1
|
Peart LA, Draper M, Tarasov AI. The impact of GLP-1 signalling on the energy metabolism of pancreatic islet β-cells and extrapancreatic tissues. Peptides 2024; 178:171243. [PMID: 38788902 DOI: 10.1016/j.peptides.2024.171243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Glucagon-like peptide-1 signalling impacts glucose homeostasis and appetite thereby indirectly affecting substrate availability at the whole-body level. The incretin canonically produces an insulinotropic effect, thereby lowering blood glucose levels by promoting the uptake and inhibiting the production of the sugar by peripheral tissues. Likewise, GLP-1 signalling within the central nervous system reduces the appetite and food intake, whereas its gastric effect delays the absorption of nutrients, thus improving glycaemic control and reducing the risk of postprandial hyperglycaemia. We review the molecular aspects of the GLP-1 signalling, focusing on its impact on intracellular energy metabolism. Whilst the incretin exerts its effects predominantly via a Gs receptor, which decodes the incretin signal into the elevation of intracellular cAMP levels, the downstream signalling cascades within the cell, acting on fast and slow timescales, resulting in an enhancement or an attenuation of glucose catabolism, respectively.
Collapse
Affiliation(s)
- Leah A Peart
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Matthew Draper
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Andrei I Tarasov
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK.
| |
Collapse
|
2
|
Turbitt J, Moffett RC, Brennan L, Johnson PRV, Flatt PR, McClenaghan NH, Tarasov AI. Molecular determinants and intracellular targets of taurine signalling in pancreatic islet β-cells. Acta Physiol (Oxf) 2024; 240:e14101. [PMID: 38243723 DOI: 10.1111/apha.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
AIM Despite its abundance in pancreatic islets of Langerhans and proven antihyperglycemic effects, the impact of the essential amino acid, taurine, on islet β-cell biology has not yet received due consideration, which prompted the current studies exploring the molecular selectivity of taurine import into β-cells and its acute and chronic intracellular interactions. METHODS The molecular aspects of taurine transport were probed by exposing the clonal pancreatic BRIN BD11 β-cells and primary mouse and human islets to a range of the homologs of the amino acid (assayed at 2-20 mM), using the hormone release and imaging of intracellular signals as surrogate read-outs. Known secretagogues were employed to profile the interaction of taurine with acute and chronic intracellular signals. RESULTS Taurine transporter TauT was expressed in the islet β-cells, with the transport of taurine and homologs having a weak sulfonate specificity but significant sensitivity to the molecular weight of the transporter. Taurine, hypotaurine, homotaurine, and β-alanine enhanced insulin secretion in a glucose-dependent manner, an action potentiated by cytosolic Ca2+ and cAMP. Acute and chronic β-cell insulinotropic effects of taurine were highly sensitive to co-agonism with GLP-1, forskolin, tolbutamide, and membrane depolarization, with an unanticipated indifference to the activation of PKC and CCK8 receptors. Pre-culturing with GLP-1 or KATP channel inhibitors sensitized or, respectively, desensitized β-cells to the acute taurine stimulus. CONCLUSION Together, these data demonstrate the pathways whereby taurine exhibits a range of beneficial effects on insulin secretion and β-cell function, consistent with the antidiabetic potential of its dietary low-dose supplementation.
Collapse
Affiliation(s)
- Julie Turbitt
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | | | - Lorraine Brennan
- UCD Institute of Food and Health, UCD School of Agriculture and Food Science, University College Dublin, Dublin 4, Republic of Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Republic of Ireland
| | - Paul R V Johnson
- Nuffield Department of Surgical Sciences, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- Oxford Biomedical Research Centre (OxBRC), Oxford, UK
| | - Peter R Flatt
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Neville H McClenaghan
- School of Biomedical Sciences, Ulster University, Coleraine, UK
- Department of Life Sciences, Atlantic Technological University, Sligo, Republic of Ireland
| | | |
Collapse
|
3
|
Turbitt J, Brennan L, Moffett RC, Flatt PR, Johnson PRV, Tarasov AI, McClenaghan NH. NKCC transport mediates the insulinotropic effects of taurine and other small neutral amino acids. Life Sci 2023; 316:121402. [PMID: 36669678 DOI: 10.1016/j.lfs.2023.121402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
AIMS Despite its high concentration in pancreatic islets of Langerhans and broad range of antihyperglycemic effects, the route facilitating the import of dietary taurine into pancreatic β-cell and mechanisms underlying its insulinotropic activity are unclear. We therefore studied the impact of taurine on beta-cell function, alongside that of other small neutral amino acids, L-alanine and L-proline. MAIN METHODS Pharmacological profiling of insulin secretion was conducted using clonal BRIN BD11 β-cells, the impact of taurine on the metabolic fate of glucose carbons was assessed using NMR and the findings were verified by real-time imaging of Ca2+ dynamics in the cytosol of primary mouse and human islet beta-cells. KEY FINDINGS In our hands, taurine, alanine and proline induced secretory responses that were dependent on the plasma membrane depolarisation, import of Ca2+, homeostasis of K+ and Na+ as well as on cell glycolytic and oxidative metabolism. Taurine shifted the balance between the oxidation and anaplerosis towards the latter, in BRIN BD11 beta-cells. Furthermore, the amino acid signalling was significantly attenuated by inhibition of Na+-K+-Cl- symporter (NKCC). SIGNIFICANCE These data suggest that taurine, like L-alanine and L-proline, acutely induces glucose-dependent insulin-secretory responses by modulating electrogenic Na+ transport, with potential role of intracellular K+ and Cl- in the signal transduction. The acute action delineated would be consistent with antidiabetic potential of dietary taurine supplementation.
