1
|
Lisek M, Tomczak J, Boczek T, Zylinska L. Calcium-Associated Proteins in Neuroregeneration. Biomolecules 2024; 14:183. [PMID: 38397420 PMCID: PMC10887043 DOI: 10.3390/biom14020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The dysregulation of intracellular calcium levels is a critical factor in neurodegeneration, leading to the aberrant activation of calcium-dependent processes and, ultimately, cell death. Ca2+ signals vary in magnitude, duration, and the type of neuron affected. A moderate Ca2+ concentration can initiate certain cellular repair pathways and promote neuroregeneration. While the peripheral nervous system exhibits an intrinsic regenerative capability, the central nervous system has limited self-repair potential. There is evidence that significant variations exist in evoked calcium responses and axonal regeneration among neurons, and individual differences in regenerative capacity are apparent even within the same type of neurons. Furthermore, some studies have shown that neuronal activity could serve as a potent regulator of this process. The spatio-temporal patterns of calcium dynamics are intricately controlled by a variety of proteins, including channels, ion pumps, enzymes, and various calcium-binding proteins, each of which can exert either positive or negative effects on neural repair, depending on the cellular context. In this concise review, we focus on several calcium-associated proteins such as CaM kinase II, GAP-43, oncomodulin, caldendrin, calneuron, and NCS-1 in order to elaborate on their roles in the intrinsic mechanisms governing neuronal regeneration following traumatic damage processes.
Collapse
Affiliation(s)
| | | | | | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (M.L.); (J.T.); (T.B.)
| |
Collapse
|
2
|
Grochowska KM, Bär J, Gomes GM, Kreutz MR, Karpova A. Jacob, a Synapto-Nuclear Protein Messenger Linking N-methyl-D-aspartate Receptor Activation to Nuclear Gene Expression. Front Synaptic Neurosci 2021; 13:787494. [PMID: 34899262 PMCID: PMC8662305 DOI: 10.3389/fnsyn.2021.787494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Pyramidal neurons exhibit a complex dendritic tree that is decorated by a huge number of spine synapses receiving excitatory input. Synaptic signals not only act locally but are also conveyed to the nucleus of the postsynaptic neuron to regulate gene expression. This raises the question of how the spatio-temporal integration of synaptic inputs is accomplished at the genomic level and which molecular mechanisms are involved. Protein transport from synapse to nucleus has been shown in several studies and has the potential to encode synaptic signals at the site of origin and decode them in the nucleus. In this review, we summarize the knowledge about the properties of the synapto-nuclear messenger protein Jacob with special emphasis on a putative role in hippocampal neuronal plasticity. We will elaborate on the interactome of Jacob, the signals that control synapto-nuclear trafficking, the mechanisms of transport, and the potential nuclear function. In addition, we will address the organization of the Jacob/NSMF gene, its origin and we will summarize the evidence for the existence of splice isoforms and their expression pattern.
Collapse
Affiliation(s)
- Katarzyna M Grochowska
- Research Group (RG) Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Julia Bär
- Research Group (RG) Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Research Group (RG) Neuronal Protein Transport, University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology Hamburg, Hamburg, Germany.,Research Group (RG) Optobiology, Institute of Biology, HU Berlin, Berlin, Germany
| | - Guilherme M Gomes
- Research Group (RG) Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Michael R Kreutz
- Research Group (RG) Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology Hamburg, Hamburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,German Research Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Anna Karpova
- Research Group (RG) Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|
3
|
Mundhenk J, Fusi C, Kreutz MR. Caldendrin and Calneurons-EF-Hand CaM-Like Calcium Sensors With Unique Features and Specialized Neuronal Functions. Front Mol Neurosci 2019; 12:16. [PMID: 30787867 PMCID: PMC6372560 DOI: 10.3389/fnmol.2019.00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/17/2019] [Indexed: 01/02/2023] Open
