, Bussum, The Netherlands
| | - Peter van Kerkhof
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Agnes G. S. H. van Rossum
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht, The Netherlands
- Drug Discovery Factory BV, Bussum, The Netherlands
| | - Ana Gracanin
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Ger J. Strous
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
13
|
Katsoulidis E, Kaur S, Platanias LC. Deregulation of Interferon Signaling in Malignant Cells. Pharmaceuticals (Basel) 2010; 3:406-418. [PMID: 27713259 PMCID: PMC4033917 DOI: 10.3390/ph3020406] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 01/28/2010] [Accepted: 02/01/2010] [Indexed: 12/24/2022] Open
Abstract
Interferons (IFNs) are a family of cytokines with potent antiproliferative, antiviral, and immunomodulatory properties. Much has been learned about IFNs and IFN-activated signaling cascades over the last 50 years. Due to their potent antitumor effects in vitro and in vivo, recombinant IFNs have been used extensively over the years, alone or in combination with other drugs, for the treatment of various malignancies. This review summarizes the current knowledge on IFN signaling components and pathways that are deregulated in human malignancies. The relevance of deregulation of IFN signaling pathways in defective innate immune surveillance and tumorigenesis are discussed.
Collapse
Affiliation(s)
- Efstratios Katsoulidis
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60611, USA
| | - Surinder Kaur
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60611, USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60611, USA.
| |
Collapse
|
14
|
Haan C, Behrmann I, Haan S. Perspectives for the use of structural information and chemical genetics to develop inhibitors of Janus kinases. J Cell Mol Med 2010; 14:504-27. [PMID: 20132407 PMCID: PMC3823453 DOI: 10.1111/j.1582-4934.2010.01018.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gain-of-function mutations in the genes encoding Janus kinases have been discovered in various haematologic diseases. Jaks are composed of a FERM domain, an SH2 domain, a pseudokinase domain and a kinase domain, and a complex interplay of the Jak domains is involved in regulation of catalytic activity and association to cytokine receptors. Most activating mutations are found in the pseudokinase domain. Here we present recently discovered mutations in the context of our structural models of the respective domains. We describe two structural hotspots in the pseudokinase domain of Jak2 that seem to be associated either to myeloproliferation or to lymphoblastic leukaemia, pointing at the involvement of distinct signalling complexes in these disease settings. The different domains of Jaks are discussed as potential drug targets. We present currently available inhibitors targeting Jaks and indicate structural differences in the kinase domains of the different Jaks that may be exploited in the development of specific inhibitors. Moreover, we discuss recent chemical genetic approaches which can be applied to Jaks to better understand the role of these kinases in their biological settings and as drug targets.
Collapse
Affiliation(s)
- Claude Haan
- Life Sciences Research Unit, University of Luxembourg, 162A, av. de la Faïencerie, 1511 Luxembourg, Luxembourg.
| | | | | |
Collapse
|
15
|
Classification of nonenzymatic homologues of protein kinases. Comp Funct Genomics 2009:365637. [PMID: 19809514 PMCID: PMC2754085 DOI: 10.1155/2009/365637] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 07/01/2009] [Indexed: 11/17/2022] Open
Abstract
Protein Kinase-Like Non-kinases (PKLNKs), which are closely related to protein kinases, lack the crucial catalytic aspartate in the catalytic loop, and hence cannot function as protein kinase, have been analysed. Using various sensitive sequence analysis methods, we have recognized 82 PKLNKs from four higher eukaryotic organisms, namely, Homo sapiens, Mus musculus, Rattus norvegicus, and Drosophila melanogaster. On the basis of their domain combination and function, PKLNKs have been classified mainly into four categories: (1) Ligand binding PKLNKs, (2) PKLNKs with extracellular protein-protein interaction domain, (3) PKLNKs involved in dimerization, and (4) PKLNKs with cytoplasmic protein-protein interaction module. While members of the first two classes of PKLNKs have transmembrane domain tethered to the PKLNK domain, members of the other two classes of PKLNKs are cytoplasmic in nature. The current classification scheme hopes to provide a convenient framework to classify the PKLNKs from other eukaryotes which would be helpful in deciphering their roles in cellular processes.
Collapse
|
16
|
Wilks AF. The JAK kinases: not just another kinase drug discovery target. Semin Cell Dev Biol 2008; 19:319-28. [PMID: 18721891 DOI: 10.1016/j.semcdb.2008.07.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 07/28/2008] [Indexed: 11/19/2022]
Abstract
There are four members of the JAK family of protein tyrosine kinases (PTKs) in the human genome. Since their discovery in 1989, great strides have been made in the understanding of their role in normal intracellular signalling. Importantly, their roles in pathologies ranging from cancer to immune deficiencies have placed them front and centre as potential drug targets. The recent discovery of the role of activating mutations in the kinase-like domain (KLD) of JAK2 in the development of polycythemia rubra vera, and the elaboration of KLD mutation as a broader mechanism by which cells might become hyperproliferative has sparked enormous interest in the development of JAK selective drug candidates. I review herein the progress that has been made in the discovery of JAK-targeted inhibitors, and discuss the challenges that face the development of these drugs for use in the clinic.
