1
|
Kordylewski SK, Bugno R, Bojarski AJ, Podlewska S. Uncovering the unique characteristics of different groups of 5-HT 5AR ligands with reference to their interaction with the target protein. Pharmacol Rep 2024; 76:1130-1146. [PMID: 38971919 PMCID: PMC11387456 DOI: 10.1007/s43440-024-00622-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND The serotonin 5-HT5A receptor has attracted much more research attention, due to the therapeutic potential of its ligands being increasingly recognized, and the possibilities that lie ahead of these findings. There is a growing body of evidence indicating that these ligands have procognitive, pro-social, and anti-depressant properties, which offers new avenues for the development of treatments that could address socially important conditions related to the malfunctioning of the central nervous system. The aim of our study was to unravel the molecular determinants for 5-HT5AR ligands that govern their activity towards the receptor. METHODS In response to the need for identification of molecular determinants for 5-HT5AR activity, we prepared a comprehensive collection of 5-HT5AR ligands, carefully gathering literature and patent data. Leveraging molecular modeling techniques, such as pharmacophore hypothesis development, docking, and molecular dynamics simulations enables to gain valuable insights into the specific interactions of 5-HT5AR ligand groups with the receptor. RESULTS The obtained comprehensive set of 2160 compounds was divided into dozens of subsets, and a pharmacophore model was developed for each group. The results from the docking and molecular dynamics simulations have enabled the identification of crucial ligand-protein interactions that are essential for the compound's activity towards 5-HT5AR. CONCLUSIONS The findings from the molecular modeling study provide valuable insights that can guide medicinal chemists in the development of new 5-HT5AR ligands. Considering the pharmacological significance of these compounds, they have the potential to become impactful treatments for individuals and communities in the future. Understanding how different crystal/cryo-EM structures of 5-HT5AR affect molecular modeling experiments could have major implications for future computational studies on this receptor.
Collapse
Affiliation(s)
- Szymon K Kordylewski
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Ryszard Bugno
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Sabina Podlewska
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
2
|
Fedele P, Sanna V, Fancellu A, Cinieri S. A clinical evaluation of treatments that target cell cycle machinery in breast cancer. Expert Opin Pharmacother 2019; 20:2305-2315. [PMID: 31610139 DOI: 10.1080/14656566.2019.1672659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/23/2019] [Indexed: 02/08/2023]
Abstract
Introduction: The dysregulation of cell cycle control can lead to cancer development. In breast cancer, cyclin D, CDK 4,6 and the retinoblastoma protein play a central role in the control of cell proliferation, in crosstalk with the estrogen receptor and Her2 pathways. Although the mechanisms by which the CDK4/6 complex is involved in the control of cell growth in triple negative breast cancer (TNBC) are still unclear, some TNBCs might be sensitive to CDK4/6 inhibitors.Areas covered: The authors provide an overview of the treatments that target cell cycle machinery in breast cancer and provide their perspectives for the future.Expert opinion: CDK 4/6 inhibitors are active drugs in HR+ MBC, but some unresolved issues remain. We need to identify biomarkers of response. Moreover, we need to determine the optimal timing for the incorporation of CDK 4/6 inhibitors in the current treatment algorithm. In the Her2 positive subtype, the triple combination of anti Her2 therapies with CDK4/6 inhibitors and endocrine therapy seems to be a promising chemotherapy free approach. Efforts must still be made for the treatment of the TNBC subtype, even though new CDK 4/6 combinations are emerging as promising approaches to selected patients.