Collapse
Affiliation(s)
- Julie Turbitt
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, UK
| | - Lorraine Brennan
- UCD Institute of Food and Health, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | - R Charlotte Moffett
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, UK.
| | - Peter R Flatt
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, UK.
| | - Paul R V Johnson
- Nuffeld Department of Surgical Sciences, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Headington, OX3 7LE Oxford, UK; Oxford Biomedical Research Centre (OxBRC), UK.
| | - Andrei I Tarasov
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, UK; Nuffeld Department of Surgical Sciences, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Headington, OX3 7LE Oxford, UK; Oxford Biomedical Research Centre (OxBRC), UK.
| | - Neville H McClenaghan
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, UK; Department of Life Sciences, Atlantic Technological University, Ash Lane, Sligo, F91 YW50, Ireland.
| |
Collapse
|
4
|
Cottet-Dumoulin D, Lavallard V, Lebreton F, Wassmer CH, Bellofatto K, Parnaud G, Berishvili E, Berney T, Bosco D. Biosynthetic Activity Differs Between Islet Cell Types and in Beta Cells Is Modulated by Glucose and Not by Secretion. Endocrinology 2021; 162:6047597. [PMID: 33367617 PMCID: PMC7940959 DOI: 10.1210/endocr/bqaa239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 11/19/2022]
Abstract
A correct biosynthetic activity is thought to be essential for the long-term function and survival of islet cells in culture and possibly also after islet transplantation. Compared to the secretory activity, biosynthetic activity has been poorly studied in pancreatic islet cells. Here we aimed to assess biosynthetic activity at the single cell level to investigate if protein synthesis is dependent on secretagogues and increased as a consequence of hormonal secretion. Biosynthetic activity in rat islet cells was studied at the single cell level using O-propargyl-puromycin (OPP) that incorporates into newly translated proteins and chemically ligates to a fluorescent dye by "click" reaction. Heterogeneous biosynthetic activity was observed between the four islet cell types, with delta cells showing the higher relative protein biosynthesis. Beta cells protein biosynthesis was increased in response to glucose while 3-isobutyl-1-methylxanthine and phorbol-12-myristate-13-acetate, 2 drugs known to stimulate insulin secretion, had no similar effect on protein biosynthesis. However, after several hours of secretion, protein biosynthesis remained high even when cells were challenged to basal conditions. These results suggest that mechanisms regulating secretion and biosynthesis in islet cells are different, with glucose directly triggering beta cells protein biosynthesis, independently of insulin secretion. Furthermore, this OPP labeling approach is a promising method to identify newly synthesized proteins under various physiological and pathological conditions.
Collapse
Affiliation(s)
- David Cottet-Dumoulin
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Correspondence: Domenico Bosco, Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, 1, rue Michel Servet, CH-1211 Genève 4, Switzerland.
| | - Vanessa Lavallard
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Fanny Lebreton
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Charles H Wassmer
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kevin Bellofatto
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Géraldine Parnaud
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Thierry Berney
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Caengprasath N, Gonzalez-Abuin N, Shchepinova M, Ma Y, Inoue A, Tate EW, Frost G, Hanyaloglu AC. Internalization-Dependent Free Fatty Acid Receptor 2 Signaling Is Essential for Propionate-Induced Anorectic Gut Hormone Release. iScience 2020; 23:101449. [PMID: 32853993 PMCID: PMC7452316 DOI: 10.1016/j.isci.2020.101449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 01/14/2023] Open
Abstract
The ability of propionate, a short-chain fatty acid produced from the fermentation of non-digestible carbohydrates in the colon, to stimulate the release of anorectic gut hormones, such as glucagon like peptide-1 (GLP-1), is an attractive approach to enhance appetite regulation, weight management, and glycemic control. Propionate induces GLP-1 release via its G protein-coupled receptor (GPCR), free fatty acid receptor 2 (FFA2), a GPCR that activates Gαi and Gαq/11. However, how pleiotropic GPCR signaling mechanisms in the gut regulates appetite is poorly understood. Here, we identify propionate-mediated G protein signaling is spatially directed within the cell whereby FFA2 is targeted to very early endosomes. Furthermore, propionate activates a Gαi/p38 signaling pathway, which requires receptor internalization and is essential for propionate-induced GLP-1 release in enteroendocrine cells and colonic crypts. Our study reveals that intestinal metabolites engage membrane trafficking pathways and that receptor internalization could orchestrate complex GPCR pathways within the gut.
Collapse
Affiliation(s)
- Natarin Caengprasath
- Institute of Reproductive and Developmental Biology (IRDB), Department of Metabolism, Digestion and Reproduction, Imperial College London, Rm 2009, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Noemi Gonzalez-Abuin
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Yue Ma
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, London, UK
| | - Gary Frost
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Aylin C. Hanyaloglu
- Institute of Reproductive and Developmental Biology (IRDB), Department of Metabolism, Digestion and Reproduction, Imperial College London, Rm 2009, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
6
|
Abstract
Pancreatic islet β cells secrete insulin in response to nutrient secretagogues, like glucose, dependent on calcium influx and nutrient metabolism. One of the most intriguing qualities of β cells is their ability to use metabolism to amplify the amount of secreted insulin independent of further alterations in intracellular calcium. Many years studying this amplifying process have shaped our current understanding of β cell stimulus-secretion coupling; yet, the exact mechanisms of amplification have been elusive. Recent studies utilizing metabolomics, computational modeling, and animal models have progressed our understanding of the metabolic amplifying pathway of insulin secretion from the β cell. New approaches will be discussed which offer in-roads to a more complete model of β cell function. The development of β cell therapeutics may be aided by such a model, facilitating the targeting of aspects of the metabolic amplifying pathway which are unique to the β cell.