Collapse
Affiliation(s)
- Andrew F Wilks
- SYN|thesis med chem, PO Box 450, South Yarra, Victoria 3141, Australia.
| |
Collapse
|
17
|
Funakoshi-Tago M, Tago K, Kasahara T, Parganas E, Ihle JN. Negative regulation of Jak2 by its auto-phosphorylation at tyrosine 913 via the Epo signaling pathway. Cell Signal 2008; 20:1995-2001. [PMID: 18682290 DOI: 10.1016/j.cellsig.2008.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Revised: 07/10/2008] [Accepted: 07/13/2008] [Indexed: 11/26/2022]
Abstract
Janus kinase 2 (Jak2) has a pivotal role in erythropoietin (Epo) signaling pathway, including erythrocyte differentiation and Stat5 activation. In the course of screening for critical phosphorylation of tyrosine residues in Jak2, we identified tyrosine 913 (Y(913)) as a novel and functional phosphorylation site, which negatively regulates Jak2. Phosphorylation at Y(913) rapidly occurred and was sustained for at least 120 min after Epo stimulation, in contrast to the transient phosphorylation of Y(1007/1008) in the activation loop of Jak2. Interestingly, phosphorylation defective mutation of Y(913) (Y(913)F) results in a significant enhancement of Epo-induced Jak2 activation, whereas phosphorylation mimic mutation of Y(913) (Y(913)E) completely abrogated its activation. Furthermore, Jak2 deficient fetal liver cells expressing Y(913)F mutant generated many mature erythroid BFU-E and CFU-E colonies, while Y(913)E mutant failed to reconstitute Jak2 deficiency. We also demonstrate, in Jak1, phosphorylation of Y(939), a corresponding tyrosine residue with Y(913), negatively regulated Jak1 signaling pathway. Accordingly, our results suggest that this tyrosine phosphorylation in JH1 domain may be involved in common negative regulation mechanism for Jak family.
Collapse
Affiliation(s)
- Megumi Funakoshi-Tago
- Department of Biochemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | | | | | | | | |
Collapse
|
18
|
Haan S, Margue C, Engrand A, Rolvering C, Schmitz-Van de Leur H, Heinrich PC, Behrmann I, Haan C. Dual role of the Jak1 FERM and kinase domains in cytokine receptor binding and in stimulation-dependent Jak activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:998-1007. [PMID: 18178840 DOI: 10.4049/jimmunol.180.2.998] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Jak1 is a tyrosine kinase that noncovalently forms tight complexes with a variety of cytokine receptors and is critically involved in signal transduction via cytokines. Jaks are predicted to have a 4.1, ezrin, radixin, moesin (FERM) domain at their N terminus. FERM domains are composed of three structurally unrelated subdomains (F1, F2, and F3) which are in close contact to one another and form the clover-shaped FERM domain. We generated a model structure of the Jak1 FERM domain, based on solved FERM structures and the alignments with other FERM domains. To destabilize different subdomains and to uncover their exact function, we mutated specific hydrophobic residues conserved in FERM domains and involved in hydrophobic core interactions. In this study, we show that the structural integrity of the F2 subdomain of the FERM domain of Jak1 is necessary to bind the IFN-gammaRalpha. By mutagenesis of hydrophobic residues in the hydrophobic core between the three FERM subdomains, we find that the structural context of the FERM domain is necessary for the inhibition of Jak1 phosphorylation. Thus, FERM domain mutations can have repercussions on Jak1 function. Interestingly, a mutation in the kinase domain (Jak1-K907E), known to abolish the catalytic activity, also leads to an impaired binding to the IFN-gammaRalpha when this mutant is expressed at endogenous levels in U4C cells. Our data show that the structural integrity of both the FERM domain and of the kinase domain is essential for both receptor binding and catalytic function/autoinhibition.
