1
|
Joachimiak E, Wloga D. Tubulin post-translational modifications in protists - Tiny models for solving big questions. Semin Cell Dev Biol 2021; 137:3-15. [PMID: 34922809 DOI: 10.1016/j.semcdb.2021.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/09/2021] [Accepted: 12/01/2021] [Indexed: 11/15/2022]
Abstract
Protists are an exceptionally diverse group of mostly single-celled eukaryotes. The organization of the microtubular cytoskeleton in protists from various evolutionary lineages has different levels of sophistication, from a network of microtubules (MTs) supporting intracellular trafficking as in Dictyostelium, to complex structures such as basal bodies and cilia/flagella enabling cell motility, and lineage-specific adaptations such as the ventral disc in Giardia. MTs building these diverse structures have specific properties partly due to the presence of tubulin post-translational modifications (PTMs). Among them there are highly evolutionarily conserved PTMs: acetylation, detyrosination, (poly)glutamylation and (poly)glycylation. In some protists also less common tubulin PTMs were identified, including phosphorylation, methylation, Δ2-, Δ5- of α-tubulin, polyubiquitination, sumoylation, or S-palmitoylation. Not surprisingly, several single-celled organisms become models to study tubulin PTMs, including their effect on MT properties and discovery of the modifying enzymes. Here, we briefly summarize the current knowledge on tubulin PTMs in unicellular eukaryotes and highlight key findings in protists as model organisms.
Collapse
Affiliation(s)
- Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
2
|
Sudhakar A, Kamanna S, Bojja M, Tatu U. Proteomic analysis of Giardia lamblia and Trichomonas vaginalis flagella reveal unique post-translational modifications in tubulin that provide clues to regulation of their motilities. Proteomics 2021; 21:e2100004. [PMID: 34558204 DOI: 10.1002/pmic.202100004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 08/17/2021] [Indexed: 11/07/2022]
Abstract
All eukaryotic flagella are made of microtubules and driven by dynein motor proteins. However, every organism is unique in terms of its flagellar waveform, beat frequency, and its general motility pattern. With recent research, it is becoming clear that despite overall conservation in flagellar structure, the pattern of tubulin post-translational modifications within the flagella are diverse and may contribute to variations in their patterns of motility. In this study, we have analyzed the tubulin post-translational modification in the protozoan parasites Giardia lamblia and Trichomonas vaginalis using global, untargeted mass spectrometry. We show that tubulin monoglycylation is a modification localized to the flagella present in G. lamblia but absent in T. vaginalis. We also show the presence of glutamylated tubulin in both G. lamblia and T. vaginalis. Using MS/MS, we were also able to identify the previously unknown sites of monoglycylation in β-tubulin at E438 and E439 in G. lamblia. Using isolated flagella, we also characterized the flagellar proteome in G. lamblia and T. vaginalis and identified 475 proteins in G. lamblia and 386 proteins in T. vaginalis flagella. Altogether, the flagellar proteomes as well as the sites of tubulin PTMs in these organisms, reveal potential mechanisms in regulating flagellar motilities in these neglected protozoan parasites.
Collapse
Affiliation(s)
- Aparna Sudhakar
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Sathisha Kamanna
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Mallikarjun Bojja
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Utpal Tatu
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
3
|
Abstract
Giardia intestinalis, the causative agent of giardiasis, has complex cytoskeleton organization with structures involved in motility, adhesion, cell division, and cell differentiation. Microtubules are key components of the cytoskeleton and are the main elements of the ventral disc, median body, funis, in addition to four pairs of flagella. These cytoskeletal elements are basically stable microtubule arrangements. Although tubulins are the main proteins of these elements, molecular and biochemical analyses of Giardia trophozoites have revealed the presence of several new and not yet characterized proteins in these structures, which may contribute to their nanoarchitecture (mainly in the ventral disc). Despite these findings, morphological data are still required for understanding the organization and biogenesis of the cytoskeletal structures. In the study of this complex and specialized network of filaments in Giardia, two distinct and complementary approaches have been used in recent years: (a) transmission electron microscopy tomography of conventionally processed as well as cryo-fixed samples and (b) high-resolution scanning electron microscopy and helium ion microscopy in combination with new plasma membrane extraction protocols. In this review we include the most recent studies that have allowed better understanding of new Giardia components and their association with other filamentous structures of this parasite, thus providing new insights in the role of the cytoskeletal structures and their function in Giardia trophozoites.
Collapse
|
4
|
Matadamas-Martínez F, Nogueda-Torres B, Castillo R, Hernández-Campos A, Barrera-Valdes MDLL, León-Ávila G, Hernández JM, Yépez-Mulia L. Characterisation of the in vitro activity of a Nitazoxanide-N-methyl-1H-benzimidazole hybrid molecule against albendazole and nitazoxanide susceptible and resistant strains of Giardia intestinalis and its in vivo giardicidal activity. Mem Inst Oswaldo Cruz 2020; 115:e190348. [PMID: 32049098 PMCID: PMC7012584 DOI: 10.1590/0074-02760190348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/02/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND It was previously demonstrated that CMC-20, a nitazoxanide and N-methyl-1H-benzimidazole hybrid molecule, had higher in vitro activity against Giardia intestinalis WB strain than metronidazole and albendazole and similar to nitazoxanide. OBJETIVES To evaluate the in vitro activity of CMC-20 against G. intestinalis strains with different susceptibility/resistance to albendazole and nitazoxanide and evaluate its effect on the distribution of parasite cytoskeletal proteins and its in vivo giardicidal activity. METHODS CMC-20 activity was tested against two isolates from patients with chronic and acute giardiasis, an experimentally induced albendazole resistant strain and a nitazoxanide resistant clinical isolate. CMC-20 effect on the distribution of parasite cytoskeletal proteins was analysed by indirect immunofluorescence and its activity was evaluated in a murine model of giardiasis. FINDINGS CMC-20 showed broad activity against susceptible and resistant strains to albendazole and nitaxozanide. It affected the parasite microtubule reservoir and triggered the parasite encystation. In this process, alpha-7.2 giardin co-localised with CWP-1 protein. CMC-20 reduced the infection time and cyst load in feces of G. muris infected mice similar to albendazole. MAIN CONCLUSIONS The in vitro and in vivo giardicidal activity of CMC-20 suggests its potential use in the treatment of giardiasis.
Collapse
Affiliation(s)
- Félix Matadamas-Martínez
- Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Farmacia, Mexico City, Mexico
- Instituto Mexicano del Seguro Social, Centro Médico Siglo XXI, Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Mexico City, Mexico
| | - Benjamín Nogueda-Torres
- Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Departamento de Parasitología, Mexico City, Mexico
| | - Rafael Castillo
- Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Farmacia, Mexico City, Mexico
| | - Alicia Hernández-Campos
- Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Farmacia, Mexico City, Mexico
| | - María de la Luz Barrera-Valdes
- Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Departamento de Parasitología, Mexico City, Mexico
- Instituto Mexicano del Seguro Social, Centro Médico Siglo XXI, Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Mexico City, Mexico
| | - Gloria León-Ávila
- Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Departamento de Zoología, Laboratorio de Genética, Mexico City, Mexico
| | - José Manuel Hernández
- >Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Biología Celular, Mexico City, Mexico
| | - Lilián Yépez-Mulia
- Instituto Mexicano del Seguro Social, Centro Médico Siglo XXI, Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Mexico City, Mexico
| |
Collapse
|
5
|
Lalle M, Fiorillo A. The protein 14-3-3: A functionally versatile molecule in Giardia duodenalis. ADVANCES IN PARASITOLOGY 2019; 106:51-103. [PMID: 31630760 DOI: 10.1016/bs.apar.2019.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Giardia duodenalis is a cosmopolitan zoonotic protozoan parasite causing giardiasis, one of the most common diarrhoeal diseases in human and animals. Beyond its public health relevance, Giardia represents a valuable and fascinating model microorganism. The deep-branching phylogenetic position of Giardia, its simple life cycle and its minimalistic genomic and cellular organization provide a unique opportunity to define basal and "ancestral" eukaryotic functions. The eukaryotic 14-3-3 protein family represents a distinct example of phosphoserine/phosphothreonine-binding proteins. The extended network of protein-protein interactions established by 14-3-3 proteins place them at the crossroad of multiple signalling pathways that regulate physiological and pathological cellular processes. Despite the remarkable insight on 14-3-3 protein in different organisms, from yeast to humans, so far little attention was given to the study of this protein in protozoan parasites. However, in the last years, research efforts have provided evidences on unique properties of the single 14-3-3 protein of Giardia and on its association in key aspects of Giardia life cycle. In the first part of this chapter, a general overview of the features commonly shared among 14-3-3 proteins in different organisms (i.e. structure, target recognition, mode of action and regulatory mechanisms) is included. The second part focus on the current knowledge on the biochemistry and biology of the Giardia 14-3-3 protein and on the possibility to use this protein as target to propose new strategies for developing innovative antigiardial therapy.