Collapse
Affiliation(s)
- Michael A Kalwat
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
7
|
Kursan S, McMillen TS, Beesetty P, Dias-Junior E, Almutairi MM, Sajib AA, Kozak JA, Aguilar-Bryan L, Di Fulvio M. The neuronal K +Cl - co-transporter 2 (Slc12a5) modulates insulin secretion. Sci Rep 2017; 7:1732. [PMID: 28496181 PMCID: PMC5431760 DOI: 10.1038/s41598-017-01814-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/03/2017] [Indexed: 11/09/2022] Open
Abstract
Intracellular chloride concentration ([Cl-]i) in pancreatic β-cells is kept above electrochemical equilibrium due to the predominant functional presence of Cl- loaders such as the Na+K+2Cl- co-transporter 1 (Slc12a2) over Cl-extruders of unidentified nature. Using molecular cloning, RT-PCR, Western blotting, immunolocalization and in vitro functional assays, we establish that the "neuron-specific" K+Cl- co-transporter 2 (KCC2, Slc12a5) is expressed in several endocrine cells of the pancreatic islet, including glucagon secreting α-cells, but particularly in insulin-secreting β-cells, where we provide evidence for its role in the insulin secretory response. Three KCC2 splice variants were identified: the formerly described KCC2a and KCC2b along with a novel one lacking exon 25 (KCC2a-S25). This new variant is undetectable in brain or spinal cord, the only and most abundant known sources of KCC2. Inhibition of KCC2 activity in clonal MIN6 β-cells increases basal and glucose-stimulated insulin secretion and Ca2+ uptake in the presence of glibenclamide, an inhibitor of the ATP-dependent potassium (KATP)-channels, thus suggesting a possible mechanism underlying KCC2-dependent insulin release. We propose that the long-time considered "neuron-specific" KCC2 co-transporter is expressed in pancreatic islet β-cells where it modulates Ca2+-dependent insulin secretion.
Collapse
Affiliation(s)
- Shams Kursan
- Department of Pharmacology and Toxicology, Wright State University, School of Medicine, Dayton, OH, 45435, USA
| | | | - Pavani Beesetty
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, School of Medicine, Dayton, OH, 45435, USA
| | - Eduardo Dias-Junior
- Department of Pharmacology and Toxicology, Wright State University, School of Medicine, Dayton, OH, 45435, USA
| | - Mohammed M Almutairi
- Department of Pharmacology and Toxicology, Wright State University, School of Medicine, Dayton, OH, 45435, USA
| | - Abu A Sajib
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - J Ashot Kozak
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, School of Medicine, Dayton, OH, 45435, USA
| | | | - Mauricio Di Fulvio
- Department of Pharmacology and Toxicology, Wright State University, School of Medicine, Dayton, OH, 45435, USA.
| |
Collapse
|
8
|
Malenczyk K, Jazurek M, Keimpema E, Silvestri C, Janikiewicz J, Mackie K, Di Marzo V, Redowicz MJ, Harkany T, Dobrzyn A. CB1 cannabinoid receptors couple to focal adhesion kinase to control insulin release. J Biol Chem 2013; 288:32685-32699. [PMID: 24089517 DOI: 10.1074/jbc.m113.478354] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Endocannabinoid signaling has been implicated in modulating insulin release from β cells of the endocrine pancreas. β Cells express CB1 cannabinoid receptors (CB1Rs), and the enzymatic machinery regulating anandamide and 2-arachidonoylglycerol bioavailability. However, the molecular cascade coupling agonist-induced cannabinoid receptor activation to insulin release remains unknown. By combining molecular pharmacology and genetic tools in INS-1E cells and in vivo, we show that CB1R activation by endocannabinoids (anandamide and 2-arachidonoylglycerol) or synthetic agonists acutely or after prolonged exposure induces insulin hypersecretion. In doing so, CB1Rs recruit Akt/PKB and extracellular signal-regulated kinases 1/2 to phosphorylate focal adhesion kinase (FAK). FAK activation induces the formation of focal adhesion plaques, multimolecular platforms for second-phase insulin release. Inhibition of endocannabinoid synthesis or FAK activity precluded insulin release. We conclude that FAK downstream from CB1Rs mediates endocannabinoid-induced insulin release by allowing cytoskeletal reorganization that is required for the exocytosis of secretory vesicles. These findings suggest a mechanistic link between increased circulating and tissue endocannabinoid levels and hyperinsulinemia in type 2 diabetes.
Collapse
Affiliation(s)
- Katarzyna Malenczyk
- From the Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland,; the Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Magdalena Jazurek
- From the Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Erik Keimpema
- the Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Cristoforo Silvestri
- the Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli, Naples, Italy
| | | | - Ken Mackie
- the Department of Psychological and Brain Sciences, Gill Center for Neuroscience, Indiana University, Bloomington, Indiana 47405
| | - Vincenzo Di Marzo
- the Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli, Naples, Italy
| | - Maria J Redowicz
- From the Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Tibor Harkany
- the Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, SE-17177 Stockholm, Sweden,; the School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom.
| | - Agnieszka Dobrzyn
- From the Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland,.