Collapse
Affiliation(s)
- Serge Haan
- Life Science Research Unit, Faculté des Sciences, de la Technologie et de la Communication, Université du Luxembourg, Luxembourg
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Huang HM, Lee YL, Chang TW. JAK1 N-terminus binds to conserved Box 1 and Box 2 motifs of cytokine receptor common beta subunit but signal activation requires JAK1 C-terminus. J Cell Biochem 2006; 99:1078-84. [PMID: 16767694 DOI: 10.1002/jcb.20942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The human interleukin-3 receptor (hIL-3R) consists of a unique alpha subunit (hIL-3Ralpha) and a common beta subunit (betac). Binding of IL-3 to IL-3R activates Janus kinases JAK1 and JAK2. Our previously study showed that JAK2 and JAK1 were constitutively associated with the hIL-3Ralpha and betac subunits, respectively. In this study, we further demonstrate that JAK2 binds to the intracellular domain of hIL-3Ralpha and JAK1 binds to the Box 1 and Box 2 motifs of betac using GST-hIL-3R fusion proteins in pull-down assays. JAK1 mutational analysis revealed that its JH7-3 domains bound directly to the Box 1 and Box 2 motifs of betac. We further examined the role of JAK1 JH7-3 domains in JAK1 and JAK2-mediated signaling using the CDJAKs fusion proteins, which consisted of a CD16 extracellular domain, a CD7 transmembrane domain, and either JAK1 (CDJAK1), JAK2 (CDJAK2), or JAK1-JH7-3 domains (CDJAK1-JH7-3) as intracellular domains. Anti-CD16 antibody crosslinking of wild type fusion proteins CDJAK1 with CDJAK2 could mimic IL-3 signaling, however, the crosslinking of fusion proteins CDJAK1-JH7-3 with CDJAK2 failed to activate downstream proteins. These results suggest that the JAK1-JH7-3 domains are required for betac interaction and abolish wild type JAK1 and JAK2-mediated signaling.
Collapse
Affiliation(s)
- Huei-Mei Huang
- Graduate Institute of Cell and Molecular Biology, Taipei Medical University, Taipei, Taiwan.
| | | | | |
Collapse
|
20
|
Funakoshi-Tago M, Pelletier S, Matsuda T, Parganas E, Ihle JN. Receptor specific downregulation of cytokine signaling by autophosphorylation in the FERM domain of Jak2. EMBO J 2006; 25:4763-72. [PMID: 17024180 PMCID: PMC1618111 DOI: 10.1038/sj.emboj.7601365] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 08/30/2006] [Indexed: 01/17/2023] Open
Abstract
The tyrosine kinase, Janus kinase-2 (Jak2), plays a pivotal role in signal transduction through a variety of cytokine receptors, including the receptor for erythropoietin (Epo). Although the physiological relevance of Jak2 has been definitively established, less is known about its regulation. In studies assessing the roles of sites of tyrosine phosphorylation, we identified Y(119) in the FERM (band 4.1, Ezrin, radixin and moesin) domain as a phosphorylation site. In these studies, we demonstrate that the phosphorylation of Y(119) in response to Epo downregulates Jak2 kinase activity. Using a phosphorylation mimic mutation (Y(119)E), downregulation is shown to involve dissociation of Jak2 from the receptor complex. Conversely, a Y(119)F mutant is more stably associated with the receptor complex. Thus, in cytokine responses, ligand binding induces activation of receptor associated Jak2, autophosphorylation of Y(119) in the FERM domain and the subsequent dissociation of the activated Jak2 from the receptor and degradation. This regulation occurs with the receptors for Epo, thrombopoietin and growth hormone but not with the receptor for interferon-gamma.
Collapse
Affiliation(s)
| | - Stephane Pelletier
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Tadashi Matsuda
- Department of Immunology, Hokkaido University, Sapporo, Japan
| | - Evan Parganas
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA
| | - James N Ihle
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN 38120, USA. Tel.: +1 901 495 3422; Fax: +1 901 525 8025; E-mail:
| |
Collapse
|
21
|
Haan S, Keller JF, Behrmann I, Heinrich PC, Haan C. Multiple reasons for an inefficient STAT1 response upon IL-6-type cytokine stimulation. Cell Signal 2006; 17:1542-50. [PMID: 15935617 DOI: 10.1016/j.cellsig.2005.03.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2005] [Revised: 03/07/2005] [Accepted: 03/07/2005] [Indexed: 10/25/2022]
Abstract
IL-6-type cytokines play an important role during inflammation and the immune response. In addition, they are involved in haematopoiesis, liver and neuronal regeneration, embryonic development and fertility. We found that IL-6-type cytokine stimulation of cell lines and primary human macrophages results in a different distribution of the DNA-binding competent STAT dimer species in the cytosol and nucleus as demonstrated by electrophoretic mobility shift assays. In the absence of detergent, STAT3/STAT3, STAT1/STAT3 were the predominant species in the cytoplasm while STAT3/STAT3 was predominant in the nucleus. However, in detergent containing total cellular lysates and nuclear fractions prepared with detergent containing buffers, the STAT1/STAT1 homodimer was as prominent or even more prominent than STAT3/STAT3 and STAT1/STAT3. We were interested in the cause of this discrepancy since STAT1-regulated genes have not been described to be expressed upon IL-6-type cytokine stimulation. In addition to the more transient STAT1 activation, IL-6-type cytokines such as IL-6 and OSM lead to a much less efficient STAT1 activation compared to the potent STAT1 activators IFNgamma and IFNalpha. Studies with STAT1-deficient cells revealed that STAT1 activation does not seem to be an important competitive process to STAT3 activation arguing again for a very inefficient STAT1 activation upon IL-6-type cytokine stimulation. We also describe that pY-STAT3 is much more efficiently shuttled into the nucleus than pY-STAT1.
