1
|
Riahi Y, Wikstrom JD, Bachar-Wikstrom E, Polin N, Zucker H, Lee MS, Quan W, Haataja L, Liu M, Arvan P, Cerasi E, Leibowitz G. Autophagy is a major regulator of beta cell insulin homeostasis. Diabetologia 2016; 59:1480-1491. [PMID: 26831301 PMCID: PMC5912938 DOI: 10.1007/s00125-016-3868-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/23/2015] [Indexed: 02/04/2023]
Abstract
AIMS/HYPOTHESIS We studied the role of protein degradation pathways in the regulation of insulin production and secretion and hypothesised that autophagy regulates proinsulin degradation, thereby modulating beta cell function. METHODS Proinsulin localisation in autophagosomes was demonstrated by confocal and electron microscopy. Autophagy was inhibited by knockdown of autophagy-related (ATG) proteins and using the H(+)-ATPase inhibitor bafilomycin-A1. Proinsulin and insulin content and secretion were assessed in static incubations by ELISA and RIA. RESULTS Confocal and electron microscopy showed proinsulin localised in autophagosomes and lysosomes. Beta-Atg7 (-/-) mice had proinsulin-containing sequestosome 1 (p62 [also known as SQSTM1])(+) aggregates in beta cells, indicating proinsulin is regulated by autophagy in vivo. Short-term bafilomycin-A1 treatment and ATG5/7 knockdown increased steady-state proinsulin and hormone precursor chromogranin A content. ATG5/7 knockdown also increased glucose- and non-fuel-stimulated insulin secretion. Finally, mutated forms of proinsulin that are irreparably misfolded and trapped in the endoplasmic reticulum are more resistant to degradation by autophagy. CONCLUSIONS/INTERPRETATION In the beta cell, transport-competent secretory peptide precursors, including proinsulin, are regulated by autophagy, whereas efficient clearance of transport-incompetent mutated forms of proinsulin by alternative degradative pathways may be necessary to avoid beta cell proteotoxicity. Reduction of autophagic degradation of proinsulin increases its residency in the secretory pathway, followed by enhanced secretion in response to stimuli.
Collapse
Affiliation(s)
- Yael Riahi
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, PO Box 12000, Jerusalem, 91120, Israel
| | - Jakob D Wikstrom
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, PO Box 12000, Jerusalem, 91120, Israel
- Molecular Dermatology Research Group, Unit of Dermatology and Venereology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Etty Bachar-Wikstrom
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, PO Box 12000, Jerusalem, 91120, Israel
| | - Nava Polin
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, PO Box 12000, Jerusalem, 91120, Israel
| | - Hava Zucker
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, PO Box 12000, Jerusalem, 91120, Israel
| | - Myung-Shik Lee
- Severance Biomedical Research Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Wenying Quan
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Leena Haataja
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Ming Liu
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Erol Cerasi
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, PO Box 12000, Jerusalem, 91120, Israel
| | - Gil Leibowitz
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, PO Box 12000, Jerusalem, 91120, Israel.
| |
Collapse
|
2
|
Knockdown of Pdcd4 results in induction of proprotein convertase 1/3 and potent secretion of chromogranin A and secretogranin II in a neuroendocrine cell line. Biol Cell 2008; 100:703-15. [PMID: 18549351 DOI: 10.1042/bc20080052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Pdcd4 (programmed cell death 4) is up-regulated during apoptosis and seems to play an important role as a tumour suppressor. To gain further insights into its biological functions, we suppressed Pdcd4 expression in the neuroendocrine cell line Bon-1 via siRNA (small interfering RNA) technology. RESULTS Using this cell line, we found that suppression of Pdcd4 resulted in an increased release of CgA (chromogranin A) and Sg II (secretogranin II), and was accompanied by an up-regulation of intracellular PC1 (proprotein convertase 1/3). The enhanced secretion of CgA and Sg II seemed to be mediated by an activation of protein kinase Akt via PI3K (phosphoinositide 3-kinase). In accordance with this, inhibition of PI3K activity and, thereby, reduced phosphorylation of Akt was shown to enhance Pdcd4 expression. Neither the PKC (protein kinase C) signal transduction cascade nor the MAPK (mitogen-activated protein kinase) pathway seemed to play a role in the regulation of CgA and Sg II secretion by Pdcd4. CONCLUSIONS CgA is considered to be a marker for neuroendocrine tumours, and up-regulation of PC1 has been reported in various types of cancers. The repression of PC1 by Pdcd4 may represent a novel mechanism for the function of Pdcd4 as a tumour suppressor. Our results are of particular interest, as we observed that pioglitazone, an oral medication used in the treatment of Type 2 diabetes, decreased Pdcd4 levels, activated Akt, increased CgA and Sg II secretion and augmented PC1 protein in Bon-1 cells. Enhanced PC1 levels, leading to improved processing of proinsulin and proglucagon, may contribute to the benefits of pioglitazone therapy. The in vivo relevance of our findings was highlighted by data indicating elevated CgA amounts in the sera of patients treated with pioglitazone. This is the first study connecting Pdcd4 levels, secretion behaviour of neuroendocrine cells and regulation of PI3K activity.