Collapse
Affiliation(s)
- Marco Lalle
- Department of Infectious Diseases, European Union Reference Laboratory for Parasites, Istituto Superiore di Sanità, Rome, Italy.
| | - Annarita Fiorillo
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Identification of DmTTLL5 as a Major Tubulin Glutamylase in the Drosophila Nervous System. Sci Rep 2017; 7:16254. [PMID: 29176602 PMCID: PMC5701211 DOI: 10.1038/s41598-017-16586-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/14/2017] [Indexed: 01/09/2023] Open
Abstract
Microtubules (MTs) play crucial roles during neuronal life. They are formed by heterodimers of alpha and beta-tubulins, which are subjected to several post-translational modifications (PTMs). Amongst them, glutamylation consists in the reversible addition of a variable number of glutamate residues to the C-terminal tails of tubulins. Glutamylation is the most abundant MT PTM in the mammalian adult brain, suggesting that it plays an important role in the nervous system (NS). Here, we show that the previously uncharacterized CG31108 gene encodes an alpha-tubulin glutamylase acting in the Drosophila NS. We show that this glutamylase, which we named DmTTLL5, initiates MT glutamylation specifically on alpha-tubulin, which are the only glutamylated tubulin in the Drosophila brain. In DmTTLL5 mutants, MT glutamylation was not detected in the NS, allowing for determining its potential function. DmTTLL5 mutants are viable and we did not find any defect in vesicular axonal transport, synapse morphology and larval locomotion. Moreover, DmTTLL5 mutant flies display normal negative geotaxis behavior and their lifespan is not altered. Thus, our work identifies DmTTLL5 as the major enzyme responsible for initiating neuronal MT glutamylation specifically on alpha-tubulin and we show that the absence of MT glutamylation is not detrimental for Drosophila NS function.
Collapse
|
7
|
Emery SJ, Lacey E, Haynes PA. Quantitative proteomics in Giardia duodenalis —Achievements and challenges. Mol Biochem Parasitol 2016; 208:96-112. [DOI: 10.1016/j.molbiopara.2016.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 12/31/2022]
|
8
|
Zhang PW, Chen L, Huang T, Zhang N, Kong XY, Cai YD. Classifying ten types of major cancers based on reverse phase protein array profiles. PLoS One 2015; 10:e0123147. [PMID: 25822500 PMCID: PMC4378934 DOI: 10.1371/journal.pone.0123147] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/24/2015] [Indexed: 12/20/2022] Open
Abstract
Gathering vast data sets of cancer genomes requires more efficient and autonomous procedures to classify cancer types and to discover a few essential genes to distinguish different cancers. Because protein expression is more stable than gene expression, we chose reverse phase protein array (RPPA) data, a powerful and robust antibody-based high-throughput approach for targeted proteomics, to perform our research. In this study, we proposed a computational framework to classify the patient samples into ten major cancer types based on the RPPA data using the SMO (Sequential minimal optimization) method. A careful feature selection procedure was employed to select 23 important proteins from the total of 187 proteins by mRMR (minimum Redundancy Maximum Relevance Feature Selection) and IFS (Incremental Feature Selection) on the training set. By using the 23 proteins, we successfully classified the ten cancer types with an MCC (Matthews Correlation Coefficient) of 0.904 on the training set, evaluated by 10-fold cross-validation, and an MCC of 0.936 on an independent test set. Further analysis of these 23 proteins was performed. Most of these proteins can present the hallmarks of cancer; Chk2, for example, plays an important role in the proliferation of cancer cells. Our analysis of these 23 proteins lends credence to the importance of these genes as indicators of cancer classification. We also believe our methods and findings may shed light on the discoveries of specific biomarkers of different types of cancers.
Collapse
Affiliation(s)
- Pei-Wei Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, P.R. China
| | - Tao Huang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
- * E-mail: (TH); (NZ); (XYK); (YDC)
| | - Ning Zhang
- Department of Biomedical Engineering, Tianjin Key Lab of BME Measurement, Tianjin University, Tianjin, P.R. China
- * E-mail: (TH); (NZ); (XYK); (YDC)
| | - Xiang-Yin Kong
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
- * E-mail: (TH); (NZ); (XYK); (YDC)
| | - Yu-Dong Cai
- College of Life Science, Shanghai University, Shanghai, P.R. China
- * E-mail: (TH); (NZ); (XYK); (YDC)
| |
Collapse
|
9
|
Casanova M, de Monbrison F, van Dijk J, Janke C, Pagès M, Bastien P. Characterisation of polyglutamylases in trypanosomatids. Int J Parasitol 2014; 45:121-32. [PMID: 25444861 DOI: 10.1016/j.ijpara.2014.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 11/30/2022]
Abstract
Microtubules are subject to post-translational modifications, which are thought to have crucial roles in the function of complex microtubule-based organelles. Among these, polyglutamylation was relatively recently discovered, and was related to centrosome stability, axonemal maintenance and mobility, and neurite outgrowth. In trypanosomatids, parasitic protozoa where microtubules constitute the essential component of the cytoskeleton, the function of polyglutamylated microtubules is unknown. Here, in order to better understand the role of this conserved but highly divergent post-translational modification, we characterised glutamylation and putative polyglutamylases in these parasites. We showed that microtubules are intensely glutamylated in all stages of the cell cycle, including interphase. Moreover, a cell cycle-dependent gradient of glutamylation was observed along the cell anteroposterior axis, which might be related to active growth of the microtubule 'corset' during the cell cycle. We also identified two putative polyglutamylase proteins (among seven analysed here) which appeared to be clearly and directly involved in microtubule polyglutamylation in in vitro activity assays. Paradoxically, in view of the importance of tubulins and of their extensive glutamylation in these organisms, RNA interference-based knockdown of all these proteins had no effect on cell growth, suggesting either functional redundancy or, more likely, subtle roles such as function modulation or interaction with protein partners.
