1
|
Ferreira GA, Thomé CH, Simão AMS, Scheucher PS, Silva CLA, Chahud F, Ciancaglini P, Leopoldino AM, Rego EM, Faça VM, dos Santos GA. The lipid raft protein NTAL participates in AKT signaling in mantle cell lymphoma. Leuk Lymphoma 2019; 60:2658-2668. [DOI: 10.1080/10428194.2019.1607326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Germano Aguiar Ferreira
- Hemocenter of Ribeirão Preto, 14051-140 Ribeirão Preto, SP, Brazil
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carolina Hassibe Thomé
- Hemocenter of Ribeirão Preto, 14051-140 Ribeirão Preto, SP, Brazil
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana Maria Sper Simão
- Department of Chemistry, Faculty of Philosophy Sciences and Letters of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Priscila Santos Scheucher
- Hemocenter of Ribeirão Preto, 14051-140 Ribeirão Preto, SP, Brazil
- Department of Internal Medicine, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Fernando Chahud
- Department of Pathology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Pietro Ciancaglini
- Department of Chemistry, Faculty of Philosophy Sciences and Letters of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andreia Machado Leopoldino
- Hemocenter of Ribeirão Preto, 14051-140 Ribeirão Preto, SP, Brazil
- Department of Clinical, Toxicological and Bromatological Analyzes, Faculty of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Eduardo Magalhães Rego
- Hemocenter of Ribeirão Preto, 14051-140 Ribeirão Preto, SP, Brazil
- Department of Internal Medicine, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Vitor Marcel Faça
- Hemocenter of Ribeirão Preto, 14051-140 Ribeirão Preto, SP, Brazil
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Guilherme Augusto dos Santos
- Hemocenter of Ribeirão Preto, 14051-140 Ribeirão Preto, SP, Brazil
- Department of Medicine, University of Ribeirão Preto (UNAERP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
2
|
Ahmad S, Abu-Eid R, Shrimali R, Webb M, Verma V, Doroodchi A, Berrong Z, Samara R, Rodriguez PC, Mkrtichyan M, Khleif SN. Differential PI3Kδ Signaling in CD4+ T-cell Subsets Enables Selective Targeting of T Regulatory Cells to Enhance Cancer Immunotherapy. Cancer Res 2017; 77:1892-1904. [DOI: 10.1158/0008-5472.can-16-1839] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 12/21/2016] [Accepted: 01/01/2017] [Indexed: 11/16/2022]
|
3
|
Microbial Degradation of Cellular Kinases Impairs Innate Immune Signaling and Paracrine TNFα Responses. Sci Rep 2016; 6:34656. [PMID: 27698456 PMCID: PMC5048168 DOI: 10.1038/srep34656] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/13/2016] [Indexed: 12/17/2022] Open
Abstract
The NFκB and MAPK signaling pathways are critical components of innate immunity that orchestrate appropriate immune responses to control and eradicate pathogens. Their activation results in the induction of proinflammatory mediators, such as TNFα a potent bioactive molecule commonly secreted by recruited inflammatory cells, allowing for paracrine signaling at the site of an infection. In this study we identified a novel mechanism by which the opportunistic pathogen Porphyromonas gingivalis dampens innate immune responses by disruption of kinase signaling and degradation of inflammatory mediators. The intracellular immune kinases RIPK1, TAK1, and AKT were selectively degraded by the P. gingivalis lysine-specific gingipain (Kgp) in human endothelial cells, which correlated with dysregulated innate immune signaling. Kgp was also observed to attenuate endothelial responsiveness to TNFα, resulting in a reduction in signal flux through AKT, ERK and NFκB pathways, as well as a decrease in downstream proinflammatory mRNA induction of cytokines, chemokines and adhesion molecules. A deficiency in Kgp activity negated decreases to host cell kinase protein levels and responsiveness to TNFα. Given the essential role of kinase signaling in immune responses, these findings highlight a unique mechanism of pathogen-induced immune dysregulation through inhibition of cell activation, paracrine signaling, and dampened cellular proinflammatory responses.
Collapse
|
4
|
Schieffer D, Naware S, Bakun W, Bamezai AK. Lipid raft-based membrane order is important for antigen-specific clonal expansion of CD4(+) T lymphocytes. BMC Immunol 2014; 15:58. [PMID: 25494999 PMCID: PMC4270042 DOI: 10.1186/s12865-014-0058-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 11/24/2014] [Indexed: 11/24/2022] Open
Abstract
Background Lipid rafts are cholesterol and saturated lipid-rich, nanometer sized membrane domains that are hypothesized to play an important role in compartmentalization and spatiotemporal regulation of cellular signaling. Lipid rafts contribute to the plasma membrane order and to its spatial asymmetry, as well. The raft nanodomains on the surface of CD4+ T lymphocytes coalesce during their interaction with antigen presenting cells (APCs). Sensing of foreign antigen by the antigen receptor on CD4+ T cells occurs during these cell-cell interactions. In response to foreign antigen the CD4+ T cells proliferate, allowing the expansion of few antigen-specific primary CD4+ T cell clones. Proliferating CD4+ T cells specialize in their function by undergoing differentiation into appropriate effectors tailored to mount an effective adaptive immune response against the invading pathogen. Results To investigate the role of lipid raft-based membrane order in the clonal expansion phase of primary CD4+ T cells, we have disrupted membrane order by incorporating an oxysterol, 7-ketocholesterol (7-KC), into the plasma membrane of primary CD4+ T cells expressing a T cell receptor specific to chicken ovalbumin323–339 peptide sequence and tested their antigen-specific response. We report that 7-KC, at concentrations that disrupt lipid rafts, significantly diminish the c-Ovalbumin323–339 peptide-specific clonal expansion of primary CD4+ T cells. Conclusions Our findings suggest that lipid raft-based membrane order is important for clonal expansion of CD4+ T cells in response to a model peptide. Electronic supplementary material The online version of this article (doi:10.1186/s12865-014-0058-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Schieffer
- Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA, 19085, USA. .,Current Address: DeNovix Inc, Wilmington, DE, 19808, USA.
| | - Sanya Naware
- Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA, 19085, USA. .,Current Address: M.D. Program, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA.
| | - Walter Bakun
- Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA, 19085, USA.
| | - Anil K Bamezai
- Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA, 19085, USA.
