1
|
Poetzsch G, Jelacic L, Dammer L, Hellmann SL, Balling M, Andrade-Navarro M, Avivi A, Shams I, Bicker A, Hankeln T. Adaptation of the Spalax galili transcriptome to hypoxia may underlie the complex phenotype featuring longevity and cancer resistance. NPJ AGING 2025; 11:16. [PMID: 40044716 PMCID: PMC11882797 DOI: 10.1038/s41514-025-00206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025]
Abstract
In the subterranean rodent (Nanno)spalax galili, evolutionary adaptation to hypoxia is correlated with longevity and tumor resistance. Adapted gene-regulatory networks of Spalax might pinpoint strategies to maintain health in humans. Comparing liver, kidney and spleen transcriptome data from Spalax and rat at hypoxia and normoxia, we identified differentially expressed gene pathways common to multiple organs in both species. Body-wide interspecies differences affected processes like cell death, antioxidant defense, DNA repair, energy metabolism, immune response and angiogenesis, which may play a crucial role in Spalax's adaptation to environmental hypoxia. In all organs, transcription of genes for genome stability maintenance and DNA repair was elevated in Spalax versus rat, accompanied by lower expression of aerobic energy metabolism and proinflammatory genes. These transcriptomic changes might account for the extraordinary lifespan of Spalax and its cancer resistance. The identified gene networks present candidates for further investigating the molecular basis underlying the complex Spalax phenotype.
Collapse
Affiliation(s)
- Gesa Poetzsch
- Molecular Genetics & Genome Analysis, Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg-University, Mainz, Germany
| | - Luca Jelacic
- Molecular Genetics & Genome Analysis, Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg-University, Mainz, Germany
| | - Leon Dammer
- Molecular Genetics & Genome Analysis, Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg-University, Mainz, Germany
| | - Sören Lukas Hellmann
- Molecular Genetics & Genome Analysis, Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg-University, Mainz, Germany
- Nucleic Acids Core Facility, Faculty of Biology, Johannes Gutenberg-University, Mainz, Germany
| | - Michelle Balling
- Molecular Genetics & Genome Analysis, Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg-University, Mainz, Germany
| | - Miguel Andrade-Navarro
- Computational Biology and Data Mining Group, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Aaron Avivi
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, Israel
| | - Imad Shams
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, Israel
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa, Israel
| | - Anne Bicker
- Molecular Genetics & Genome Analysis, Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg-University, Mainz, Germany
- Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Thomas Hankeln
- Molecular Genetics & Genome Analysis, Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
2
|
Patel JIA, Poyya J, Padakannaya A, Kurdekar NM, Khandagale AS, Joshi CG, Kanade SR, Satyamoorthy K. Mechanistic insights into gut microbe derived siderophores and PHD2 interactions with implications for HIF-1α stabilization. Sci Rep 2025; 15:1113. [PMID: 39774022 PMCID: PMC11707245 DOI: 10.1038/s41598-024-83730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
In oxygen-deprived conditions, cells respond by activating adaptive mechanisms to bolster their survival and protect tissue integrity. A key player in this process is the HIF-1α signaling cascade, meticulously regulated by Prolyl Hydroxylase Domain 2 (PHD2), which orchestrates cellular responses to varying oxygen levels. The primary aim of this investigation is to utilize gut siderophores as inhibitors of PHD2 in ischemic conditions. This study also helps in understanding the structural mechanisms by which gut microbiota regulate HIF-1α via PHD2 inhibition through the secretion of siderophores. We explore potential PHD2 inhibitors through in-silico approaches, specifically molecular docking, binding pose metadynamics, molecular dynamics simulations, and free energy calculations. We evaluated siderophores secreted by gut microbiota as candidate inhibitors for PHD2. Docking studies revealed that Salmochelin SX exhibits the highest binding affinity to PHD2 (- 9.527 kcal/mol), interacting with key residues such as ASP254, TYR310, ASP315, and ARG322. Despite its high affinity, binding pose metadynamics indicated instability for Salmochelin SX, whereas Staphyloferrin A demonstrated superior stability. Molecular dynamics simulations confirmed stable ligand interactions with PHD2, highlighting HIS313 and ASP315 as critical for inhibition. Principal Component Analysis (PCA) and Free Energy Landscape (FEL) analyses underscored conformational changes and binding stability, suggesting that these interactions may stabilize PHD2's active site and have potential therapeutic implications. Additionally, the study reveals how gut microbiota prevent gut dysbiosis through the stabilization of HIF-1α signaling by secreting siderophores.
Collapse
Affiliation(s)
- Jainabbi Irshad Ahmed Patel
- SDM Research Institute for Biomedical Sciences, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, 580009, India
| | - Jagadeesha Poyya
- SDM Research Institute for Biomedical Sciences, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, 580009, India.
| | - Apeksha Padakannaya
- SDM Research Institute for Biomedical Sciences, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, 580009, India
| | - Namrata Manjunath Kurdekar
- SDM Research Institute for Biomedical Sciences, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, 580009, India
| | - Ajay Sathayanarayan Khandagale
- SDM Research Institute for Biomedical Sciences, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, 580009, India
| | | | - Santosh R Kanade
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Kapaettu Satyamoorthy
- Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, Karnataka, 580009, India
| |
Collapse
|
3
|
Li F, Qiao Z, Duan Q, Nevo E. Adaptation of mammals to hypoxia. Animal Model Exp Med 2021; 4:311-318. [PMID: 34977482 PMCID: PMC8690989 DOI: 10.1002/ame2.12189] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 12/19/2022] Open
Abstract
Oxygen plays a pivotal role in the metabolism and activities of mammals. However, oxygen is restricted in some environments-subterranean burrow systems or habitats at high altitude or deep in the ocean-and this could exert hypoxic stresses such as oxidative damage on organisms living in these environments. In order to cope with these stresses, organisms have evolved specific strategies to adapt to hypoxia, including changes in physiology, gene expression regulation, and genetic mutations. Here, we review how mammals have adapted to the three high-altitude plateaus of the world, the limited oxygen dissolved in deep water habitats, and underground tunnels, with the aim of better understanding the adaptation of mammals to hypoxia.
Collapse
Affiliation(s)
- Fang Li
- College of Life Sciences and TechnologyMudanjiang Normal UniversityMudanjiangChina
| | - Zhenglei Qiao
- College of Life Sciences and TechnologyMudanjiang Normal UniversityMudanjiangChina
| | - Qijiao Duan
- College of Natural Resources and EnvironmentSouth China Agriculture UniversityGuangzhouChina
| | - Eviatar Nevo
- Institute of EvolutionUniversity of HaifaHaifaIsrael
| |
Collapse
|
4
|
Identification and Functional Analysis of lncRNAs Responsive to Hypoxia in Eospalax fontanierii. Curr Issues Mol Biol 2021; 43:1889-1905. [PMID: 34889903 PMCID: PMC8929107 DOI: 10.3390/cimb43030132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
Subterranean rodents could maintain their normal activities in hypoxic environments underground. Eospalax fontanierii, as one kind of subterranean rodent found in China can survive very low oxygen concentration in labs. It has been demonstrated that long non-coding RNAs (lncRNAs) have important roles in gene expression regulations at different levels and some lncRNAs were found as hypoxia-regulated lncRNAs in cancers. We predicted thousands of lncRNAs in the liver and heart tissues by analyzing RNA-Seq data in Eospalax fontanierii. Those lncRNAs often have shorter lengths, lower expression levels, and lower GC contents than mRNAs. Majors of lncRNAs have expression peaks in hypoxia conditions. We found 1128 DE-lncRNAs (differential expressed lncRNAs) responding to hypoxia. To search the miRNA regulation network for lncRNAs, we predicted 471 and 92 DE-lncRNAs acting as potential miRNA target and target mimics, respectively. We also predicted the functions of DE-lncRNAs based on the co-expression networks of lncRNA-mRNA. The DE-lncRNAs participated in the functions of biological regulation, signaling, development, oxoacid metabolic process, lipid metabolic/biosynthetic process, and catalytic activity. As the first study of lncRNAs in Eospalax fontanierii, our results show that lncRNAs are popular in transcriptome widely and can participate in multiple biological processes in hypoxia responses.
Collapse
|
5
|
Shi L, Chen B, Wang X, Huang M, Qiao C, Wang J, Wang Z. Antioxidant response to severe hypoxia in Brandt's vole Lasiopodomys brandtii. Integr Zool 2021; 17:581-595. [PMID: 34713576 DOI: 10.1111/1749-4877.12602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The antioxidant defense system is essential for animals to cope with homeostasis disruption and overcome oxidative stress caused by adverse environmental conditions such as hypoxia. However, our understanding of how this system works in subterranean rodents remains limited. In this study, Brandt's vole Lasiopodomys brandtii was exposed to normoxia (21% O2 ) or hypoxia (mild or severe hypoxia: 10% or 5% O2 ) for 6 h. Changes in key enzymes of the classic enzymatic antioxidant system at both mRNA and enzyme activity levels, and tissue antioxidant levels of the low-molecular-weight antioxidant system were determined in brain, liver, and kidney. Transcript levels of the upstream regulator NF-E2-related factor 2 (Nrf2) were also measured. We found that the mRNA expression of Nrf2 and its downstream antioxidant enzyme genes in L. brandtii were relatively conserved in response to hypoxia in most tissues and genes tested, except in the liver. Hepatic Nrf2, Cu/Zn SOD, GPx1, and GPx3 levels were significantly upregulated in response to mild hypoxia, whereas Mn SOD level decreased significantly in severe hypoxia. Unmatched with changes at the RNA level, constitutively high and relatively stable antioxidant enzyme activities were maintained throughout. For the low-molecular-weight antioxidant system, an abrupt increase of cerebral ascorbic acid (AA) levels in hypoxia indicated a tissue-specific antioxidant response. Although hypoxia did not cause significant oxidative damage in most tissues tested, the significant decrease in antioxidant enzyme activities (GPX and GR) and increase in lipid peroxidation in the kidney suggest that prolonged hypoxia may pose a critical threat to this species.
Collapse
Affiliation(s)
- Luye Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Bojian Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai, China.,Jiaxing-Tongji Environmental Research Institute, Jiaxing, China
| | - Xinrui Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Maolin Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Congcong Qiao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingou Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.,Centre for Nutritional Ecology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Bao M, Shang F, Liu F, Hu Z, Wang S, Yang X, Yu Y, Zhang H, Jiang C, Jiang J, Liu Y, Wang X. Comparative transcriptomic analysis of the brain in Takifugu rubripes shows its tolerance to acute hypoxia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1669-1685. [PMID: 34460041 DOI: 10.1007/s10695-021-01008-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Hypoxia in water that caused by reduced levels of oxygen occurred frequently, due to the complex aquatic environment. Hypoxia tolerance for fish depends on a complete set of coping mechanisms such as oxygen perception and gene-protein interaction regulation. The present study examined the short-term effects of hypoxia on the brain in Takifugu rubripes. We sequenced the transcriptomes of the brain in T. rubripes to study their response mechanism to acute hypoxia. A total of 167 genes were differentially expressed in the brain of T. rubripes after exposed to acute hypoxia. Gene ontology and KEGG enrichment analysis indicated that hypoxia could cause metabolic and neurological changes, showing the clues of their adaptation to acute hypoxia. As the most complex and important organ, the brain of T. rubripes might be able to create a self-protection mechanism to resist or reduce damage caused by acute hypoxia stress.
