1
|
Brand C, Newton-Foot M, Grobbelaar M, Whitelaw A. Antibiotic-induced stress responses in Gram-negative bacteria and their role in antibiotic resistance. J Antimicrob Chemother 2025; 80:1165-1184. [PMID: 40053699 PMCID: PMC12046405 DOI: 10.1093/jac/dkaf068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Bacteria adapt to changes in their natural environment through a network of stress responses that enable them to alter their gene expression to survive in the presence of stressors, including antibiotics. These stress responses can be specific to the type of stress and the general stress response can be induced in parallel as a backup mechanism. In Gram-negative bacteria, various envelope stress responses are induced upon exposure to antibiotics that cause damage to the cell envelope or result in accumulation of toxic metabolic by-products, while the heat shock response is induced by antibiotics that cause misfolding or accumulation of protein aggregates. Antibiotics that result in the production of reactive oxygen species (ROS) induce the oxidative stress response and those that cause DNA damage, directly and through ROS production, induce the SOS response. These responses regulate the expression of various proteins that work to repair the damage that has been caused by antibiotic exposure. They can contribute to antibiotic resistance by refolding, degrading or removing misfolded proteins and other toxic metabolic by-products, including removal of the antibiotics themselves, or by mutagenic DNA repair. This review summarizes the stress responses induced by exposure to various antibiotics, highlighting their interconnected nature, as well the roles they play in antibiotic resistance, most commonly through the upregulation of efflux pumps. This can be useful for future investigations targeting these responses to combat antibiotic-resistant Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Chanté Brand
- Division of Medical Microbiology and Immunology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mae Newton-Foot
- Division of Medical Microbiology and Immunology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Melanie Grobbelaar
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andrew Whitelaw
- Division of Medical Microbiology and Immunology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
2
|
Gupta M, Johnson ANT, Cruz ER, Costa EJ, Guest RL, Li SHJ, Hart EM, Nguyen T, Stadlmeier M, Bratton BP, Silhavy TJ, Wingreen NS, Gitai Z, Wühr M. Global protein turnover quantification in Escherichia coli reveals cytoplasmic recycling under nitrogen limitation. Nat Commun 2024; 15:5890. [PMID: 39003262 PMCID: PMC11246515 DOI: 10.1038/s41467-024-49920-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 06/25/2024] [Indexed: 07/15/2024] Open
Abstract
Protein turnover is critical for proteostasis, but turnover quantification is challenging, and even in well-studied E. coli, proteome-wide measurements remain scarce. Here, we quantify the turnover rates of ~3200 E. coli proteins under 13 conditions by combining heavy isotope labeling with complement reporter ion quantification and find that cytoplasmic proteins are recycled when nitrogen is limited. We use knockout experiments to assign substrates to the known cytoplasmic ATP-dependent proteases. Surprisingly, none of these proteases are responsible for the observed cytoplasmic protein degradation in nitrogen limitation, suggesting that a major proteolysis pathway in E. coli remains to be discovered. Lastly, we show that protein degradation rates are generally independent of cell division rates. Thus, we present broadly applicable technology for protein turnover measurements and provide a rich resource for protein half-lives and protease substrates in E. coli, complementary to genomics data, that will allow researchers to study the control of proteostasis.