| |
Collapse
|
5
|
Valencia A, Sapp E, Kimm JS, McClory H, Ansong KA, Yohrling G, Kwak S, Kegel KB, Green KM, Shaffer SA, Aronin N, DiFiglia M. Striatal synaptosomes from Hdh140Q/140Q knock-in mice have altered protein levels, novel sites of methionine oxidation, and excess glutamate release after stimulation. J Huntingtons Dis 2014; 2:459-75. [PMID: 24696705 DOI: 10.3233/jhd-130080] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Synaptic connections are disrupted in patients with Huntington's disease (HD). Synaptosomes from postmortem brain are ideal for synaptic function studies because they are enriched in pre- and post-synaptic proteins important in vesicle fusion, vesicle release, and neurotransmitter receptor activation. OBJECTIVE To examine striatal synaptosomes from 3, 6 and 12 month old WT and Hdh140Q/140Q knock-in mice for levels of synaptic proteins, methionine oxidation, and glutamate release. METHODS We used Western blot analysis, glutamate release assays, and liquid chromatography tandem mass spectrometry (LC-MS/MS). RESULTS Striatal synaptosomes of 6 month old Hdh140Q/140Q mice had less DARPP32, syntaxin 1 and calmodulin compared to WT. Striatal synaptosomes of 12 month old Hdh140Q/140Q mice had lower levels of DARPP32, alpha actinin, HAP40, Na+/K+-ATPase, PSD95, SNAP-25, TrkA and VAMP1, VGlut1 and VGlut2, increased levels of VAMP2, and modifications in actin and calmodulin compared to WT. More glutamate released from vesicles of depolarized striatal synaptosomes of 6 month old Hdh140Q/140Q than from age matched WT mice but there was no difference in glutamate release in synaptosomes of 3 and 12 month old WT and Hdh140Q/140Q mice. LC-MS/MS of 6 month old Hdh140Q/140Q mice striatal synaptosomes revealed that about 4% of total proteins detected (>600 detected) had novel sites of methionine oxidation including proteins involved with vesicle fusion, trafficking, and neurotransmitter function (synaptophysin, synapsin 2, syntaxin 1, calmodulin, cytoplasmic actin 2, neurofilament, and tubulin). Altered protein levels and novel methionine oxidations were also seen in cortical synaptosomes of 12 month old Hdh140Q/140Q mice. CONCLUSIONS Findings provide support for early synaptic dysfunction in Hdh140Q/140Q knock-in mice arising from altered protein levels, oxidative damage, and impaired glutamate neurotransmission and suggest that study of synaptosomes could be of value for evaluating HD therapies.
Collapse
|
6
|
Protein kinase C mediates enterohemorrhagic Escherichia coli O157:H7-induced attaching and effacing lesions. Infect Immun 2014; 82:1648-56. [PMID: 24491575 DOI: 10.1128/iai.00534-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli serotype O157:H7 causes outbreaks of diarrhea, hemorrhagic colitis, and the hemolytic-uremic syndrome. E. coli O157:H7 intimately attaches to epithelial cells, effaces microvilli, and recruits F-actin into pedestals to form attaching and effacing lesions. Lipid rafts serve as signal transduction platforms that mediate microbe-host interactions. The aims of this study were to determine if protein kinase C (PKC) is recruited to lipid rafts in response to E. coli O157:H7 infection and what role it plays in attaching and effacing lesion formation. HEp-2 and intestine 407 tissue culture epithelial cells were challenged with E. coli O157:H7, and cell protein extracts were then separated by buoyant density ultracentrifugation to isolate lipid rafts. Immunoblotting for PKC was performed, and localization in lipid rafts was confirmed with an anti-caveolin-1 antibody. Isoform-specific PKC small interfering RNA (siRNA) was used to determine the role of PKC in E. coli O157:H7-induced attaching and effacing lesions. In contrast to uninfected cells, PKC was recruited to lipid rafts in response to E. coli O157:H7. Metabolically active bacteria and cells with intact lipid rafts were necessary for the recruitment of PKC. PKC recruitment was independent of the intimin gene, type III secretion system, and the production of Shiga toxins. Inhibition studies, using myristoylated PKCζ pseudosubstrate, revealed that atypical PKC isoforms were activated in response to the pathogen. Pretreating cells with isoform-specific PKC siRNA showed that PKCζ plays a role in E. coli O157:H7-induced attaching and effacing lesions. We concluded that lipid rafts mediate atypical PKC signal transduction responses to E. coli O157:H7. These findings contribute further to the understanding of the complex array of microbe-eukaryotic cell interactions that occur in response to infection.
Collapse
|
7
|
Pharmacologic inhibition of PKCα and PKCθ prevents GVHD while preserving GVL activity in mice. Blood 2013; 122:2500-11. [PMID: 23908466 DOI: 10.1182/blood-2012-12-471938] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is the most effective therapy for hematopoietic malignancies through T-cell-mediated graft-vs-leukemia (GVL) effects but often leads to severe graft-vs-host disease (GVHD). Given that protein kinase Cθ (PKCθ), in cooperation with PKCα, is essential for T-cell signaling and function, we have evaluated PKCθ and PKCα as potential therapeutic targets in allogeneic HCT using genetic and pharmacologic approaches. We found that the ability of PKCα(-/-)/θ(-/-) donor T cells to induce GVHD was further reduced compared with PKCθ(-/-) T cells in relation with the relevance of both isoforms to allogeneic donor T-cell proliferation, cytokine production, and migration to GVHD target organs. Treatment with a specific inhibitor for both PKCθ and PKCα impaired donor T-cell proliferation, migration, and chemokine/cytokine production and significantly decreased GVHD in myeloablative preclinical murine models of allogeneic HCT. Moreover, pharmacologic inhibition of PKCθ and PKCα spared T-cell cytotoxic function and GVL effects. Our findings indicate that PKCα and θ contribute to T-cell activation with overlapping functions essential for GVHD induction while less critical to the GVL effect. Thus, targeting PKCα and PKCθ signaling with pharmacologic inhibitors presents a therapeutic option for GVHD prevention while largely preserving the GVL activity in patients receiving HCT.
Collapse
|
8
|
Lutz-Nicoladoni C, Christina LN, Thuille N, Nikolaus T, Wachowicz K, Katarzyna W, Gruber T, Thomas G, Leitges M, Michael L, Baier G, Gottfried B. PKCα and PKCβ cooperate functionally in CD3-induced de novo IL-2 mRNA transcription. Immunol Lett 2013; 151:31-8. [PMID: 23439007 PMCID: PMC3641392 DOI: 10.1016/j.imlet.2013.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/29/2013] [Accepted: 02/05/2013] [Indexed: 12/12/2022]
Abstract
The physiological functions of PKCα and PKCθ isotypes downstream of the antigen receptor have been defined in CD3(+) T cells. In contrast, no function of the second conventional PKC member, PKCβ, has been described yet in T cell antigen receptor signalling. To investigate the hypothesis that both conventional PKCα and PKCβ isotypes may have overlapping functions in T cell activation signalling, we generated mice that lacked the genes for both isotypes. We found that PKCα(-/-)/β(-/-) animals are viable, live normal life spans and display normal T cell development. However, these animals possess additive defects in T cell responses in comparison to animals that carry single mutations in these genes. Our studies demonstrate that the activities of PKCα and PKCβ converge to regulate IL-2 cytokine responses in anti-CD3 stimulated primary mouse T cells. Here, we present genetic evidence that PKCα and PKCβ cooperate in IL-2 transcriptional transactivation in primary mouse T cells independently of the actions of PKCθ.