Collapse
Affiliation(s)
- Mingxiu Bao
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Fengqin Shang
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Fujun Liu
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Ziwen Hu
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Shengnan Wang
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Xiao Yang
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Yundeng Yu
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Hongbin Zhang
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Chihang Jiang
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Jielan Jiang
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Yang Liu
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China.
| | - Xiuli Wang
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China.
| |
Collapse
|
7
|
Li M, Tian X, Li X, Huang M, Huang S, Wu Y, Jiang M, Shi Y, Shi L, Wang Z. Diverse energy metabolism patterns in females in Neodon fuscus, Lasiopodomys brandtii, and Mus musculus revealed by comparative transcriptomics under hypoxic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147130. [PMID: 34088150 DOI: 10.1016/j.scitotenv.2021.147130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/28/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
The effects of global warming and anthropogenic disturbance force animals to migrate from lower to higher elevations to find suitable new habitats. As such migrations increase hypoxic stress on the animals, it is important to understand how plateau- and plain-dwelling animals respond to low-oxygen environments. We used comparative transcriptomics to explore the response of Neodon fuscus, Lasiopodomys brandtii, and Mus musculus skeletal muscle tissues to hypoxic conditions. Results indicate that these species have adopted different oxygen transport and energy metabolism strategies for dealing with a hypoxic environment. N. fuscus promotes oxygen transport by increasing hemoglobin synthesis and reduces the risk of thrombosis through cooperative regulation of genes, including Fga, Fgb, Alb, and Ttr; genes such as Acs16, Gpat4, and Ndufb7 are involved in regulating lipid synthesis, fatty acid β-oxidation, hemoglobin synthesis, and electron-linked transmission, thereby maintaining a normal energy supply in hypoxic conditions. In contrast, the oxygen-carrying capacity and angiogenesis of red blood cells in L. brandtii are promoted by genes in the CYP and COL families; this species maintains its bodily energy supply by enhancing the pentose phosphate pathway and mitochondrial fatty acid synthesis pathway. However, under hypoxia, M. musculus cannot effectively transport additional oxygen; thus, its cell cycle, proliferation, and migration are somewhat affected. Given its lack of hypoxic tolerance experience, M. musculus also shows significantly reduced oxidative phosphorylation levels under hypoxic conditions. Our results suggest that the glucose capacity of M. musculus skeletal muscle does not provide sufficient energy during hypoxia; thus, we hypothesize that it supplements its bodily energy by synthesizing ketone bodies. For the first time, we describe the energy metabolism pathways of N. fuscus and L. brandtii skeletal muscle tissues under hypoxic conditions. Our findings, therefore, improve our understanding of how vertebrates thrive in high altitude and plain habitats when faced with hypoxic conditions.
Collapse
Affiliation(s)
- Mengyang Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiangyu Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiujuan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Maolin Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shuang Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yue Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Mengwan Jiang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yuhua Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Luye Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; School of Physical Education (Main campus), Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
8
|
Shi L, Jiang M, Li M, Shang X, Li X, Huang M, Wu Y, Qiao C, Wang X, Tian X, Shi Y, Wang Z. Regulation of HIF-1α and p53 in stress responses in the subterranean rodents Lasiopodomys mandarinus and Lasiopodomys brandtii (Rodentia: Cricetidae). ZOOLOGIA 2021. [DOI: 10.3897/zoologia.38.e58607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The response mechanism and interaction patterns of HIF-1α and p53 in animals in an hypoxic environment are crucial for their hypoxic tolerance and adaptation. Many studies have shown that underground rodents have better hypoxic adaptation characteristics. However, the mechanism by which HIF-1α and p53 in underground rodents respond to hypoxic environments compared with in ground rodents remains unclear. Further, whether a synergy between HIF-1α and p53 enables animals tolerate extremely hypoxic environments is unclear. We studied HIF-1α and p53 expression in the brain tissue and cell apoptosis in the hippocampal CA1 region during 6 hours of acute hypoxia (5% oxygen) in Lasiopodomys mandarinus (Milne-Edwards, 1871) and Lasiopodomys brandtii (Radde, 1861), two closely related small rodents with different life characteristics (underground and aboveground, respectively), using a comparative biology method to determine the mechanisms underlying their adaptation to this environment. Our results indicate that HIF-1α and p53 expression is more rapid in L. mandarinus than in L. brandtii under acute hypoxic environments, resulting in a significant synergistic effect in L. mandarinus. Correlation analysis revealed that HIF-1α expression and the apoptotic index of the hippocampal CA1 regions of the brain tissues of L. mandarinus and L. brandtii, both under hypoxia, were significantly negatively and positively correlated, respectively. Long-term existence in underground burrow systems could enable better adaptation to hypoxia in L. mandarinus than in L. brandtii. We speculate that L. mandarinus can quickly eliminate resulting damage via the synergistic effect of p53 and HIF-1α in response to acute hypoxic environments, helping the organism quickly return to a normal state after the stress.
Collapse
|
9
|
Li W, Dong Y, Dong Q, Sun H, Zhang Y, Wang Z. The remarkable hypoxia tolerance in Brandt's voles (
Lasiopodomys brandtii
). Eur J Neurosci 2020; 53:1652-1660. [DOI: 10.1111/ejn.15012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/19/2020] [Accepted: 10/05/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Wei Li
- School of Basic Medical Sciences Zhengzhou University Zhengzhou Henan Province China
| | - Yanan Dong
- School of Basic Medical Sciences Zhengzhou University Zhengzhou Henan Province China
| | - Qianqian Dong
- School of Life Sciences Zhengzhou University Zhengzhou Henan Province China
| | - Hong Sun
- School of Physical Education (Main campus) Zhengzhou University Zhengzhou Henan Province China
| | - Yifeng Zhang
- School of Life Sciences Zhengzhou University Zhengzhou Henan Province China
| | - Zhenlong Wang
- School of Life Sciences Zhengzhou University Zhengzhou Henan Province China
| |
Collapse
|
10
|
Dong Q, Wang Z, Jiang M, Sun H, Wang X, Li Y, Zhang Y, Cheng H, Chai Y, Shao T, Shi L, Wang Z. Transcriptome analysis of the response provided by Lasiopodomys mandarinus to severe hypoxia includes enhancing DNA repair and damage prevention. Front Zool 2020; 17:9. [PMID: 32256671 PMCID: PMC7106638 DOI: 10.1186/s12983-020-00356-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/16/2020] [Indexed: 02/08/2023] Open
Abstract
Background Severe hypoxia induces a series of stress responses in mammals; however, subterranean rodents have evolved several adaptation mechanisms of energy metabolisms and O2 utilization for hypoxia. Mammalian brains show extreme aerobic metabolism. Following hypoxia exposure, mammals usually experience irreversible brain damage and can even develop serious diseases, such as hypoxic ischemic encephalopathy and brain edema. To investigate mechanisms underlying the responses of subterranean rodents to severe hypoxia, we performed a cross-species brain transcriptomic analysis using RNA sequencing and identified differentially expressed genes (DEGs) between the subterranean rodent Lasiopodomys mandarinus and its closely related aboveground species L. brandtii under severe hypoxia (5.0% O2, 6 h) and normoxia (20.9% O2, 6 h). Results We obtained 361 million clean reads, including 69,611 unigenes in L. mandarinus and 69,360 in L. brandtii. We identified 359 and 515 DEGs by comparing the hypoxic and normoxia groups of L. mandarinus and L. brandtii, respectively. Gene Ontology (GO) analysis showed that upregulated DEGs in both species displayed similar terms in response to severe hypoxia; the main difference is that GO terms of L. brandtii were enriched in the immune system. However, in the downregulated DEGs, GO terms of L. mandarinus were enriched in cell proliferation and protein transport and those of L. brandtii were enriched in nuclease and hydrolase activities, particularly in terms of developmental functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that upregulated DEGs in L. mandarinus were associated with DNA repair and damage prevention as well as angiogenesis and metastasis inhibition, whereas downregulated DEGs were associated with neuronal synaptic transmission and tumor-associated metabolic pathways. In L. brandtii, upregulated KEGG pathways were enriched in the immune, endocrine, and cardiovascular systems and particularly in cancer-related pathways, whereas downregulated DEGs were associated with environmental information processing and misregulation in cancers. Conclusions L. mandarinus has evolved hypoxia adaptation by enhancing DNA repair, damage prevention, and augmenting sensing, whereas L. brandtii showed a higher risk of tumorigenesis and promoted innate immunity toward severe hypoxia. These results reveal the hypoxic mechanisms of L. mandarinus to severe hypoxia, which may provide research clues for hypoxic diseases.
Collapse
Affiliation(s)
- Qianqian Dong
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Zishi Wang
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Mengwan Jiang
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Hong Sun
- 2College of Physical Education (main campus), Zhengzhou University, Zhengzhou, Henan Province China
| | - Xuqin Wang
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Yangwei Li
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China.,3Central Laboratory, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008 Henan Province China
| | - Yifeng Zhang
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Han Cheng
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Yurong Chai
- 4School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Tian Shao
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Luye Shi
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Zhenlong Wang
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| |
Collapse
|
11
|
Maina JN, Igbokwe CO. Comparative morphometric analysis of lungs of the semifossorial giant pouched rat (Cricetomys gambianus) and the subterranean Nigerian mole rat (Cryptomys foxi). Sci Rep 2020; 10:5244. [PMID: 32251351 PMCID: PMC7090082 DOI: 10.1038/s41598-020-61873-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
Lungs of the rodent species, the African giant pouched rat (Cricetomys gambianus) and the Nigerian mole rat (Cryptomys foxi) were investigated. Significant morphometric differences exist between the two species. The volume of the lung per unit body mass was 2.7 times larger; the respiratory surface area 3.4 times greater; the volume of the pulmonary capillary blood 2 times more; the harmonic mean thickness of the blood-gas (tissue) barrier (τht) ~29% thinner and; the total pulmonary morphometric diffusing capacity (DLo2) for O2 2.3 times more in C. foxi. C. gambianus occupies open burrows that are ventilated with air while C. foxi lives in closed burrows. The less morphometrically specialized lungs of C. gambianus may be attributed to its much larger body mass (~6 times more) and possibly lower metabolic rate and its semifossorial life whereas the 'superior' lungs of C. foxi may largely be ascribed to the subterranean hypoxic and hypercapnic environment it occupies. Compared to other rodents species that have been investigated hitherto, the τht was mostly smaller in the lungs of the subterranean species and C. foxi has the highest mass-specific DLo2. The fossorial- and the subterranean rodents have acquired various pulmonary structural specializations that relate to habitats occupied.