Collapse
Affiliation(s)
- Meera Gupta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Alex N T Johnson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Edward R Cruz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Eli J Costa
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Randi L Guest
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Elizabeth M Hart
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Thao Nguyen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Michael Stadlmeier
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Benjamin P Bratton
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Vanderbilt Institute of Infection, Immunology and Inflammation, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ned S Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Martin Wühr
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
3
|
Abstract
Bacterial persisters are nongrowing cells highly tolerant to bactericidal antibiotics. However, this tolerance is reversible and not mediated by heritable genetic changes. Lon, an ATP-dependent protease, has repeatedly been shown to play a critical role in fluoroquinolone persistence in Escherichia coli. Although lon deletion (Δlon) is thought to eliminate persister cells via accumulation of the cell division inhibitor protein SulA, the exact mechanism underlying this phenomenon is not yet elucidated. Here, we show that Lon is an important regulatory protein for the resuscitation of the fluoroquinolone persisters in E. coli, and lon deletion impairs the ability of persister cells to form colonies during recovery through a sulA- and ftsZ-dependent mechanism. Notably, this observed "viable but nonculturable" state of antibiotic-tolerant Δlon cells is transient, as environmental conditions, such as starvation, can restore their culturability. Our data further indicate that starvation-induced SulA degradation or expression of Lon during recovery facilitates Z-ring formation in Δlon persisters, and Z-ring architecture is important for persister resuscitation in both wild-type and Δlon strains. Our in-depth image analysis clearly shows that the ratio of cell length to number of FtsZ rings for each intact ofloxacin-treated cell predicts the probability of resuscitation and, hence, can be used as a potential biomarker for persisters. IMPORTANCE The ATP-dependent Lon protease is one of the most studied bacterial proteases. Although deletion of lon has been frequently shown to reduce fluoroquinolone persistence, the proposed mechanisms underlying this phenomenon are highly controversial. Here, we have shown that lon deletion in Escherichia coli impairs the ability of persister cells to form colonies during recovery and that this reduction of persister levels in lon-deficient cells can be transient. We also found that altered Z-ring architecture is a key biomarker in both wild-type and lon-deficient persister cells transitioning to a normal cell state. Collectively, our findings highlight the importance of differentiating persister formation mechanisms from resuscitation mechanisms and underscore the critical role of the nonculturable cell state in antibiotic tolerance.
Collapse
|
4
|
Murata M, Nakamura K, Kosaka T, Ota N, Osawa A, Muro R, Fujiyama K, Oshima T, Mori H, Wanner BL, Yamada M. Cell Lysis Directed by SulA in Response to DNA Damage in Escherichia coli. Int J Mol Sci 2021; 22:ijms22094535. [PMID: 33926096 PMCID: PMC8123628 DOI: 10.3390/ijms22094535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 11/24/2022] Open
Abstract
The SOS response is induced upon DNA damage and the inhibition of Z ring formation by the product of the sulA gene, which is one of the LexA-regulated genes, allows time for repair of damaged DNA. On the other hand, severely DNA-damaged cells are eliminated from cell populations. Overexpression of sulA leads to cell lysis, suggesting SulA eliminates cells with unrepaired damaged DNA. Transcriptome analysis revealed that overexpression of sulA leads to up-regulation of numerous genes, including soxS. Deletion of soxS markedly reduced the extent of cell lysis by sulA overexpression and soxS overexpression alone led to cell lysis. Further experiments on the SoxS regulon suggested that LpxC is a main player downstream from SoxS. These findings suggested the SulA-dependent cell lysis (SDCL) cascade as follows: SulA→SoxS→LpxC. Other tests showed that the SDCL cascade pathway does not overlap with the apoptosis-like and mazEF cell death pathways.
Collapse
Affiliation(s)
- Masayuki Murata
- Life Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Ube 755-8611, Japan; (M.M.); (T.K.); (N.O.); (A.O.)
| | - Keiko Nakamura
- Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Japan; (K.N.); (R.M.); (K.F.)
| | - Tomoyuki Kosaka
- Life Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Ube 755-8611, Japan; (M.M.); (T.K.); (N.O.); (A.O.)
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Natsuko Ota
- Life Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Ube 755-8611, Japan; (M.M.); (T.K.); (N.O.); (A.O.)
| | - Ayumi Osawa
- Life Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Ube 755-8611, Japan; (M.M.); (T.K.); (N.O.); (A.O.)
| | - Ryunosuke Muro
- Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Japan; (K.N.); (R.M.); (K.F.)
| | - Kazuya Fujiyama
- Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Japan; (K.N.); (R.M.); (K.F.)
| | - Taku Oshima
- Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan;
| | - Hirotada Mori
- Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan;
| | - Barry L. Wanner
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA;
| | - Mamoru Yamada
- Life Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Ube 755-8611, Japan; (M.M.); (T.K.); (N.O.); (A.O.)
- Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Japan; (K.N.); (R.M.); (K.F.)
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8515, Japan
- Correspondence: ; Tel.: +81-83-933-5869
| |
Collapse
|
5
|
Bojer MS, Frees D, Ingmer H. SosA in Staphylococci: an addition to the paradigm of membrane-localized, SOS-induced cell division inhibition in bacteria. Curr Genet 2020; 66:495-499. [PMID: 31925496 DOI: 10.1007/s00294-019-01052-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 12/19/2022]
Abstract
In all living organisms, genome replication and cell division must be coordinated to produce viable offspring. In the event of DNA damage, bacterial cells employ the SOS response to simultaneously express damage repair systems and halt cell division. Extensive characterization of SOS-controlled cell division inhibition in Escherichia coli has laid the ground for a long-standing paradigm where the cytosolic SulA protein inhibits polymerization of the central division protein, FtsZ, and thereby prevents recruitment of the division machinery at the future division site. Within the last decade, it has become clear that another, likely more general, paradigm exists, at least within the broad group of Gram-positive bacterial species, namely membrane-localized, SOS-induced cell division inhibition. We recently identified such an inhibitor in Staphylococci, SosA, and established a model for SosA-mediated cell division inhibition in Staphylococcus aureus in response to DNA damage. SosA arrests cell division subsequent to the septal localization of FtsZ and later membrane-bound division proteins, while preventing progression to septum closure, leading to synchronization of cells at this particular stage. A membrane-associated protease, CtpA negatively regulates SosA activity and likely allows growth to resume once conditions are favorable. Here, we provide a brief summary of our findings in the context of what already is known for other membrane cell division inhibitors and we emphasize how poorly characterized these intriguing processes are mechanistically. Furthermore, we put some perspective on the relevance of our findings and future developments within the field.
Collapse
Affiliation(s)
- Martin S Bojer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dorte Frees
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Regulation of Cell Division in Bacteria by Monitoring Genome Integrity and DNA Replication Status. J Bacteriol 2020; 202:JB.00408-19. [PMID: 31548275 DOI: 10.1128/jb.00408-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
All organisms regulate cell cycle progression by coordinating cell division with DNA replication status. In eukaryotes, DNA damage or problems with replication fork progression induce the DNA damage response (DDR), causing cyclin-dependent kinases to remain active, preventing further cell cycle progression until replication and repair are complete. In bacteria, cell division is coordinated with chromosome segregation, preventing cell division ring formation over the nucleoid in a process termed nucleoid occlusion. In addition to nucleoid occlusion, bacteria induce the SOS response after replication forks encounter DNA damage or impediments that slow or block their progression. During SOS induction, Escherichia coli expresses a cytoplasmic protein, SulA, that inhibits cell division by directly binding FtsZ. After the SOS response is turned off, SulA is degraded by Lon protease, allowing for cell division to resume. Recently, it has become clear that SulA is restricted to bacteria closely related to E. coli and that most bacteria enforce the DNA damage checkpoint by expressing a small integral membrane protein. Resumption of cell division is then mediated by membrane-bound proteases that cleave the cell division inhibitor. Further, many bacterial cells have mechanisms to inhibit cell division that are regulated independently from the canonical LexA-mediated SOS response. In this review, we discuss several pathways used by bacteria to prevent cell division from occurring when genome instability is detected or before the chromosome has been fully replicated and segregated.