| |
Collapse
|
9
|
Leung PS, Cheng Q. The Novel Roles of Glucagon-Like Peptide-1, Angiotensin II, and Vitamin D in Islet Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:339-61. [DOI: 10.1007/978-90-481-3271-3_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Henquin JC. Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia 2009; 52:739-51. [PMID: 19288076 DOI: 10.1007/s00125-009-1314-y] [Citation(s) in RCA: 357] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 02/05/2009] [Indexed: 12/14/2022]
Abstract
The consensus model of stimulus-secretion coupling in beta cells attributes glucose-induced insulin secretion to a sequence of events involving acceleration of metabolism, closure of ATP-sensitive K(+) channels, depolarisation, influx of Ca(2+) and a rise in cytosolic free Ca(2+) concentration ([Ca(2+)](c)). This triggering pathway is essential, but would not be very efficient if glucose did not also activate a metabolic amplifying pathway that does not raise [Ca(2+)](c) further but augments the action of triggering Ca(2+) on exocytosis. This review discusses how both pathways interact to achieve temporal control and amplitude modulation of biphasic insulin secretion. First-phase insulin secretion is triggered by the rise in [Ca(2+)](c) that occurs synchronously in all beta cells of every islet in response to a sudden increase in the glucose concentration. Its time course and duration are shaped by those of the Ca(2+) signal, and its amplitude is modulated by the magnitude of the [Ca(2+)](c) rise and, substantially, by amplifying mechanisms. During the second phase, synchronous [Ca(2+)](c) oscillations in all beta cells of an individual islet induce pulsatile insulin secretion, but these features of the signal and response are dampened in groups of intrinsically asynchronous islets. Glucose has hardly any influence on the amplitude of [Ca(2+)](c) oscillations and mainly controls the time course of triggering signal. Amplitude modulation of insulin secretion pulses largely depends on the amplifying pathway. There are more similarities than differences between the two phases of glucose-induced insulin secretion. Both are subject to the same dual, hierarchical control over time and amplitude by triggering and amplifying pathways, suggesting that the second phase is a sequence of iterations of the first phase.
Collapse
Affiliation(s)
- J C Henquin
- Faculty of Medicine, University of Louvain, Brussels, Belgium.
| |
Collapse
|
11
|
Okamoto M, Ohara-Imaizumi M, Kubota N, Hashimoto S, Eto K, Kanno T, Kubota T, Wakui M, Nagai R, Noda M, Nagamatsu S, Kadowaki T. Adiponectin induces insulin secretion in vitro and in vivo at a low glucose concentration. Diabetologia 2008; 51:827-35. [PMID: 18369586 DOI: 10.1007/s00125-008-0944-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 12/20/2007] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS A decrease in plasma adiponectin levels has been shown to contribute to the development of diabetes. However, it remains uncertain whether adiponectin plays a role in the regulation of insulin secretion. In this study, we investigated whether adiponectin may be involved in the regulation of insulin secretion in vivo and in vitro. METHODS The effect of adiponectin on insulin secretion was measured in vitro and in vivo, along with the effects of adiponectin on ATP generation, membrane potentials, Ca2+ currents, cytosolic calcium concentration and state of 5'-AMP-activated protein kinase (AMPK). In addition, insulin granule transport was measured by membrane capacitance and total internal reflection fluorescence (TIRF) analysis. RESULTS Adiponectin significantly stimulated insulin secretion from pancreatic islets to approximately 2.3-fold the baseline value in the presence of a glucose concentration of 5.6 mmol/l. Although adiponectin had no effect on ATP generation, membrane potentials, Ca2+ currents, cytosolic calcium concentrations or activation status of AMPK, it caused a significant increase of membrane capacitance to approximately 2.3-fold the baseline value. TIRF analysis revealed that adiponectin induced a significant increase in the number of fusion events in mouse pancreatic beta cells under 5.6 mmol/l glucose loading, without affecting the status of previously docked granules. Moreover, intravenous injection of adiponectin significantly increased insulin secretion to approximately 1.6-fold of baseline in C57BL/6 mice. CONCLUSIONS/INTERPRETATION The above results indicate that adiponectin induces insulin secretion in vitro and in vivo.
Collapse
Affiliation(s)
- M Okamoto
- Department of Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Hongo 7-3-1, Tokyo, 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Physiologically, insulin secretion is subject to a dual, hierarchal control by triggering and amplifying pathways. By closing ATP-sensitive K+ channels (KATP channels) in the plasma membrane, glucose and other metabolized nutrients depolarize beta-cells, stimulate Ca2+ influx, and increase the cytosolic concentration of free Ca2+ ([Ca2+]i), which constitutes the indispensable triggering signal to induce exocytosis of insulin granules. The increase in beta-cell metabolism also generates amplifying signals that augment the efficacy of Ca2+ on the exocytotic machinery. Stimulatory hormones and neurotransmitters modestly increase the triggering signal and strongly activate amplifying pathways biochemically distinct from that set into operation by nutrients. Many drugs can increase insulin secretion in vitro, but only few have a therapeutic potential. This review identifies six major pathways or sites of stimulus-secretion coupling that could be aimed by potential insulin-secreting drugs and describes several strategies to reach these targets. It also discusses whether these perspectives are realistic or theoretical only. These six possible beta-cell targets are 1) stimulation of metabolism, 2) increase of [Ca2+]i by closure of K+ ATP channels, 3) increase of [Ca2+]i by other means, 4) stimulation of amplifying pathways, 5) action on membrane receptors, and 6) action on nuclear receptors. The theoretical risk of inappropriate insulin secretion and, hence, of hypoglycemia linked to these different approaches is also envisaged.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unité d'Endocrinologie et Métabolisme, UCL 55.30, avenue Hippocrate 55, B-1200 Brussels, Begium.