Collapse
Affiliation(s)
- Serge Haan
- Institut für Biochemie, Universitätsklinikum Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
22
|
Frenzel K, Wallace TA, McDoom I, Xiao HD, Capecchi MR, Bernstein KE, Sayeski PP. A functional Jak2 tyrosine kinase domain is essential for mouse development. Exp Cell Res 2006; 312:2735-44. [PMID: 16887119 DOI: 10.1016/j.yexcr.2006.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 05/02/2006] [Accepted: 05/02/2006] [Indexed: 12/19/2022]
Abstract
Jak2 is a member of the Janus family of tyrosine kinases and is involved in cytokine signaling. As a part of a study to determine biological functions of Jak2, we used molecular modeling to identify W1038 as a residue that is critical for tyrosine kinase function. Mutation of W1038, in tandem with E1046, generates a dominant-negative form of the Jak2 protein. Mice that were engineered to express two copies of this dominant-negative Jak2 protein died in utero. Additionally, heterozygous mice expressing Jak2 with kinase activity that is moderately reduced when compared to wild-type activity appear phenotypically normal. Collectively, these data suggest that Jak2 kinase activity is essential for normal mammalian development.
Collapse
Affiliation(s)
- Kristen Frenzel
- Department of Pathology, Emory University, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Haan C, Kreis S, Margue C, Behrmann I. Jaks and cytokine receptors--an intimate relationship. Biochem Pharmacol 2006; 72:1538-46. [PMID: 16750817 DOI: 10.1016/j.bcp.2006.04.013] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 04/11/2006] [Accepted: 04/12/2006] [Indexed: 11/24/2022]
Abstract
Most cytokine receptors lack intrinsic kinase activity and many of them signal via Janus kinases (Jaks). These tyrosine kinases are associated with cytokine receptor subunits, they become activated upon receptor triggering and subsequently activate downstream signalling events, e.g. the phosphorylation of STAT transcription factors. The successful interplay between cytokines, their receptors and the connected Jaks not only determines signalling competence but is also vital for intracellular traffic, stability, and fate of the cognate receptors. Here, we will discuss underlying mechanisms as well as some structural features with a focus on Jak1 and two of the signal transducing receptor subunits of interleukin (IL)-6 type cytokines, gp130 and OSMR. Regions that are critically involved in Jak-binding have been identified for many cytokine receptor subunits. In most cases the membrane-proximal parts comprising the box1 and box2 regions within the receptor are involved in this association while, within Jaks, the N-terminal FERM domain, possibly together with the SH2-like domain, are pivotal for binding to the relevant receptors. The exclusive membrane localisation of Jaks depends on their ability to associate with cytokine receptors. For gp130 and Jak1, it was shown that the cytokine receptor/Jak complex can be regarded as a receptor tyrosine kinase since both molecules have the same diffusion dynamics and are virtually undissociable. Furthermore, Jaks take an active role in the regulation of the surface expression of at least some cytokine receptors, including the OSMR and this may provide a quality control mechanism ensuring that only signalling-competent receptors (i.e. those with an associated Jak) would be enriched at the cell surface.
Collapse
Affiliation(s)
- Claude Haan
- Laboratoire de Biologie et Physiologie Intégrée (LBPI), University of Luxembourg, 162a avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg
| | | | | | | |
Collapse
|
24
|
Radtke S, Jörissen A, de Leur HSV, Heinrich PC, Behrmann I. Three Dileucine-like Motifs within the Interbox1/2 Region of the Human Oncostatin M Receptor Prevent Efficient Surface Expression in the Absence of an Associated Janus Kinase. J Biol Chem 2006; 281:4024-34. [PMID: 16286453 DOI: 10.1074/jbc.m511779200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The oncostatin M receptor (OSMR) is part of receptor complexes for oncostatin M and interleukin-31. Signaling events are triggered by Jaks (Janus kinases) that constitutively bind to membrane-proximal receptor regions. Besides their established role in signaling, Jaks are involved in the regulation of the surface expression of several cytokine receptors. Here, we analyzed the structural requirements within the human OSMR that underlie its limited surface expression in the absence of associated Jaks. We identified three dileucine-like motifs within the Jak-binding region of the OSMR that control receptor surface and overall expression. A receptor mutant in which all three motifs were mutated to alanine displayed markedly increased surface expression. Although the surface half-life of this mutant was increased compared with that of the wild-type receptor, no difference in the internalization rate was detectable, implying that these receptors differ in their post-endocytic fate. The protein stability of the wild-type receptor was markedly lower than that of mutant receptors, but could be strongly increased in the presence of the lysosomal inhibitor chloroquine. Our data are consistent with the dileucine motifs being involved in destabilization of receptors devoid of associated Jaks as part of a quality control ensuring signaling competence of OSMRs.