Collapse
|
3
|
McCullar JS, Malencik DA, Vogel WK, Crofoot KM, Anderson SR, Filtz TM. Calmodulin potentiates G beta gamma activation of phospholipase C-beta3. Biochem Pharmacol 2007; 73:270-8. [PMID: 17118346 PMCID: PMC1866284 DOI: 10.1016/j.bcp.2006.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 10/05/2006] [Accepted: 10/09/2006] [Indexed: 11/25/2022]
Abstract
Phospholipase C-beta (PLC-beta) isozymes (EC 3.1.4.11) hydrolyze the membrane phospholipid phosphatidylinositol-4,5-bisphosphate to generate intracellular second messenger signaling molecules inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) in response to receptor activation and other cellular stimuli. PLCbeta1 and PLCbeta3 isozymes were previously demonstrated to bind the calcium-sensitive molecule calmodulin [McCullar JS, Larsen SA, Millimaki RA, Filtz TM. Calmodulin is a phospholipase C-{beta} interacting protein. J Biol Chem 2003;278(36):33708-13]. We have now shown through fluorescence anisotropy that calmodulin/PLCbeta3 affinities increase with increasing calcium in a physiologically relevant concentration range. The bimolecular affinity constants for calmodulin interaction with PLCbeta1 or PLCbeta3 were estimated as 260 and 200 nM, respectively, from fluorescence anisotropy data. There was no effect of calmodulin on basal or G alpha q-stimulated catalytic activity for either isozyme. However, the interaction between calmodulin and PLCbeta3 leads to potentiation of activation by the G-protein beta gamma dimer in an in vitro assay. 1321N1 cells treated with calmodulin inhibitors concurrent with and post-stimulation of muscarinic receptors significantly reduced [3H]PIP hydrolysis. Together these data are suggestive of cooperative role for calmodulin in the G-protein beta gamma dimer-stimulated activity of PLCbeta3.
Collapse
Affiliation(s)
- Jennifer S McCullar
- Molecular and Cellular Biology Graduate Program, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | |
Collapse
|
4
|
Stålberg P, Lopez-Egido JR, Wang S, Gobl A, Oberg K, Skogseid B. Differentially expressed cDNAs in PLCbeta3-induced tumor suppression in a human endocrine pancreatic tumor cell line: activation of the human mismatch repair protein 3 gene. Biochem Biophys Res Commun 2001; 281:227-31. [PMID: 11178984 DOI: 10.1006/bbrc.2001.4329] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Phospholipase Cbeta3 (PLCB3) is located to chromosome 11q13 in the vicinity of the multiple endocrine neoplasia type1 (MEN1) gene and shows loss of expression in some neuroendocrine tumors. Transfection of PLCB3 to neuroendocrine cell lines induces growth suppression and phenotypic alterations, but the mechanisms remain unclear. To investigate the underlying events behind this tumor suppression, we performed an RT-Differential cDNA Display of total RNA from BON-1 (human endocrine pancreatic tumor cell line) transfected with PLCB3 and compared to wild type and BON-1 transfected with vector without insert. PLCB3 transfection resulted in increased expression of 4 genes and decreased of 2. The two inhibited were homologous to S100A3 and Chromogranin A. One of the four activated cDNAs could be identified as human mismatch repair protein 3 mRNA (hMSH3), and another was homologous to TIS/MA-3 mRNA (mouse topoisomerase suppressor inhibited gene/mouse apoptosis gene-3). Differential expression of these genes may contribute to the PLCB3-induced tumor suppression of neuroendocrine tumor cell lines.
Collapse
Affiliation(s)
- P Stålberg
- Endocrine Oncology Unit, Department of Medical Sciences, University Hospital, Uppsala, 751 85, Sweden.
| | | | | | | | | | | |
Collapse
|
5
|
Yue C, Ku CY, Liu M, Simon MI, Sanborn BM. Molecular mechanism of the inhibition of phospholipase C beta 3 by protein kinase C. J Biol Chem 2000; 275:30220-5. [PMID: 10893237 DOI: 10.1074/jbc.m004276200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of protein kinase C (PKC) can result from stimulation of the receptor-G protein-phospholipase C (PLCbeta) pathway. In turn, phosphorylation of PLCbeta by PKC may play a role in the regulation of receptor-mediated phosphatidylinositide (PI) turnover and intracellular Ca(2+) release. Activation of endogenous PKC by phorbol 12-myristate 13-acetate inhibited both Galpha(q)-coupled (oxytocin and M1 muscarinic) and Galpha(i)-coupled (formyl-Met-Leu-Phe) receptor-stimulated PI turnover by 50-100% in PHM1, HeLa, COSM6, and RBL-2H3 cells expressing PLCbeta(3). Activation of conventional PKCs with thymeleatoxin similarly inhibited oxytocin or formyl-Met-Leu-Phe receptor-stimulated PI turnover. The PKC inhibitory effect was also observed when PLCbeta(3) was stimulated directly by Galpha(q) or Gbetagamma in overexpression assays. PKC phosphorylated PLCbeta(3) at the same predominant site in vivo and in vitro. Peptide sequencing of in vitro phosphorylated recombinant PLCbeta(3) and site-directed mutagenesis identified Ser(1105) as the predominant phosphorylation site. Ser(1105) is also phosphorylated by protein kinase A (PKA; Yue, C., Dodge, K. L., Weber, G., and Sanborn, B. M. (1998) J. Biol. Chem. 273, 18023-18027). Similar to PKA, the inhibition by PKC of Galpha(q)-stimulated PLCbeta(3) activity was completely abolished by mutation of Ser(1105) to Ala. In contrast, mutation of Ser(1105) or Ser(26), another putative phosphorylation target, to Ala had no effect on inhibition of Gbetagamma-stimulated PLCbeta(3) activity by PKC or PKA. These data indicate that PKC and PKA act similarly in that they inhibit Galpha(q)-stimulated PLCbeta(3) as a result of phosphorylation of Ser(1105). Moreover, PKC and PKA both inhibit Gbetagamma-stimulated activity by mechanisms that do not involve Ser(1105).
Collapse
Affiliation(s)
- C Yue
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77225, USA
| | | | | | | | | |
Collapse
|