Collapse
Affiliation(s)
- Magali Casanova
- Centre National de la Recherche Scientifique (CNRS), 5290-IRD 224-University Montpellier 1, Research Unit "MIVEGEC", Montpellier, France
| | - Frédérique de Monbrison
- Centre National de la Recherche Scientifique (CNRS), 5290-IRD 224-University Montpellier 1, Research Unit "MIVEGEC", Montpellier, France
| | - Juliette van Dijk
- CNRS UMR 5237 - University Montpellier 2 and 1, Research Unit "Centre de Recherche de Biochimie Macromoléculaire", Montpellier, France
| | - Carsten Janke
- CNRS UMR 5237 - University Montpellier 2 and 1, Research Unit "Centre de Recherche de Biochimie Macromoléculaire", Montpellier, France
| | - Michel Pagès
- Centre National de la Recherche Scientifique (CNRS), 5290-IRD 224-University Montpellier 1, Research Unit "MIVEGEC", Montpellier, France
| | - Patrick Bastien
- Centre National de la Recherche Scientifique (CNRS), 5290-IRD 224-University Montpellier 1, Research Unit "MIVEGEC", Montpellier, France; CHU (Hospital University Centre) of Montpellier and University Montpellier 1 (Faculty of Medicine), Laboratoire de Parasitologie-Mycologie, Montpellier, France.
| |
Collapse
|
10
|
Neurospora crassa NKIN2, a kinesin-3 motor, transports early endosomes and is required for polarized growth. EUKARYOTIC CELL 2013; 12:1020-32. [PMID: 23687116 DOI: 10.1128/ec.00081-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biological motors are molecular nanomachines, which convert chemical energy into mechanical forces. The combination of mechanoenzymes with structural components, such as the cytoskeleton, enables eukaryotic cells to overcome entropy, generate molecular gradients, and establish polarity. Hyphae of filamentous fungi are among the most polarized cells, and polarity defects are most obvious. Here, we studied the role of the kinesin-3 motor, NKIN2, in Neurospora crassa. We found that NKIN2 localizes as fast-moving spots in the cytoplasm of mature hyphae. To test whether the spots represented early endosomes, the Rab5 GTPase YPT52 was used as an endosomal marker. NKIN2 colocalized with YPT52. Deletion of nkin2 caused strongly reduced endosomal movement. Combined, these results confirm the involvement of NKIN2 in early endosome transport. Introduction of a rigor mutation into NKIN2 labeled with green fluorescent protein (GFP) resulted in decoration of microtubules. Interestingly, NKIN2(rigor) was associated with a subpopulation of microtubules, as had been shown earlier for the Aspergillus nidulans orthologue UncA. Other kinesins did not show this specificity.
Collapse
|
11
|
Ludueña RF. A Hypothesis on the Origin and Evolution of Tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:41-185. [DOI: 10.1016/b978-0-12-407699-0.00002-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Backer CB, Gutzman JH, Pearson CG, Cheeseman IM. CSAP localizes to polyglutamylated microtubules and promotes proper cilia function and zebrafish development. Mol Biol Cell 2012; 23:2122-30. [PMID: 22493317 PMCID: PMC3364176 DOI: 10.1091/mbc.e11-11-0931] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Subsets of microtubules are modified by polyglutamylation, but the precise function of this modification is unknown. A microtubule-binding protein, CSAP, is identified that colocalizes with polyglutamylated tubulin. In zebrafish, CSAP is required for normal brain development and proper left–right asymmetry. The diverse populations of microtubule polymers in cells are functionally distinguished by different posttranslational modifications, including polyglutamylation. Polyglutamylation is enriched on subsets of microtubules including those found in the centrioles, mitotic spindle, and cilia. However, whether this modification alters intrinsic microtubule dynamics or affects extrinsic associations with specific interacting partners remains to be determined. Here we identify the microtubule-binding protein centriole and spindle–associated protein (CSAP), which colocalizes with polyglutamylated tubulin to centrioles, spindle microtubules, and cilia in human tissue culture cells. Reducing tubulin polyglutamylation prevents CSAP localization to both spindle and cilia microtubules. In zebrafish, CSAP is required for normal brain development and proper left–right asymmetry, defects that are qualitatively similar to those reported previously for depletion of polyglutamylation-conjugating enzymes. We also find that CSAP is required for proper cilia beating. Our work supports a model in which polyglutamylation can target selected microtubule-associated proteins, such as CSAP, to microtubule subpopulations, providing specific functional capabilities to these populations.
Collapse
Affiliation(s)
- Chelsea B Backer
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
13
|
Alvarado ME, Wasserman M. Calmodulin expression during Giardia intestinalis differentiation and identification of calmodulin-binding proteins during the trophozoite stage. Parasitol Res 2011; 110:1371-80. [DOI: 10.1007/s00436-011-2637-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 09/02/2011] [Indexed: 11/28/2022]
|
14
|
Lalle M, Camerini S, Cecchetti S, Blasetti Fantauzzi C, Crescenzi M, Pozio E. Giardia duodenalis 14-3-3 protein is polyglycylated by a tubulin tyrosine ligase-like member and deglycylated by two metallocarboxypeptidases. J Biol Chem 2010; 286:4471-84. [PMID: 21135098 DOI: 10.1074/jbc.m110.181511] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The flagellated protozoan Giardia duodenalis is a parasite of the upper part of the small intestine of mammals, including humans, and an interesting biological model. Giardia harbors a single 14-3-3 isoform, a multifunctional protein family, that is modified at the C terminus by polyglycylation, an unusual post-translational modification consisting of the covalent addition of one or multiple glycines on the γ-carboxyl groups of specific glutamic acids. Polyglycylation affects the intracellular localization of g14-3-3, as the shortening of the polyglycine chain is correlated with a partial relocalization of 14-3-3 inside the nuclei during encystation. In this work we demonstrate that the gTTLL3, a member of the tubulin tyrosine ligase-like family, is the enzyme responsible for the 14-3-3 polyglycylation. We also identify two metallopeptidases of the M20 family, here termed gDIP1 (giardial dipeptidase 1) and gDIP2, as enzymes able to shorten the g14-3-3 polyglycine tail both in vivo and in vitro. Finally, we show that the ectopic expression of gDIP2 alters the g14-3-3 localization and strongly hampers the cyst formation. In conclusion, we have identified a polyglycylase and two deglycylases that act in concert to modulate the stage-dependent glycylation status of the multifunctional regulatory g14-3-3 protein in G. duodenalis.
Collapse
Affiliation(s)
- Marco Lalle
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Heterogeneity in the sensitivity of microtubules of Giardia lamblia to the herbicide oryzalin. Parasitol Res 2010; 107:47-54. [DOI: 10.1007/s00436-010-1831-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 03/04/2010] [Indexed: 10/19/2022]
|
16
|
Lalle M, Bavassano C, Fratini F, Cecchetti S, Boisguerin P, Crescenzi M, Pozio E. Involvement of 14-3-3 protein post-translational modifications in Giardia duodenalis encystation. Int J Parasitol 2010; 40:201-13. [DOI: 10.1016/j.ijpara.2009.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/13/2009] [Accepted: 07/14/2009] [Indexed: 11/28/2022]
|
17
|
Redeker V. Mass spectrometry analysis of C-terminal posttranslational modifications of tubulins. Methods Cell Biol 2010; 95:77-103. [PMID: 20466131 DOI: 10.1016/s0091-679x(10)95006-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In mammalian brain and ciliary axonemes from ciliates, alpha- and beta-tubulins exhibit an extraordinary heterogeneity due to a combination of multigene family expression and numerous posttranslational modifications (PTMs). The combination of several PTMs located in the C-terminal tail of tubulins plays a major role in this important polymorphism of tubulin: polyglutamylation, polyglycylation, detyrosination, tyrosination, removal of the penultimate glutamate residue, and phosphorylation. In order to document the relationship and functions of these PTMs, we have developed a tubulin C-terminal Peptide Mass Fingerprinting (PMF) method. Using simplified microtubule proteins and tubulin C-terminal peptides purifications, direct matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) analysis can generate a complete picture of all tubulin isotype-specific C-terminal peptides together with their respective PTMs. This chapter will illustrate the capability of this approach to compare tubulin isoform compositions and document the changes in PTMs between samples with different tubulin assembly properties or consecutively to inactivation of modification sites or modification enzymes. Complementary MS-based approaches useful to document the structure of the highly heterogeneous posttranslational polymodifications will also be presented.