Collapse
|
9
|
Shim EK, Jung SH, Lee JR. Role of two adaptor molecules SLP-76 and LAT in the PI3K signaling pathway in activated T cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:2926-35. [PMID: 21282515 DOI: 10.4049/jimmunol.1001785] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previously, we identified p85, a subunit of PI3K, as one of the molecules that interacts with the N-terminal region of Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76). We also demonstrated that tyrosine phosphorylation either at the 113 and/or 128 position is sufficient for the association of SLP-76 with the Src homology 2 domain near the N terminus of p85. The present study further examines the role of the association of these two molecules on the activation of PI3K signaling cascade. Experiments were done to determine the role of SLP-76, either wild-type, tyrosine mutants, or membrane-targeted forms of various SLP-76 constructs, on the membrane localization and phosphorylation of Akt, which is an event downstream of PI3K activation. Reconstitution studies with these various SLP-76 constructs in a Jurkat variant cell line that lacks SLP-76 or linker for activation of T cells (LAT) show that the activation of PI3K pathway following TCR ligation requires both SLP-76 and LAT adaptor proteins. The results suggest that SLP-76 associates with p85 after T cell activation and that LAT recruits this complex to the membrane, leading to Akt activation.
Collapse
Affiliation(s)
- Eun Kyung Shim
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea
| | | | | |
Collapse
|
10
|
Lang PA, Merkler D, Funkner P, Shaabani N, Meryk A, Krings C, Barthuber C, Recher M, Brück W, Häussinger D, Ohashi PS, Lang KS. Oxidized ATP inhibits T-cell-mediated autoimmunity. Eur J Immunol 2010; 40:2401-8. [PMID: 20683833 DOI: 10.1002/eji.200939838] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
T cells directed against self antigens play an important role in several autoimmune diseases. The available immunosuppressive compounds used to treat autoimmune diseases are limited, and often they have side effects that limit their application. T cells express ATP receptors, which could be new target molecules to treat autoimmune disease. Here we analyzed the effect of oxidized ATP (oxATP), an inhibitor of the ATP receptor P2rx7, in different murine models of T-cell-mediated autoimmune diseases. Treatment with oxATP inhibited proliferation and effector function of T cells. In the systems we used, oxATP did not obviously interfere with the innate immune response, but strongly reduced antigen-specific T-cell responses. This treatment ameliorated T-cell-mediated autoimmune type I diabetes and autoimmune encephalitis in mice. In conclusion, oxATP was found to strongly inhibit activated T cells and could thus be used to target T-cell-mediated autoimmune disease.
Collapse
Affiliation(s)
- Philipp A Lang
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, UHN, Toronto, ON, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bilbao PS, Santillán G, Boland R. ATP stimulates the proliferation of MCF-7 cells through the PI3K/Akt signaling pathway. Arch Biochem Biophys 2010; 499:40-8. [PMID: 20450878 DOI: 10.1016/j.abb.2010.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 04/28/2010] [Accepted: 05/01/2010] [Indexed: 11/30/2022]
Abstract
We studied the modulation of the PI3K/Akt signaling pathway by ATP in MCF-7 cells. Western blot analysis showed that ATP stimulated the phosphorylation of Akt in a dose- and time-dependent manner. Akt phosphorylation in response to nucleotides followed the potency order ATP=UTP=ATPgammaS>>ADP=UDP>ADPbetaS=adenosine, suggesting participation of P2Y(2/4) receptors. Inhibitors of PI3K, PLC, PKC and Src or Src antisense oligonucleotides prevented ATP-induced phosphorylation of Akt. Incubation of cells with 2-APB or in a nominally Ca(2+)-free medium plus EGTA showed that Akt phosphorylation by ATP depends on intracellular calcium release but is independent of calcium influx. The PI3K inhibitor was not effective in reducing MAPKs phosphorylation by ATP. ATP and UTP stimulated MCF-7 cell proliferation, effect that was inhibited by PI3K, PLC, PKC, Src and MAPKs inhibitors. These findings suggest that ATP modulation of P2Y(2/4) receptors increases MCF-7 cell proliferation by activation of the PI3K/Akt signaling pathway through PLC/IP(3)/Ca(2+), PKC and Src.
Collapse
Affiliation(s)
- Paola Scodelaro Bilbao
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, (B8000ICN) Bahía Blanca, Argentina
| | | | | |
Collapse
|
12
|
Valencia A, Reeves PB, Sapp E, Li X, Alexander J, Kegel KB, Chase K, Aronin N, DiFiglia M. Mutant huntingtin and glycogen synthase kinase 3-beta accumulate in neuronal lipid rafts of a presymptomatic knock-in mouse model of Huntington's disease. J Neurosci Res 2010; 88:179-90. [PMID: 19642201 DOI: 10.1002/jnr.22184] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Patients with Huntington's disease have an expanded polyglutamine tract in huntingtin and suffer severe brain atrophy and neurodegeneration. Because membrane dysfunction can occur in Huntington's disease, we addressed whether mutant huntingtin in brain and primary neurons is present in lipid rafts, which are cholesterol-enriched membrane domains that mediate growth and survival signals. Biochemical analysis of detergent-resistant membranes from brains and primary neurons of wild-type and presymptomatic Huntington's disease knock-in mice showed that wild-type and mutant huntingtin were recovered in lipid raft-enriched detergent-resistant membranes. The association with lipid rafts was stronger for mutant huntingtin than wild-type huntingtin. Lipid rafts extracted from Huntington's disease mice had normal levels of lipid raft markers (G(alphaq), Ras, and flotillin) but significantly more glycogen synthase kinase 3-beta. Increases in glycogen synthase kinase 3-beta have been associated with apoptotic cell death. Treating Huntington's disease primary neurons with inhibitors of glycogen synthase kinase 3-beta reduced neuronal death. We speculate that accumulation of mutant huntingtin and glycogen synthase kinase 3-beta in lipid rafts of presymptomatic Huntington's disease mouse neurons contributes to neurodegeneration in Huntington's disease.
Collapse
Affiliation(s)
- Antonio Valencia
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Grider MH, Park D, Spencer DM, Shine HD. Lipid raft-targeted Akt promotes axonal branching and growth cone expansion via mTOR and Rac1, respectively. J Neurosci Res 2009; 87:3033-42. [PMID: 19530170 DOI: 10.1002/jnr.22140] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The molecular mechanisms by which extracellular guidance cues regulate axonal morphology are not fully understood. Recent findings suggest that increased activity of the protein kinase Akt promotes dendritic branching and elongation in hippocampal neurons. We tested whether expression of constitutively active Akt (CA-Akt) in primary sensory neurons would promote axonal branching and whether targeting CA-Akt to lipid rafts, common sites of Akt function, would differentially regulate axonal morphology. Biolistic transduction of sensory neurons induced a rapid expression of CA-Akt, resulting in increased axonal branching, cell hypertrophy, and growth cone expansion. Additionally, we found that targeting of CA-Akt to lipid rafts significantly potentiated growth cone expansion compared with expression of CA-Akt throughout the neuron. Because lipid rafts are concentrated within the growth cone, this finding suggests that signaling of expansion is likely regulated locally. We found that CA-Akt-mediated growth cone expansion, but not axonal branching, was attenuated by coexpression of dominant-negative Rac1. In contrast, blockade of mammalian target of rapamycin (mTOR) prevented axonal branching and hypertrophy in response to CA-Akt, but not growth cone expansion. These data indicate that Akt activity can regulate growth cone expansion via localized Rac1 signaling and regulate axonal branching and soma size via activation of mTOR.