Collapse
Affiliation(s)
- John N Maina
- Department of Zoology, University of Johannesburg, Auckland Park Campus, Kingsway, Johannesburg, 2006, South Africa.
| | - Casmir O Igbokwe
- Department of Zoology, University of Johannesburg, Auckland Park Campus, Kingsway, Johannesburg, 2006, South Africa
- Visiting Postdoctoral Fellow, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
12
|
Bogan SN, Place SP. Accelerated evolution at chaperone promoters among Antarctic notothenioid fishes. BMC Evol Biol 2019; 19:205. [PMID: 31694524 PMCID: PMC6836667 DOI: 10.1186/s12862-019-1524-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/01/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Antarctic fishes of the Notothenioidei suborder constitutively upregulate multiple inducible chaperones, a highly derived adaptation that preserves proteostasis in extreme cold, and represent a system for studying the evolution of gene frontloading. We screened for Hsf1-binding sites, as Hsf1 is a master transcription factor of the heat shock response, and highly-conserved non-coding elements within proximal promoters of chaperone genes across 10 Antarctic notothens, 2 subpolar notothens, and 17 perciform fishes. We employed phylogenetic models of molecular evolution to determine whether (i) changes in motifs associated with Hsf1-binding and/or (ii) relaxed purifying selection or exaptation at ancestral cis-regulatory elements coincided with the evolution of chaperone frontloading in Antarctic notothens. RESULTS Antarctic notothens exhibited significantly fewer Hsf1-binding sites per bp at chaperone promoters than subpolar notothens and Serranoidei, the most closely-related suborder to Notothenioidei included in this study. 90% of chaperone promoters exhibited accelerated substitution rates among Antarctic notothens relative to other perciformes. The proportion of bases undergoing accelerated evolution (i) was significantly greater in Antarctic notothens than in subpolar notothens and Perciformes in 70% of chaperone genes and (ii) increased among bases that were more conserved among perciformes. Lastly, we detected evidence of relaxed purifying selection and exaptation acting on ancestrally conserved cis-regulatory elements in the Antarctic notothen lineage and its major branches. CONCLUSION A large degree of turnover has occurred in Notothenioidei at chaperone promoter regions that are conserved among perciform fishes following adaptation to the cooling of the Southern Ocean. Additionally, derived reductions in Hsf1-binding site frequency suggest cis-regulatory modifications to the classical heat shock response. Of note, turnover events within chaperone promoters were less frequent in the ancestral node of Antarctic notothens relative to younger Antarctic lineages. This suggests that cis-regulatory divergence at chaperone promoters may be greater between Antarctic notothen lineages than between subpolar and Antarctic clades. These findings demonstrate that strong selective forces have acted upon cis-regulatory elements of chaperone genes among Antarctic notothens.
Collapse
Affiliation(s)
- Samuel N Bogan
- Department of Biology, Sonoma State University, Rohnert Park, CA, 94928, USA.
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA.
| | - Sean P Place
- Department of Biology, Sonoma State University, Rohnert Park, CA, 94928, USA
| |
Collapse
|
13
|
Dilara Fatma Akın-Balı, Teoman Kankılıç. Genetic Variations in Nrf2-Keap1 Complex: A Step towards Understanding Cancer Resistance in Blind Mole Rats Cytotypes. BIOL BULL+ 2019. [DOI: 10.1134/s1062359019060050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Matsuo T, Kashimura A, Wada N. The variable heartbeat of Japanese moles (Mogera spp.). J Comp Physiol B 2019; 189:707-715. [PMID: 31612249 DOI: 10.1007/s00360-019-01239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
Abstract
This report demonstrates the variable cardiac rhythm in two species of subterranean mole, the large Japanese mole (Mogera wogura) and the lesser Japanese mole (Mogera imaizumii). The phenomenon was revealed using X-ray videos of M. wogura and investigated in detail using electrocardiogram (ECG) traces recorded with implanted electrodes in this species and M. imaizumii. Cessation of heartbeat and extended R-R intervals were observed in the ECGs from both species during short bouts of rest in wakeful specimens of both species under normoxic conditions at room temperature. The mean durations of R-R intervals were 288.8 ± 3.3 ms for M. wogura and 191.9 ± 2.4 ms for M. imaizumii. The cardiac rhythm in both species became more unstable and R-R interval was prolonged by 153.5% ± 17.7 after injection of a sympathetic blocker (propranolol), whereas the application of a parasympathetic blocker (atropine) resulted in increasing stability and a reduced interval between R wave peaks (R-R) 64.2% ± 4.8. ECGs of two related soricomorphs, the fossorial Japanese shrew-mole (Urotrichus talpoides) and surface-dwelling Japanese white-toothed shrew (Crocidura dsinezumi) were also recorded and compared for comparison. The heartbeats of these species were relatively stable compared with those of the subterranean moles. Our results indicated clear differences in the physiological cardiac features between the examined members of the Soricomorpha.
Collapse
Affiliation(s)
- Taiki Matsuo
- The United Graduated School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Atsushi Kashimura
- Department of Applied Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Naomi Wada
- Department of Animal System Physiology, Yamaguchi University, Yamaguchi, 753-8511, Japan.
| |
Collapse
|
15
|
Sharma S, Xue Y, Xing Z, Yassin MA, Sun Y, Lorens JB, Finne-Wistrand A, Sapkota D, Mustafa K. Adenoviral mediated mono delivery of BMP2 is superior to the combined delivery of BMP2 and VEGFA in bone regeneration in a critical-sized rat calvarial bone defect. Bone Rep 2019; 10:100205. [PMID: 31193299 PMCID: PMC6525280 DOI: 10.1016/j.bonr.2019.100205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/11/2019] [Accepted: 04/10/2019] [Indexed: 01/30/2023] Open
Abstract
Apart from osteogenesis, neovascularization of the defect area is an important determinant for successful bone healing. Accordingly, several studies have employed the combined delivery of VEGFA and BMP2 for bone regeneration. Nevertheless, the outcomes of these studies are highly variable. The aim of our study was to compare the effectiveness of adenoviral mediated delivery of BMP2 alone and in combination with VEGFA in rat bone marrow stromal cells (rBMSC) seeded on a poly(LLA-co-CL) scaffold in angiogenesis and osteogenesis using a critical-sized rat calvarial defect model. Both mono delivery of BMP2 and the combined delivery of a lower ratio of VEGFA and BMP2 (1:4) led to up-regulation of osteogenic genes (Alpl and Runx2) and increased calcium deposition in vitro, compared with the GFP control. Micro computed tomography (microCT) analysis of the rat calvarial defect at 8 weeks showed that the mono delivery of BMP2 (43.37 ± 3.55% defect closure) was the most effective in healing the bone defect, followed by the combined delivery of BMP2 and VEGFA (27.86 ± 2.89%) and other controls. Histological and molecular analyses supported the microCT findings. Analysis of the angiogenesis, however, showed that both mono delivery of BMP2 and combined delivery of BMP2 and VEGFA had similar angiogenic effect in the calvarial defects. Examination of the key genes related to host response against the adenoviral vectors showed that the current model system was not associated with adverse immune response. Overall, the results show that the mono delivery of BMP2 was superior to the combined delivery of BMP2 and VEGFA in healing the critical-sized rat calvarial bone defect. These findings underscore the importance of appropriate growth factor combination for the successful outcome in bone regeneration.
Collapse
Affiliation(s)
- Sunita Sharma
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ying Xue
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Zhe Xing
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Mohammed A Yassin
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yang Sun
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - James B Lorens
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Dipak Sapkota
- Department of Oral Biology, Faculty of Dentistry, 0316 Oslo, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
16
|
Xu ZN, Zheng GD, Wu CB, Jiang XY, Zou SM. Identification of proteins differentially expressed in the gills of grass carp (Ctenopharyngodon idella) after hypoxic stress by two-dimensional gel electrophoresis analysis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:743-752. [PMID: 30758701 DOI: 10.1007/s10695-018-0599-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Two-dimensional gel electrophoresis (2-DE) was combined with liquid chromatography-mass spectrometry (LC-MS/MS) to identify the differential proteomics of grass carp gills after hypoxic stress to better understand the roles of proteins in the hypoxic response and to explore the possible molecular mechanisms. Protein spots were obtained from a hypoxia-stressed group (372 ± 11 individuals) and a control group (406 ± 14 individuals) using the lmage Master 2D Platinum 7.0 analysis software. Fifteen protein spots were expressed differentially in the hypoxia-stressed group and varied significantly after exposure to the hypoxic conditions. In addition, these differential proteins were identified by mass spectrometry and then searched in a database. We found the expression and upregulation of the toll-like receptor 4, ephx1 protein, isocitrate dehydrogenase, L-lactate dehydrogenase, GTP-binding nuclear protein Ran, and glyceraldehyde-3-phosphate dehydrogenase; however, the expression of the keratin type II cytoskeletal 8, type I cytokeratin, ARP3 actin-related protein 3 homolog, thyroid hormone receptor alpha-A, ATP synthase subunit beta, citrate synthase, tropomyosin 2, and tropomyosin 3 were downregulated. Six proteins were found in the hypoxia-inducible factor-1 (HIF-1) signaling pathway. We concluded that the grass carp gill is involved in response processes, including energy generation, metabolic processes, cellular structure, antioxidation, immunity, and signal transduction, to hypoxic stress. To our knowledge, this is the first study to conduct a proteomics analysis of expressed proteins in the gills of grass carp, and this study will help increase the understanding of the molecular mechanisms involved in hypoxic stress responses in fish at the protein level.
Collapse
Affiliation(s)
- Zhan-Ning Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China
| | - Guo-Dong Zheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China
| | - Cheng-Bin Wu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China
| | - Xia-Yun Jiang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China.
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Shu-Ming Zou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China.
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
17
|
Zhou Y, Ouyang N, Liu L, Tian J, Huang X, Lu T. An EGLN1 mutation may regulate hypoxic response in cyanotic congenital heart disease through the PHD2/HIF-1A pathway. Genes Dis 2019; 6:35-42. [PMID: 30906831 PMCID: PMC6411777 DOI: 10.1016/j.gendis.2018.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/06/2018] [Indexed: 12/21/2022] Open
Abstract
Cyanotic congenital heart disease (CCHD), a term describing the most severe congenital heart diseases are characterized by the anatomic malformation of a right to left shunt. Although the incidence of CCHD are far less than the that of congenital heart diseases (CHD), patients with CCHD always present severe clinical features such as hypoxia, dyspnea, and heart failure. Chronic hypoxia induces hypoxemia that significantly contributes to poor prognosis in CCHD. Current studies have demonstrated that the prolyl-4-hydroxylase2 (PHD2, encoded by EGLN1)/hypoxia-inducible factor-1A (HIF-1A) pathway is a key regulator of hypoxic response. Thus, we aim to assess the associations of single polymorphisms (SNPs) of the EGLN1 gene and hypoxic response in CCHD. A missense variant of EGLN1 c.380G>C (rs1209790) was found in 46 patients (46/126), with lower hypoxia incidence and higher rate of collateral vessel formation, compared with the wild type (P < 0.05). In vitro experiments, during hypoxia, EGLN1 mutation reduced EGLN1 expression compared with the wild type, with higher HIF-1A, VEGF and EPO expression levels in the mutant. No difference in HK1 expression was observed between the mutant and wild type. CCHD patients with c.380G>C showed improved response to hypoxia compared with the wild-type counterparts. The EGLN1 c.380G>C mutation improves hypoxic response through the PHD2/HIF-1A pathway, which may provide a molecular mechanism for hypoxic response in CCHD. The effects of the EGLN1 c.380G>C mutation on CCHD prognosis deserve further investigation.