Collapse
Affiliation(s)
- Simone Radtke
- Institut für Biochemie, Universitätsklinikum der Rheinisch-Westfälischen Technischen Hochschule Aachen, Germany
| | | | | | | | | |
Collapse
|
25
|
Ceccarelli DFJ, Song HK, Poy F, Schaller MD, Eck MJ. Crystal Structure of the FERM Domain of Focal Adhesion Kinase. J Biol Chem 2006; 281:252-9. [PMID: 16221668 DOI: 10.1074/jbc.m509188200] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells. Through phosphorylation of proteins assembled at the cytoplasmic tails of integrins, FAK promotes signaling events that modulate cellular growth, survival, and migration. The amino-terminal region of FAK contains a region of sequence homology with band 4.1 and ezrin/radixin/moesin (ERM) proteins termed a FERM domain. FERM domains are found in a variety of signaling and cytoskeletal proteins and are thought to mediate intermolecular interactions with partner proteins and phospholipids at the plasma membrane and intramolecular regulatory interactions. Here we report two crystal structures of an NH2-terminal fragment of avian FAK containing the FERM domain and a portion of the regulatory linker that connects the FERM and kinase domains. The tertiary folds of the three subdomains (F1, F2, and F3) are similar to those of known FERM structures despite low sequence conservation. Differences in the sequence and relative orientation of the F3 subdomain alters the nature of the interdomain interface, and the phosphoinositide binding site found in ERM family FERM domains is not present in FAK. A putative protein interaction site on the F3 lobe is masked by the proximal region of the linker. Additionally, in one structure the adjacent Src SH3 and SH2 binding sites in the linker associate with the surfaces of the F3 and F1 lobes, respectively. These structural features suggest the possibility that protein interactions of the FAK FERM domain can be regulated by binding of Src kinases to the linker segment.
Collapse
Affiliation(s)
- Derek F J Ceccarelli
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Metazoan cells secrete small proteins termed cytokines that execute a variety of biological functions essential for the survival of organisms. Binding of cytokines that belong to the hematopoietin- or interferon-family, to their cognate receptors on the surface of target cells, induces receptor aggregation, which in turn sequentially triggers tyrosine-phosphorylation-dependent activation of receptor-associated Janus-family tyrosine kinases (JAKs), receptors, and signal transducers and activators of transcription (STATs). Phosphorylated STATs form dimers that migrate to the nucleus, bind to cognate enhancer elements and activate transcription of target genes. Each cytokine activates a specific set of genes to execute its biological functions with a certain degree of redundancy. Cytokine signals are, in general, transient in nature. Therefore, under normal physiological conditions, initiation and attenuation of cytokine signals are tightly controlled via multiple cellular and molecular mechanisms. Aberrant activation of cytokine signaling pathways is, however, found under a variety of patho-physiological conditions including cancer and immune diseases.
Collapse
Affiliation(s)
- S Jaharul Haque
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
27
|
Björklund AK, Ekman D, Light S, Frey-Skött J, Elofsson A. Domain Rearrangements in Protein Evolution. J Mol Biol 2005; 353:911-23. [PMID: 16198373 DOI: 10.1016/j.jmb.2005.08.067] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 08/19/2005] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
Most eukaryotic proteins are multi-domain proteins that are created from fusions of genes, deletions and internal repetitions. An investigation of such evolutionary events requires a method to find the domain architecture from which each protein originates. Therefore, we defined a novel measure, domain distance, which is calculated as the number of domains that differ between two domain architectures. Using this measure the evolutionary events that distinguish a protein from its closest ancestor have been studied and it was found that indels are more common than internal repetition and that the exchange of a domain is rare. Indels and repetitions are common at both the N and C-terminals while they are rare between domains. The evolution of the majority of multi-domain proteins can be explained by the stepwise insertions of single domains, with the exception of repeats that sometimes are duplicated several domains in tandem. We show that domain distances agree with sequence similarity and semantic similarity based on gene ontology annotations. In addition, we demonstrate the use of the domain distance measure to build evolutionary trees. Finally, the evolution of multi-domain proteins is exemplified by a closer study of the evolution of two protein families, non-receptor tyrosine kinases and RhoGEFs.
Collapse
Affiliation(s)
- Asa K Björklund
- Stockholm Bioinformatics Center, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
28
|
Gu L, Zhuang H, Safina B, Xiao XY, Bradford WW, Rich BE. Combinatorial approach to identification of tyrphostin inhibitors of cytokine signaling. Bioorg Med Chem 2005; 13:4269-78. [PMID: 15869881 DOI: 10.1016/j.bmc.2005.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 04/10/2005] [Accepted: 04/11/2005] [Indexed: 11/28/2022]
Abstract
Aberrant or deregulated activity of certain cellular kinases has been shown to cause certain malignancies and other disorders. The tyrphostin molecule AG490 inhibits the action of the janus kinases JAK2 and JAK3. JAK2 is an indispensable molecule for transducing the signals conveyed by a large number of cytokines including IL-3 while JAK3 is essential for signaling by a smaller number of cytokines including IL-7. A synthetic combinatorial chemical library containing 599 compounds was created and screened for the ability to inhibit proliferation of IL3- and IL7-dependent cell lines to focus on molecules that interrupt those signaling pathways. This screen identified a meta-trifluoromethyl derivative of AG490, 5H4, that is approximately twice as potent as AG490 in cell-based assays. 5H4 blocked the factor-dependent proliferation of both of these cell lines, actively promoted cell death, and diminished the JAK kinase activity. Administration of 5H4 to lymphoma-prone IL-7 transgenic mice reduced their spontaneous lymphadenopathy. The improved characteristics of this novel compound bring this class of molecules closer to therapeutic utility.