Collapse
Affiliation(s)
- M H Grider
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
14
|
Abstract
Androgens promote the growth and differentiation of prostate cells through ligand activation of the androgen receptor (AR). Sensitization of the androgenic response by multifunctional growth factor signaling pathways is one of the mechanisms via which AR contributes to the emergence of androgen-independent prostate tumors. The ability of AR to cross-talk with key growth factor signaling events toward the regulation of cell cycle, apoptosis, and differentiation outcomes in prostate cancer cells is established. In this paper, we review the functional interaction between AR and an array of growth factor signal transduction events (including epidermal growth factor; fibroblast growth factor; IGF1; vascular endothelial growth factor; transforming growth factor-beta) in prostate tumors. The significance of this derailed cross-talk between androgens and key signaling networks in prostate cancer progression and its value as a therapeutic forum targeting androgen-independent metastatic prostate cancer is discussed.
Collapse
Affiliation(s)
- Meng-Lei Zhu
- Departments of Urology and Toxicology, University of Kentucky College of Medicine, University of Kentucky Medical Center, Combs Research Building Room 306, Lexington, Kentucky 40536, USA
| | | |
Collapse
|
15
|
Saibil SD, Jones RG, Deenick EK, Liadis N, Elford AR, Vainberg MG, Baerg H, Woodgett JR, Gerondakis S, Ohashi PS. CD4+ and CD8+ T cell survival is regulated differentially by protein kinase Ctheta, c-Rel, and protein kinase B. THE JOURNAL OF IMMUNOLOGY 2007; 178:2932-9. [PMID: 17312138 DOI: 10.4049/jimmunol.178.5.2932] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An effective immune response requires the expansion and survival of a large number of activated T cells. This study compared the role of protein kinase C (PKC)theta and associated signaling molecules in the survival of activated primary CD4+ vs CD8+ murine T cells. We demonstrate that the absence of PKCtheta resulted in a moderate survival defect in CD4+ T cells and a striking survival defect of CD8+ T lymphocytes. CD8+ T cells lacking the c-Rel, but not the NF-kappaB1/p50, member of the NF-kappaB family of transcription factors displayed a similar impairment in cell survival as PKCtheta(-/-) CD8(+) T lymphocytes. This implicates c-Rel as a key target of PKCtheta-mediated survival signals in CD8+ T cells. In addition, both c-Rel(-/-) and PKCtheta(-/-) T cells also displayed impaired expression of the antiapoptotic Bcl-x(L) protein upon activation. Changes in Bcl-x(L) expression, however, did not correlate with the survival of CD4+ or CD8+ lymphocytes. The addition of protein kinase B-mediated survival signals could restore partially CD4+ T cell viability, but did not dramatically influence CD8+ survival. Active protein kinase B was also unable to restore proliferative responses in CD8+ PKCtheta(-/-) T cells. The survival of CD4+ and CD8+ T cells deficient in either PKCtheta or c-Rel, however, was promoted by the addition of IL-2. Collectively, these data demonstrate that CD4+ and CD8+ T cell survival signals are differentially programmed.
Collapse
Affiliation(s)
- Samuel D Saibil
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ohsawa K, Irino Y, Nakamura Y, Akazawa C, Inoue K, Kohsaka S. Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis. Glia 2007; 55:604-16. [PMID: 17299767 DOI: 10.1002/glia.20489] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We previously reported that extracellular ATP induces membrane ruffling and chemotaxis of microglia and suggested that their induction is mediated by the Gi/o-protein coupled P2Y(12) receptor (P2Y(12)R). Here we report discovering that the P2X(4) receptor (P2X(4)R) is also involved in ATP-induced microglial chemotaxis. To understand the intracellular signaling pathway downstream of P2Y(12)R that underlies microglial chemotaxis, we examined the effect of two phosphatidylinositol 3'-kinase (PI3K) inhibitors, wortmannin, and LY294002, on chemotaxis in a Dunn chemotaxis chamber. The PI3K inhibitors significantly suppressed chemotaxis without affecting ATP-induced membrane ruffling. ATP stimulation increased Akt phosphorylation in the microglia, and the increase was reduced by the PI3K inhibitors and a P2Y(12)R antagonist. These results indicate that P2Y(12)R-mediated activation of the PI3K pathway is required for microglial chemotaxis in response to ATP. We also found that the Akt phosphorylation was reduced when extracellular calcium was chelated, suggesting that ionotropic P2X receptors are involved in microglial chemotaxis by affecting the PI3K pathway. We therefore tested the effect of various P2X(4)R antagonists on the chemotaxis, and the results showed that pharmacological blockade of P2X(4)R significantly inhibited it. Knockdown of the P2X(4) receptor in microglia by RNA interference through the lentivirus vector system also suppressed the microglial chemotaxis. These results indicate that P2X(4)R as well as P2Y(12)R is involved in ATP-induced microglial chemotaxis.
Collapse
Affiliation(s)
- Keiko Ohsawa
- Department of Neurochemistry, National Institute of Neuroscience, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Freeman MR, Cinar B, Kim J, Mukhopadhyay NK, Di Vizio D, Adam RM, Solomon KR. Transit of hormonal and EGF receptor-dependent signals through cholesterol-rich membranes. Steroids 2007; 72:210-7. [PMID: 17173942 PMCID: PMC2709209 DOI: 10.1016/j.steroids.2006.11.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 11/13/2006] [Indexed: 01/17/2023]
Abstract
The functional consequences of changes in membrane lipid composition that coincide with malignant growth are poorly understood. Sufficient data have been acquired from studies of lipid binding proteins, post-translational modifications of signaling proteins, and biochemical inhibition of lipidogenic pathways to indicate that growth and survival pathways might be substantially re-directed by alterations in the lipid content of membranes. Cholesterol and glycosphingolipids segregate into membrane patches that exhibit a liquid-ordered state in comparison to membrane domains containing relatively lower amounts of these classes of lipids. These "lipid raft" structures, which may vary in size and stability in different cell types, both accumulate and exclude signaling proteins and have been implicated in signal transduction through a number of cancer-relevant pathways. In prostate cancer cells, signaling from epidermal growth factor receptor (EGFR) to the serine-threonine kinase Akt1, as well as from IL-6 to STAT3, have been demonstrated to be influenced by experimental interventions that target cholesterol homeostasis. The recent finding that classical steroid hormone receptors also reside in these microdomains, and thus may function within these structures in a signaling capacity independent of their role as nuclear factors, suggests a novel means of cross-talk between receptor tyrosine kinase-derived and steroidogenic signals. Potential points of intersection between components of the EGFR family of receptor tyrosine kinases and androgen receptor signaling pathways, which may be sensitive to disruptions in cholesterol metabolism, are discussed. Understanding the manner in which these pathways converge within cholesterol-rich membranes may present new avenues for therapeutic intervention in hormone-dependent cancers.