Collapse
Affiliation(s)
- Palma Fedele
- Medical Oncology & Breast Unit, "Antonio Perrino" Hospital, Brindisi, Italy
| | - Valeria Sanna
- Medical Oncology, Hospital of Sassari, Sassari, Italy
| | - Alessandro Fancellu
- Department of Medical, Surgical and Experimental Sciences. Unit of General Surgery, University of Sassari, Sassari, Italy
| | - Saverio Cinieri
- Medical Oncology & Breast Unit, "Antonio Perrino" Hospital, Brindisi, Italy
| |
Collapse
|
3
|
Sherr CJ, Beach D, Shapiro GI. Targeting CDK4 and CDK6: From Discovery to Therapy. Cancer Discov 2016; 6:353-67. [PMID: 26658964 PMCID: PMC4821753 DOI: 10.1158/2159-8290.cd-15-0894] [Citation(s) in RCA: 697] [Impact Index Per Article: 77.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022]
Abstract
UNLABELLED Biochemical and genetic characterization of D-type cyclins, their cyclin D-dependent kinases (CDK4 and CDK6), and the polypeptide CDK4/6 inhibitor p16(INK4)over two decades ago revealed how mammalian cells regulate entry into the DNA synthetic (S) phase of the cell-division cycle in a retinoblastoma protein-dependent manner. These investigations provided proof-of-principle that CDK4/6 inhibitors, particularly when combined with coinhibition of allied mitogen-dependent signal transduction pathways, might prove valuable in cancer therapy. FDA approval of the CDK4/6 inhibitor palbociclib used with the aromatase inhibitor letrozole for breast cancer treatment highlights long-sought success. The newest findings herald clinical trials targeting other cancers. SIGNIFICANCE Rapidly emerging data with selective inhibitors of CDK4/6 have validated these cell-cycle kinases as anticancer drug targets, corroborating longstanding preclinical predictions. This review addresses the discovery of these CDKs and their regulators, as well as translation of CDK4/6 biology to positive clinical outcomes and development of rational combinatorial therapies.
Collapse
Affiliation(s)
- Charles J Sherr
- Howard Hughes Medical Institute, Chevy Chase, MD. Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - David Beach
- The Blizard Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Geoffrey I Shapiro
- Early Drug Development Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
4
|
The multifaceted role of curcumin in cancer prevention and treatment. Molecules 2015; 20:2728-69. [PMID: 25665066 PMCID: PMC6272781 DOI: 10.3390/molecules20022728] [Citation(s) in RCA: 316] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/30/2015] [Indexed: 02/07/2023] Open
Abstract
Despite significant advances in treatment modalities over the last decade, neither the incidence of the disease nor the mortality due to cancer has altered in the last thirty years. Available anti-cancer drugs exhibit limited efficacy, associated with severe side effects, and are also expensive. Thus identification of pharmacological agents that do not have these disadvantages is required. Curcumin, a polyphenolic compound derived from turmeric (Curcumin longa), is one such agent that has been extensively studied over the last three to four decades for its potential anti-inflammatory and/or anti-cancer effects. Curcumin has been found to suppress initiation, progression, and metastasis of a variety of tumors. These anti-cancer effects are predominantly mediated through its negative regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other oncogenic molecules. It also abrogates proliferation of cancer cells by arresting them at different phases of the cell cycle and/or by inducing their apoptosis. The current review focuses on the diverse molecular targets modulated by curcumin that contribute to its efficacy against various human cancers.
Collapse
|
5
|
Heger M, van Golen RF, Broekgaarden M, Michel MC. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev 2013; 66:222-307. [PMID: 24368738 DOI: 10.1124/pr.110.004044] [Citation(s) in RCA: 376] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review addresses the oncopharmacological properties of curcumin at the molecular level. First, the interactions between curcumin and its molecular targets are addressed on the basis of curcumin's distinct chemical properties, which include H-bond donating and accepting capacity of the β-dicarbonyl moiety and the phenylic hydroxyl groups, H-bond accepting capacity of the methoxy ethers, multivalent metal and nonmetal cation binding properties, high partition coefficient, rotamerization around multiple C-C bonds, and the ability to act as a Michael acceptor. Next, the in vitro chemical stability of curcumin is elaborated in the context of its susceptibility to photochemical and chemical modification and degradation (e.g., alkaline hydrolysis). Specific modification and degradatory pathways are provided, which mainly entail radical-based intermediates, and the in vitro catabolites are identified. The implications of curcumin's (photo)chemical instability are addressed in light of pharmaceutical curcumin preparations, the use of curcumin analogues, and implementation of nanoparticulate drug delivery systems. Furthermore, the pharmacokinetics of curcumin and its most important degradation products are detailed in light of curcumin's poor bioavailability. Particular emphasis is placed on xenobiotic phase I and II metabolism as well as excretion of curcumin in the intestines (first pass), the liver (second pass), and other organs in addition to the pharmacokinetics of curcumin metabolites and their systemic clearance. Lastly, a summary is provided of the clinical pharmacodynamics of curcumin followed by a detailed account of curcumin's direct molecular targets, whereby the phenotypical/biological changes induced in cancer cells upon completion of the curcumin-triggered signaling cascade(s) are addressed in the framework of the hallmarks of cancer. The direct molecular targets include the ErbB family of receptors, protein kinase C, enzymes involved in prostaglandin synthesis, vitamin D receptor, and DNA.