Collapse
Affiliation(s)
- Yuanlin Zhou
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Key Laboratory of Developmental Disease in Childhood (Chongqing Medical University), Ministry of Education, Chongqing, PR China
- Key Laboratory of Pediatrics in Chongqing, Chongqing, PR China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, PR China
| | - Na Ouyang
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Key Laboratory of Developmental Disease in Childhood (Chongqing Medical University), Ministry of Education, Chongqing, PR China
- Key Laboratory of Pediatrics in Chongqing, Chongqing, PR China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, PR China
| | - Lingjuan Liu
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Key Laboratory of Developmental Disease in Childhood (Chongqing Medical University), Ministry of Education, Chongqing, PR China
- Key Laboratory of Pediatrics in Chongqing, Chongqing, PR China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, PR China
| | - Jie Tian
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Key Laboratory of Developmental Disease in Childhood (Chongqing Medical University), Ministry of Education, Chongqing, PR China
- Key Laboratory of Pediatrics in Chongqing, Chongqing, PR China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, PR China
| | - Xupei Huang
- Department of Biomedical Science, Charlie E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Tiewei Lu
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Key Laboratory of Developmental Disease in Childhood (Chongqing Medical University), Ministry of Education, Chongqing, PR China
- Key Laboratory of Pediatrics in Chongqing, Chongqing, PR China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, PR China
| |
Collapse
|
18
|
Lagunas-Rangel FA. Cancer-free aging: Insights from Spalax ehrenbergi superspecies. Ageing Res Rev 2018; 47:18-23. [PMID: 29913210 DOI: 10.1016/j.arr.2018.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 01/19/2023]
Abstract
Cancer and ageing can be regarded as two different manifestations of the same underlying process-accumulation of cellular damage-and therefore both are closely linked. Nowadays, the ageing of populations worldwide is leading to an unprecedented increase in cancer cases and fatalities, and therefore the understanding of links between cancer and ageing is more important than ever. Spalax is considered an excellent model for ageing and, additionally, for cancer research, due to not show clear age-related phenotypic changes and not develop spontaneous tumours, despite its relatively long lifespan (∼20 years in captivity). Thereby, the purpose of this review is to summarize the recent knowledge on Spalax, with a particular emphasis on the molecular mechanisms associated with their longevity and cancer resistance.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico.
| |
Collapse
|
19
|
Domankevich V, Eddini H, Odeh A, Shams I. Resistance to DNA damage and enhanced DNA repair capacity in the hypoxia-tolerant blind mole rat Spalax carmeli. ACTA ACUST UNITED AC 2018; 221:jeb.174540. [PMID: 29593080 DOI: 10.1242/jeb.174540] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/02/2018] [Indexed: 01/05/2023]
Abstract
Blind mole rats of the genus Spalax are the only mammalian species to date for which spontaneous cancer has never been reported and resistance to carcinogen-induced cancers has been demonstrated. However, the underlying mechanisms are still poorly understood. The fact that Spalax spp. are also hypoxia-tolerant and long-lived species implies the presence of molecular adaptations to prevent genomic instability, which underlies both cancer and aging. We previously demonstrated the upregulation of transcripts related to DNA replication and repair pathways in Spalax Yet, to date, no direct experimental evidence for improved genomic maintenance has been demonstrated for this genus. Here, we show that compared with skin fibroblasts of the above-ground rat, Spalax carmeli skin fibroblasts in culture resist several types of genotoxic insult, accumulate fewer genotoxic lesions and exhibit an enhanced DNA repair capacity. Our results strongly support that this species has evolved efficient mechanisms to maintain DNA integrity as an adaptation to the stressful conditions in the subterranean habitat.
Collapse
Affiliation(s)
- Vered Domankevich
- The Institute of Evolution and Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel
| | - Hossam Eddini
- The Institute of Evolution and Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel
| | - Amani Odeh
- The Institute of Evolution and Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel
| | - Imad Shams
- The Institute of Evolution and Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
20
|
Ellis M, Stern O, Ashur-Fabian O. The double benefit of Spalax p53: surviving underground hypoxia while defying lung cancer cells in vitro via autophagy and caspase-dependent cell death. Oncotarget 2018; 7:63242-63251. [PMID: 27557517 PMCID: PMC5325360 DOI: 10.18632/oncotarget.11443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/15/2016] [Indexed: 01/19/2023] Open
Abstract
The blind subterranean mole rat, Spalax ehrenbergi, is a model organism for hypoxia tolerance. This superspecies have adapted to severe environment by altering an array of hypoxia-mediated genes, among which an alteration in the p53 DNA binding domain (corresponding to R174K in humans) that hinders its transcriptional activity towards apoptotic genes. It is well accepted that apoptosis is not the only form of programmed cell death and that mechanisms that depend on autophagy are also involved. In the current work we have extended our research and investigated the possibility that Spalax p53 can activate autophagy. Using two complementary assays, we have established that over-expression of the Spalax p53 in p53-null cells (human lung cancer cells, H1299), potently induces autophagy. As Spalax is considered highly resistant to cancer, we further studied the relative contribution of autophagy on the outcome of H1299 cells, following transfection with Spalax p53. Results indicate that Spalax p53 acts as a tumor suppressor in lung cancer cells, inducing cell death that involves autophagy and caspases and inhibiting cell number, which is exclusively caspase-dependent. To conclude, the Spalax p53 protein was evolutionary adapted to survive severe underground hypoxia while retaining the ability to defy lung cancer.
Collapse
Affiliation(s)
- Martin Ellis
- Translational Hemato-Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, 4428164, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Orly Stern
- Translational Hemato-Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, 4428164, Israel
| | - Osnat Ashur-Fabian
- Translational Hemato-Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, 4428164, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.,The Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
21
|
Vascular endothelial growth factor mediates the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicles against neonatal hyperoxic lung injury. Exp Mol Med 2018; 50:1-12. [PMID: 29650962 PMCID: PMC5938045 DOI: 10.1038/s12276-018-0055-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/02/2018] [Indexed: 12/11/2022] Open
Abstract
We previously reported the role of vascular endothelial growth factor (VEGF) secreted by mesenchymal stem cells (MSCs) in protecting against neonatal hyperoxic lung injuries. Recently, the paracrine protective effect of MSCs was reported to be primarily mediated by extracellular vesicle (EV) secretion. However, the therapeutic efficacy of MSC-derived EVs and the role of the VEGF contained within EVs in neonatal hyperoxic lung injury have not been elucidated. The aim of the study was to determine whether MSC-derived EVs attenuate neonatal hyperoxic lung injury and, if so, whether this protection is mediated via the transfer of VEGF. We compared the therapeutic efficacy of MSCs, MSC-derived EVs with or without VEGF knockdown, and fibroblast-derived EVs in vitro with a rat lung epithelial cell line challenged with H2O2 and in vivo with newborn Sprague-Dawley rats exposed to hyperoxia (90%) for 14 days. MSCs (1 × 105 cells) or EVs (20 µg) were administered intratracheally on postnatal day 5. The MSCs and MSC-derived EVs, but not the EVs derived from VEGF-knockdown MSCs or fibroblasts, attenuated the in vitro H2O2-induced L2 cell death and the in vivo hyperoxic lung injuries, such as impaired alveolarization and angiogenesis, increased cell death, and activated macrophages and proinflammatory cytokines. PKH67-stained EVs were internalized into vascular pericytes (22.7%), macrophages (21.3%), type 2 epithelial cells (19.5%), and fibroblasts (4.4%) but not into vascular endothelial cells. MSC-derived EVs are as effective as parental MSCs for attenuating neonatal hyperoxic lung injuries, and this protection was mediated primarily by the transfer of VEGF.
Collapse
|
22
|
Ren Z, Cui N, Zhu M, Khalil RA. Placental growth factor reverses decreased vascular and uteroplacental MMP-2 and MMP-9 and increased MMP-1 and MMP-7 and collagen types I and IV in hypertensive pregnancy. Am J Physiol Heart Circ Physiol 2018; 315:H33-H47. [PMID: 29569955 DOI: 10.1152/ajpheart.00045.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Preeclampsia is a complication of pregnancy manifested as maternal hypertension (HTN) and fetal intrauterine growth restriction, with unclear mechanisms. Placental ischemia increases antiangiogenic soluble fms-like tyrosine kinase-1 (sFlt-1) relative to angiogenic placental growth factor (PlGF); however, the molecular targets are unclear. To test the hypothesis that placental ischemia-induced changes in sFlt-1 and PlGF target vascular and uteroplacental matrix metalloproteinases (MMPs), we tested whether raising the sFlt-1-to-PlGF ratio by infusing sFlt-1 (10 µg·kg-1·day-1) in pregnant (Preg) rats increases blood pressure (BP) and alters MMPs and whether correcting sFlt-1/PlGF by infusing PlGF (20 µg·kg-1·day-1) in Preg rats with reduced uterine perfusion pressure (RUPP) improves BP and reverses the changes in MMPs. On gestational day 19, BP was higher and the litter size and uterine, placenta, and pup weight were less in Preg + sFlt-1 and RUPP than Preg rats and restored in RUPP + PlGF versus RUPP rats. Gelatin and casein zymography and Western blots revealed decreases in MMP-2 and MMP-9 and increases in MMP-1 and MMP-7 in the aorta, uterine artery, uterus, and placenta of Preg + sFlt-1 and RUPP versus Preg rats, which were reversed in RUPP + PlGF versus RUPP rats. Collagen types I and IV were more abundant in Preg + sFlt-1 and RUPP versus Preg rats and were reversed in RUPP + PlGF versus RUPP rats. Thus, PlGF reverses decreased vascular and uteroplacental MMP-2 and MMP-9 and increased MMP-1, MMP-7, and collagen types I and IV induced by placental ischemia and sFlt-1 in HTN in pregnancy. Angiogenic factors and MMP modulators could rectify changes in MMPs and collagen, restore vascular and uteroplacental remodeling, and improve HTN and intrauterine growth restriction in preeclampsia. NEW & NOTEWORTHY Understanding the mechanisms of preeclampsia could help in its prevention and management. This study shows that correcting soluble fms-like tyrosine kinase-1 (sFlt-1)/placental growth factor (PlGF) imbalance by infusing PlGF reverses the decreases in vascular and uteroplacental matrix metalloproteinase (MMP)-2 and MMP-9 and the increases in MMP-1, MMP-7, and collagen types I and IV induced by placental ischemia and antiangiogenic sFlt-1 in hypertension in pregnancy. Angiogenic factors and MMP modulators could rectify changes in vascular and uteroplacental MMPs and collagen content and ameliorate hypertension and intrauterine growth restriction in preeclampsia.
Collapse
Affiliation(s)
- Zongli Ren
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Ning Cui
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Minglin Zhu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
23
|
Weber RE, Jarvis JUM, Fago A, Bennett NC. O 2 binding and CO 2 sensitivity in haemoglobins of subterranean African mole rats. ACTA ACUST UNITED AC 2017; 220:3939-3948. [PMID: 28851819 DOI: 10.1242/jeb.160457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/23/2017] [Indexed: 01/05/2023]
Abstract
Inhabiting deep and sealed subterranean burrows, mole rats exhibit a remarkable suite of specializations, including eusociality (living in colonies with single breeding queens), extraordinary longevity, cancer immunity and poikilothermy, and extreme tolerance of hypoxia and hypercapnia. With little information available on adjustments in haemoglobin (Hb) function that may mitigate the impact of exogenous and endogenous constraints on the uptake and internal transport of O2, we measured haematological characteristics, as well as Hb-O2 binding affinity and sensitivity to pH (Bohr effect), CO2, temperature and 2,3-diphosphoglycerate (DPG, the major allosteric modulator of Hb-O2 affinity in red blood cells) in four social and two solitary species of African mole rats (family Bathyergidae) originating from different biomes and soil types across Central and Southern Africa. We found no consistent patterns in haematocrit (Hct) and blood and red cell DPG and Hb concentrations or in intrinsic Hb-O2 affinity and its sensitivity to pH and DPG that correlate with burrowing, sociality and soil type. However, the results reveal low specific (pH independent) effects of CO2 on Hb-O2 affinity compared with humans that predictably safeguard pulmonary loading under hypoxic and hypercapnic burrow conditions. The O2 binding characteristics are discussed in relation to available information on the primary structure of Hbs from adult and developmental stages of mammals subjected to hypoxia and hypercapnia and the molecular mechanisms underlying functional variation in rodent Hbs.