Collapse
Affiliation(s)
- Virginie Redeker
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
18
|
Xiao H, Bissati KE, Verdier-Pinard P, Burd B, Zhang H, Kim K, Fiser A, Angeletti RH, Weiss LM. Post-translational modifications to Toxoplasma gondii alpha- and beta-tubulins include novel C-terminal methylation. J Proteome Res 2010; 9:359-72. [PMID: 19886702 PMCID: PMC2813730 DOI: 10.1021/pr900699a] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Toxoplasma gondii is an apicomplexan of both medical and veterinary importance which is classified as an NIH Category B priority pathogen. It is best known for its ability to cause congenital infection in immune competent hosts and encephalitis in immune compromised hosts. The highly stable and specialized microtubule-based cytoskeleton participates in the invasion process. The genome encodes three isoforms of both alpha- and beta-tubulin and we show that the tubulin is extensively altered by specific post-translational modifications (PTMs) in this paper. T. gondii tubulin PTMs were analyzed by mass spectrometry and immunolabeling using specific antibodies. The PTMs identified on alpha-tubulin included acetylation of Lys40, removal of the last C-terminal amino acid residue Tyr453 (detyrosinated tubulin) and truncation of the last five amino acid residues. Polyglutamylation was detected on both alpha- and beta-tubulins. An antibody directed against mammalian alpha-tubulin lacking the last two C-terminal residues (Delta2-tubulin) labeled the apical region of this parasite. Detyrosinated tubulin was diffusely present in subpellicular microtubules and displayed an apparent accumulation at the basal end. Methylation, a PTM not previously described on tubulin, was also detected. Methylated tubulins were not detected in the host cells, human foreskin fibroblasts, suggesting that this may be a modification specific to the Apicomplexa.
Collapse
Affiliation(s)
- Hui Xiao
- Laboratory for Macromolecular Analysis and Proteomics; Albert Einstein College of Medicine
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
| | - Kamal El Bissati
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
| | - Pascal Verdier-Pinard
- INSERM UMR 911 CRO2, Aix-Marseille Université, Faculté de Pharmacie, 27 bd Jean Moulin, 13285 Marseille cedex 05, France
| | - Berta Burd
- Laboratory for Macromolecular Analysis and Proteomics; Albert Einstein College of Medicine
| | - Hongshan Zhang
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
| | - Kami Kim
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Ruth Hogue Angeletti
- Laboratory for Macromolecular Analysis and Proteomics; Albert Einstein College of Medicine
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
19
|
Shen Q, Zheng X, McNutt MA, Guang L, Sun Y, Wang J, Gong Y, Hou L, Zhang B. NAT10, a nucleolar protein, localizes to the midbody and regulates cytokinesis and acetylation of microtubules. Exp Cell Res 2009; 315:1653-67. [PMID: 19303003 DOI: 10.1016/j.yexcr.2009.03.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 03/03/2009] [Accepted: 03/05/2009] [Indexed: 01/02/2023]
Abstract
The midbody is a structural organelle formed in late phase mitosis which is responsible for completion of cytokinesis. Although various kinds of proteins have been found to distribute or immigrate to this organelle, their functions have still not been completely worked out. In this study, we demonstrated that NAT10 (N-acetyltransferase 10, NAT10) is not only predominantly distributed in the nucleolus in interphase, but is also concentrated in the mitotic midbody during telophase. The domain in N-terminal residues 549-834 of NAT10 specifically mediated its subcellular localization. Treatment with genotoxic agents or irradiation increased concentration of NAT10 in both the nucleolus and midbody. Moreover, DNA damage induced increase of NAT10 in the midbody apparently accompanied by in situ elevation of the level of acetylated alpha-tubulin, suggesting that it plays a role in maintaining or enhancing stability of alpha-tubulin. The depletion of NAT10 induced defects in nucleolar assembly, cytokinesis and decreased acetylated alpha-tubulin, leading to G2/M cell cycle arrest or delay of mitotic exit. In addition, over-expression of NAT10 was found in a variety of soft tissue sarcomas, and correlated with tumor histological grading. These results indicate that NAT10 may play an important role in cell division through facilitating reformation of the nucleolus and midbody in the late phase of cell mitosis, and stabilization of microtubules.
Collapse
Affiliation(s)
- Qi Shen
- Department of Pathology, Health Science Center of Peking University, Haidian District, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hoyle HD, Turner FR, Raff EC. Axoneme-dependent tubulin modifications in singlet microtubules of the Drosophila sperm tail. ACTA ACUST UNITED AC 2008; 65:295-313. [PMID: 18205200 DOI: 10.1002/cm.20261] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Drosophila melanogaster sperm tubulins are posttranslationally glutamylated and glycylated. We show here that axonemes are the substrate for these tubulin C-terminal modifications. Axoneme architecture is required, but full length, motile axonemes are not necessary. Tubulin glutamylation occurs during or shortly after assembly into the axoneme; only glutamylated tubulins are glycylated. Tubulins in other testis microtubules are not modified. Only a small subset of total Drosophila sperm axoneme tubulins have these modifications. Biochemical fractionation of Drosophila sperm showed that central pair and accessory microtubules have the majority of poly-modified tubulins, whereas doublet microtubules have only small amounts of mono- and oligo-modified tubulins. Glutamylation patterns for different beta-tubulins experimentally assembled into axonemes were consistent with utilization of modification sites corresponding to those identified in other organisms, but surrounding sequence context was also important. We compared tubulin modifications in the 9 + 9 + 2 insect sperm tail axonemes of Drosophila with the canonical 9 + 2 axonemes of sperm of the sea urchin Lytichinus pictus and the 9 + 0 motile sperm axonemes of the eel Anguilla japonica. In contrast to Drosophila sperm, L. pictus sperm have equivalent levels of modified tubulins in both doublet and central pair microtubule fractions, whereas the doublets of A. japonica sperm exhibit little glutamylation but extensive glycylation. Tubulin C-terminal modifications are a prevalent feature of motile axonemes, but there is no conserved pattern for placement or amount of these
Collapse
Affiliation(s)
- Henry D Hoyle
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
21
|
Janke C, Rogowski K, van Dijk J. Polyglutamylation: a fine-regulator of protein function? 'Protein Modifications: beyond the usual suspects' review series. EMBO Rep 2008; 9:636-41. [PMID: 18566597 DOI: 10.1038/embor.2008.114] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 05/26/2008] [Indexed: 11/10/2022] Open
Abstract
Polyglutamylation is a post-translational modification in which glutamate side chains of variable lengths are formed on the modified protein. It is evolutionarily conserved from protists to mammals and its most prominent substrate is tubulin, the microtubule (MT) building block. Various polyglutamylation states of MTs can be distinguished within a single cell and they are also characteristic of specific cell types or organelles. Polyglutamylation has been proposed to be involved in the functional adaptation of MTs, as it occurs within the carboxy-terminal tubulin tails that participate directly in the binding of many structural and motor MT-associated proteins. The discovery of a new family of enzymes that catalyse this modification has brought new insight into the mechanism of polyglutamylation and now allows for direct functional studies of the role of tubulin polyglutamylation. Moreover, the recent identification of new substrates of polyglutamylation indicates that this post-translational modification could be a potential regulator of diverse cellular processes.