Collapse
Affiliation(s)
- Ling Gu
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
29
|
Radtke S, Haan S, Jörissen A, Hermanns HM, Diefenbach S, Smyczek T, Schmitz-Vandeleur H, Heinrich PC, Behrmann I, Haan C. The Jak1 SH2 Domain Does Not Fulfill a Classical SH2 Function in Jak/STATSignaling but Plays a Structural Role for Receptor Interaction andUp-regulation of Receptor SurfaceExpression. J Biol Chem 2005; 280:25760-8. [PMID: 15894543 DOI: 10.1074/jbc.m500822200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The presence of a Src homology 2 (SH2) domain sequence similarity in the sequence of Janus kinases (Jaks) has been discussed since the first descriptions of these enzymes. We performed an in depth study to determine the function of the Jak1 SH2 domain. We investigated the functionality of the Jak1 SH2 domain by stably reconstituting Jak1-defective human fibrosarcoma cells U4C with endogenous amounts of Jak1 in which the crucial arginine residue Arg466 within the SH2 domain has been replaced by lysine. This mutant still binds to the receptor subunits gp130 and OSMR. Moreover, the SH2 R466K mutation does not affect the subcellular distribution of Jak1 as assessed by cell fractionation and confocal microscopy of cells expressing endogenous levels of non-tagged or a yellow fluorescent protein (YFP)-tagged Jak1-R466K, respectively. Likewise, the signaling capacity of Jak1 was not affected by this point mutation. However, we found that the SH2 domain is structurally important for cytokine receptor binding and surface expression of the OSMR.
Collapse
Affiliation(s)
- Simone Radtke
- Institut für Biochemie, Uniklinik Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Moriguchi M, Hissong BD, Gadina M, Yamaoka K, Tiffany HL, Murphy PM, Candotti F, O'Shea JJ. CXCL12 Signaling Is Independent of Jak2 and Jak3. J Biol Chem 2005; 280:17408-14. [PMID: 15611059 DOI: 10.1074/jbc.m414219200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Janus kinases (Jaks) are a small family of cytoplasmic tyrosine kinases, critical for signaling by Type I and II cytokine receptors. The importance of Jaks in signaling by these receptors has been firmly established by analysis of mutant cell lines, the generation of Jak knock-out mice, and the identification of patients with Jak3 mutations. While a number of other ligands that do not bind Type I and II cytokine receptors have also been reported to activate Jaks, the requirement for Jaks in signaling by these receptors is less clear. Chemokines for example, which bind seven transmembrane receptors, have been reported to activate Jaks, and principally through the use of pharmacological inhibitors, it has been argued that Jaks are essential for chemokine signaling. In the present study, we focused on CXCR4, which binds the chemokine CXCL12 or stromal cell-derived factor-1, a chemokine that has been reported to activate Jak2 and Jak3. We found that the lack of Jak3 had no effect on CXCL12 signaling or chemotaxis nor did overexpression of wild-type versions of the kinase. Similarly, overexpression of wild-type or catalytically inactive Jak2 or "knocking-down" Jak2 expression using siRNA also had no effect. We also found that in primary lymphocytes, CXCL12 did not induce appreciable phosphorylation of any of the Jaks compared with cytokines for which these kinases are required. Additionally, little or no Stat (signal transducer and activator of transcription) phosphorylation was detected. Thus, we conclude that in contrast to previous reports, Jaks, especially Jak3, are unlikely to play an essential role in chemokine signaling.