Collapse
Affiliation(s)
- Roy E Weber
- Department of Bioscience, Aarhus University, C.F. Møllers Alle 3, Aarhus C 8000, Denmark
| | | | - Angela Fago
- Department of Bioscience, Aarhus University, C.F. Møllers Alle 3, Aarhus C 8000, Denmark
| | - Nigel C Bennett
- Zoology and Entomology Department, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| |
Collapse
|
24
|
Malik A, Domankevich V, Lijuan H, Xiaodong F, Korol A, Avivi A, Shams I. Genome maintenance and bioenergetics of the long-lived hypoxia-tolerant and cancer-resistant blind mole rat, Spalax: a cross-species analysis of brain transcriptome. Sci Rep 2016; 6:38624. [PMID: 27934892 PMCID: PMC5146665 DOI: 10.1038/srep38624] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/08/2016] [Indexed: 01/09/2023] Open
Abstract
The subterranean blind mole rat, Spalax, experiences acute hypoxia-reoxygenation cycles in its natural subterranean habitat. At the cellular level, these conditions are known to promote genomic instability, which underlies both cancer and aging. However, Spalax is a long-lived animal and is resistant to both spontaneous and induced cancers. To study this apparent paradox we utilized a computational procedure that allows detecting differences in transcript abundance between Spalax and the closely related above-ground Rattus norvegicus in individuals of different ages. Functional enrichment analysis showed that Spalax whole brain tissues maintain significantly higher normoxic mRNA levels of genes associated with DNA damage repair and DNA metabolism, yet keep significantly lower mRNA levels of genes involved in bioenergetics. Many of the genes that showed higher transcript abundance in Spalax are involved in DNA repair and metabolic pathways that, in other species, were shown to be downregulated under hypoxia, yet are required for overcoming replication- and oxidative-stress during the subsequent reoxygenation. We suggest that these differentially expressed genes may prevent the accumulation of DNA damage in mitotic and post-mitotic cells and defective resumption of replication in mitotic cells, thus maintaining genome integrity as an adaptation to acute hypoxia-reoxygenation cycles.
Collapse
Affiliation(s)
- Assaf Malik
- Institue of Evolution, University of Haifa, Haifa 3498838, Israel.,Bioinformatics Core Unit, University of Haifa, Haifa 3498838, Israel
| | - Vered Domankevich
- Institue of Evolution, University of Haifa, Haifa 3498838, Israel.,Deparment of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel
| | - Han Lijuan
- BGI-Tech, BGI-Shenzhen, Shenzhen 518083, China
| | | | - Abraham Korol
- Institue of Evolution, University of Haifa, Haifa 3498838, Israel.,Deparment of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel
| | - Aaron Avivi
- Institue of Evolution, University of Haifa, Haifa 3498838, Israel
| | - Imad Shams
- Institue of Evolution, University of Haifa, Haifa 3498838, Israel.,Deparment of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
25
|
Domankevich V, Opatowsky Y, Malik A, Korol AB, Frenkel Z, Manov I, Avivi A, Shams I. Adaptive patterns in the p53 protein sequence of the hypoxia- and cancer-tolerant blind mole rat Spalax. BMC Evol Biol 2016; 16:177. [PMID: 27590526 PMCID: PMC5010716 DOI: 10.1186/s12862-016-0743-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 08/17/2016] [Indexed: 12/19/2022] Open
Abstract
Background The subterranean blind mole rat, Spalax (genus Nannospalax) endures extreme hypoxic conditions and fluctuations in oxygen levels that threaten DNA integrity. Nevertheless, Spalax is long-lived, does not develop spontaneous cancer, and exhibits an outstanding resistance to carcinogenesis in vivo, as well as anti-cancer capabilities in vitro. We hypothesized that adaptations to similar extreme environmental conditions involve common mechanisms for overcoming stress-induced DNA damage. Therefore, we aimed to identify shared features among species that are adapted to hypoxic stress in the sequence of the tumor-suppressor protein p53, a master regulator of the DNA-damage response (DDR). Results We found that the sequences of p53 transactivation subdomain 2 (TAD2) and tetramerization and regulatory domains (TD and RD) are more similar among hypoxia-tolerant species than expected from phylogeny. Specific positions in these domains composed patterns that are more frequent in hypoxia-tolerant species and have proven to be good predictors of species’ classification into stress-related categories. Some of these positions, which are known to be involved in the interactions between p53 and critical DDR proteins, were identified as positively selected. By 3D modeling of p53 interactions with the coactivator p300 and the DNA repair protein RPA70, we demonstrated that, compared to humans, these substitutions potentially reduce the binding of these proteins to Spalax p53. Conclusions We conclude that extreme hypoxic conditions may have led to convergent evolutionary adaptations of the DDR via TAD2 and TD/RD domains of p53. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0743-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vered Domankevich
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Yarden Opatowsky
- Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Assaf Malik
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Abraham B Korol
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Zeev Frenkel
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Irena Manov
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Aaron Avivi
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Imad Shams
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel.
| |
Collapse
|
26
|
Zhu M, Ren Z, Possomato-Vieira JS, Khalil RA. Restoring placental growth factor-soluble fms-like tyrosine kinase-1 balance reverses vascular hyper-reactivity and hypertension in pregnancy. Am J Physiol Regul Integr Comp Physiol 2016; 311:R505-21. [PMID: 27280428 PMCID: PMC5142222 DOI: 10.1152/ajpregu.00137.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/03/2016] [Indexed: 11/22/2022]
Abstract
Preeclampsia (PE) is a pregnancy-related hypertensive disorder (HTN-Preg) with unclear mechanism. An imbalance between antiangiogenic soluble fms-like tyrosine kinase-1 (sFlt-1) and angiogenic placental growth factor (PlGF) has been observed in PE, but the vascular targets and signaling pathways involved are unclear. We assessed the extent of sFlt-1/PlGF imbalance and vascular dysfunction in a rat model of HTN-Preg produced by reduction of uteroplacental perfusion pressure (RUPP), and tested whether inducing a comparable sFlt-1/PlGF imbalance by infusing sFlt-1 (10 μg·kg(-1)·day(-1)) in day 14 pregnant (Preg) rats cause similar increases in blood pressure (BP) and vascular reactivity. Using these guiding measurements, we then tested whether restoring sFlt-1/PlGF balance by infusing PIGF (20 μg·kg(-1)·day(-1)) in RUPP rats would improve BP and vascular function. On gestational day 19, BP was in Preg+sFlt-1 and RUPP > Preg, and in RUPP+PlGF < RUPP rats. Plasma sFlt-1/PlGF ratio was increased in Preg+sFlt-1, and RUPP and was reduced in RUPP+PlGF rats. In isolated endothelium-intact aorta, carotid, mesenteric, and renal artery, phenylephrine (Phe)- and high KCl-induced contraction was in Preg+sFlt-1 and RUPP > Preg, and in RUPP+PlGF < RUPP. The differences in vascular reactivity to Phe and KCl between groups were less apparent in vessels treated with the nitric oxide synthase (NOS) inhibitor l-NAME or guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) or endothelium-denuded, suggesting changes in endothelial NO-cGMP pathway. In Phe precontracted vessels, ACh-induced relaxation was in Preg+sFlt-1 and RUPP < Preg, and in RUPP+PlGF > RUPP, and was blocked by N(ω)-nitro-l-arginine methyl ester (l-NAME) or ODQ treatment or endothelium removal. Western blots revealed that aortic total endothelial NOS (eNOS) and activated phosphorylated-eNOS were in Preg+sFlt-1 and RUPP < Preg and in RUPP+PlGF > RUPP. ACh-induced vascular nitrate/nitrite production was in Preg+sFlt-1 and RUPP < Preg, and in RUPP+PlGF > RUPP. Vascular relaxation to the exogenous NO donor sodium nitroprusside was not different among groups. Thus, a tilt in the angiogenic balance toward anti-angiogenic sFlt-1 is associated with decreased vascular relaxation and increased vasoconstriction and BP. Restoring the angiogenic/antiangiogenic balance using PlGF enhances endothelial NO-cGMP vascular relaxation and decreases vasoconstriction and BP in HTN-Preg rats and could offer a new approach in the management of PE.
Collapse
Affiliation(s)
- Minglin Zhu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Zongli Ren
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - José S Possomato-Vieira
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
27
|
Adaptive methylation regulation of p53 pathway in sympatric speciation of blind mole rats, Spalax. Proc Natl Acad Sci U S A 2016; 113:2146-51. [PMID: 26858405 DOI: 10.1073/pnas.1522658112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epigenetic modifications play significant roles in adaptive evolution. The tumor suppressor p53, well known for controlling cell fate and maintaining genomic stability, is much less known as a master gene in environmental adaptation involving methylation modifications. The blind subterranean mole rat Spalax eherenbergi superspecies in Israel consists of four species that speciated peripatrically. Remarkably, the northern Galilee species Spalax galili (2n = 52) underwent adaptive ecological sympatric speciation, caused by the sharply divergent chalk and basalt ecologies. This was demonstrated by mitochondrial and nuclear genomic evidence. Here we show that the expression patterns of the p53 regulatory pathway diversified between the abutting sympatric populations of S. galili in sharply divergent chalk-basalt ecologies. We identified higher methylation on several sites of the p53 promoter in the population living in chalk soil (chalk population). Site mutagenesis showed that methylation on these sites linked to the transcriptional repression of p53 involving Cut-Like Homeobox 1 (Cux1), paired box 4 (Pax 4), Pax 6, and activator protein 1 (AP-1). Diverse expression levels of p53 between the incipiently sympatrically speciating chalk-basalt abutting populations of S. galili selectively affected cell-cycle arrest but not apoptosis. We hypothesize that methylation modification of p53 has adaptively shifted in supervising its target genes during sympatric speciation of S. galili to cope with the contrasting environmental stresses of the abutting divergent chalk-basalt ecologies.
Collapse
|
28
|
Schmidt H, Hangmann J, Shams I, Avivi A, Hankeln T. Molecular evolution of antioxidant and hypoxia response in long-lived, cancer-resistant blind mole rats: The Nrf2–Keap1 pathway. Gene 2016; 577:293-8. [DOI: 10.1016/j.gene.2015.11.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/03/2015] [Accepted: 11/25/2015] [Indexed: 12/13/2022]
|
29
|
Chang YS, Ahn SY, Jeon HB, Sung DK, Kim ES, Sung SI, Yoo HS, Choi SJ, Oh WI, Park WS. Critical role of vascular endothelial growth factor secreted by mesenchymal stem cells in hyperoxic lung injury. Am J Respir Cell Mol Biol 2014; 51:391-9. [PMID: 24669883 DOI: 10.1165/rcmb.2013-0385oc] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intratracheal transplantation of human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) protects against neonatal hyperoxic lung injury by a paracrine rather than a regenerative mechanism. However, the role of paracrine factors produced by the MSCs, such as vascular endothelial growth factor (VEGF), has not been delineated. This study examined whether VEGF secreted by MSCs plays a pivotal role in protecting against neonatal hyperoxic lung injury. VEGF was knocked down in human UCB-derived MSCs by transfection with small interfering RNA specific for human VEGF. The in vitro effects of MSCs with or without VEGF knockdown or neutralizing antibody were evaluated in a rat lung epithelial (L2) cell line challenged with H2O2. To confirm these results in vivo, newborn Sprague-Dawley rats were exposed to hyperoxia (90% O2) for 14 days. MSCs (1 × 10(5) cells) with or without VEGF knockdown were administered intratracheally at postnatal Day 5. Lungs were serially harvested for biochemical and histologic analyses. VEGF knockdown and antibody abolished the in vitro benefits of MSCs on H2O2-induced cell death and the up-regulation of inflammatory cytokines in L2 cells. VEGF knockdown also abolished the in vivo protective effects of MSCs in hyperoxic lung injury, such as the attenuation of impaired alveolarization and angiogenesis, reduction in the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive and ED-1-positive cells, and down-regulation of proinflammatory cytokine levels. Our data indicate that VEGF secreted by transplanted MSCs is one of the critical paracrine factors that play seminal roles in attenuating hyperoxic lung injuries in neonatal rats.