Abstract
The calmodulin (CaM)-like Ca2+-sensor proteins caldendrin, calneuron-1 and -2 are members of the neuronal calcium-binding protein (nCaBP)-family, a family that evolved relatively late during vertebrate evolution. All three proteins are abundant in brain but show a strikingly different subcellular localization. Whereas caldendrin is enriched in the postsynaptic density (PSD), calneuron-1 and -2 accumulate at the trans-Golgi-network (TGN). Caldendrin exhibit a unique bipartite structure with a basic and proline-rich N-terminus while calneurons are the only EF-Hand CaM-like transmembrane proteins. These uncommon structural features come along with highly specialized functions of calneurons in Golgi-to-plasma-membrane trafficking and for caldendrin in actin-remodeling in dendritic spine synapses. In this review article, we will provide a synthesis of available data on the structure and biophysical properties of all three proteins. We will then discuss their cellular function with special emphasis on synaptic neurotransmission. Finally, we will summarize the evidence for a role of these proteins in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jennifer Mundhenk
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Camilla Fusi
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group "Dendritic Organelles and Synaptic Function", Center for Molecular Neurobiology, ZMNH, Hamburg, Germany
| |
Collapse
|
4
|
Korbolina EE, Ershov NI, Bryzgalov LO, Kolosova NG. Application of quantitative trait locus mapping and transcriptomics to studies of the senescence-accelerated phenotype in rats. BMC Genomics 2014; 15 Suppl 12:S3. [PMID: 25563673 PMCID: PMC4303943 DOI: 10.1186/1471-2164-15-s12-s3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Etiology of complex disorders, such as cataract and neurodegenerative diseases including age-related macular degeneration (AMD), remains poorly understood due to the paucity of animal models, fully replicating the human disease. Previously, two quantitative trait loci (QTLs) associated with early cataract, AMD-like retinopathy, and some behavioral aberrations in senescence-accelerated OXYS rats were uncovered on chromosome 1 in a cross between OXYS and WAG rats. To confirm the findings, we generated interval-specific congenic strains, WAG/OXYS-1.1 and WAG/OXYS-1.2, carrying OXYS-derived loci of chromosome 1 in the WAG strain. Both congenic strains displayed early cataract and retinopathy but differed clinically from OXYS rats. Here we applied a high-throughput RNA sequencing (RNA-Seq) strategy to facilitate nomination of the candidate genes and functional pathways that may be responsible for these differences and can contribute to the development of the senescence-accelerated phenotype of OXYS rats. Results First, the size and map position of QTL-derived congenic segments were determined by comparative analysis of coding single-nucleotide polymorphisms (SNPs), which were identified for OXYS, WAG, and congenic retinal RNAs after sequencing. The transferred locus was not what we expected in WAG/OXYS-1.1 rats. In rat retina, 15442 genes were expressed. Coherent sets of differentially expressed genes were identified when we compared RNA-Seq retinal profiles of 20-day-old WAG/OXYS-1.1, WAG/OXYS-1.2, and OXYS rats. The genes most different in the average expression level between the congenic strains included those generally associated with the Wnt, integrin, and TGF-β signaling pathways, widely involved in neurodegenerative processes. Several candidate genes (including Arhgap33, Cebpg, Gtf3c1, Snurf, Tnfaip3, Yme1l1, Cbs, Car9 and Fn1) were found to be either polymorphic in the congenic loci or differentially expressed between the strains. These genes may contribute to the development of cataract and retinopathy. Conclusions This study is the first RNA-Seq analysis of the rat retinal transcriptome generated with 40 mln sequencing read depth. The integration of QTL and transcriptomic analyses in our study forms the basis of future research into the relationship between the candidate genes within the congenic regions and specific changes in the retinal transcriptome as possible causal mechanisms that underlie age-associated disorders.