| |
Collapse
|
13
|
Holz GG. Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes 2004; 53:5-13. [PMID: 14693691 PMCID: PMC3012130 DOI: 10.2337/diabetes.53.1.5] [Citation(s) in RCA: 298] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recently published studies of islet cell function reveal unexpected features of glucagon-like peptide-1 (GLP-1) receptor-mediated signal transduction in the pancreatic beta-cell. Although GLP-1 is established to be a cAMP-elevating agent, these studies demonstrate that protein kinase A (PKA) is not the only cAMP-binding protein by which GLP-1 acts. Instead, an alternative cAMP signaling mechanism has been described, one in which GLP-1 activates cAMP-binding proteins designated as cAMP-regulated guanine nucleotide exchange factors (cAMPGEFs, also known as Epac). Two variants of Epac (Epac1 and Epac2) are expressed in beta-cells, and downregulation of Epac function diminishes stimulatory effects of GLP-1 on beta-cell Ca(2+) signaling and insulin secretion. Of particular note are new reports demonstrating that Epac couples beta-cell cAMP production to the stimulation of fast Ca(2+)-dependent exocytosis. It is also reported that Epac mediates the cAMP-dependent mobilization of Ca(2+) from intracellular Ca(2+) stores. This is a process of Ca(2+)-induced Ca(2+) release (CICR), and it generates an increase of [Ca(2+)](i) that may serve as a direct stimulus for mitochondrial ATP production and secretory granule exocytosis. This article summarizes new findings concerning GLP-1 receptor-mediated signal transduction and seeks to define the relative importance of Epac and PKA to beta-cell stimulus-secretion coupling.
Collapse
Affiliation(s)
- George G Holz
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016, USA.
| |
Collapse
|
14
|
Delmeire D, Flamez D, Hinke SA, Cali JJ, Pipeleers D, Schuit F. Type VIII adenylyl cyclase in rat beta cells: coincidence signal detector/generator for glucose and GLP-1. Diabetologia 2003; 46:1383-93. [PMID: 13680124 DOI: 10.1007/s00125-003-1203-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2002] [Revised: 06/02/2003] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS The secretory function of pancreatic beta cells is synergistically stimulated by two signalling pathways which mediate the effects of nutrients and hormones such as glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic peptide (GIP) or glucagon. These hormones are known to activate adenylyl cyclase in beta cells. We examined the type of adenylyl cyclase that is associated with this synergistic interaction. METHODS Insulin release, cAMP production, adenylyl cyclase activity, mRNA and protein expression were measured in fluorescence-activated cell sorter-purified rat beta cells and in the rat beta-cell lines RINm5F, INS-1 832/13 and INS-1 832/2. RESULTS In primary beta cells, glucagon and GLP-1 synergistically potentiate the stimulatory effect of 20 mmol/l glucose on insulin release and cAMP production. Both effects are abrogated in the presence of the L-type Ca(2+)-channel blocker verapamil. The cAMP-producing activity of adenylyl cyclase in membranes from RINm5F cells is synergistically increased by Ca(2+)-calmodulin and recombinant GTP(gamma)S-activated G(s alpha)-protein subunits. This type of regulation is characteristic for type I and type VIII AC isoforms. Consistent with this functional data, AC mRNA analysis shows abundant expression of type VI AC, four splice variants of type VIII AC and low expression level of type I AC in beta cells. Type VIII AC expression at the protein level was observed using immunoblots of RINm5F cell extracts. CONCLUSION/INTERPRETATION This study identifies type VIII AC in insulin-secreting cells as one of the potential molecular targets for synergism between GLP-1 receptor mediated and glucose-mediated signalling.
Collapse
Affiliation(s)
- D Delmeire
- Molecular Pharmacology Unit, Diabetes Research Center, Faculty of Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
15
|
Henquin JC, Ravier MA, Nenquin M, Jonas JC, Gilon P. Hierarchy of the beta-cell signals controlling insulin secretion. Eur J Clin Invest 2003; 33:742-50. [PMID: 12925032 DOI: 10.1046/j.1365-2362.2003.01207.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Lee IS, Hur EM, Suh BC, Kim MH, Koh DS, Rhee IJ, Ha H, Kim KT. Protein kinase A- and C-induced insulin release from Ca2+ -insensitive pools. Cell Signal 2003; 15:529-37. [PMID: 12639716 DOI: 10.1016/s0898-6568(02)00137-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Insulin secretion is known to depend on an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)). However, recent studies have suggested that insulin secretion can also be evoked in a Ca(2+)-independent manner. In the present study we show that treatment of intact mouse islets and RINm5F cells with protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) or protein kinase A (PKA) activator forskolin promoted insulin secretion with no changes of [Ca(2+)](i). Moreover, insulin secretion mediated by PMA or forskolin was maintained even when extracellular or cytosolic Ca(2+) was deprived by treatment of cells with ethylene glycol bis(beta-amino ethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) or 1,2-bis(2-amino phenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxy methyl ester) (BAPTA/AM) in RINm5F cells. The secretagogue actions of PMA and forskolin were blocked by GF109203X and H89, selective inhibitors for PKC and PKA, respectively. PMA treatment caused translocation of PKC-alpha and PKC- epsilon from cytosol to membrane, implying that selectively PKC-alpha and PKC- epsilon isoforms might be important for insulin secretion. Co-treatment with high K(+) and PMA showed a comparable level of insulin secretion to that of PMA alone. In addition, PMA and forskolin evoked insulin secretion in cells where Ca(2+)-dependent insulin secretion was completed. Our data suggest that PKC and PKA can elicit insulin secretion not only in a Ca(2+)-sensitive manner but also in a Ca(2+)-independent manner from separate releasable pools.