Collapse
Affiliation(s)
- Carsten Janke
- Centre de Recherches de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, University Montpellier 2 and 1, 1919 Route de Mende, 34293 Montpellier, France.
| | | | | |
Collapse
|
22
|
Hernandez Y, Castillo C, Roychowdhury S, Hehl A, Aley SB, Das S. Clathrin-dependent pathways and the cytoskeleton network are involved in ceramide endocytosis by a parasitic protozoan, Giardia lamblia. Int J Parasitol 2007; 37:21-32. [PMID: 17087963 PMCID: PMC1831817 DOI: 10.1016/j.ijpara.2006.09.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/07/2006] [Accepted: 09/11/2006] [Indexed: 11/16/2022]
Abstract
Although identified as an early-diverged protozoan, Giardia lamblia shares many similarities with higher eukaryotic cells, including an internal membrane system and cytoskeleton, as well as secretory pathways. However, unlike many other eukaryotes, Giardia does not synthesize lipids de novo, but rather depends on exogenous sources for both energy production and organelle or membrane biogenesis. It is not known how lipid molecules are taken up by this parasite and if endocytic pathways are involved in this process. In this investigation, we tested the hypothesis that highly regulated and selective lipid transport machinery is present in Giardia and necessary for the efficient internalization and intracellular targeting of ceramide molecules, the major sphingolipid precursor. Using metabolic and pathway inhibitors, we demonstrate that ceramide is internalized through endocytic pathways and is primarily targeted into perinuclear/endoplasmic reticulum membranes. Further investigations suggested that Giardia uses both clathrin-dependent pathways and the actin cytoskeleton for ceramide uptake, as well as microtubule filaments for intracellular localization and targeting. We speculate that this parasitic protozoan has evolved cytoskeletal and clathrin-dependent endocytic mechanisms for importing ceramide molecules from the cell exterior for the synthesis of membranes and vesicles during growth and differentiation.
Collapse
Affiliation(s)
- Yunuen Hernandez
- Infectious Diseases/Immunology, University of Texas at El Paso, TX 79968-0519, USA
| | | | | | | | | | | |
Collapse
|
23
|
Libusová L, Dráber P. Multiple tubulin forms in ciliated protozoan Tetrahymena and Paramecium species. PROTOPLASMA 2006; 227:65-76. [PMID: 16736248 DOI: 10.1007/s00709-005-0152-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Accepted: 08/26/2005] [Indexed: 05/09/2023]
Abstract
Tetrahymena and Paramecium species are widely used representatives of the phylum Ciliata. Ciliates are particularly suitable model organisms for studying the functional heterogeneity of tubulins, since they provide a wide range of different microtubular structures in a single cell. Sequencing projects of the genomes of members of these two genera are in progress. Nearly all members of the tubulin superfamily (alpha-, beta-, gamma-, delta-, epsilon-, eta-, theta-, iota-, and kappa-tubulins) have been identified in Paramecium tetraurelia. In Tetrahymena spp., the functional consequences of different posttranslational tubulin modifications (acetylation, tyrosination and detyrosination, phosphorylation, glutamylation, and glycylation) have been studied by different approaches. These model organisms provide the opportunity to determine the function of tubulins found in ciliates, as well as in humans, but absent in some other model organisms. They also give us an opportunity to explore the mechanisms underlying microtubule diversity. Here we review current knowledge concerning the diversity of microtubular structures, tubulin genes, and posttranslational modifications in Tetrahymena and Paramecium species.
Collapse
Affiliation(s)
- L Libusová
- Department of Animal Physiology and Developmental Biology, Faculty of Sciences, Charles University, Prague, Czech Republic
| | | |
Collapse
|
24
|
Lalle M, Salzano AM, Crescenzi M, Pozio E. The Giardia duodenalis 14-3-3 protein is post-translationally modified by phosphorylation and polyglycylation of the C-terminal tail. J Biol Chem 2005; 281:5137-48. [PMID: 16368691 DOI: 10.1074/jbc.m509673200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The flagellated protozoan Giardia duodenalis (syn. lamblia or intestinalis) has been chosen as a model parasite to further investigate the multifunctional 14-3-3s, a family of highly conserved eukaryotic proteins involved in many cellular processes, such as cell cycle, differentiation, apoptosis, and signal transduction pathways. We confirmed the presence of a single 14-3-3 homolog gene (g14-3-3) by an in silico screening of the complete genome of Giardia, and we demonstrated its constitutive transcription throughout the life stages of the parasite. We cloned and expressed the g14-3-3 in bacteria, and by protein-protein interaction assays we demonstrated that it is a functional 14-3-3. Using an anti-peptide antibody raised against a unique 18-amino acid sequence at the N terminus, we observed variations both in the intracellular localization and in the molecular size of the native g14-3-3 during the conversion of Giardia from trophozoites to the cyst stage. An affinity chromatography, based on the 14-3-3 binding to the polypeptide difopein, was set to purify the native g14-3-3. By matrix-assisted laser desorption ionization mass spectroscopy analysis, we showed that polyglycylation, an unusual post-translational modification described only for tubulin, occurred at the extreme C terminus of the native g14-3-3 on Glu246, Glu247, or both and that the Thr214, located in the loop between helices 8 and 9, is phosphorylated. We propose that the addition of the polyglycine chain can promote the binding of g14-3-3 to alternative ligands and that the differential rate of polyglycylation/deglycylation during the encystation process can act as a novel mechanism to regulate the intracellular localization of g14-3-3.
Collapse
MESH Headings
- 14-3-3 Proteins/chemistry
- 14-3-3 Proteins/metabolism
- Amino Acid Sequence
- Animals
- Apoptosis
- Blotting, Northern
- Blotting, Western
- Cell Cycle
- Cell Differentiation
- Chromatography, Affinity
- Chromatography, Liquid
- Cloning, Molecular
- Densitometry
- Dimerization
- Escherichia coli/metabolism
- Genetic Vectors
- Giardia/metabolism
- Mass Spectrometry
- Microscopy, Fluorescence
- Molecular Sequence Data
- Peptides/chemistry
- Phosphorylation
- Polymerase Chain Reaction
- Protein Binding
- Protein Interaction Mapping
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- Recombinant Proteins/chemistry
- Sequence Homology, Amino Acid
- Signal Transduction
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Tubulin/chemistry
Collapse
Affiliation(s)
- Marco Lalle
- Department of Infectious, Parasitic and Immunomediated Diseases and Department of Environment and Primary Prevention, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | | | | |
Collapse
|
25
|
Mencarelli C, Caroti D, Bré MH, Levilliers N, Dallai R. Tubulin glycylation and glutamylation deficiencies in unconventional insect axonemes. ACTA ACUST UNITED AC 2005; 61:226-36. [PMID: 15988739 DOI: 10.1002/cm.20081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Though the 9+2 axonemal organization has generally been conserved throughout metazoan evolution, insect spermatozoa possess a substantial variety in axoneme ultrastructure, displaying different axonemal patterns. Therefore, insects provide a wide range of models that may be useful for the study of the mechanisms of axoneme assembly. We have used antibodies specific for glutamylated, monoglycylated, and polyglycylated tubulin to investigate the tubulin isoform content expressed in the unorthodox sperm axonemes of four insect species belonging to both of the superorders Palaeoptera and Neoptera. Each one of these axonemal models exhibits distinctive structural features, either showing the typical radial organization endowed with a ninefold symmetry or consisting of an helical arrangement with up to 200 microtubular doublets, but in all cases these axonemes share the absence of a microtubule central pair. Our results showed that all these atypical patterns are characterized by a dramatic decrease in both tubulin glycylation and glutamylation levels or even lack of both polymodifications. These data provide the first examples of a simultaneous extreme reduction or even absence of both polymodifications in axonemal tubulin. Given the unrelated positions of the analyzed species in the insect phylogenetic tree, this common feature is probably not due to evolutionary relationships. Therefore, our findings support the hypothesis of the existence of a correlation between the low level of polymodifications and the lack of a microtubule central pair in these peculiar insect flagellar axonemes, similarly as was previously proposed for cilia of Tetrahymena glycylation site mutants.