Collapse
|
5
|
Reddy PP, Raghuram V, Hradsky J, Spilker C, Chakraborty A, Sharma Y, Mikhaylova M, Kreutz MR. Molecular dynamics of the neuronal EF-hand Ca2+-sensor Caldendrin. PLoS One 2014; 9:e103186. [PMID: 25058677 PMCID: PMC4110014 DOI: 10.1371/journal.pone.0103186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/29/2014] [Indexed: 11/18/2022] Open
Abstract
Caldendrin, L- and S-CaBP1 are CaM-like Ca2+-sensors with different N-termini that arise from alternative splicing of the Caldendrin/CaBP1 gene and that appear to play an important role in neuronal Ca2+-signaling. In this paper we show that Caldendrin is abundantly present in brain while the shorter splice isoforms L- and S-CaBP1 are not detectable at the protein level. Caldendrin binds both Ca2+ and Mg2+ with a global Kd in the low µM range. Interestingly, the Mg2+-binding affinity is clearly higher than in S-CaBP1, suggesting that the extended N-terminus might influence Mg2+-binding of the first EF-hand. Further evidence for intra- and intermolecular interactions of Caldendrin came from gel-filtration, surface plasmon resonance, dynamic light scattering and FRET assays. Surprisingly, Caldendrin exhibits very little change in surface hydrophobicity and secondary as well as tertiary structure upon Ca2+-binding to Mg2+-saturated protein. Complex inter- and intramolecular interactions that are regulated by Ca2+-binding, high Mg2+- and low Ca2+-binding affinity, a rigid first EF-hand domain and little conformational change upon titration with Ca2+ of Mg2+-liganted protein suggest different modes of binding to target interactions as compared to classical neuronal Ca2+-sensors.
Collapse
Affiliation(s)
| | - Vijeta Raghuram
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Centre for Cellular and Molecular Biology, CSIR, Hyderabad, India
| | - Johannes Hradsky
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Christina Spilker
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | | - Yogendra Sharma
- Centre for Cellular and Molecular Biology, CSIR, Hyderabad, India
| | - Marina Mikhaylova
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Cell Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Michael R. Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
6
|
Haynes LP, McCue HV, Burgoyne RD. Evolution and functional diversity of the Calcium Binding Proteins (CaBPs). Front Mol Neurosci 2012; 5:9. [PMID: 22375103 PMCID: PMC3284769 DOI: 10.3389/fnmol.2012.00009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/25/2012] [Indexed: 02/01/2023] Open
Abstract
The mammalian central nervous system (CNS) exhibits a remarkable ability to process, store, and transfer information. Key to these activities is the use of highly regulated and unique patterns of calcium signals encoded by calcium channels and decoded by families of specific calcium-sensing proteins. The largest family of eukaryotic calcium sensors is those related to the small EF-hand containing protein calmodulin (CaM). In order to maximize the usefulness of calcium as a signaling species and to permit the evolution and fine tuning of the mammalian CNS, families of related proteins have arisen that exhibit characteristic calcium binding properties and tissue-, cellular-, and sub-cellular distribution profiles. The Calcium Binding Proteins (CaBPs) represent one such family of vertebrate specific CaM like proteins that have emerged in recent years as important regulators of essential neuronal target proteins. Bioinformatic analyses indicate that the CaBPs consist of two subfamilies and that the ancestral members of these are CaBP1 and CaBP8. The CaBPs have distinct intracellular localizations based on different targeting mechanisms including a novel type-II transmembrane domain in CaBPs 7 and 8 (otherwise known as calneuron II and calneuron I, respectively). Recent work has led to the identification of new target interactions and possible functions for the CaBPs suggesting that they have multiple physiological roles with relevance for the normal functioning of the CNS.
Collapse
Affiliation(s)
- Lee P Haynes
- The Physiological Laboratory, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool Liverpool, UK
| | | | | |
Collapse
|
7
|
Mikhaylova M, Hradsky J, Kreutz MR. Between promiscuity and specificity: novel roles of EF-hand calcium sensors in neuronal Ca2+ signalling. J Neurochem 2011; 118:695-713. [PMID: 21722133 DOI: 10.1111/j.1471-4159.2011.07372.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, substantial progress has been made towards an understanding of the physiological function of EF-hand calcium sensor proteins of the Calmodulin (CaM) superfamily in neurons. This deeper appreciation is based on the identification of novel target interactions, structural studies and the discovery of novel signalling mechanisms in protein trafficking and synaptic plasticity, in which CaM-like sensor proteins appear to play a role. However, not all interactions are of plausible physiological relevance and in many cases it is not yet clear how the CaM signaling network relates to the proposed function of other EF-hand sensors. In this review, we will summarize these findings and address some of the open questions on the functional role of EF-hand calcium binding proteins in neurons.