Collapse
Affiliation(s)
- Michael R Freeman
- Urological Diseases Research Center, Department of Urology, Children's Hospital Boston, Boston, MA 02115, United States.
| | | | | | | | | | | | | |
Collapse
|
18
|
Barragán M, de Frias M, Iglesias-Serret D, Campàs C, Castaño E, Santidrián AF, Coll-Mulet L, Cosialls AM, Domingo A, Pons G, Gil J. Regulation of Akt/PKB by phosphatidylinositol 3-kinase-dependent and -independent pathways in B-cell chronic lymphocytic leukemia cells: role of protein kinase Cβ. J Leukoc Biol 2006; 80:1473-9. [PMID: 16940331 DOI: 10.1189/jlb.0106041] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Apoptosis of B cell chronic lymphocytic leukemia (B-CLL) cells is regulated by the PI-3K-Akt pathway. In the present work, we have analyzed the mechanisms of Akt phosphorylation in B-CLL cells. Freshly isolated cells present basal Akt phosphorylation, which is PI-3K-dependent, as incubation with the PI-3K inhibitor LY294002 decreased Ser-473 and Thr-308 phosphorylation in most samples analyzed (seven out of 10). In three out of 10 cases, inhibition of protein kinase C (PKC) inhibited basal Akt phosphorylation. Stromal cell-derived factor-1alpha, IL-4, and B cell receptor activation induced PI-3K-dependent Akt phosphorylation. PMA induced the phosphorylation of Akt at Ser-473 and Thr-308 and the phosphorylation of Akt substrates, independently of PI-3K in B-CLL cells. In contrast, PKC-mediated phosphorylation of Akt was PI-3K-dependent in normal B cells. Finally, a specific inhibitor of PKCbeta blocked the phosphorylation and activation of Akt by PMA in B-CLL cells. Taken together, these results suggest a model in which Akt could be activated by two different pathways (PI-3K and PKCbeta) in B-CLL cells.
Collapse
Affiliation(s)
- Montserrat Barragán
- Unitat de Bioquímica, Departament de Ciències Fisiològiques II, IDIBELL-Universitat de Barcelona, Campus de Bellvitge, Pavelló de Govern, L'Hospitalet de Llobregat, Barcelona E-08907, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Heo JS, Han HJ. ATP stimulates mouse embryonic stem cell proliferation via protein kinase C, phosphatidylinositol 3-kinase/Akt, and mitogen-activated protein kinase signaling pathways. Stem Cells 2006; 24:2637-48. [PMID: 16916926 DOI: 10.1634/stemcells.2005-0588] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study investigated the effect of ATP and its related signal cascades on the proliferation of mouse ESCs. ATP increased the level of [(3)H]thymidine/5-bromo-2'-deoxyuridine incorporation and the number of cells in both a time- and dose-dependent manner. AMP-CPP (a P2X(1) and P2X(3) agonist), ATP-gammaS (a P2Y agonist), and 2-methylthio-ATP (a P2X and P2Y agonist) stimulated [(3)H]thymidine incorporation. P2 purinoceptor antagonists (suramin, reactive blue 2) inhibited the ATP-induced increase in [(3)H]thymidine incorporation. Reverse transcription-polymerase chain reaction analysis revealed P2X(3), P2X(4), P2Y(1), and P2Y(2) expression in mouse ESCs. Adenylate cyclase inhibitor (SQ 22536), phospholipase C inhibitors (neomycin or U 73122), and protein kinase C (PKC) inhibitors (bisindolylmaleimide I or staurosporine) inhibited the ATP-induced increase in [(3)H]thymidine incorporation. ATP increased the level of intracellular cAMP and inositol phosphates. ATP translocated PKC alpha, delta, and zeta from the cytosol to the membrane compartment. ATP and its agonists increased [Ca(2+)](i). In addition, the ATP-induced increase in [(3)H]thymidine incorporation was completely inhibited by a combination of EGTA (extracellular Ca(2+) chelator) and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-AM (intracellular Ca(2+) chelator). ATP phosphorylated Akt and p44/42 mitogen-activated protein kinases (MAPKs) in a time-dependent manner, and either suramin or reactive blue 2 (RB2) blocked the ATP-induced phosphorylation of Akt. Suramin, RB2, the phosphatidylinositol 3-kinase (PI3K) inhibitor (wortmannin), or the Akt inhibitor inhibited the phosphorylation of p44/42 MAPKs. The ATP-induced increase in [(3)H]thymidine incorporation was inhibited by wortmannin, the Akt inhibitor, and the MAPK kinase inhibitor (PD 98059). Suramin, RB2, PD 98059, and wortmannin blocked the ATP-induced increase in the cyclin D1, cyclin E, cyclin-dependent kinase (CDK) 2, and CDK4 levels. In conclusion, ATP stimulates mouse ESC proliferation through PKC, PI3K/Akt, and MAPKs via the P2 purinoceptors.
Collapse
Affiliation(s)
- Jung Sun Heo
- Department of Veterinary Physiology, Biotherapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | | |
Collapse
|
20
|
Lu D, Huang J, Basu A. Protein kinase Cepsilon activates protein kinase B/Akt via DNA-PK to protect against tumor necrosis factor-alpha-induced cell death. J Biol Chem 2006; 281:22799-807. [PMID: 16785234 DOI: 10.1074/jbc.m603390200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that protein kinase Cepsilon (PKCepsilon) protects breast cancer cells from tumor necrosis factor-alpha (TNF)-induced cell death. In the present study, we have investigated if the antiapoptotic function of PKCepsilon is mediated via Akt and the mechanism by which PKCepsilon regulates Akt activity. TNF caused a transient increase in Akt phosphorylation at Ser473 in MCF-7 cells. Overexpression of PKCepsilon in MCF-7 cells increased TNF-induced Akt phosphorylation at Ser473 resulting in its activation. Knockdown of PKCepsilon by small interfering RNA (siRNA) decreased TNF-induced Akt phosphorylation/activation and increased cell death. Introduction of constitutively active Akt protected breast cancer MCF-7 cells from TNF-mediated cell death and partially restored cell survival in PKCepsilon-depleted cells. Depletion of Akt in MCF-7 cells abolished the antiapoptotic effect of PKCepsilon on TNF-mediated cell death. Akt was constitutively associated with PKCepsilon and DNA-dependent protein kinase (DNA-PK), and this association was increased by TNF treatment. Overexpression of PKCepsilon enhanced the interaction between Akt and DNA-PK. Knockdown of DNA-PK by siRNA inhibited TNF-induced Akt phosphorylation and the antiapoptotic effect of Akt and PKCepsilon. These results suggest that PKCepsilon activates Akt via DNA-PK to mediate its antiapoptotic function. Furthermore, we report for the first time that DNA-PK can regulate receptor-initiated apoptosis via Akt.