Collapse
Affiliation(s)
- Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
6
|
Aley PK, Wilkinson JA, Bauer CC, Boyle JP, Porter KE, Peers C. Hypoxic remodelling of Ca(2+) signalling in proliferating human arterial smooth muscle. Mol Cell Biochem 2008; 318:101-8. [PMID: 18636316 DOI: 10.1007/s11010-008-9861-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 06/25/2008] [Indexed: 11/29/2022]
Abstract
Ca(2+) homeostasis in proliferating smooth muscle (SM) cells strongly influences neointima formation, which can cause failure of coronary artery bypass surgery. During surgical procedures and subsequent revascularization, SM cells are also exposed to a period of hypoxia. Problems with bypass surgery in general involve neointima formation which is in turn dependent on SM proliferation and migration. Here, we have directly monitored [Ca(2+)](i) fluorimetrically in proliferating internal mammary artery (IMA) SM cells, and investigated how this is modulated by chronic hypoxia (CH; 24 h, 2.5% O(2)). IMA is the most successful replacement conduit vessel in bypass grafts. Basal [Ca(2+)](i) was unaffected by CH, but removal of extracellular Ca(2+) evoked far smaller reductions in [Ca(2+)](i) than were seen in normoxic cells. Voltage-gated Ca(2+) entry was suppressed in CH cells, and this was attributable to activation of the transcriptional regulator, hypoxia inducible factor. Furthermore, the relative contributions to voltage-gated Ca(2+) entry of L- and T-type Ca(2+) channels was markedly altered, with T-type channels becoming functionally more important in CH cells. Agonist-evoked mobilization of Ca(2+) from intracellular stores was not affected by CH, whilst subsequent capacitative Ca(2+) entry was modestly suppressed. Our data provide novel observations of the remodelling of Ca(2+) homeostasis by CH in IMASM cells which may contribute to their superior patency as coronary bypass grafts.
Collapse
Affiliation(s)
- Parvinder K Aley
- Division of Cardiovascular and Neuronal Remodelling, Leeds Institute of Genetics, Health & Therapeutics, University of Leeds, Level 10, Worsley Building, Leeds, LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
7
|
Gemin A, Sweet S, Preston TJ, Singh G. Regulation of the cell cycle in response to inhibition of mitochondrial generated energy. Biochem Biophys Res Commun 2005; 332:1122-32. [PMID: 15925326 DOI: 10.1016/j.bbrc.2005.05.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 05/12/2005] [Indexed: 11/18/2022]
Abstract
Cell cycle control is regulated through the temporal action of both cyclin-dependent kinases and cyclin binding partners. Previously, we have demonstrated that low doses of oligomycin result in a cell cycle arrest of HL-60 cells in G(1) [S. Sweet, G. Singh, Accumulation of human promyelocytic leukemic (HL-60) cells at two energetic cell cycle checkpoints, Cancer Res. 55 (1995) 5164-5167]. In this study, we provide the molecular mechanisms for the observed G(1) arrest following mitochondrial ATPase inhibition. Protein expression of cyclin E and CDK2, the kinase activity of complexed cyclin E/CDK2, and protein expression of p16, p21, and p27 were all unaffected by oligomycin administration. While CDK4 levels were unchanged following oligomycin treatment, a dramatic reduction in cyclin D(1) was observed. Moreover, increased amounts of hypo-phosphorylated retinoblastoma protein (Rbp) and Rbp bound E2F were observed following mitochondrial ATP synthase inhibition. These data provide further evidence that surveillance of available energy occurs during G(1) and ATP deprivation results in cell cycle arrest via a reduction in cyclin D.