Collapse
MESH Headings
- Blotting, Western
- Calcium/metabolism
- Catalysis
- Cell Line
- Cell Line, Transformed
- Chemokine CXCL12
- Chemokines/metabolism
- Chemokines, CXC/metabolism
- Cytokines/metabolism
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Humans
- Immunoprecipitation
- Interleukin-2/metabolism
- Janus Kinase 2
- Janus Kinase 3
- Jurkat Cells
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/metabolism
- Ligands
- Lymphocytes/metabolism
- Mutation
- Mutation, Missense
- Phosphorylation
- Plasmids/metabolism
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins/metabolism
- RNA, Small Interfering/metabolism
- Signal Transduction
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Masato Moriguchi
- Molecular Immunology and Inflammation Branch, NIAMS, Laboratory of Host Defenses, NIAID, and Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Paukku K, Silvennoinen O. STATs as critical mediators of signal transduction and transcription: lessons learned from STAT5. Cytokine Growth Factor Rev 2005; 15:435-55. [PMID: 15561601 DOI: 10.1016/j.cytogfr.2004.09.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Signal transducers and activators of transcription (Stats) comprise a family of seven transcription factors that are activated by a variety of cytokines, hormones and growth factors. Stats are activated through tyrosine phosphorylation, mainly by Jak kinases, that lead to their dimerization, nuclear translocation and regulation of target gene expression. Stat5 was originally identified as a transcription factor that regulates the beta-casein gene in response to prolactin (PRL), but Stat5 is activated also by several other cytokines and growth factors. The molecular mechanisms that underlie Stat5-mediated transcription involve interactions and cooperation with sequence specific transcription factors and transcriptional coregulators. Our studies identified p100 protein as a coactivator for Stat5, and suggest the existence of a positive regulatory loop in PRL-induced transcription, where PRL stabilizes p100 protein, which in turn can cooperate with Stat5 in transcriptional activation. Suppressors of cytokine signaling (SOCS) proteins are important negative regulators of Stats. A target gene for Stat5, the serine/threonine kinase Pim-1, was found to cooperate with SOCS-1 and SOCS-3 to inhibit Stat5 activity suggesting that Pim-1 together with SOCS-1 and SOCS-3 are components of a negative feedback mechanism that allows Stat5 to regulate its own activation.
Collapse
Affiliation(s)
- Kirsi Paukku
- Department of Virology, Haartman Institute and Biomedicum Helsinki, University of Helsinki, PO Box 63, FIN-00014 Helsinki, Finland.
| | | |
Collapse
|
32
|
Matsuda T, Feng J, Witthuhn BA, Sekine Y, Ihle JN. Determination of the transphosphorylation sites of Jak2 kinase. Biochem Biophys Res Commun 2004; 325:586-94. [PMID: 15530433 DOI: 10.1016/j.bbrc.2004.10.071] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Indexed: 11/23/2022]
Abstract
Janus kinases are the key enzymes involved in the initial transmission of signals in response to type I and II cytokines. Activation of the signal begins with the transphosphorylation of Jak kinases. Substrates that give rise to downstream events are recruited to the receptor complex in part by interactions with phosphorylated tyrosines. The identity of many of the phosphotyrosines responsible for recruitment has been elucidated as being receptor-based tyrosines. The ability of Jaks to recruit substrates through their own phosphotyrosines has been demonstrated for tyrosines in the kinase activation loop. Recent studies demonstrate that other tyrosines have implications in regulatory roles of Jak kinase activity. In this study, baculovirus-produced Jak2 was utilized to demonstrate that transphosphorylation of Jak kinases occurs on multiple residues throughout the protein. We demonstrate that among the tyrosines phosphorylated, those in the kinase domain occur as expected, but many other sites are also phosphorylated. The tyrosines conserved in the Jak family are the object of this study, although many of them are phosphorylated, many are not. This result suggests that conservation of tyrosines is perhaps as important in maintaining structure of the Jak family. Additionally, non-Jak family conserved tyrosines are phosphorylated suggesting that the individual Jaks ability to phosphorylated specific tyrosines may influence signals emitting from activated Jaks.
Collapse
Affiliation(s)
- Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
33
|
Dunty JM, Gabarra-Niecko V, King ML, Ceccarelli DFJ, Eck MJ, Schaller MD. FERM domain interaction promotes FAK signaling. Mol Cell Biol 2004; 24:5353-68. [PMID: 15169899 PMCID: PMC419890 DOI: 10.1128/mcb.24.12.5353-5368.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 01/05/2004] [Accepted: 03/15/2004] [Indexed: 12/29/2022] Open
Abstract
From the results of deletion analyses, the FERM domain of FAK has been proposed to inhibit enzymatic activity and repress FAK signaling. We have identified a sequence in the FERM domain that is important for FAK signaling in vivo. Point mutations in this sequence had little effect upon catalytic activity in vitro. However, the mutant exhibits reduced tyrosine phosphorylation and dramatically reduced Src family kinase binding. Further, the abilities of the mutant to transduce biochemical signals and to promote cell migration were severely impaired. The results implicate a FERM domain interaction in cell adhesion-dependent activation of FAK and downstream signaling. We also show that the purified FERM domain of FAK interacts with full-length FAK in vitro, and mutation of this sequence disrupts the interaction. These findings are discussed in the context of models of FAK regulation by its FERM domain.