Collapse
Affiliation(s)
- Ihn-Soon Lee
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, POSTECH, San 31, Hyoja Dong, Pohang 790-784, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lawrence MC, Bhatt HS, Easom RA. NFAT regulates insulin gene promoter activity in response to synergistic pathways induced by glucose and glucagon-like peptide-1. Diabetes 2002; 51:691-8. [PMID: 11872668 DOI: 10.2337/diabetes.51.3.691] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Currently there is intense interest to define the mechanism of action of glucagon-like peptide-1 (GLP-1) in regulating beta-cell function, including insulin gene transcription. In this study, GLP-1 (100 nmol/l), in the presence of glucose (11 mmol/l), induced a similar71-fold increase in insulin gene promoter activity in INS-1 pancreatic beta-cells, an effect that was an order of magnitude larger than with either stimulant alone. The response to GLP-1 was mimicked by forskolin and largely inhibited by the protein kinase A (PKA) inhibitors, H89 and myristoylated PKI(14--22) amide, indicating partial mediation via a cAMP/PKA pathway. Significantly, the actions of both GLP-1 and forskolin were abolished by the selective Ca(2+)/calmodulin-dependent phosphatase 2B (calcineurin) inhibitor, FK506, as well as by the chelation of intracellular Ca(2+) by BAPTA (bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate). Glucose and GLP-1 also synergistically activated NFAT (nuclear factor of activated T-cells)-mediated transcription from a minimal promoter construct containing tandem NFAT consensus sequences. Furthermore, two-point base pair mutations in any of the three identified NFAT sites within the rat insulin I promoter resulted in a significant reduction in the combined effect of glucose and GLP-1. These data suggest that the synergistic action of glucose and GLP-1 to promote insulin gene transcription is mediated through NFAT via PKA- and calcineurin-dependent pathways in pancreatic beta-cells.
Collapse
Affiliation(s)
- Michael C Lawrence
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center at Fort Worth, Texas 76107-2699, USA
| | | | | |
Collapse
|
18
|
Herbst M, Sasse P, Greger R, Yu H, Hescheler J, Ullrich S. Membrane potential dependent modulations of calcium oscillations in insulin-secreting INS-1 cells. Cell Calcium 2002; 31:115-26. [PMID: 12027385 DOI: 10.1054/ceca.2001.0266] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study was undertaken to examine the role of K(+) channels on cytosolic Ca(2+) ([Ca(2+)](i)) in insulin secreting cells. [Ca(2+)](i) was measured in single glucose-responsive INS-1 cells using the fluorescent Ca(2+) indicator Fura-2. Glucose, tolbutamide and forskolin elevated [Ca(2+)](i) and induced [Ca(2+)] oscillations. Whereas the glucose effect was delayed and observed in 60% and 93% of the cells, in a poorly and a highly glucose-responsive INS-1 cell clone, respectively, tolbutamide and forskolin increased [Ca(2+)](i) in all cells tested. In the latter clone, glucose induced [Ca(2+)](i) oscillations in 77% of the cells. In 16% of the cells a sustained rise of [Ca(2+)](i) was observed. The increase in [Ca(2+)](i) was reversed by verapamil, an L-type Ca(2+) channel inhibitor. Adrenaline decreased [Ca(2+)](i) in oscillating cells in the presence of low glucose and in cells stimulated by glucose alone or in combination with tolbutamide and forskolin. Adrenaline did not lower [Ca(2+)](i) in the presence of 30mM extracellular K(+), indicating that adrenaline does not exert a direct effect on Ca(2+) channels but increases K(+) channel activity. As for primary b-cells, [Ca(2+)](i) oscillations persisted in the presence of closed K(ATP) channels; these also persisted in the presence of thapsigargin, which blocks Ca(2+) uptake into Ca(2+) stores. In contrast, in voltage-clamped cells and in the presence of diazoxide (50mM), which hyperpolarizes the cells by opening K(ATP) channels, [Ca(2+)](i) oscillations were abolished. These results support the hypothesis that [Ca(2+)](i) oscillations depend on functional voltage-dependent Ca(2+) and K(+) channels and are interrupted by a hyperpolarization in insulin-secreting cells.
Collapse
Affiliation(s)
- M Herbst
- Physiologisches Institut II, Universität Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Huang X, Kang YH, Pasyk EA, Sheu L, Wheeler MB, Trimble WS, Salapatek A, Gaisano HY. Ca(2+) influx and cAMP elevation overcame botulinum toxin A but not tetanus toxin inhibition of insulin exocytosis. Am J Physiol Cell Physiol 2001; 281:C740-50. [PMID: 11502551 DOI: 10.1152/ajpcell.2001.281.3.c740] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous reports showed that cleavage of vesicle-associated membrane protein-2 (VAMP-2) and synaptosomal-associated protein of 25 kDa (SNAP-25) by clostridial neurotoxins in permeabilized insulin-secreting beta-cells inhibited Ca(2+)-evoked insulin secretion. In these reports, the soluble N-ethylmaleimide-sensitive factor attachment protein target receptor proteins might have formed complexes, which preclude full accessibility of the putative sites for neurotoxin cleavage. In this work, VAMP-2 and SNAP-25 were effectively cleaved before they formed toxin-insensitive complexes by transient transfection of insulinoma HIT or INS-1 cells with tetanus toxin (TeTx) or botulinum neurotoxin A (BoNT/A), as shown by immunoblotting and immunofluorescence microscopy. This resulted in an inhibition of Ca(2+) (glucose or KCl)-evoked insulin release proportionate to the transfection efficiency (40-50%) and an accumulation of insulin granules. With the use of patch-clamp capacitance measurements, Ca(2+)-evoked exocytosis by membrane depolarization to -10 mV was abolished by TeTx (6% of control) but only moderately inhibited by BoNT/A (30% of control). Depolarization to 0 mV to maximize Ca(2+) influx partially overcame BoNT/A (50% of control) but not TeTx inhibition. Of note, cAMP activation potentiated Ca(2+)-evoked secretion by 129% in control cells but only 55% in BoNT/A-transfected cells and had negligible effects in TeTx-transfected cells. These results indicate that, whereas VAMP-2 is absolutely necessary for insulin exocytosis, the effects of SNAP-25 depletion on exocytosis, perhaps on insulin granule pool priming or mobilization steps, could be partially reversed by higher levels of Ca(2+) or cAMP potentiation.