Collapse
Affiliation(s)
- Adam Gemin
- Juravinski Cancer Centre, 699 Concession St., Hamilton, Ont., Canada L8V 5C2
| | | | | | | |
Collapse
|
8
|
Burch PM, Heintz NH. Redox regulation of cell-cycle re-entry: cyclin D1 as a primary target for the mitogenic effects of reactive oxygen and nitrogen species. Antioxid Redox Signal 2005; 7:741-51. [PMID: 15890020 DOI: 10.1089/ars.2005.7.741] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Reactive oxygen and nitrogen species inhibit or promote cell proliferation by modulating the cell signaling pathways that dictate decisions between cell survival, proliferation, and death. In the growth factor-dependent pathways that regulate mitogenesis, numerous positive and negative effectors of signaling are influenced by physiological fluctuations of oxidants, including receptor tyrosine kinases, small GTPases, mitogen-activated protein kinases, protein phosphatases, and transcription factors. The same mitogenic pathways that are sensitive to oxidant levels also directly regulate the expression of cyclin D1, a labile factor required for progression through the G1 phase on the cell cycle. Because the transition from G0 to G1 is the only phase of the cell cycle that is not regulated by cyclin-dependent kinases, but rather by redox-dependent signaling pathways, expression of cyclin D1 represents a primary regulatory node for the dose-dependent effects of oxidants on the induction of cell growth. We suggest that expression of cyclin D1 represents a useful marker for assessing the integration of proliferative and growth inhibitory effects of oxidants on the redox-dependent signaling events that control reentry into the cell cycle.
Collapse
Affiliation(s)
- Peter M Burch
- Environmental Pathology Program and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | |
Collapse
|
9
|
Shukla N, Rowe D, Hinton J, Angelini GD, Jeremy JY. Calcium and the replication of human vascular smooth muscle cells: studies on the activation and translocation of extracellular signal regulated kinase (ERK) and cyclin D1 expression. Eur J Pharmacol 2005; 509:21-30. [PMID: 15713425 DOI: 10.1016/j.ejphar.2004.12.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 12/20/2004] [Accepted: 12/24/2004] [Indexed: 10/25/2022]
Abstract
Since the precise role of sarcoplasmic reticular Ca2+ in mediating vascular smooth muscle cells (VSMC) proliferation is unknown, the effect of pre-incubation with thapsigargin on extracellular signal regulated kinase (ERK) activation, the translocation of activated of ERK 1/2 to the nucleus, cyclin D1 expression, the onset of S phase and cytosolic Ca2+ levels were studied. Human saphenous vein VSMCs (hVSMC) were incubated with 10 nM thapsigargin for 24 h followed by stimulation with fetal calf serum and the activation of ERK1/2 and cyclin D1 assessed by western blotting, the intracellular distribution of ERK1/2 using indirect immunofluorescence, the onset of S-phase with the incorporation of bromodeoxyuridine and sarcoplasmic reticular Ca2+ status using FURA-2. Thapsigargin had a marginal effect on ERK1/2 activation only at 5 min and 10 min after stimulation with fetal calf serum. In contrast, the rapid translocation of ERK1/2 to the nucleus was completely blocked by thapsigargin. S phase was delayed by 8 h by thapsigargin which co-incided with the recovery of cytosolic Ca2+ levels and cyclin D1 expression. It is concluded that the inhibitory effect of thapsigargin (depletion of Ca2+ pools) on hVSMC replication is mediated through the inhibition of translocation of activated ERK1/2 to the nucleus and not to the phosphorylation of ERK, per se, which in turn prevents cyclin D1 expression and thus progression of the cell cycle.