Collapse
Affiliation(s)
- Dongmei Lu
- Department of Molecular Biology & Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | | | | |
Collapse
|
21
|
Venkatesan BA, Mahimainathan L, Ghosh-Choudhury N, Gorin Y, Bhandari B, Valente AJ, Abboud HE, Choudhury GG. PI 3 kinase-dependent Akt kinase and PKCε independently regulate interferon-γ-induced STAT1α serine phosphorylation to induce monocyte chemotactic protein-1 expression. Cell Signal 2006; 18:508-18. [PMID: 16157472 DOI: 10.1016/j.cellsig.2005.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 05/18/2005] [Accepted: 05/24/2005] [Indexed: 11/19/2022]
Abstract
Monocyte chemotactic protein-1 (MCP-1) recruits activated phagocytes to the site of tissue injury. Interferon-gamma (IFN-gamma) present in the microenvironment of glomerulus acts on mesangial cells to induce local production of MCP-1. The mechanism by which IFN-gamma stimulates expression of MCP-1 is not clear. We therefore examined the role of PI 3 kinase signaling in regulating the IFN-gamma-induced MCP-1 expression in mesangial cells. Blocking PI 3 kinase activity with Ly294002 attenuated IFN-gamma-induced MCP-1 protein and mRNA expression. IFN-gamma increased Akt kinase activity in a PI 3 kinase-dependent manner. Expression of dominant negative Akt kinase inhibited serine phosphorylation of STAT1alpha, without any effect on its tyrosine phosphorylation, and decreased IFN-gamma-induced expression of MCP-1. These data for the first time indicate a role for PI 3 kinase-dependent Akt kinase in MCP-1 expression. We have recently shown that along with Akt, PKCepsilon is a downstream target of PI 3 kinase in IFN-gamma signaling. Similar to dominant negative Akt kinase, dominant negative PKCepsilon also inhibited serine phosphorylation of STAT1alpha without any effect on tyrosine phosphorylation. Dominant negative PKCepsilon also abrogated MAPK activity, resulting in decrease in IFN-gamma-induced MCP-1 expression. Furthermore, Akt and PKCepsilon are present together in a signaling complex. IFN-gamma had no effect on this complex formation, but did increase PKCepsilon-associated Akt kinase activity. PKCepsilon did not regulate IFN-gamma-induced Akt kinase. Finally, expression of dominant negative Akt kinase blocked IFN-gamma-stimulated MAPK activation. These data provide the first evidence that PI 3 kinase-dependent Akt and PKCepsilon activation independently regulate MAPK activity and serine phosphorylation of STAT1alpha to increase expression of MCP-1.
Collapse
Affiliation(s)
- Balachandar A Venkatesan
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78220-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Jones RG, Saibil SD, Pun JM, Elford AR, Bonnard M, Pellegrini M, Arya S, Parsons ME, Krawczyk CM, Gerondakis S, Yeh WC, Woodgett JR, Boothby MR, Ohashi PS. NF-kappaB couples protein kinase B/Akt signaling to distinct survival pathways and the regulation of lymphocyte homeostasis in vivo. THE JOURNAL OF IMMUNOLOGY 2005; 175:3790-9. [PMID: 16148125 DOI: 10.4049/jimmunol.175.6.3790] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein kinase B (PKBalpha/Akt1) a PI3K-dependent serine-threonine kinase, promotes T cell viability in response to many stimuli and regulates homeostasis and autoimmune disease in vivo. To dissect the mechanisms by which PKB inhibits apoptosis, we have examined the pathways downstream of PKB that promote survival after cytokine withdrawal vs Fas-mediated death. Our studies show that PKB-mediated survival after cytokine withdrawal is independent of protein synthesis and the induction of NF-kappaB. In contrast, PKB requires de novo gene transcription by NF-kappaB to block apoptosis triggered by the Fas death receptor. Using gene-deficient and transgenic mouse models, we establish that NF-kappaB1, and not c-Rel, is the critical signaling molecule downstream of the PI3K-PTEN-PKB signaling axis that regulates lymphocyte homeostasis.
Collapse
Affiliation(s)
- Russell G Jones
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Thuille N, Heit I, Fresser F, Krumböck N, Bauer B, Leuthaeusser S, Dammeier S, Graham C, Copeland TD, Shaw S, Baier G. Critical role of novel Thr-219 autophosphorylation for the cellular function of PKCtheta in T lymphocytes. EMBO J 2005; 24:3869-80. [PMID: 16252004 PMCID: PMC1283955 DOI: 10.1038/sj.emboj.7600856] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 10/07/2005] [Indexed: 12/11/2022] Open
Abstract
Phosphopeptide mapping identified a major autophosphorylation site, phospho (p)Thr-219, between the tandem C1 domains of the regulatory fragment in protein kinase C (PKC)theta. Confirmation of this identification was derived using (p)Thr-219 antisera that reacted with endogenous PKCtheta in primary CD3+ T cells after stimulation with phorbol ester, anti-CD3 or vanadate. The T219A mutation abrogated the capacity of PKCtheta to mediate NF-kappaB, NF-AT and interleukin-2 promoter transactivation, and reduced PKCtheta's ability in Jurkat T cells to phosphorylate endogenous cellular substrates. In particular, the T219A mutation impaired crosstalk of PKCtheta with Akt/PKBalpha in NF-kappaB activation. Yet, this novel (p)Thr-219 site did not affect catalytic activity or second-messenger lipid-binding activity in vitro. Instead, the T219A mutation prevented proper recruitment of PKCtheta in activated T cells. The PKCthetaT219A mutant defects were largely rescued by addition of a myristoylation signal to force its proper membrane localization. We conclude that autophosphorylation of PKCtheta at Thr-219 plays an important role in the correct targeting and cellular function of PKCtheta upon antigen receptor ligation.
Collapse
Affiliation(s)
- Nikolaus Thuille
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | | | - Friedrich Fresser
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - Nina Krumböck
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - Birgit Bauer
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | - Caroline Graham
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Terry D Copeland
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Steve Shaw
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Gottfried Baier
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
- Section for Human Genetics, Innsbruck Medical University, Schoepfstraβe 41, 6020 Innsbruck, Austria. Tel.: +43 512 507 3451; Fax: +43 512 507 2861; E-mail:
| |
Collapse
|
24
|
Vigh L, Escribá PV, Sonnleitner A, Sonnleitner M, Piotto S, Maresca B, Horváth I, Harwood JL. The significance of lipid composition for membrane activity: New concepts and ways of assessing function. Prog Lipid Res 2005; 44:303-44. [PMID: 16214218 DOI: 10.1016/j.plipres.2005.08.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the last decade or so, it has been realised that membranes do not just have a lipid-bilayer structure in which proteins are embedded or with which they associate. Structures are dynamic and contain areas of heterogeneity which are vital for their formation. In this review, we discuss some of the ways in which these dynamic and heterogeneous structures have implications during stress and in relation to certain human diseases. A particular stress is that of temperature which may instigate adaptation in poikilotherms or appropriate defensive responses during fever in mammals. Recent data emphasise the role of membranes in sensing temperature changes and in controlling a regulatory loop with chaperone proteins. This loop seems to need the existence of specific membrane microdomains and also includes association of chaperone (heat stress) proteins with the membrane. The role of microdomains is then discussed further in relation to various human pathologies such as cardiovascular disease, cancer and neurodegenerative diseases. The concept of modifying membrane lipids (lipid therapy) as a means for treating such pathologies is then introduced. Examples are given when such methods have been shown to have benefit. In order to study membrane microheterogeneity in detail and to elucidate possible molecular mechanisms that account for alteration in membrane function, new methods are needed. In the second part of the review, we discuss ultra-sensitive and ultra-resolution imaging techniques. These include atomic force microscopy, single particle tracking, single particle tracing and various modern fluorescence methods. Finally, we deal with computing simulation of membrane systems. Such methods include coarse-grain techniques and Monte Carlo which offer further advances into molecular dynamics. As computational methods advance they will have more application by revealing the very subtle interactions that take place between the lipid and protein components of membranes - and which are so essential to their function.