Collapse
Affiliation(s)
- X Huang
- Department of Medicine, University of Toronto, Toronto M5S 1A8, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Jonkers FC, Henquin JC. Measurements of cytoplasmic Ca2+ in islet cell clusters show that glucose rapidly recruits beta-cells and gradually increases the individual cell response. Diabetes 2001; 50:540-50. [PMID: 11246873 DOI: 10.2337/diabetes.50.3.540] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The proportion of isolated single beta-cells developing a metabolic, biosynthetic, or secretory response increases with glucose concentration (recruitment). It is unclear whether recruitment persists in situ when beta-cells are coupled. We therefore measured the cytoplasmic free Ca2+ correction ([Ca2+]i) (the triggering signal of glucose-induced insulin secretion) in mouse islet single cells or clusters cultured for 1-2 days. In single cells, the threshold glucose concentration ranged between 6 and 10 mmol/l, at which concentration a maximum of approximately 65% responsive cells was reached. Only 13% of the cells did not respond to glucose plus tolbutamide. The proportion of clusters showing a [Ca2+]i rise increased from approximately 20 to 95% between 6 and 10 mmol/l glucose, indicating that the threshold sensitivity to glucose differs between clusters. Within responsive clusters, 75% of the cells were active at 6 mmol/l glucose and 95-100% at 8-10 mmol/l glucose, indicating that individual cell recruitment is not prominent within clusters; in clusters responding to glucose, all or almost all cells participated in the response. Independently of cell recruitment, glucose gradually augmented the magnitude of the average [Ca2+]i rise in individual cells, whether isolated or associated in clusters. When insulin secretion was measured simultaneously with [Ca2+]i, a good temporal and quantitative correlation was found between both events. However, beta-cell recruitment was maximal at 10 mmol/l glucose, whereas insulin secretion increased up to 15-20 mmol/l glucose. In conclusion, beta-cell recruitment by glucose can occur at the stage of the [Ca2+]i response. However, this type of recruitment is restricted to a narrow range of glucose concentrations, particularly when beta-cell association decreases the heterogeneity of the responses. Glucose-induced insulin secretion by islets, therefore, cannot entirely be ascribed to recruitment of beta-cells to generate a [Ca2+]i response. Modulation of the amplitude of the [Ca2+]i response and of the action of Ca2+ on exocytosis (amplifying actions of glucose) may be more important.
Collapse
Affiliation(s)
- F C Jonkers
- Unité d'Endocrinologie et Métabolisme, University of Louvain Faculty of Medicine, Brussels, Belgium
| | | |
Collapse
|
21
|
Bosqueiro JR, Carneiro EM, Bordin S, Boschero AC. Tetracaine stimulates insulin secretion through the mobilization of Ca 2+from thapsigargin- and IP 3-insensitive Ca 2+reservoir in pancreatic β-cells. Can J Physiol Pharmacol 2000. [DOI: 10.1139/y00-010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of tetracaine on45Ca efflux, cytoplasmic Ca2+concentration [Ca2+]i, and insulin secretion in isolated pancreatic islets and β-cells was studied. In the absence of external Ca2+, tetracaine (0.1-2.0 mM) increased the45Ca efflux from isolated islets in a dose-dependant manner. Tetracaine did not affect the increase in45Ca efflux caused by 50 mM K+or by the association of carbachol (0.2 mM) and 50 mM K+. Tetracaine permanently increased the [Ca2+]iin isolated β-cells in Ca2+-free medium enriched with 2.8 mM glucose and 25 µM D-600 (methoxiverapamil). This effect was also observed in the presence of 10 mM caffeine or 1 µM thapsigargin. In the presence of 16.7 mM glucose, tetracaine transiently increased the insulin secretion from islets perfused in the absence and presence of external Ca2+. These data indicate that tetracaine mobilises Ca2+from a thapsigargin-insensitive store and stimulates insulin secretion in the absence of extracellular Ca2+. The increase in45Ca efflux caused by high concentrations of K+and by carbachol indicates that tetracaine did not interfere with a cation or inositol triphosphate sensitive Ca2+pool in β-cells.
Collapse
|
22
|
Littman ED, Pitchumoni S, Garfinkel MR, Opara EC. Role of protein kinase C isoenzymes in fatty acid stimulation of insulin secretion. Pancreas 2000; 20:256-63. [PMID: 10766451 DOI: 10.1097/00006676-200004000-00006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Although hyperlipidemia is frequently associated with hyperinsulinemia. the stimulation of insulin secretion by fatty acids in the in vitro studies has remained a matter of constant debate, partly because of the uncertainty about a clearly defined mechanism to explain such a direct effect. In this study, we used a pharmacologic approach to test the hypothesis that protein kinase C (PKC) signal-transduction pathway is involved in fatty acid-stimulated insulin secretion. Isolated rat islets were perifused with either palmitate (C(16:0)) or linoleate (C(18:2)) in the absence or presence of selective inhibitors of PKC isoenzymes. Our results suggest a role for Ca2+-independent PKC isoenzymes in the signal transduction of fatty acid-stimulated insulin secretion. The data imply that either the nonconventional and/or atypical isoforms of PKC are involved in the stimulation of insulin release induced by fatty acids.