Collapse
Affiliation(s)
- Jill M Dunty
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, 27599, USA
| | | | | | | | | | | |
Collapse
|
34
|
Behrmann I, Smyczek T, Heinrich PC, Schmitz-Van de Leur H, Komyod W, Giese B, Müller-Newen G, Haan S, Haan C. Janus kinase (Jak) subcellular localization revisited: the exclusive membrane localization of endogenous Janus kinase 1 by cytokine receptor interaction uncovers the Jak.receptor complex to be equivalent to a receptor tyrosine kinase. J Biol Chem 2004; 279:35486-93. [PMID: 15123646 DOI: 10.1074/jbc.m404202200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Janus kinases are considered to be cytoplasmic kinases that constitutively associate with the cytoplasmic region of cytokine receptors, and the Janus kinases (Jaks) are crucial for cytokine signal transduction. We investigated Jak1 localization using subcellular fractionation techniques and fluorescence microscopy (immunofluorescence and yellow fluorescent protein-tagged Jaks). In the different experimental approaches we found Jak1 (as well as Jak2 and Tyk2) predominantly located at membranes. In contrast to previous reports we did not observe Jak proteins in significant amounts within the nucleus or in the cytoplasm. The cytoplasmic localization observed for the Jak1 mutant L80A/Y81A, which is unable to associate with cytokine receptors, indicates that Jak1 does not have a strong intrinsic membrane binding potential and that only receptor binding is crucial for the membrane recruitment. Finally we show that Jak1 remains a membrane-localized protein after cytokine stimulation. These data strongly support the hypothesis that cytokine receptor.Janus kinase complexes can be regarded as receptor tyrosine kinases.
Collapse
Affiliation(s)
- Iris Behrmann
- Institut für Biochemie, Universitätsklinikum Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
He K, Wang X, Jiang J, Guan R, Bernstein KE, Sayeski PP, Frank SJ. Janus kinase 2 determinants for growth hormone receptor association, surface assembly, and signaling. Mol Endocrinol 2003; 17:2211-2227. [PMID: 12920237 DOI: 10.1210/me.2003-0256] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
GH signaling depends on functional interaction of the GH receptor (GHR) and the cytoplasmic tyrosine kinase, Janus kinase 2 (JAK2), which possesses a C-terminal kinase domain, a catalytically inactive pseudokinase domain just N-terminal to the kinase domain, and an N-terminal half shown by us and others to harbor elements for GHR association. Computational analyses indicate that JAKs contain in their N termini ( approximately 450 residues) divergent FERM domains. FERM domains (or subdomains within them) in JAKS may be important for associations with cytokine receptors. For some cytokine receptors, JAK interaction may be required for receptor surface expression. We previously demonstrated that a JAK2 mutant devoid of its N-terminal 239 residues (JAK2-Delta1-239) did not associate with GHR and could not mediate GH- induced signaling. In this report we employ a JAK2-deficient cell line to further define N-terminal JAK2 regions required for physical and functional association with the GHR. We also examine whether JAK2 expression affects cell surface expression of the GHR. Our results suggest that FERM motifs play an important role in the interaction of GHR and JAK2. While JAK2 expression is not required for detectable surface GHR expression, an increased JAK2 level increases the fraction of GHRs that achieves resistance to deglycosylation by endoglycosidase H, suggesting that the GHR-JAK2 association may enhance either the receptor's efficiency of maturation or its stability. Further, we report evidence for the existence of a novel GH-inducible functional interaction between JAK2 molecules that may be important in the mechanism of GH-triggered JAK2 signaling.
Collapse
Affiliation(s)
- Kai He
- Department of Medicine, University of Alabama, Birmingham, Alabama 35294-0012, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The importance of Jak-Stat pathway signaling in regulating cytokine-dependent gene expression and cellular development/survival is well established. Nevertheless, advances continue to be made in defining Jak-Stat pathway effects on different cellular processes and in different organisms. This review focuses on recent advances in the field and highlights some of the most active areas of Jak-Stat pathway research.
Collapse
Affiliation(s)
- John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institutes of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20852, USA.
| | | | | |
Collapse
|
37
|
Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 2002; 285:1-24. [PMID: 12039028 DOI: 10.1016/s0378-1119(02)00398-0] [Citation(s) in RCA: 803] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Investigation into the mechanism of cytokine signaling led to the discovery of the JAK/STAT pathway. Following the binding of cytokines to their cognate receptor, signal transducers and activators of transcription (STATs) are activated by members of the janus activated kinase (JAK) family of tyrosine kinases. Once activated, they dimerize and translocate to the nucleus and modulate the expression of target genes. During the past several years significant progress has been made in the characterization of the JAK/STAT signaling cascade, including the identification of multiple STATs and regulatory proteins. Seven STATs have been identified in mammals. The vital role these STATs play in the biological response to cytokines has been demonstrated through the generation of murine 'knockout' models. These mice will be invaluable in carefully elucidating the role STATs play in regulating the host response to various stresses. Similarly, the solution of the crystal structure of two STATs has and will continue to facilitate our understanding of how STATs function. This review will highlight these exciting developments in JAK/STAT signaling.
Collapse
Affiliation(s)
- T Kisseleva
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|