Collapse
Affiliation(s)
- Nilima Shukla
- Bristol Heart Institute, Department of Cardiac Surgery, University of Bristol, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | | | | | | | | |
Collapse
|
10
|
Burch PM, Yuan Z, Loonen A, Heintz NH. An extracellular signal-regulated kinase 1- and 2-dependent program of chromatin trafficking of c-Fos and Fra-1 is required for cyclin D1 expression during cell cycle reentry. Mol Cell Biol 2004; 24:4696-709. [PMID: 15143165 PMCID: PMC416393 DOI: 10.1128/mcb.24.11.4696-4709.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitogens activate cell signaling and gene expression cascades that culminate in expression of cyclin D1 during the G(0)-to-G(1) transition of the cell cycle. Using cell cycle arrest in response to oxidative stress, we have delineated a dynamic program of chromatin trafficking of c-Fos and Fra-1 required for cyclin D1 expression during cell cycle reentry. In serum-stimulated lung epithelial cells, c-Fos was expressed, recruited to chromatin, phosphorylated at extracellular signal-regulated kinase 1- and 2 (ERK1,2)-dependent sites, and degraded prior to prolonged recruitment of Fra-1 to chromatin. Immunostaining showed that expression of nuclear c-Fos and that of cyclin D1 are mutually exclusive, whereas nuclear Fra-1 and cyclin D1 are coexpressed as cells traverse G(1). Oxidative stress prolonged the accumulation of phospho-ERK1,2 and phospho-c-Fos on chromatin, inhibited entry of Fra-1 into the nucleus, and blocked cyclin D1 expression. After induction of the immediate-early gene response in the presence of oxidative stress, inhibition of ERK1,2 signaling promoted degradation of c-Fos, recruitment of Fra-1 to chromatin, and expression of cyclin D1. Our data indicate that termination of nuclear ERK1,2 signaling is required for an exchange of Fra-1 for c-Fos on chromatin and initiation of cyclin D1 expression at the G(0)-to-G(1) transition of the cell cycle.
Collapse
Affiliation(s)
- Peter M Burch
- Department of Pathology, Vermont Cancer Center, HSRF 328, University of Vermont College of Medicine, 89 Beaumont Ave., Burlington, VT 05405, USA.
| | | | | | | |
Collapse
|
11
|
Chen A, Zhang L, Xu J, Tang J. The antioxidant (-)-epigallocatechin-3-gallate inhibits activated hepatic stellate cell growth and suppresses acetaldehyde-induced gene expression. Biochem J 2002; 368:695-704. [PMID: 12223099 PMCID: PMC1223034 DOI: 10.1042/bj20020894] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2002] [Revised: 09/09/2002] [Accepted: 09/11/2002] [Indexed: 02/07/2023]
Abstract
Activated hepatic stellate cells (HSC) are the primary source of excessive production of extracellular matrix during liver fibrogenesis. Although the underlying mechanisms remain incompletely understood, it is widely accepted that oxidative stress plays a critical role in liver fibrogenesis. Suppression of HSC growth and activation, as well as induction of apoptosis, have been proposed as therapeutic strategies for treatment and prevention of this disease. In the present report, we elucidated, for the first time, effects of the antioxidant (-)-epigallocatechin-3-gallate (EGCG), a major (and the most active) component of green tea extracts, on cultured HSC growth and activation. Our results revealed that EGCG significantly inhibited cultured HSC growth by inducing cell cycle arrest and apoptosis in a dose- and time-dependent manner. In addition, EGCG markedly suppressed the activation of cultured HSC as demonstrated by blocking transforming growth factor-beta signal transduction and by inhibiting the expression of alpha1(I) collagen, fibronectin and alpha-smooth muscle actin genes induced by acetaldehyde, the most active metabolite of ethanol. Furthermore, EGCG reacted differently in the inhibition of nuclear factor-kappaB activity between cultured HSC with or without acetaldehyde stimulation. Taken together, our results indicated that EGCG was a novel and effective inhibitor for activated HSC growth and activation in vitro. Further studies are necessary to evaluate the effect of this polyphenol in prevention of quiescent HSC activation in vivo, and to further elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Anping Chen
- Department of Pathology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71130, USA.