Collapse
|
26
|
Popodi EM, Hoyle HD, Turner FR, Raff EC. The proximal region of the β-tubulin C-terminal tail is sufficient for axoneme assembly. ACTA ACUST UNITED AC 2005; 62:48-64. [PMID: 16080206 DOI: 10.1002/cm.20085] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have used Drosophila testis-specific beta2-tubulin to determine sequence requirements for different microtubules. The beta2-tubulin C-terminal tail has unique sperm-specific functions [Dev Biol 158:267-286 (2003)] and is also important for forming stable heterodimers with alpha-tubulin, a general function common to all microtubules [Mol Biol Cell 12(7):2185-2194 (2001)]. beta-tubulins utilized in motile 9 + 2 axonemes contain a C-terminal sequence "axoneme motif" [Science 275 (1997) 70-73]. C-terminal truncated beta2-tubulin cannot form the sperm tail axoneme. Here we show that a partially truncated beta2-tubulin (beta2Delta7) containing only the proximal portion of the C-terminal tail, including the axoneme motif, can support production of functional motile sperm. We conclude that these proximal eight amino acids specify the binding site for protein(s) essential to support assembly of the motile axoneme. Males that express beta2Delta7, although they are fertile, produce fewer sperm than wild type males. Beta2Delta7 causes a slightly increased error rate in spermatogenesis attributable to loss of stabilizing properties intrinsic to the full-length C-terminal tail. Therefore, beta2Delta7 males would be at a selective disadvantage and it is likely that the full-length C-terminus would be essential in the wild and in evolution.
Collapse
Affiliation(s)
- Ellen M Popodi
- Department of Biology and Indiana Molecular Biology Institute, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | | | |
Collapse
|
27
|
Redeker V, Levilliers N, Vinolo E, Rossier J, Jaillard D, Burnette D, Gaertig J, Bré MH. Mutations of tubulin glycylation sites reveal cross-talk between the C termini of alpha- and beta-tubulin and affect the ciliary matrix in Tetrahymena. J Biol Chem 2004; 280:596-606. [PMID: 15492004 DOI: 10.1074/jbc.m408324200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two types of polymeric post-translational modifications of alpha/beta-tubulin, glycylation and glutamylation, occur widely in cilia and flagella. Their respective cellular functions are poorly understood. Mass spectrometry and immunoblotting showed that two closely related species, the ciliates Tetrahymena and Paramecium, have dramatically different compositions of tubulin post-translational modifications in structurally identical axonemes. Whereas the axonemal tubulin of Paramecium is highly glycylated and has a very low glutamylation content, the axonemal tubulin of Tetrahymena is glycylated and extensively glutamylated. In addition, only the alpha-tubulin of Tetrahymena undergoes detyrosination. Mutations of the known glycylation sites in Tetrahymena tubulin affected the level of each polymeric modification type in both the mutated and nonmutated subunits, revealing cross-talk between alpha- and beta-tubulin. Ultrastructural analyses of glycylation site mutants uncovered defects in the doublet B-subfiber of axonemes and revealed an accumulation of dense material in the ciliary matrix, reminiscent of intraflagellar transport particles seen by others in Chlamydomonas. We propose that polyglycylation and/or polyglutamylation stabilize the B-subfiber of outer doublets and regulate the intraflagellar transport.
Collapse
Affiliation(s)
- Virginie Redeker
- Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Laboratoire de Neurobiologie, UMR 7637 CNRS, 10 rue Vauquelin, 75005 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Plessmann U, Reiter-Owona I, Lechtreck KF. Posttranslational modifications of alpha-tubulin of Toxoplasma gondii. Parasitol Res 2004; 94:386-9. [PMID: 15549389 DOI: 10.1007/s00436-004-1220-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 08/11/2004] [Indexed: 11/25/2022]
Abstract
The posttranslational modifications of alpha-tubulin of Toxoplasma gondii were characterized by antibodies and biochemical analysis of the carboxy-terminal peptide. Alpha-Tubulin is acetylated and glutamylated. Side chains with up to three glutamate residues are linked to Glu445 of T. gondii alpha-tubulin. The data suggest that the site of glutamylation on alpha-tubulin is conserved over a broad range of species.
Collapse
Affiliation(s)
- Uwe Plessmann
- Department of Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | |
Collapse
|
29
|
Wang Q, Hirohashi Y, Furuuchi K, Zhao H, Liu Q, Zhang H, Murali R, Berezov A, Du X, Li B, Greene MI. The Centrosome in Normal and Transformed Cells. DNA Cell Biol 2004; 23:475-89. [PMID: 15307950 DOI: 10.1089/1044549041562276] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The centrosome is a unique organelle that functions as the microtubule organizing center in most animal cells. During cell division, the centrosomes form the poles of the bipolar mitotic spindle. In addition, the centrosomes are also needed for cytokinesis. Each mammalian somatic cell typically contains one centrosome, which is duplicated in coordination with DNA replication. Just like the chromosomes, the centrosome is precisely reproduced once and only once during each cell cycle. However, it remains a mystery how this protein-based structure undergoes accurate duplication in a semiconservative manner. Intriguingly, amplification of the centrosome has been found in numerous forms of cancers. Cells with multiple centrosomes tend to form multipolar spindles, which result in abnormal chromosome segregation during mitosis. It has therefore been postulated that centrosome aberration may compromise the fidelity of cell division and cause chromosome instability. Here we review the current understanding of how the centrosome is assembled and duplicated. We also discuss the possible mechanisms by which centrosome abnormality contributes to the development of malignant phenotype.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Westermann S, Weber K. Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 2004; 4:938-47. [PMID: 14685172 DOI: 10.1038/nrm1260] [Citation(s) in RCA: 530] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stefan Westermann
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
31
|
Campanati L, Troester H, Monteiro-Leal LH, Spring H, Trendelenburg MF, de Souza W. Tubulin diversity in trophozoites of Giardia lamblia. Histochem Cell Biol 2003; 119:323-31. [PMID: 12687378 DOI: 10.1007/s00418-003-0517-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2003] [Indexed: 11/24/2022]
Abstract
Giardia lamblia is a diplomonad that parasitizes the small intestine of vertebrates. The trophozoite is multiflagellar and its cytoskeleton presents a complex organization of microtubular structures. One of these, the adhesive disk, consists of a microtubular spiral. The median body, whose function is not yet determined, is also composed by microtubules. The cell has eight flagella and two microtubule sheets, known as the funis. In this study we used several antibodies and immunofluorescence microscopy to help in the characterization of these structures. We observed that Giardia tubulin reacts with antibodies raised against very distinct immunogens. The antibodies used were against: (1) alpha-tubulin from chicken embryo brain, Trypanosoma brucei, sea urchin sperm, Paramecium, acetylated alpha-tubulin from Paramecium, and tyrosinated alpha-tubulin, (2) beta-tubulin from chicken embryo brain and Physarum polycephalum, and (3) an antibody with specificity to beta-tubulin having as immunogen the FtsZ bacterial protein. Each cytoskeletal structure of Giardia presented a distinct pattern of labeling by the several antibodies used. These data indicate that even being considered one of the most ancient of organisms, Giardia shares similarities (at least in relation to tubulin) with other organisms. They also open some questions about the organization and composition of its microtubular structures.
Collapse
Affiliation(s)
- Loraine Campanati
- Instituto de Biofísica Carlos Chagas Filho, Laboratório de Ultraestrutura Celular Hertha Meyer, CCS, Universidade Federal do Rio de Janeiro, Ilha do Fundão, 21940-900 Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Giardia lamblia is a ubiquitous intestinal pathogen of mammals. Evolutionary studies have also defined it as a member of one of the earliest diverging eukaryotic lineages that we are able to cultivate and study in the laboratory. Despite early recognition of its striking structure resembling a half pear endowed with eight flagella and a unique ventral disk, a molecular understanding of the cytoskeleton of Giardia has been slow to emerge. Perhaps most importantly, although the association of Giardia with diarrhoeal disease has been known for several hundred years, little is known of the mechanism by which Giardia exacts such a toll on its host. What is clear, however, is that the flagella and disk are essential for parasite motility and attachment to host intestinal epithelial cells. Because peristaltic flow expels intestinal contents, attachment is necessary for parasites to remain in the small intestine and cause diarrhoea, underscoring the essential role of the cytoskeleton in virulence. This review presents current day knowledge of the cytoskeleton, focusing on its role in motility and attachment. As the advent of new molecular technologies in Giardia sets the stage for a renewed focus on the cytoskeleton and its role in Giardia virulence, we discuss future research directions in cytoskeletal function and regulation.