Collapse
Affiliation(s)
- Làszló Vigh
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hoyer KK, Herling M, Bagrintseva K, Dawson DW, French SW, Renard M, Weinger JG, Jones D, Teitell MA. T Cell Leukemia-1 Modulates TCR Signal Strength and IFN-γ Levels through Phosphatidylinositol 3-Kinase and Protein Kinase C Pathway Activation. THE JOURNAL OF IMMUNOLOGY 2005; 175:864-73. [PMID: 16002684 DOI: 10.4049/jimmunol.175.2.864] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A signaling role for T cell leukemia-1 (TCL1) during T cell development or in premalignant T cell expansions and mature T cell tumors is unknown. In this study, TCL1 is shown to regulate the growth and survival of peripheral T cells but not precursor thymocytes. Proliferation is increased by TCL1-induced lowering of the TCR threshold for CD4(+) and CD8(+) T cell activation through both PI3K-Akt and protein kinase C-MAPK-ERK signaling pathways. This effect is submaximal as CD28 costimulation coupled to TCL1 expression additively accelerates dose-dependent T cell growth. In addition to its role in T cell proliferation, TCL1 also increases IFN-gamma levels from Th1-differentiated T cells, an effect that may provide a survival advantage during premalignant T cell expansions and in clonal T cell tumors. Combined, these data indicate a role for TCL1 control of growth and effector T cell functions, paralleling features provided by TCR-CD28 costimulation. These results also provide a more detailed mechanism for TCL1-augmented signaling and help explain the delayed occurrence of mature T cell expansions and leukemias despite tumorigenic TCL1 dysregulation that begins in early thymocytes.
Collapse
MESH Headings
- Animals
- Antigens, Surface/metabolism
- CD3 Complex/metabolism
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/enzymology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/enzymology
- CD8-Positive T-Lymphocytes/immunology
- Cell Differentiation/immunology
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival/immunology
- Cells, Cultured
- Enzyme Activation/immunology
- Humans
- Interferon-gamma/biosynthesis
- Interferon-gamma/metabolism
- Jurkat Cells
- Leukemia, T-Cell/enzymology
- Leukemia, T-Cell/immunology
- Leukemia, T-Cell/pathology
- MAP Kinase Signaling System/immunology
- Mice
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol 3-Kinases/physiology
- Protein Kinase C/metabolism
- Protein Kinase C/physiology
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/physiology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Stem Cells/cytology
- Stem Cells/enzymology
- Stem Cells/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Th1 Cells/cytology
- Th1 Cells/enzymology
- Th1 Cells/immunology
Collapse
Affiliation(s)
- Katrina K Hoyer
- Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jacques-Silva MC, Bernardi A, Rodnight R, Lenz G. ERK, PKC and PI3K/Akt pathways mediate extracellular ATP and adenosine-induced proliferation of U138-MG human glioma cell line. Oncology 2005; 67:450-9. [PMID: 15714002 DOI: 10.1159/000082930] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 05/15/2004] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Extracellular nucleotides and nucleosides induce proliferation in a set of human glioma cell lines. In this study we investigate the signal transduction pathways involved in ATP and adenosine-mediated proliferation in U138-MG human glioma cells. METHODS Cell proliferation was accessed through [(3)H]thymidine incorporation, cell counting and flow cytometry. Protein phosphorylation was detected through Western blotting. RESULTS ATP or adenosine (100 microM) induced extracellular signal-regulated protein kinase (ERK), Akt and GSK3beta phosphorylation. The increase in [(3)H]thymidine incorporation induced by ATP or adenosine was decreased when cells were incubated with LY 294002 (by +/-90%), GF 109203X (by +/-76%) or PD 098059 (by +/-63%). The increase in cell numbers with ATP or adenosine was less after a 48-hour treatment of cells with ATP or adenosine plus GF 109203X (by +/-66%) or LY 294002 (by +/-83%). Percentage of cells in S phase was decreased in cells treated with LY 294002 plus ATP when compared to ATP- treated cells. CONCLUSION Stimulation of purinergic receptors in U138-MG cells leads to cell proliferation mediated by PI3K/Akt, ERK and PKC signaling. It may be clinically important for pharmacological intervention in gliomas to associate purinergic receptor antagonists and signal transduction pathways blockers.
Collapse
Affiliation(s)
- Maria C Jacques-Silva
- Departamentos de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
27
|
Hess KL, Donahue AC, Ng KL, Moore TI, Oak J, Fruman DA. Frontline: The p85alpha isoform of phosphoinositide 3-kinase is essential for a subset of B cell receptor-initiated signaling responses. Eur J Immunol 2004; 34:2968-76. [PMID: 15384044 DOI: 10.1002/eji.200425326] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phosphoinositide 3-kinase (PI3K) is a ubiquitously expressed signaling enzyme that plays an integral role in development and activation of B cells. B cell receptor (BCR)-driven proliferation is completely blocked either in cells lacking the p85alpha regulatory isoform of PI3K or in wild-type cells treated with pharmacological PI3K inhibitors. However, the contribution of p85alpha to early signaling events has not been fully investigated. Here we show that B cells lacking p85alpha have signaling impairments that are both quantitatively and qualitatively different from those in cells treated with PI3K inhibitors. Loss of p85alpha results in partial reductions in Ca2+ mobilization and IkappaB phosphorylation, whereas ERK phosphorylation is not diminished. Moreover, although Akt phosphorylation is partially reduced, phosphorylation of several proteins downstream of Akt is preserved. These partial impairments suggest that there are other routes to PI3K activation in B cells apart from p85alpha-associated catalytic subunits. Notably, addition of phorbol ester restores BCR-mediated proliferation in p85alpha-deficient cells but not wild-type cells treated with PI3K inhibitors. These findings suggest that the primary BCR signaling defect in B cells lacking p85alpha is a failure to activate diacylglycerol-regulated signaling enzymes, most likely protein kinase C.