| | | | | | | |
Collapse
|
12
|
Weinstein-Oppenheimer CR, Blalock WL, Steelman LS, Chang F, McCubrey JA. The Raf signal transduction cascade as a target for chemotherapeutic intervention in growth factor-responsive tumors. Pharmacol Ther 2000; 88:229-79. [PMID: 11337027 DOI: 10.1016/s0163-7258(00)00085-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This review focuses on the Ras-Raf-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) signal transduction pathway and the consequences of its unregulation in the development of cancer. The roles of some of the cell membrane receptors involved in the activation of this pathway, the G-protein Ras, the Raf, MEK and ERK kinases, the phosphatases that regulate these kinases, as well as the downstream transcription factors that become activated, are discussed. The roles of the Ras-Raf-MEK-ERK pathway in the regulation of apoptosis and cell cycle progression are also analyzed. In addition, potential targets for pharmacological intervention in growth factor-responsive cells are evaluated.
Collapse
Affiliation(s)
- C R Weinstein-Oppenheimer
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Brody Building of Medical Sciences 5N98C, Greenville, NC 27858, USA
| | | | | | | | | |
Collapse
|
13
|
Olson NE, Kozlowski J, Reidy MA. Proliferation of intimal smooth muscle cells. Attenuation of basic fibroblast growth factor 2-stimulated proliferation is associated with increased expression of cell cycle inhibitors. J Biol Chem 2000; 275:11270-7. [PMID: 10753937 DOI: 10.1074/jbc.275.15.11270] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Basic fibroblast growth factor (FGF2) is a potent mitogen for medial smooth muscle cells and is necessary for their proliferation after balloon catheter injury; however, intimal smooth muscle cells do not require FGF2 for their proliferation, and they respond only weakly to exogenous FGF2. The present study examined the activation of extracellular signal-regulated kinase (ERK) signaling as well as the expression and activity of cell cycle proteins in FGF2-stimulated intimal smooth muscle cells. FGF2 activates ERKs 1 and 2, and Western blot analysis showed that cyclin D, cyclin E, and cyclin-dependent kinase (CDKs) 2 and 4 were expressed in intimal smooth muscle cells after FGF2 infusion. FGF2 stimulation, however, did not lead to phosphorylation of the retinoblastoma protein (Rb), CDK 2 activation, or expression of cyclin A. Western blot analysis showed that intimal smooth muscle cells express elevated levels of the cell cycle inhibitors p15(INK4b) and p27(Kip1), compared with medial smooth muscle cells, and that FGF2 stimulation does not reduce the level of these inhibitors. These studies suggest that despite activation of ERKs 1 and 2 and expression of the cell cycle activators, cyclin D and cyclin E, high levels of cell cycle inhibitors may inhibit cell cycle transit in FGF2-stimulated intimal smooth muscle cells.
Collapse
Affiliation(s)
- N E Olson
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
14
|
Villalonga P, Rius E, Bachs O, Agell N. [Lys61]N-Ras is able to induce full activation and nuclear accumulation of Cdk4 in NIH3T3 cells. Oncogene 2000; 19:690-9. [PMID: 10698514 DOI: 10.1038/sj.onc.1203341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The elements of the cell cycle regulatory machinery activated by the oncogenic form of Ras, [Lys61]N-Ras, have been analysed in NIH3T3 cells. We demonstrate that [Lys61]N-Ras expression is able to induce full cdk4 activation. As already reported, oncogenic Ras expression was sufficient to induce cyclin D1 and p21cip1 expression and their association with cdk4. Furthermore, serum-starved [Lys61]N-Ras NIH3T3 cells showed nuclear accumulation of cyclin D1 and cdk4 not observed in serum-starved NIH3T3 cells. This accumulation of cdk4 into the cell nucleus observed in serum-starved [Lys61]N-Ras NIH3T3 cells was inhibited by a microinjection of neutralizing anti-Ras antibodies. Thus, active [Lys61]N-Ras was a sufficient signal to induce nuclear accumulation of cyclin D1/cdk4, leading to its full activation. Transfection of [Lys61]N-Ras NIH3T3 cells with an inactive form of MEK or their treatment with PD 98059, showed that nuclear translocation of cdk4 was MEK dependent. Interestingly, cells constitutively expressing [Lys61]N-Ras did not inactivate pRb and did not proliferate in the absence of serum. This may be due to the fact that although association of cdk2 with cyclin E and the translocation of those complexes to the nucleus were achieved, [Lys61]N-Ras expression was not sufficient to induce cdk2 activation. The high levels of p27(kip1) that were found in cyclin E/cdk2 complexes may be responsible for the inability of oncogenic Ras to activate this kinase. In consequence, oncogenic alterations that lead to a decrease in p27kip1 bound to cyclin E may cooperate with Ras to induce full cdk2 activation, pRb inactivation and thus cell proliferation.