Collapse
Affiliation(s)
- Heidi G Elmendorf
- Department of Biology, Georgetown University, 348 Reiss Building 37th and O Sts. NW, Washington, DC 20057, USA.
| | | | | |
Collapse
|
33
|
Westermann S, Weber K. Identification of CfNek, a novel member of the NIMA family of cell cycle regulators, as a polypeptide copurifying with tubulin polyglutamylation activity in Crithidia. J Cell Sci 2002; 115:5003-12. [PMID: 12432086 DOI: 10.1242/jcs.00170] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Post-translational glutamylation of tubulin plays an important role in regulating the interaction between microtubules and associated proteins, but so far the enzymes involved in this process have not been cloned from any cellular source. Using a modified purification scheme that employs a hydroxyapaptite chromatography as the final step we identified a 54 kDa band as the major polypeptide copurifying with tubulin polyglutamylation activity from the trypanosomatid Crithidia fasciculata. Based on peptide sequence information we have cloned the corresponding cDNA and identify Crithidia p54 as a novel member (termed CfNek) of the NIMA family of putative cell cycle regulators. CfNek is a protein of 479 amino acids that contains an unusual protein kinase domain that lacks the glycine-rich loop in subdomain I. The protein also harbours a PEST sequence and a pleckstrin homology domain. The tubulin polyglutamylase preparation displays the beta-casein phosphorylation activity typical for NIMA related kinases. Recombinant His-tagged CfNek expressed in Crithidia localises to the flagellar attachment zone/basal body of the parasite. After purification on a Ni(2+)-column the recombinant enzyme preparation displays ATP-dependent tubulin polyglutamylation activity as well as casein-phosphorylation activity.
Collapse
Affiliation(s)
- Stefan Westermann
- Max Planck Institute for Biophysical Chemistry, Department of Biochemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | | |
Collapse
|
34
|
Noël C, Gerbod D, Fast NM, Wintjens R, Delgado-Viscogliosi P, Doolittle WF, Viscogliosi E. Tubulins in Trichomonas vaginalis: molecular characterization of alpha-tubulin genes, posttranslational modifications, and homology modeling of the tubulin dimer. J Eukaryot Microbiol 2001; 48:647-54. [PMID: 11831773 DOI: 10.1111/j.1550-7408.2001.tb00204.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have isolated and analysed an alpha-tubulin-encoding gene (atub1) in an early-diverging eukaryote, Trichomonas vaginalis. The complete atub1 open reading frame included 1.356 bp encoding a polypeptide of 452 amino-acyl residues. A second alpha-tubulin gene (atub2) was amplified by PCR using primers derived from consensus alpha-tubulin amino acid sequences. Both T. vaginalis alpha-tubulin sequences showed high identity to those described in other parabasalids (94.4%-97.3%), and exhibited a high degree of similarity to sequences from Metazoa (such as pig brain) and diplomonads (such as Giardia). Despite large evolutionary distances previously observed between trichomonads and mammals, the three-dimensional model of the T. vaginalis tubulin dimer was very similar to that of pig brain. Possible correlations between alpha-tubulin sequences and posttranslational modifications (PTMs) were examined. Our observations corroborated previous data obtained in T. vaginalis using specific anti-PTMs antibodies. As described in the related species Tritrichomonas mobilensis, microtubules are likely acetylated, non-tyrosinated, glutamylated, and non-glycylated in T. vaginalis. Evolutionary considerations concerning the time of appearance of these tubulin PTMs are also discussed since trichomonads are potentially one of the earliest diverging eukaryotic lineages.
Collapse
Affiliation(s)
- C Noël
- Institut Pasteur, INSERM U547, Lille, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Nogales E. Structural insight into microtubule function. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 30:397-420. [PMID: 11441808 DOI: 10.1146/annurev.biophys.30.1.397] [Citation(s) in RCA: 269] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microtubules are polymers that are essential for, among other functions, cell transport and cell division in all eukaryotes. The regulation of the microtubule system includes transcription of different tubulin isotypes, folding of alpha/beta-tubulin heterodimers, post-translation modification of tubulin, and nucleotide-based microtubule dynamics, as well as interaction with numerous microtubule-associated proteins that are themselves regulated. The result is the precise temporal and spatial pattern of microtubules that is observed throughout the cell cycle. The recent high-resolution analysis of the structure of tubulin and the microtubule has brought new insight to the study of microtubule function and regulation, as well as the mode of action of antimitotic drugs that disrupt normal microtubule behavior. The combination of structural, genetic, biochemical, and biophysical data should soon give us a fuller understanding of the exquisite details in the regulation of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- E Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, and Lawrence Berkeley National Laboratory, Berkeley California 94720, USA.
| |
Collapse
|
36
|
Abstract
Although most eukaryotic cells can express multiple isotypes of αβ-tubulin, the significance of this diversity has not always been apparent. Recent data indicate that particular αβ-tubulin isotypes, both genome encoded and those derived by post-translational modification, can directly influence microtubule structure and function — thus validating ideas originally proposed in the multitubulin hypothesis over 25 years ago.It has also become increasingly evident over the past year that some (but intriguingly not all) eukaryotes encode several other tubulin proteins, and to date five further members of the tubulin superfamily, γ, δ, ϵ, 𝛇 and η, have been identified. Although the role of γ-tubulin in the nucleation of microtubule assembly is now well established, far less is known about the functions of δ-, ϵ-, 𝛇- and η-tubulin. Recent work has expanded our knowledge of the functions and localisation of these newer members of the tubulin superfamily, and the emerging data suggesting a restricted evolutionary distribution of these `new' tubulin proteins, conforms to established knowledge of microtubule cell biology. On the basis of current evidence, we predict that δ-, ϵ-, 𝛇- and η-tubulin all have functions associated with the centriole or basal body of eukaryotic cells and organisms.
Collapse
Affiliation(s)
- P G McKean
- School of Biological Sciences, University of Manchester, UK
| | | | | |
Collapse
|
37
|
Abstract
Giardia lamblia is a common cause of diarrhea in humans and other mammals throughout the world. It can be distinguished from other Giardia species by light or electron microscopy. The two major genotypes of G. lamblia that infect humans are so different genetically and biologically that they may warrant separate species or subspecies designations. Trophozoites have nuclei and a well-developed cytoskeleton but lack mitochondria, peroxisomes, and the components of oxidative phosphorylation. They have an endomembrane system with at least some characteristics of the Golgi complex and encoplasmic reticulum, which becomes more extensive in encysting organisms. The primitive nature of the organelles and metabolism, as well as small-subunit rRNA phylogeny, has led to the proposal that Giardia spp. are among the most primitive eukaryotes. G. lamblia probably has a ploidy of 4 and a genome size of approximately 10 to 12 Mb divided among five chromosomes. Most genes have short 5' and 3' untranslated regions and promoter regions that are near the initiation codon. Trophozoites exhibit antigenic variation of an extensive repertoire of cysteine-rich variant-specific surface proteins. Expression is allele specific, and changes in expression from one vsp gene to another have not been associated with sequence alterations or gene rearrangements. The Giardia genome project promises to greatly increase our understanding of this interesting and enigmatic organism.