Collapse
Affiliation(s)
- Marina Mikhaylova
- PG Neuroplasticity, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | | | | |
Collapse
|
8
|
Ca2+ binding protein-1 inhibits Ca2+ currents and exocytosis in bovine chromaffin cells. J Biomed Sci 2007; 15:169-81. [DOI: 10.1007/s11373-007-9217-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 09/25/2007] [Indexed: 10/22/2022] Open
|
9
|
Tippens AL, Lee A. Caldendrin, a Neuron-specific Modulator of Cav/1.2 (L-type) Ca2+ Channels. J Biol Chem 2007; 282:8464-73. [PMID: 17224447 DOI: 10.1074/jbc.m611384200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
EF-hand Ca2+-binding proteins such as calmodulin and CaBP1 have emerged as important regulatory subunits of voltage-gated Ca2+ channels. Here, we show that caldendrin, a variant of CaBP1 enriched in the brain, interacts with and distinctly modulates Cav1.2 (L-type) voltage-gated Ca2+ channels relative to other Ca2+-binding proteins. Caldendrin binds to the C-terminal IQ-domain of the pore-forming alpha1-subunit of Cav1.2 (alpha(1)1.2) and competitively displaces calmodulin and CaBP1 from this site. Compared with CaBP1, caldendrin causes a more modest suppression of Ca2+-dependent inactivation of Cav1.2 through a different subset of molecular determinants. Caldendrin does not bind to the N-terminal domain of alpha11.2, a site that is critical for functional interactions of the channel with CaBP1. Deletion of the N-terminal domain inhibits CaBP1, but spares caldendrin modulation of Cav1.2 inactivation. In contrast, mutations of the IQ-domain abolish physical and functional interactions of caldendrin and Cav1.2, but do not prevent channel modulation by CaBP1. Using antibodies specific for caldendrin and Cav1.2, we show that caldendrin coimmunoprecipitates with Cav1.2 from the brain and colocalizes with Cav1.2 in somatodendritic puncta of cortical neurons in culture. Our findings reveal functional diversity within related Ca2+-binding proteins, which may enhance the specificity of Ca2+ signaling by Cav1.2 channels in different cellular contexts.
Collapse
Affiliation(s)
- Alyssa L Tippens
- Department of Pharmacology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
10
|
Schultz K, Janssen-Bienhold U, Gundelfinger ED, Kreutz MR, Weiler R. Calcium-binding protein Caldendrin and CaMKII are localized in spinules of the carp retina. J Comp Neurol 2004; 479:84-93. [PMID: 15389610 DOI: 10.1002/cne.20314] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Calcium-binding proteins translate the influx of Ca(2+) at excitatory synapses into spatiotemporal signals that regulate a variety of processes underlying synaptic plasticity. In the fish retina, the synaptic connectivity between photoreceptors and horizontal cells undergoes a remarkable plasticity, triggered by the ambient light conditions. With increasing light, the synaptic dendrites of horizontal cells form numerous spinules that are dissolved during dark adaptation. The dynamic regulation of this process is calcium-dependent and involves the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), but astonishingly its principal regulator Calmodulin (CaM) could not be localized to spinules. Here, we show that antibodies directed against Caldendrin (CaBP1), a member of the EF-hand calcium-binding protein family, strongly label the terminal dendrites of horizontal cells invaginating cone pedicles. Double-labeling experiments revealed that this label is closely associated with label for CaMKII. This association was confirmed at the ultrastructural level. Caldendrin immunoreactivity and CaMKII immunoreactivity are both present in horizontal cell dendrites flanking the synaptic ribbon within the cone pedicle and in particular in spinules formed by these terminals. Comparison of light- and dark-adapted retinas revealed a shift of the membrane-associated label for Caldendrin from the terminal dendrites into the spinules during light adaptation. These results suggest that Caldendrin is involved in the dynamic regulation of spinules and confirms the assumed potential of Caldendrin as a neural calcium sensor for synaptic plasticity.