Collapse
Affiliation(s)
- Kristen L Hess
- Center for Immunology, Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | | | | | | | | | | |
Collapse
|
28
|
Fleischer A, Ghadiri A, Dessauge F, Duhamel M, Cayla X, Garcia A, Rebollo A. Bad-Dependent Rafts Alteration Is a Consequence of an Early Intracellular Signal Triggered by Interleukin-4 Deprivation. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.674.2.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Many molecules are inducibly localized in lipid rafts, and their alteration inhibits early activation events, supporting a critical role for these domains in signaling. Using confocal microscopy and cellular fractionation, we have shown that the pool of Bad, attached to lipid rafts in proliferating cells, is released when cells undergo apoptosis. Kinetic studies indicate that rafts alteration is a consequence of an intracellular signal triggered by interleukin-4 deprivation. Growth factor deprivation in turn induces PP1α phosphatase activation, responsible for cytoplasmic Bad dephosphorylation as well as caspase-9 and caspase-3 activation. Caspases translocate to rafts and induce their modification followed by translocation of Bad from rafts to mitochondria, which correlates with apoptosis. Taken together, our results suggest that alteration of lipid rafts is an early event in the apoptotic cascade indirectly induced by interleukin-4 deprivation via PP1α activation, dephosphorylation of cytoplasmic Bad, and caspase activation.
Collapse
Affiliation(s)
- Aarne Fleischer
- 1Laboratoire d'Immunologie Cellulaire et Tissulaire, Institut National de la Sante et de la Recherche Medicale U543, Hôpital Pitié Salpetrière
| | - Ata Ghadiri
- 1Laboratoire d'Immunologie Cellulaire et Tissulaire, Institut National de la Sante et de la Recherche Medicale U543, Hôpital Pitié Salpetrière
| | - Frédéric Dessauge
- 1Laboratoire d'Immunologie Cellulaire et Tissulaire, Institut National de la Sante et de la Recherche Medicale U543, Hôpital Pitié Salpetrière
| | - Marianne Duhamel
- 1Laboratoire d'Immunologie Cellulaire et Tissulaire, Institut National de la Sante et de la Recherche Medicale U543, Hôpital Pitié Salpetrière
| | - Xavier Cayla
- 3Equipe Hypophyse, UMR6073 INRA-Centre National de la Recherche Scientifique, Université de Tours, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Alphonse Garcia
- 2Unité de Chimie Organique, Institut Pasteur, Paris, France and
| | - Angelita Rebollo
- 1Laboratoire d'Immunologie Cellulaire et Tissulaire, Institut National de la Sante et de la Recherche Medicale U543, Hôpital Pitié Salpetrière
| |
Collapse
|
29
|
Abstract
Cholesterol is a neutral lipid that accumulates in liquid-ordered, detergent-resistant membrane domains called lipid rafts. Lipid rafts serve as membrane platforms for signal transduction mechanisms that mediate cell growth, survival, and a variety of other processes relevant to cancer. A number of studies, going back many years, demonstrate that cholesterol accumulates in solid tumors and that cholesterol homeostasis breaks down in the prostate with aging and with the transition to the malignant state. This review summarizes the established links between cholesterol and prostate cancer (PCa), with a focus on how accumulation of cholesterol within the lipid raft component of the plasma membrane may stimulate signaling pathways that promote progression to hormone refractory disease. We propose that increases in cholesterol in prostate tumor cell membranes, resulting from increases in circulating levels or from dysregulation of endogenous synthesis, results in the coalescence of raft domains. This would have the effect of sequestering positive regulators of oncogenic signaling within rafts, while maintaining negative regulators in the liquid-disordered membrane fraction. This approach toward examining the function of lipid rafts in prostate cancer cells may provide insight into the role of circulating cholesterol in malignant growth and on the potential relationship between diet and aggressive disease. Large-scale characterization of proteins that localize to cholesterol-rich domains may help unveil signaling networks and pathways that will lead to identification of new biomarkers for disease progression and potentially to novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Michael R Freeman
- The Urological Diseases Research Center, Children's Hospital Boston, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
30
|
Jacques-Silva MC, Rodnight R, Lenz G, Liao Z, Kong Q, Tran M, Kang Y, Gonzalez FA, Weisman GA, Neary JT. P2X7 receptors stimulate AKT phosphorylation in astrocytes. Br J Pharmacol 2004; 141:1106-17. [PMID: 15023862 PMCID: PMC1574879 DOI: 10.1038/sj.bjp.0705685] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Revised: 11/25/2003] [Accepted: 01/07/2004] [Indexed: 12/29/2022] Open
Abstract
1. Emerging evidence indicates that nucleotide receptors are widely expressed in the nervous system. Here, we present evidence that P2Y and P2X receptors, particularly the P2X(7) subtype, are coupled to the phosphoinositide 3-kinase (PI3K)/Akt pathway in astrocytes. 2. P2Y and P2X receptor agonists ATP, uridine 5'-triphosphate (UTP) and 2',3'-O-(4-benzoyl)-benzoyl ATP (BzATP) stimulated Akt phosphorylation in primary cultures of rat cortical astrocytes. BzATP induced Akt phosphorylation in a concentration- and time-dependent manner, similar to the effect of BzATP on Akt phosphorylation in 1321N1 astrocytoma cells stably transfected with the rat P2X(7) receptor. Activation was maximal at 5 - 10 min and was sustained for 60 min; the EC(50) for BzATP was approximately 50 microM. In rat cortical astrocytes, the positive effect of BzATP on Akt phosphorylation was independent of glutamate release. 3. The effect of BzATP on Akt phosphorylation in rat cortical astrocytes was significantly reduced by the P2X(7) receptor antagonist Brilliant Blue G and the P2X receptor antagonist iso-pyridoxal-5'-phosphate-6-azophenyl-2',4'-disulfonic acid, but was unaffected by trinitrophenyl-ATP, oxidized ATP, suramin and reactive blue 2. 4. Results with specific inhibitors of signal transduction pathways suggest that extracellular and intracellular calcium, PI3K and a Src family kinase are involved in the BzATP-induced Akt phosphorylation pathway. 5. In conclusion, our data indicate that stimulation of astrocytic P2X(7) receptors, as well as other P2 receptors, leads to Akt activation. Thus, signaling by nucleotide receptors in astrocytes may be important in several cellular downstream effects related to the Akt pathway, such as cell cycle and apoptosis regulation, protein synthesis, differentiation and glucose metabolism.
Collapse
Affiliation(s)
- Maria C Jacques-Silva
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Richard Rodnight
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guido Lenz
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Zhongji Liao
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, U.S.A
| | - Qiongman Kong
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, U.S.A
| | - Minh Tran
- Research Service, VA Medical Center, Departments of Pathology, Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, FL, U.S.A
- Neuroscience Program, University of Miami School of Medicine, Miami, FL, U.S.A
| | - Yuan Kang
- Research Service, VA Medical Center, Departments of Pathology, Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, FL, U.S.A
- Neuroscience Program, University of Miami School of Medicine, Miami, FL, U.S.A
| | - Fernando A Gonzalez
- Department of Chemistry, University of Puerto Rico, Rio Piedras, Puerto Rico
| | - Gary A Weisman
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, U.S.A
| | - Joseph T Neary
- Research Service, VA Medical Center, Departments of Pathology, Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, FL, U.S.A
- Neuroscience Program, University of Miami School of Medicine, Miami, FL, U.S.A
| |
Collapse
|