Collapse
Affiliation(s)
- R D Adam
- Department of Medicine, University of Arizona College of Medicine, 1501N. Campbell, Tucson, AZ 85724-5049, USA.
| |
Collapse
|
38
|
Abstract
Microtubules are polymers that are essential for, among other functions, cell transport and cell division in all eukaryotes. The regulation of the microtubule system includes transcription of different tubulin isotypes, folding of /¿-tubulin heterodimers, post-translation modification of tubulin, and nucleotide-based microtubule dynamics, as well as interaction with numerous microtubule-associated proteins that are themselves regulated. The result is the precise temporal and spatial pattern of microtubules that is observed throughout the cell cycle. The recent high-resolution analysis of the structure of tubulin and the microtubule has brought new insight to the study of microtubule function and regulation, as well as the mode of action of antimitotic drugs that disrupt normal microtubule behavior. The combination of structural, genetic, biochemical, and biophysical data should soon give us a fuller understanding of the exquisite details in the regulation of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- E Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA.
| |
Collapse
|
39
|
Abstract
Species of the trypanosomatid parasite genera Trypanosoma and Leishmania exhibit a particular range of cell shapes that are defined by their internal cytoskeletons. The cytoskeleton is characterized by a subpellicular corset of microtubules that are cross-linked to each other and to the plasma membrane. Trypanosomatid cells possess an extremely precise organization of microtubules and filaments, with some of their organelles, such as the mitochondria, kinetoplasts, basal bodies, and flagella, present as single copies in each cell. The duplication of these structures and changes in their position during life cycle differentiations provide markers and insight into events involved in determining cell form and division. We have a rapidly increasing catalog of these structures, their molecular cytology, and their ontogeny. The current sophistication of available molecular genetic techniques for use in these organisms has allowed a new functional analysis of the cytoskeleton, including functions that are intrinsic to the proliferation and pathogenicity of these parasites.
Collapse
Affiliation(s)
- K Gull
- School of Biological Sciences, University of Manchester, United Kingdom.
| |
Collapse
|
40
|
Westermann S, Plessmann U, Weber K. Synthetic peptides identify the minimal substrate requirements of tubulin polyglutamylase in side chain elongation. FEBS Lett 1999; 459:90-4. [PMID: 10508923 DOI: 10.1016/s0014-5793(99)01227-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The minimal sequence requirement of Crithidia tubulin polyglutamylase is already fulfilled by tubulin-related peptides carrying a free alpha-carboxylate on a glutamic acid residue. Since the product of each glutamylation step fulfills the substrate requirements necessary for the next cycle, very long side chains are generated with brain tubulin as a substrate. Up to 70 mol of glutamic acid was incorporated per alphabeta-heterodimer. We speculate that the strict choice of a particular glutamate residue for the formation of the isopeptide bond initiating a novel side chain is made by a tubulin monoglutamylase which requires the entire tubulin as substrate.
Collapse
Affiliation(s)
- S Westermann
- Max Planck Institute for Biophysical Chemistry, Department of Biochemistry, Am Fassberg 11, 37077, Goettingen, Germany
| | | | | |
Collapse
|
41
|
Westermann S, Schneider A, Horn EK, Weber K. Isolation of tubulin polyglutamylase from Crithidia; binding to microtubules and tubulin, and glutamylation of mammalian brain alpha- and beta-tubulins. J Cell Sci 1999; 112 ( Pt 13):2185-93. [PMID: 10362548 DOI: 10.1242/jcs.112.13.2185] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trypanosomatids have a striking cage-like arrangement of submembraneous microtubules. We previously showed that alpha- and beta- tubulins of these stable microtubules are extensively modified by polyglutamylation. Cytoskeletal microtubular preparations obtained by Triton extraction of Leishmania tarentolae and Crithidia fasciculata retain an enzymatic activity that incorporates radioactive glutamic acid in a Mg2+-ATP-dependent manner into alpha- and beta-tubulins. The tubulin polyglutamylase is extracted by 0.25 M salt. The Crithidia enzyme can be purified by ATP-affinity chromatography, glycerol-gradient centrifugation and ion-exchange chromatography. After extraction from the microtubular cytoskeleton the glutamylase forms a complex with alphabeta tubulin, but behaves after removal of tubulin as a globular protein with a molecular mass of 38x10(3). In highly enriched fractions a corresponding band is the major polypeptide visible in SDS-PAGE. The enzyme from Crithidia recognises mammalian brain tubulin, where it incorporates glutamic acid preferentially into the more acidic variants of both alpha- and beta-tubulins. Synthetic peptides with an oligoglutamyl side chain, corresponding to the carboxy-terminal end of brain alpha- and beta-tubulins, are accepted by the enzyme, albeit at low efficiency. The polyglutamylase elongates the side chain by up to 3 and 5 residues, respectively. Other properties of the tubulin polyglutamylase are also discussed.
Collapse
Affiliation(s)
- S Westermann
- Max Planck Institute for Biophysical Chemistry, Department of Biochemistry, Am Fassberg 11, Germany
| | | | | | | |
Collapse
|
42
|
Rüdiger AH, Rüdiger M, Wehland J, Weber K. Monoclonal antibody ID5: epitope characterization and minimal requirements for the recognition of polyglutamylated alpha- and beta-tubulin. Eur J Cell Biol 1999; 78:15-20. [PMID: 10082420 DOI: 10.1016/s0171-9335(99)80003-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A monoclonal antibody (ID5) raised against the synthetic tetradecapeptide corresponding to the C-terminal region of detyrosinated alpha-tubulin showed an unexpected cross-reactivity with beta-tubulin from pig brain tissue. The specificity and the minimal epitope requirements of ID5 were characterized by competitive enzyme-linked immunosorbent assay (ELISA) and spot blots using a series of synthetic peptides and the natural peptides of beta-tubulin and detyrosinated alpha-tubulin from brain. The epitope of ID5 is comprised of the carboxyterminal sequence -XEE carrying the terminal alpha-carboxylate group with X being a variable residue. All linkages in the epitope involve alpha-peptide bonds. This epitope is provided by the detyrosinated alpha-tubulin main chain and the polyglutamyl side chains of both brain alpha- and beta-tubulins. Affinity purification of beta-tubulin peptides and mass spectrometric characterization reveal that peptides carrying three to nine glutamyl residues in the side chain are recognized by ID5. These results show that except for the first gamma-peptide linkage the alpha-peptide bond is the preferred linkage type in the tubulin polyglutamyl side chains.
Collapse
Affiliation(s)
- A H Rüdiger
- Gesellschaft für Biotechnologische Forschung, Department of Cell Biology, Braunschweig, Germany
| | | | | | | |
Collapse
|
43
|
Schneider A, Plessmann U, Felleisen R, Weber K. Posttranslational modifications of trichomonad tubulins; identification of multiple glutamylation sites. FEBS Lett 1998; 429:399-402. [PMID: 9662457 DOI: 10.1016/s0014-5793(98)00644-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The alpha- and beta-tubulins present in cytoskeletons of Tritrichomonas mobilensis are extensively glutamylated. Automated sequencing and mass spectrometry of the carboxyterminal peptides identifies 4 glutamylation sites in alpha- and 2 sites in beta-tubulin. They are marked by asterisks in the terminal sequences GDE*E*E*E*DDG (alpha) and EGE*E*DEEAEA (beta). This is the first report that tubulin glutamylation can occur at multiple sites. Although T. mobilensis has four flagellae the tubulins lack polyglycylation. Thus glycylation is not necessary for formation or function of axonemal microtubules. Alpha-tubulin is completely acetylated at lysine 40 and shows no tyrosine cycle. Peptide sequences establish two distinct beta-tubulins.
Collapse
Affiliation(s)
- A Schneider
- University of Fribourg, Institute of Zoology, Pérolles, Switzerland
| | | | | | | |
Collapse
|