Collapse
Affiliation(s)
- E D Littman
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | |
Collapse
|
23
|
Warnotte C, Nenquin M, Henquin JC. Unbound rather than total concentration and saturation rather than unsaturation determine the potency of fatty acids on insulin secretion. Mol Cell Endocrinol 1999; 153:147-53. [PMID: 10459862 DOI: 10.1016/s0303-7207(99)00069-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Isolated mouse islets were used to compare the effects of three saturated (myristate, palmitate and stearate) and three unsaturated (oleate, linoleate and linolenate) long-chain fatty acids on insulin secretion. By varying the concentrations of fatty acid (250-1250 micromol/l) and albumin simultaneously or independently, we also investigated whether the insulinotropic effect is determined by the unbound or total concentration of the fatty acids. Only palmitate and stearate slightly increased basal insulin secretion (3 mmol/l glucose). All tested fatty acids potentiated glucose-induced insulin secretion (10-15 mmol/l), and the following rank order of potency was obtained when they were compared at the same total concentrations: palmitate approximately = stearate > myristate > or = oleate > or = linoleate approximately = linolenate. The effect of a given fatty acid varied with the fatty acid to albumin molar ratio, in a way which indicated that the unbound fraction is the important one for the stimulation of beta cells. When the potentiation of insulin secretion was expressed as a function of the unbound concentrations, the following rank order emerged: palmitate > myristate > stearate approximately = oleate > linoleate approximately = linolenate. In conclusion, the acute and direct effects of long-chain fatty acids on insulin secretion are due to their unbound fraction. They are observed only at fatty acid/albumin ratios higher than those normally occurring in plasma. Saturated fatty acids are stronger insulin secretagogues than unsaturated fatty acids. Unbound palmitate is by far the most potent of the six common long-chain fatty acids.
Collapse
Affiliation(s)
- C Warnotte
- Unité d'Endocrinologie et Métabolisme, University of Louvain Faculty of Medicine, Brussels, Belgium
| | | | | |
Collapse
|
24
|
Abstract
KATP channels are a newly defined class of potassium channels based on the physical association of an ABC protein, the sulfonylurea receptor, and a K+ inward rectifier subunit. The beta-cell KATP channel is composed of SUR1, the high-affinity sulfonylurea receptor with multiple TMDs and two NBFs, and KIR6.2, a weak inward rectifier, in a 1:1 stoichiometry. The pore of the channel is formed by KIR6.2 in a tetrameric arrangement; the overall stoichiometry of active channels is (SUR1/KIR6.2)4. The two subunits form a tightly integrated whole. KIR6.2 can be expressed in the plasma membrane either by deletion of an ER retention signal at its C-terminal end or by high-level expression to overwhelm the retention mechanism. The single-channel conductance of the homomeric KIR6.2 channels is equivalent to SUR/KIR6.2 channels, but they differ in all other respects, including bursting behavior, pharmacological properties, sensitivity to ATP and ADP, and trafficking to the plasma membrane. Coexpression with SUR restores the normal channel properties. The key role KATP channel play in the regulation of insulin secretion in response to changes in glucose metabolism is underscored by the finding that a recessive form of persistent hyperinsulinemic hypoglycemia of infancy (PHHI) is caused by mutations in KATP channel subunits that result in the loss of channel activity. KATP channels set the resting membrane potential of beta-cells, and their loss results in a constitutive depolarization that allows voltage-gated Ca2+ channels to open spontaneously, increasing the cytosolic Ca2+ levels enough to trigger continuous release of insulin. The loss of KATP channels, in effect, uncouples the electrical activity of beta-cells from their metabolic activity. PHHI mutations have been informative on the function of SUR1 and regulation of KATP channels by adenine nucleotides. The results indicate that SUR1 is important in sensing nucleotide changes, as implied by its sequence similarity to other ABC proteins, in addition to being the drug sensor. An unexpected finding is that the inhibitory action of ATP appears to be through a site located on KIR6.2, whose affinity for ATP is modified by SUR1. A PHHI mutation, G1479R, in the second NBF of SUR1 forms active KATP channels that respond normally to ATP, but fail to activate with MgADP. The result implies that ATP tonically inhibits KATP channels, but that the ADP level in a fasting beta-cell antagonizes this inhibition. Decreases in the ADP level as glucose is metabolized result in KATP channel closure. Although KATP channels are the target for sulfonylureas used in the treatment of NIDDM, the available data suggest that the identified KATP channel mutations do not play a major role in diabetes. Understanding how KATP channels fit into the overall scheme of glucose homeostasis, on the other hand, promises insight into diabetes and other disorders of glucose metabolism, while understanding the structure and regulation of these channels offers potential for development of novel compounds to regulate cellular electrical activity.
Collapse
Affiliation(s)
- L Aguilar-Bryan
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
25
|
Gamberucci A, Fulceri R, Pralong W, Bánhegyi G, Marcolongo P, Watkins SL, Benedetti A. Caffeine releases a glucose-primed endoplasmic reticulum Ca2+ pool in the insulin secreting cell line INS-1. FEBS Lett 1999; 446:309-12. [PMID: 10100864 DOI: 10.1016/s0014-5793(99)00220-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Caffeine mobilized an intracellular Ca2+ pool in intact fura-2-loaded INS-1 cells in suspension exposed to high (16 mM) [glucose], while a minor effect was observed with low (2 mM) [glucose]. Cells were kept in a medium containing diaxozide or no Ca2+ to prevent the influx of extracellular Ca2+. The caffeine-sensitive intracellular Ca2+ pool was within the endoplasmic reticulum since it was depleted by the inhibitor of the reticular Ca2+ pumps thapsigargin and the InsP3-dependent agonist carbachol. No effect of caffeine was observed in the parent glucose-insensitive RINmF5 cells. In microsomes from INS-1 but not RINmF5 cells, the type 2 ryanodine receptor was present as revealed by Western blotting. It was concluded that the endoplasmic reticulum of INS-1 cells possesses caffeine-sensitive type 2 ryanodine receptors Ca2+ channels.
Collapse
Affiliation(s)
- A Gamberucci
- Istituto di Patologia Generale, Università di Siena, Italy
| | | | | | | | | | | | | |
Collapse
|