Collapse
Affiliation(s)
- Yun Sil Chang
- 1 Department of Pediatrics, Samsung Medical Center, and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Decreased oxygen availability impairs cellular energy production and, without a coordinated and matched decrease in energy consumption, cellular and whole organism death rapidly ensues. Of particular interest are mechanisms that protect brain from low oxygen injury, as this organ is not only the most sensitive to hypoxia, but must also remain active and functional during low oxygen stress. As a result of natural selective pressures, some species have evolved molecular and physiological mechanisms to tolerate prolonged hypoxia with no apparent detriment. Among these mechanisms are a handful of responses that are essential for hypoxia tolerance, including (i) sensors that detect changes in oxygen availability and initiate protective responses; (ii) mechanisms of energy conservation; (iii) maintenance of basic brain function; and (iv) avoidance of catastrophic cell death cascades. As the study of hypoxia-tolerant brain progresses, it is becoming increasingly apparent that mitochondria play a central role in regulating all of these critical mechanisms. Furthermore, modulation of mitochondrial function to mimic endogenous neuroprotective mechanisms found in hypoxia-tolerant species confers protection against otherwise lethal hypoxic stresses in hypoxia-intolerant organs and organisms. Therefore, lessons gleaned from the investigation of endogenous mechanisms of hypoxia tolerance in hypoxia-tolerant organisms may provide insight into clinical pathologies related to low oxygen stress.
Collapse
Affiliation(s)
- Matthew E. Pamenter
- Department of Zoology, The University of British Columbia, #4200-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
31
|
Molecular cloning, characterization and expression of myoglobin in Tibetan antelope (Pantholops hodgsonii), a species with hypoxic tolerance. Gene 2014; 533:532-7. [DOI: 10.1016/j.gene.2013.09.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/17/2013] [Accepted: 09/08/2013] [Indexed: 11/17/2022]
|
32
|
Avivi A, Nevo E, Cohen K, Sotnichenko N, Hercbergs A, Band M, Davis PJ, Ellis M, Ashur-Fabian O. They live in the land down under: thyroid function and basal metabolic rate in the Blind Mole Rat, Spalax. Endocr Res 2014; 39:79-84. [PMID: 24066698 DOI: 10.3109/07435800.2013.833216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Israeli blind subterranean mole rat (Spalax ehrenbergi superspecies) lives in sealed underground burrows under extreme, hypoxic conditions. The four Israeli Spalax allospecies have adapted to different climates, the cool-humid (Spalax galili, 2 n = 52 chromosomes), semihumid (S. golani, 2 n = 54) north regions, warm-humid (S. carmeli, 2 n = 58) central region and the warm-dry S. judaei, 2 n = 60) southern regions. A dramatic interspecies decline in basal metabolic rate (BMR) from north to south, even after years of captivity, indicates a genetic basis for this BMR trait. We examined the possibility that the genetically-conditioned interspecies BMR difference was expressed via circulating thyroid hormone. An unexpected north to south increase in serum free thyroxine (FT4) and total 3, 5, 3'-triiodo-L-thyronine (T3) (p < 0.02) correlated negatively with previously published BMR measurements. The increases in serum FT4 and T3 were symmetrical, so that the T3:FT4 ratio - interpretable as an index of conversion of T4 to T3 in nonthyroidal tissues - did not support relative decrease in production of T3 as a contributor to BMR. Increased north-to-south serum FT4 and T3 levels also correlated negatively with hemoglobin/hematocrit. North-to-south adaptations in spalacids include decreased BMR and hematocrit/hemoglobin in the face of increasing thyroid hormone levels, arguing for independent control of hormone secretion and BMR/hematocrit/hemoglobin. But the significant inverse relationship between thyroid hormone levels and BMR/hematocrit/hemoglobin is also consistent with a degree of cellular resistance to thyroid hormone action that protects against hormone-induced increase in oxygen consumption in a hostile, hypoxic environment.
Collapse
Affiliation(s)
- Aaron Avivi
- Institute of Evolution, University of Haifa , Haifa , Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nathaniel TI, Otukonyong EE, Okon M, Chaves J, Cochran T, Nathaniel AI. Metabolic regulatory clues from the naked mole rat: toward brain regulatory functions during stroke. Brain Res Bull 2013; 98:44-52. [PMID: 23886571 DOI: 10.1016/j.brainresbull.2013.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/03/2013] [Accepted: 07/15/2013] [Indexed: 12/30/2022]
Abstract
Resistance to tissue hypoxia is a robust fundamental adaptation to low oxygen supply, and represents a novel neuroscience problem with significance to mammalian physiology as well as human health. With the underlying mechanisms strongly conserved in evolution, the ability to resist tissue hypoxia in natural systems has recently emerged as an interesting model in mammalian physiology research to understand mechanisms that can be manipulated for the clinical management of stroke. The extraordinary ability to resist tissue hypoxia by the naked mole rat (NMR) indicates the presence of a unique mechanism that underlies the remarkable healthy life span and exceptional hypoxia resistance. This opens an interesting line of research into understanding the mechanisms employed by the naked mole rat (Heterocephalus glaber) to protect the brain during hypoxia. In a series of studies, we first examined the presence of neuroprotection in the brain cells of naked mole rats (NMRs) subjected to hypoxic insults, and then characterized the expression of such neuroprotection in a wide range of time intervals. We used oxygen nutrient deprivation (OND), an in vitro model of resistance to tissue hypoxia to determine whether there is evidence of neuronal survival in the hippocampal (CA1) slices of NMRs that are subjected to chronic hypoxia. Hippocampus neurons of NMRs that were kept in hypoxic condition consistently tolerated OND right from the onset time of 5h. This tolerance was maintained for 24h. This finding indicates that there is evidence of resistance to tissue hypoxia by CA1 neurons of NMRs. We further examined the effect of hypoxia on metabolic rate in the NMR. Repeated measurement of metabolic rates during exposure of naked mole rats to hypoxia over a constant ambient temperature indicates that hypoxia significantly decreased metabolic rates in the NMR, suggesting that the observed decline in metabolic rate during hypoxia may contribute to the adaptive mechanism used by the NMR to resist tissue hypoxia. This work is aimed to contribute to the understanding of mechanisms of resistance to tissue hypoxia in the NMR as an important life-sustaining process, which can be translated into therapeutic interventions during stroke.
Collapse
Affiliation(s)
- Thomas I Nathaniel
- University of South Carolina School of Medicine, HSEB, 607 Grove Road, Greenville, SC 29605, United States.
| | | | | | | | | | | |
Collapse
|
34
|
Shams I, Malik A, Manov I, Joel A, Band M, Avivi A. Transcription pattern of p53-targeted DNA repair genes in the hypoxia-tolerant subterranean mole rat Spalax. J Mol Biol 2013; 425:1111-8. [PMID: 23318952 DOI: 10.1016/j.jmb.2013.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/31/2012] [Accepted: 01/08/2013] [Indexed: 10/27/2022]
Abstract
The tumor suppressor gene p53 induces growth arrest and/or apoptosis in response to DNA damage/hypoxia. Inactivation of p53 confers a selective advantage to tumor cells under a hypoxic microenvironment during tumor progression. The subterranean blind mole rat, Spalax, spends its life underground at low-oxygen tensions, hence developing a wide range of respiratory/molecular adaptations to hypoxic stress, including critical changes in p53 structure and signaling pathway. The highly conserved p53 Arg(R)-172 is substituted by lysine (K) in Spalax, identical with a tumor-associated mutation. Functionality assays revealed that Spalax p53 is unable to activate apoptotic target genes but is still capable of activating cell cycle arrest genes. Furthermore, we have shown that the transcription patterns of representative p53-induced genes (Apaf1 and Mdm2) in Spalax are influenced by hypoxia. Cell cycle arrest allows the cells to repair DNA damage via different DNA repair genes. We tested the transcription pattern of three p53-related DNA repair genes (p53R2, Mlh1, and Msh2) under normoxia and short-acute hypoxia in Spalax, C57BL/6 wild-type mice, and two strains of mutant C57BL/6 mice, each carrying a different mutation at the R172 position. Our results show that while wild-type/mutant mice exhibit strong hypoxia-induced reductions of repair gene transcript levels, no such inhibition is found in Spalax under hypoxia. Moreover, unlike mouse p53R2, Spalax p53R2 transcript levels are strongly elevated under hypoxia. These results suggest that critical repair functions, which are known to be inhibited under hypoxia in mice, remain active in Spalax, as part of its unique hypoxia tolerance mechanisms.
Collapse
Affiliation(s)
- Imad Shams
- Institute of Evolution, University of Haifa, Haifa 31905, Israel.
| | | | | | | | | | | |
Collapse
|
35
|
Malik A, Korol A, Weber M, Hankeln T, Avivi A, Band M. Transcriptome analysis of the spalax hypoxia survival response includes suppression of apoptosis and tight control of angiogenesis. BMC Genomics 2012; 13:615. [PMID: 23148642 PMCID: PMC3533650 DOI: 10.1186/1471-2164-13-615] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 11/05/2012] [Indexed: 12/27/2022] Open
Abstract
Background The development of complex responses to hypoxia has played a key role in the evolution of mammals, as inadequate response to this condition is frequently associated with cardiovascular diseases, developmental disorders, and cancers. Though numerous studies have used mice and rats in order to explore mechanisms that contribute to hypoxia tolerance, these studies are limited due to the high sensitivity of most rodents to severe hypoxia. The blind subterranean mole rat Spalax is a hypoxia tolerant rodent, which exhibits unique longevity and therefore has invaluable potential in hypoxia and cancer research. Results Using microarrays, transcript abundance was measured in brain and muscle tissues from Spalax and rat individuals exposed to acute and chronic hypoxia for varying durations. We found that Spalax global gene expression response to hypoxia differs from that of rat and is characterized by the activation of functional groups of genes that have not been strongly associated with the response to hypoxia in hypoxia sensitive mammals. Using functional enrichment analysis of Spalax hypoxia induced genes we found highly significant overrepresentation of groups of genes involved in anti apoptosis, cancer, embryonic/sexual development, epidermal growth factor receptor binding, coordinated suppression and activation of distinct groups of transcription factors and membrane receptors, in addition to angiogenic related processes. We also detected hypoxia induced increases of different critical Spalax hub gene transcripts, including antiangiogenic genes associated with cancer tolerance in Down syndrome human individuals. Conclusions This is the most comprehensive study of Spalax large scale gene expression response to hypoxia to date, and the first to use custom Spalax microarrays. Our work presents novel patterns that may underlie mechanisms with critical importance to the evolution of hypoxia tolerance, with special relevance to medical research.