Collapse
Affiliation(s)
- P Villalonga
- Department de Biologia Cellular i Anatomia Patològica, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, Spain
| | | | | | | |
Collapse
|
15
|
Tang XM, Beesley JS, Grinspan JB, Seth P, Kamholz J, Cambi F. Cell cycle arrest induced by ectopic expression of p27 is not sufficient to promote oligodendrocyte differentiation. J Cell Biochem 1999; 76:270-9. [PMID: 10618643 DOI: 10.1002/(sici)1097-4644(20000201)76:2<270::aid-jcb10>3.0.co;2-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Oligodendrocyte differentiation is accompanied by dramatic changes in gene expression as well as cell cycle arrest. To determine whether cell cycle arrest is sufficient to induce the changes in cell phenotype associated with differentiation, we inhibited oligodendrocyte precursor proliferation in vitro by overexpressing p27, a cyclin kinase inhibitor, using a recombinant adenovirus. Ectopic expression of p27 efficiently inhibited oligodendrocyte precursor cell division, even in the presence of exogenous mitogens, by blocking the activity of the cyclin-dependent kinase, cdk2. Although the cells had stopped dividing, they did not express galactocerebroside (GalC) or myelin basic protein (MBP), changes associated with oligodendrocyte differentiation, suggesting that they had not differentiated. After removal of exogenous mitogens, however, adenovirus-expressing oligodendrocyte precursors differentiated with a temporal profile similar to that of control, uninfected oligodendrocytes, as indicated by expression of GalC and MBP. We conclude that cell cycle arrest is not sufficient to induce differentiation of dividing oligodendrocyte precursors, and that modulation of additional, as yet unknown, signaling pathways is required for this to occur.
Collapse
Affiliation(s)
- X M Tang
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- R Bernards
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Abstract
The cell-division cycle is a tightly controlled process that is regulated by the cyclin/CDK family of protein kinase complexes. Stringent control of this process is essential to ensure that DNA synthesis and subsequent mitotic division are accurately and coordinately executed. There is now strong evidence that CDKs, their regulators, and substrates are the targets of genetic alteration in many human cancers. As a result of this, the CDKs have been targeted for drug discovery and a number of small molecule inhibitors of CDKs have been identified.
Collapse
Affiliation(s)
- M D Garrett
- Onyx Pharmaceuticals, 3031 Research Drive, Richmond, California 94806, USA.
| | | |
Collapse
|
18
|
Birkett SD, Jeremy JY, Watts SM, Shukla N, Angelini GD, McArdle CA. Inhibition of intracellular Ca2+ mobilisation by low antiproliferative concentrations of thapsigargin in human vascular smooth-muscle cells. J Cardiovasc Pharmacol 1999; 33:204-11. [PMID: 10028927 DOI: 10.1097/00005344-199902000-00005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Low nanomolar concentrations of thapsigargin, a modulator of intracellular Ca2+ ([Ca2+]i) pools, inhibit vascular smooth-muscle cell (VSMC) proliferation. Because the mechanisms underlying this effect have not been defined, the effect of antiproliferative concentrations of thapsigargin on [Ca2+]i in fura-2-loaded VSMCs was studied by using dynamic video imaging of [Ca2+]i. After seeding on coverslips, human VSMCs were incubated for 1-48 h with thapsigargin before loading with fura-2 or during imaging. Mobilisation of [Ca2+]i was stimulated with 1 microM ionomycin in Ca2+-free medium and the increase in [Ca2+]i detected by using Ca2+ imaging techniques. Continuous exposure of cells to low concentrations of thapsigargin (which failed measurably to increase in [Ca2+]i) reduced the ionomycin response in a time- and dose-dependent manner (100% inhibition at 10 nM thapsigargin after 1 h exposure). After exposure of cells to 10 nM thapsigargin for 1 h followed by washing and further incubation for < or = 72 h, there was a time-dependent recovery of the ionomycin response. Because the concentrations of thapsigargin and exposure times are identical to those that inhibit replication in VSMCs, it is proposed that depletion of [Ca2+]i pools mediates the inhibitory effect of thapsigargin on VSMC proliferation.