Collapse
Affiliation(s)
- Konrad Schultz
- Department Biology, University of Oldenburg, 26111 Oldenburg, Germany
| | | | | | | | | |
Collapse
|
11
|
Seidenbecher CI, Landwehr M, Smalla KH, Kreutz M, Dieterich DC, Zuschratter W, Reissner C, Hammarback JA, Böckers TM, Gundelfinger ED, Kreutz MR. Caldendrin but not calmodulin binds to light chain 3 of MAP1A/B: an association with the microtubule cytoskeleton highlighting exclusive binding partners for neuronal Ca(2+)-sensor proteins. J Mol Biol 2004; 336:957-70. [PMID: 15095872 DOI: 10.1016/j.jmb.2003.12.054] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 12/15/2003] [Accepted: 12/18/2003] [Indexed: 11/19/2022]
Abstract
Caldendrin is a neuronal Ca(2+)-sensor protein (NCS), which represents the closest homologue of calmodulin (CaM) in nerve cells. It is tightly associated with the somato-dendritic cytoskeleton of neurons and highly enriched in the postsynaptic cytomatrix. Here, we report that caldendrin specifically associates with the microtubule cytoskeleton via an interaction with light chain 3 (LC3), a microtubule component with sequence homology to the GABAA receptor-associated protein (GABARAP), which is, like LC3, probably involved in cellular transport processes. Interestingly, two binding sites exist in LC3 for caldendrin from which only one exhibits a strict Ca(2+)-dependency for the interaction to take place but both require the presence of the first two EF-hands of caldendrin. CaM, however, is not capable of binding to LC3 at both sites despite its high degree of primary structure similarity with caldendrin. Computer modelling suggests that this might be explained by an altered distribution of surface charges at the first two EF-hands rendering each molecule, in principle, specific for a discrete set of binding partners. These findings provide molecular evidence that NCS can transduce signals to a specific target interaction irrespective of Ca(2+)-concentrations and CaM-levels.
Collapse
Affiliation(s)
- Constanze I Seidenbecher
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry/Molecular Biology, Leibniz Institute for Neurobiology, Brenneckestr. 6 39118 Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Haynes LP, Tepikin AV, Burgoyne RD. Calcium-binding Protein 1 Is an Inhibitor of Agonist-evoked, Inositol 1,4,5-Trisphosphate-mediated Calcium Signaling. J Biol Chem 2004; 279:547-55. [PMID: 14570872 DOI: 10.1074/jbc.m309617200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intracellular calcium signals are responsible for initiating a spectrum of physiological responses. The caldendrins/calcium-binding proteins (CaBPs) represent mammal-specific members of the CaM superfamily. CaBPs display a restricted pattern of expression in neuronal/retinal tissues, suggesting a specialized role in Ca2+ signaling in these cell types. Recently, it was reported that a splice variant of CaBP1 functionally interacts with inositol 1,4,5-trisphosphate (InsP3) receptors to elicit channel activation in the absence of InsP3 (Yang, J., McBride, S., Mak, D.-O. D., Vardi, N., Palczewski, K., Haeseleer, F., and Foskett, J. K. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 7711-7716). These data indicate a new mode of InsP3 receptor modulation and hence control of intracellular Ca2+ concentration ([Ca2+]i) in neuronal tissues. We have analyzed the biochemistry of the long form splice variant of CaBP1 (L-CaBP1) and show that, in vitro, a recombinant form of the protein is able to bind Ca2+ with high affinity and undergo a conformational change. We also describe the localization of endogenous and overexpressed L-CaBP1 in the model neuroendocrine PC12 cell system, where it was associated with the plasma membrane and Golgi complex in a myristoylation-dependent manner. Furthermore, we show that overexpressed L-CaBP1 is able to substantially suppress rises in [Ca2+]i in response to physiological agonists acting on purinergic receptors and that this inhibition is due in large part to blockade of release from intracellular Ca2+ stores. The related protein neuronal calcium sensor-1 was without effect on the [Ca2+]i responses to agonist stimulation. Measurement of [Ca2+] within the ER of permeabilized PC12 cells demonstrated that LCaBP1 directly inhibited InsP3-mediated Ca2+ release. Expression of L-CaBP1 also inhibited histamine-induced [Ca2+]i oscillations in HeLa cells. Together, these data suggest that L-CaBP1 is able to specifically regulate InsP3 receptor-mediated alterations in [Ca2+]i during agonist stimulation.
Collapse
Affiliation(s)
- Lee P Haynes
- The Physiological Laboratory, Crown Street, University of Liverpool, Liverpool L69 3BX, UK
| | | | | |
Collapse
|