Collapse
Affiliation(s)
- Assaf Malik
- Institute of Evolution, University of Haifa, Israel
| | | | | | | | | | | |
Collapse
|
36
|
Howden R, Kleeberger SR. Genetic and Environmental Influences on Gas Exchange. Compr Physiol 2012; 2:2595-614. [DOI: 10.1002/cphy.c110060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Nevo E. Stress, adaptation, and speciation in the evolution of the blind mole rat, Spalax, in Israel. Mol Phylogenet Evol 2012; 66:515-25. [PMID: 23032572 DOI: 10.1016/j.ympev.2012.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 09/06/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
Abstract
Environmental stress played a major role in the evolution of the blind mole rat superspecies Spalax ehrenbergi, affecting its adaptive evolution and ecological speciation underground. Spalax is safeguarded all of its life underground from aboveground climatic fluctuations and predators. However, it encounters multiple stresses in its underground burrows including darkness, energetics, hypoxia, hypercapnia, food scarcity, and pathogenicity. Consequently, it evolved adaptive genomic, proteomic, and phenomic complexes to cope with those stresses. Here I describe some of these adaptive complexes, and their theoretical and applied perspectives. Spalax mosaic molecular and organismal evolution involves reductions or regressions coupled with expansions or progressions caused by evolutionary tinkering and natural genetic engineering. Speciation of Spalax in Israel occurred in the Pleistocene, during the last 2.00-2.35 Mya, generating four species associated intimately with four climatic regimes with increasing aridity stress southwards and eastwards representing an ecological speciational adaptive trend: (Spalax golani, 2n=54→S. galili, 2n=52→S. carmeli, 2n=58→S. judaei, 2n=60). Darwinian ecological speciation occurred gradually with relatively little genetic change by Robertsonian chromosomal and genic mutations. Spalax genome sequencing has just been completed. It involves multiple adaptive complexes to life underground and is an evolutionary model to a few hundred underground mammals. It involves great promise in the future for medicine, space flight, and deep-sea diving.
Collapse
Affiliation(s)
- Eviatar Nevo
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 31905, Israel.
| |
Collapse
|
38
|
Yakushev S, Band M, Tissot van Patot MC, Gassmann M, Avivi A, Bogdanova A. Cross talk between S-nitrosylation and S-glutathionylation in control of the Na,K-ATPase regulation in hypoxic heart. Am J Physiol Heart Circ Physiol 2012; 303:H1332-43. [PMID: 22982781 DOI: 10.1152/ajpheart.00145.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Oxygen-induced regulation of Na,K-ATPase was studied in rat myocardium. In rat heart, Na,K-ATPase responded to hypoxia with a dose-dependent inhibition in hydrolytic activity. Inhibition of Na,K-ATPase in hypoxic rat heart was associated with decrease in nitric oxide (NO) production and progressive oxidative stress. Accumulation of oxidized glutathione (GSSG) and decrease in NO availability in hypoxic rat heart were followed by a decrease in S-nitrosylation and upregulation of S-glutathionylation of the catalytic α-subunit of the Na,K-ATPase. Induction of S-glutathionylation of the α-subunit by treatment of tissue homogenate with GSSG resulted in complete inhibition of the enzyme in rat a myocardial tissue homogenate. Inhibitory effect of GSSG in rat sarcolemma could be significantly decreased upon activation of NO synthases. We have further tested whether oxidative stress and suppression of the Na,K-ATPase activity are observed in hypoxic heart of two subterranean hypoxia-tolerant blind mole species (Spalax galili and Spalax judaei). In both hypoxia-tolerant Spalax species activity of the enzyme and tissue redox state were maintained under hypoxic conditions. However, localization of cysteines within the catalytic subunit of the Na,K-ATPase was preserved and induction of S-glutathionylation by GSSG in tissue homogenate inhibited the Spalax ATPase as efficiently as in rat heart. The obtained data indicate that oxygen-induced regulation of the Na,K-ATPase in the heart is mediated by a switch between S-glutathionylation and S-nitrosylation of the regulatory thiol groups localized at the catalytic subunit of the enzyme.
Collapse
Affiliation(s)
- Sergej Yakushev
- Institute of Veterinary Physiology, Vetsuisse Department and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
39
|
Band M, Malik A, Joel A, Avivi A. Hypoxia associated NMDA receptor 2 subunit composition: developmental comparison between the hypoxia-tolerant subterranean mole-rat, Spalax, and the hypoxia-sensitive rat. J Comp Physiol B 2012; 182:961-9. [PMID: 22576753 DOI: 10.1007/s00360-012-0669-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 04/15/2012] [Accepted: 04/21/2012] [Indexed: 02/03/2023]
Abstract
Vertebrate brains are sensitive to oxygen depletion, which may lead to cell death. Hypoxia sensitivity originates from the high intrinsic rate of ATP consumption of brain tissue, accompanied by the release of glutamate, leading to the opening of ionotropic glutamate receptors, such as N-methyl-D-aspartate (NMDA) receptors (NMDARs). The relative expression levels of the four NMDAR-2 (NR2) subunits change during mammalian development with higher levels of units NR2B and NR2D observed during early development and correlated with hypoxic tolerance during embryonic and neonatal stages of development. Higher levels of NR2D are also abundant in brains of hypoxia tolerant species such as the crucian carp. The subterranean mole-rat, Spalax spends its life underground in sealed burrows and has developed a wide range of adaptations to this special niche including hypoxia-tolerance. In this study, we compared the in vivo mRNA expression of NR2 subunits in the brains of embryonic, neonatal and adult Spalax and rat. Our results demonstrate that under normoxic conditions, mRNA levels of NR2D are higher in Spalax than in rat at all developmental stages studied and are similar to levels in neonatal rat and in other hypoxia/anoxia tolerant species. Furthermore, under hypoxia Spalax NR2D mRNA levels increase while no response was observed in rat. Similarly, hypoxia induces an increase in mRNA levels of Spalax NR2A, claimed to promote neuronal survival. We suggest that indeed the proportional combinations of NMDAR-2 subunits contribute to the ability of the Spalax brain to cope with hypoxic environments.
Collapse
Affiliation(s)
- Mark Band
- The W.M. Keck Center for Comparative and Functional Genomics, University of Illinois, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
40
|
Schülke S, Dreidax D, Malik A, Burmester T, Nevo E, Band M, Avivi A, Hankeln T. Living with stress: regulation of antioxidant defense genes in the subterranean, hypoxia-tolerant mole rat, Spalax. Gene 2012; 500:199-206. [PMID: 22441129 DOI: 10.1016/j.gene.2012.03.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/01/2012] [Accepted: 03/05/2012] [Indexed: 12/12/2022]
Abstract
Lack of oxygen is life threatening for most mammals. It is therefore of biomedical interest to investigate the adaptive mechanisms which enable mammalian species to tolerate extremely hypoxic conditions. The subterranean mole rat Spalax survives substantially longer periods of hypoxia than the laboratory rat. We hypothesized that genes of the antioxidant defense, detoxifying harmful reactive oxygen species generated during hypoxia and hyperoxia, are involved in Spalax underground adaptation. Using quantitative RT-PCR, we analyzed the mRNA expression levels of seven antioxidant defense genes (catalase, glutathione peroxidase 1, glutathione-S-transferase Pi1, heme oxygenase 1, superoxide dismutase 1 and 2) and a master regulator of this stress pathway, nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in several tissues of two Israeli Spalax species, S. galili (2n=52) and S. judaei (2n=60), and rat. We also studied the differential expression of these genes after experimental hypoxia and hyperoxia as oxidative stress treatments. We found that mRNA levels and transcriptional responses are species and tissue specific. There are constitutively higher transcript levels of antioxidant genes and their transcription factor Nrf2 in Spalax tissue as compared to rat, suggesting an increased ability in the mole rat to withstand hypoxic/hyperoxic insults. In contrast to Spalax, the rat reacts to experimental oxidative stress by changes in gene regulation. In addition, Spalax Nrf2 reveals unique amino acid changes, which may be functionally important for this transcription factor and indicate positive (Darwinian) selection. Antioxidant defense genes are therefore important targets for adaptive change during evolution of hypoxia tolerance in Spalax.
Collapse
Affiliation(s)
- Stefan Schülke
- Institute of Molecular Genetics, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Environmental stress has played a major role in the evolution of living organisms (Hoffman AA, Parsons PA. 1991. Evolutionary genetics and environmental stress. Oxford: Oxford University Press; Parsons PA. 2005. Environments and evolution: interactions between stress, resource inadequacy, and energetic efficiency. Biol Rev Camb Philos Soc. 80:589–610). This is reflected by the massive and background extinctions in evolutionary time (Nevo E. 1995a. Evolution and extinction. Encyclopedia of Environmental Biology. New York: Academic Press, Inc. 1:717–745). The interaction between organism and environment is central in evolution. Extinction ensues when organisms fail to change and adapt to the constantly altering abiotic and biotic stressful environmental changes as documented in the fossil record. Extreme environmental stress causes extinction but also leads to evolutionary change and the origination of new species adapted to new environments. I will discuss a few of these global, regional, and local stresses based primarily on my own research programs. These examples will include the 1) global regional and local experiment of subterranean mammals; 2) regional experiment of fungal life in the Dead Sea; 3) evolution of wild cereals; 4) “Evolution Canyon”; 5) human brain evolution, and 6) global warming.
Collapse
Affiliation(s)
- Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa, Israel.
| |
Collapse
|
42
|
Moskovitz J, Malik A, Hernandez A, Band M, Avivi A. Methionine sulfoxide reductases and methionine sulfoxide in the subterranean mole rat (Spalax): characterization of expression under various oxygen conditions. Comp Biochem Physiol A Mol Integr Physiol 2011; 161:406-14. [PMID: 22230185 DOI: 10.1016/j.cbpa.2011.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 02/02/2023]
Abstract
The blind subterranean mole rat (Spalax ehrenbergi) exhibits a relatively long life span, which is attributed to an efficient antioxidant defense affording protection against accumulation of oxidative modifications of proteins. Methionine residues can be oxidized to methionine sulfoxide (MetO) and then enzymatically reduced by the methionine sulfoxide reductase (Msr) system. In the current study we have isolated the cDNA sequences of the Spalax Msr genes as well as 23 additional selenoproteins and monitored the activities of Msr enzymes in liver and brain of rat (Rattus norvegicus), Spalax galili, and Spalax judaei under normoxia, hypoxia, and hyperoxia. Under normoxia, the Msr activity was lower in S. galili in comparison to S. judaei and R. norvegicus especially in the brain. The pattern of Msr activity of the three species was similar throughout the tested conditions. However, exposure of the animals to hypoxia caused a significant enhancement of Msr activity, especially in S. galili. Hyperoxic exposure showed a highly significant induction of Msr activity compared with normoxic conditions for R. norvegicus and S. galili brain. It was concluded that among all species examined, S. galili appears to be more responsive to oxygen tension changes and that the Msr system is upregulated mainly by severe hypoxia.