Collapse
Affiliation(s)
- S D Birkett
- Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, England, UK
| | | | | | | | | | | |
Collapse
|
19
|
Morinville A, Maysinger D, Shaver A. From Vanadis to Atropos: vanadium compounds as pharmacological tools in cell death signalling. Trends Pharmacol Sci 1998; 19:452-60. [PMID: 9850609 DOI: 10.1016/s0165-6147(98)01257-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vanadium compounds exert a variety of biological responses, the most notable being their effects as insulin mimetics. More recently, they have been used as pharmacological tools to investigate signalling pathways. Some peroxovanadium compounds act as powerful protein tyrosine phosphatase inhibitors, modulating both the extent and duration of phosphotyrosine signals at the level of the transmembrane growth factor receptors and targets in the cytoplasm and nucleus. A brief history of vanadium compounds, selected chemical properties of vanadium compounds and the ability of peroxovanadium complexes to modulate the activities of protein tyrosine phosphatases and tyrosine kinases are presented in this review by Anne Morinville, Dusica Maysinger and Alan Shaver. From the range of biological activities of these compounds, this review focuses on cytotoxic effects and possible roles of mitogen-activated protein kinases in mediating the effects exerted by vanadium compounds.
Collapse
Affiliation(s)
- A Morinville
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
20
|
Harel NY, Alwine JC. Phosphorylation of the human cytomegalovirus 86-kilodalton immediate-early protein IE2. J Virol 1998; 72:5481-92. [PMID: 9621004 PMCID: PMC110188 DOI: 10.1128/jvi.72.7.5481-5492.1998] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have investigated the phosphorylation state of the human cytomegalovirus 86-kDa immediate-early (IE) protein IEP86 from transfected and infected cells. We show that multiple domains of IEP86 are phosphorylated by cellular kinases, both in vitro and in vivo. Our data suggest that serum-inducible kinases play a significant role in cell-mediated IE protein phosphorylation and that a member of the mitogen-activated protein (MAP) kinase (MAPK) family, extracellular regulated kinase 2 (ERK2), phosphorylates several domains of IEP86 in vitro. Alanine substitution mutagenesis was performed on specific serines or threonines (T27, S144, T233/S234, and T555) found in consensus MAP kinase motifs. Analysis of these mutations showed that T27 and T233/S234 are the major sites for serum-inducible kinases and are the major ERK2 sites in vitro. S144 appeared to be phosphorylated in a serum-independent manner in vitro. All of the mutations except T555 eliminated specific phosphorylation in vivo. In transient transfection analyses, IEP86 isoforms containing mutations in S144 and, especially, T233/S234 displayed increased transcriptional activation relative to the wild type, suggesting that phosphorylation at these sites in wild-type IEP86 may result in reduction of its transcriptional activation ability.
Collapse
Affiliation(s)
- N Y Harel
- Graduate Group of Cell and Molecular Biology and Department of Microbiology, Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6142, USA
| | | |
Collapse
|
21
|
Olweus J. Early events in human myelopoiesis. APMIS 1998. [DOI: 10.1111/j.1600-0463.1998.tb05618.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Tomizawa M, Lekstrom-Himes J, Xanthopoulos KG. Transcriptional Regulation and Gene Expression in the Liver. Gene Ther 1998. [DOI: 10.1007/978-3-642-72160-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|