Collapse
Affiliation(s)
- Jackob Moskovitz
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas 66045, USA.
| | | | | | | | | |
Collapse
|
43
|
Malik A, Korol A, Hübner S, Hernandez AG, Thimmapuram J, Ali S, Glaser F, Paz A, Avivi A, Band M. Transcriptome sequencing of the blind subterranean mole rat, Spalax galili: utility and potential for the discovery of novel evolutionary patterns. PLoS One 2011; 6:e21227. [PMID: 21857902 PMCID: PMC3155515 DOI: 10.1371/journal.pone.0021227] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 05/23/2011] [Indexed: 12/21/2022] Open
Abstract
The blind subterranean mole rat (Spalax ehrenbergi superspecies) is a model animal for survival under extreme environments due to its ability to live in underground habitats under severe hypoxic stress and darkness. Here we report the transcriptome sequencing of Spalax galili, a chromosomal type of S. ehrenbergi. cDNA pools from muscle and brain tissues isolated from animals exposed to hypoxic and normoxic conditions were sequenced using Sanger, GS FLX, and GS FLX Titanium technologies. Assembly of the sequences yielded over 51,000 isotigs with homology to ∼12,000 mouse, rat or human genes. Based on these results, it was possible to detect large numbers of splice variants, SNPs, and novel transcribed regions. In addition, multiple differential expression patterns were detected between tissues and treatments. The results presented here will serve as a valuable resource for future studies aimed at identifying genes and gene regions evolved during the adaptive radiation associated with underground life of the blind mole rat.
Collapse
Affiliation(s)
- Assaf Malik
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Abraham Korol
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Sariel Hübner
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Alvaro G. Hernandez
- W. M. Keck Center for Comparative and Functional Genomics, University of Illinois, Urbana, Illinois, United States of America
| | - Jyothi Thimmapuram
- W. M. Keck Center for Comparative and Functional Genomics, University of Illinois, Urbana, Illinois, United States of America
| | - Shahjahan Ali
- W. M. Keck Center for Comparative and Functional Genomics, University of Illinois, Urbana, Illinois, United States of America
| | - Fabian Glaser
- Bioinformatics Knowledge Unit, The Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Arnon Paz
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Aaron Avivi
- Institute of Evolution, University of Haifa, Haifa, Israel
- * E-mail: (MB); (AA)
| | - Mark Band
- W. M. Keck Center for Comparative and Functional Genomics, University of Illinois, Urbana, Illinois, United States of America
- * E-mail: (MB); (AA)
| |
Collapse
|
44
|
Neuroglobin, cytoglobin, and myoglobin contribute to hypoxia adaptation of the subterranean mole rat Spalax. Proc Natl Acad Sci U S A 2010; 107:21570-5. [PMID: 21115824 DOI: 10.1073/pnas.1015379107] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The subterranean mole rat Spalax is an excellent model for studying adaptation of a mammal toward chronic environmental hypoxia. Neuroglobin (Ngb) and cytoglobin (Cygb) are O(2)-binding respiratory proteins and thus candidates for being involved in molecular hypoxia adaptations of Spalax. Ngb is expressed primarily in vertebrate nerves, whereas Cygb is found in extracellular matrix-producing cells and in some neurons. The physiological functions of both proteins are not fully understood but discussed with regard to O(2) supply, the detoxification of reactive oxygen or nitrogen species, and apoptosis protection. Spalax Ngb and Cygb coding sequences are strongly conserved. However, mRNA and protein levels of Ngb in Spalax brain are 3-fold higher than in Rattus norvegicus under normoxia. Importantly, Spalax expresses Ngb in neurons and additionally in glia, whereas in hypoxia-sensitive rodents Ngb expression is limited to neurons. Hypoxia causes an approximately 2-fold down-regulation of Ngb mRNA in brain of rat and mole rat. A parallel regulatory response was found for myoglobin (Mb) in Spalax and rat muscle, suggesting similar functions of Mb and Ngb. Cygb also revealed an augmented normoxic expression in Spalax vs. rat brain, but not in heart or liver, indicating distinct tissue-specific functions. Hypoxia induced Cygb transcription in heart and liver of both mammals, with the most prominent mRNA up-regulation (12-fold) in Spalax heart. Our data suggest that tissue globins contribute to the remarkable tolerance of Spalax toward environmental hypoxia. This is consistent with the proposed cytoprotective effect of Ngb and Cygb under pathological hypoxic/ischemic conditions in mammals.
Collapse
|
45
|
Liu B, Wang Z, Lu J. Response to chronic intermittent hypoxia in blood system of Mandarin vole (Lasiopodomys mandarinus). Comp Biochem Physiol A Mol Integr Physiol 2010; 156:469-74. [PMID: 20371298 DOI: 10.1016/j.cbpa.2010.03.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 03/27/2010] [Accepted: 03/28/2010] [Indexed: 11/18/2022]
Abstract
Mandarin voles (Lasiopodomys mandarinus) spend almost all their lives underground and must have evolved remarkable physiological adaptations to subterranean hypoxic stress. To understand the response to hypoxia in blood system of this rodent in a region with lower altitude, we tested and compared the responding characteristics between Mandarin vole and Kunming mouse (Mus musculus) under chronic normobaric hypoxic treatment (10.0% O(2), 4 w). The results showed that: 1) as for responses to chronic hypoxia, HIF-1 alpha, EPO and VEGF exhibited similar patterns in two species. The expression of HIF-1 alpha and VEGF significantly increased while EPO decreased significantly, and HIF-1 alpha showed a greater increase at 10.0% oxygen level in Mandarin voles; 2) both rodents responded to chronic hypoxia mainly by increasing MCH, though KM mouse responded more acutely; 3) the change in MCHC in Mandarin vole was ignorable though it is significantly higher than that in KM mouse whose MCHC changed extensively and 4) both before and after hypoxic treatment, the capillary density in Mandarin vole was significantly higher than that in KM mouse, and it increased sharply in KM mouse after treatment. Our results indicated that, compared to KM mice, Mandarin voles did respond effectively to hypoxia stress after long-term adaptation to subterranean life environment.
Collapse
Affiliation(s)
- Bin Liu
- Department of Bioengineering, Institute of Biodiversity and Ecology, Zhengzhou University, No 100 Kexue Dadao Road, Zhengzhou, Henan 450001, China
| | | | | |
Collapse
|
46
|
Band M, Joel A, Avivi A. The Muscle Ankyrin Repeat Proteins Are Hypoxia-Sensitive: In Vivo mRNA Expression in the Hypoxia-Tolerant Blind Subterranean Mole Rat, Spalax ehrenbergi. J Mol Evol 2009; 70:1-12. [DOI: 10.1007/s00239-009-9306-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 11/18/2009] [Indexed: 12/22/2022]
|
47
|
Band M, Joel A, Hernandez A, Avivi A. Hypoxia‐induced
BNIP3
expression and mitophagy:
in vivo
comparison of the rat and the hypoxia‐tolerant mole rat,
Spalax ehrenbergi. FASEB J 2009; 23:2327-35. [DOI: 10.1096/fj.08-122978] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mark Band
- The W. M. Keck Center for Comparative and Functional GenomicsUniversity of IllinoisUrbanaIllinoisUSA
| | - Alma Joel
- Institute of EvolutionUniversity of HaifaHaifaIsrael
| | - Alvaro Hernandez
- The W. M. Keck Center for Comparative and Functional GenomicsUniversity of IllinoisUrbanaIllinoisUSA
| | - Aaron Avivi
- Institute of EvolutionUniversity of HaifaHaifaIsrael
| |
Collapse
|
48
|
Nasser NJ, Kaplan M, Nevo E, Aviram M. Lipid profile and serum characteristics of the blind subterranean mole rat, Spalax. PLoS One 2009; 4:e4528. [PMID: 19229331 PMCID: PMC2639698 DOI: 10.1371/journal.pone.0004528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 01/05/2009] [Indexed: 01/29/2023] Open
Abstract
Background Spalax (blind subterranean mole rat), is a mammal adapted to live in fluctuating oxygen levels, and can survive severe hypoxia and hypercapnia. The adaptive evolution of Spalax to underground life resulted in structural and molecular-genetic differences comparing to above-ground mammals. These differences include higher myocardial maximal oxygen consumption, increased lung diffusion capacity, increased blood vessels density, and unique expression patterns of cancer and angiogenesis related genes such as heparanase, vascular endothelial growth factor, and P53. Methodology/Principal Findings Here we elucidate the main characteristics of Spalax lipid profile, as well as its main antioxidant and serum parameters. Compared to human, Spalax possesses lower total-cholesterol, low density lipoproteins (LDL) and triglycerides levels, and higher levels of high density lipoproteins (HDL). Apolipoprotein A-I and apolipoprotein B-100 were significantly lower in Spalax compared to human. Paraoxonase (PON) 1 arylesterase activity, was higher in Spalax compared to both human and mouse serum levels. Analysis of serum chemistry of Spalax revealed special features in this mammal. Conclusions/Significance Spalax possesses a unique lipid profile with high HDL and low LDL lipoproteins. The antioxidant serum content in the mole rat is higher than that of human and mouse. Serum C reactive protein (CRP) levels are significantly lower in Spalax compared to that of human or mouse, reflecting low levels of inflammation. These differences between Spalax, human and mouse are due to several factors including the intensive activity life-style that Spalax pursue underground, dietary components, and evolutionary genetic adaptations. Unfolding the genetic basis of these differences will probably result in unique treatments for a variety of human diseases such as dyslipedemias, inflammation and cancer.
Collapse
Affiliation(s)
- Nicola J Nasser
- Department of Oncology, Shaare Zedek Medical Center, Jerusalem, Israel.
| | | | | | | |
Collapse
|
49
|
Sandwall E, Bodevin S, Nasser NJ, Nevo E, Avivi A, Vlodavsky I, Li JP. Molecular structure of heparan sulfate from Spalax. Implications of heparanase and hypoxia. J Biol Chem 2008; 284:3814-22. [PMID: 19068480 DOI: 10.1074/jbc.m802196200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spalax, a subterranean blind mole rat, is well adapted to live in an extreme hypoxic environment through up-regulated expression of growth factors and enzymes for ensuring sufficient oxygen supply. One of the overexpressed enzymes is heparanase, an endoglucuronidase that selectively cleaves heparan sulfate (HS) and is implicated in angiogenesis. To assess the implications of the heparanase in Spalax, we have characterized the structure of HS isolated from various organs of the animal. The oligosaccharides obtained after deaminative cleavage of HS samples from the tissues show an overall higher sulfation degree, distinct from that of murine tissues. Of particular significance was the appearance of a trisaccharide moiety in the tissues examined, apart of the even numbered oligosaccharide fractions typically found in HS from human and mouse tissues. The formation of this odd-numbered saccharide is a consequence of heparanase action, in agreement with the notion of high expression of the enzyme in this species. Analysis of HS extracted from human embryonic kidney cells (HEK293) after exposure to hypoxic condition revealed a structural change in the distribution of oligosaccharides similar to HS derived from Spalax organs. The alterations are likely due to up-regulated activity of heparanase, as real-time RT-PCR showed a 2-fold increase in heparanase mRNA expression in the hypoxia treated cells. HEK293 cells stably overexpressing Spalax heparanase produced HS sharing similarity with that from the Spalax organs, and exhibited enhanced MAPK activity in comparison with HEK293 cells, indicating a regulation role of the heparanase in the activity of growth factors.
Collapse
Affiliation(s)
- Elina Sandwall
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala SE-75123, Sweden
| | | | | | | | | | | | | |
Collapse
|
50
|
Guzman MJ, Crisostomo PR, Wang M, Markel TA, Wang Y, Meldrum DR. Vascular Endothelial Growth Factor Improves Myocardial Functional Recovery Following Ischemia/Reperfusion Injury. J Surg Res 2008; 150:286-92. [DOI: 10.1016/j.jss.2007.12.772] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 11/12/2007] [Accepted: 12/06/2007] [Indexed: 12/13/2022]
|