Collapse
|
7
|
Iida T, Minagawa Y, Ueno H, Kawai F, Murata T, Iino R. Single-molecule analysis reveals rotational substeps and chemo-mechanical coupling scheme of Enterococcus hirae V 1-ATPase. J Biol Chem 2019; 294:17017-17030. [PMID: 31519751 PMCID: PMC6851342 DOI: 10.1074/jbc.ra119.008947] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
V1-ATPase (V1), the catalytic domain of an ion-pumping V-ATPase, is a molecular motor that converts ATP hydrolysis-derived chemical energy into rotation. Here, using a gold nanoparticle probe, we directly observed rotation of V1 from the pathogen Enterococcus hirae (EhV1). We found that 120° steps in each ATP hydrolysis event are divided into 40 and 80° substeps. In the main pause before the 40° substep and at low ATP concentration ([ATP]), the time constant was inversely proportional to [ATP], indicating that ATP binds during the main pause with a rate constant of 1.0 × 107 m-1 s-1 At high [ATP], we observed two [ATP]-independent time constants (0.5 and 0.7 ms). One of two time constants was prolonged (144 ms) in a rotation driven by slowly hydrolyzable ATPγS, indicating that ATP is cleaved during the main pause. In another subpause before the 80° substep, we noted an [ATP]-independent time constant (2.5 ms). Furthermore, in an ATP-driven rotation of an arginine-finger mutant in the presence of ADP, -80 and -40° backward steps were observed. The time constants of the pauses before -80° backward and +40° recovery steps were inversely proportional to [ADP] and [ATP], respectively, indicating that ADP- and ATP-binding events trigger these steps. Assuming that backward steps are reverse reactions, we conclude that 40 and 80° substeps are triggered by ATP binding and ADP release, respectively, and that the remaining time constant in the main pause represents phosphate release. We propose a chemo-mechanical coupling scheme of EhV1, including substeps largely different from those of F1-ATPases.
Collapse
Affiliation(s)
- Tatsuya Iida
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Yoshihiro Minagawa
- Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Fumihiro Kawai
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.,Japan Science and Technology Agency (JST), PRESTO, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan .,Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
8
|
Burby PE, Simmons ZW, Simmons LA. DdcA antagonizes a bacterial DNA damage checkpoint. Mol Microbiol 2019; 111:237-253. [PMID: 30315724 PMCID: PMC6351180 DOI: 10.1111/mmi.14151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2018] [Indexed: 12/15/2022]
Abstract
Bacteria coordinate DNA replication and cell division, ensuring a complete set of genetic material is passed onto the next generation. When bacteria encounter DNA damage, a cell cycle checkpoint is activated by expressing a cell division inhibitor. The prevailing model is that activation of the DNA damage response and protease-mediated degradation of the inhibitor is sufficient to regulate the checkpoint process. Our recent genome-wide screens identified the gene ddcA as critical for surviving exposure to DNA damage. Similar to the checkpoint recovery proteases, the DNA damage sensitivity resulting from ddcA deletion depends on the checkpoint enforcement protein YneA. Using several genetic approaches, we show that DdcA function is distinct from the checkpoint recovery process. Deletion of ddcA resulted in sensitivity to yneA overexpression independent of YneA protein levels and stability, further supporting the conclusion that DdcA regulates YneA independent of proteolysis. Using a functional GFP-YneA fusion we found that DdcA prevents YneA-dependent cell elongation independent of YneA localization. Together, our results suggest that DdcA acts by helping to set a threshold of YneA required to establish the cell cycle checkpoint, uncovering a new regulatory step controlling activation of the DNA damage checkpoint in Bacillus subtilis.
Collapse
Affiliation(s)
- Peter E. Burby
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zackary W. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
9
|
Burby PE, Simmons ZW, Schroeder JW, Simmons LA. Discovery of a dual protease mechanism that promotes DNA damage checkpoint recovery. PLoS Genet 2018; 14:e1007512. [PMID: 29979679 PMCID: PMC6051672 DOI: 10.1371/journal.pgen.1007512] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/18/2018] [Accepted: 06/23/2018] [Indexed: 02/07/2023] Open
Abstract
The DNA damage response is a signaling pathway found throughout biology. In many bacteria the DNA damage checkpoint is enforced by inducing expression of a small, membrane bound inhibitor that delays cell division providing time to repair damaged chromosomes. How cells promote checkpoint recovery after sensing successful repair is unknown. By using a high-throughput, forward genetic screen, we identified two unrelated proteases, YlbL and CtpA, that promote DNA damage checkpoint recovery in Bacillus subtilis. Deletion of both proteases leads to accumulation of the checkpoint protein YneA. We show that DNA damage sensitivity and increased cell elongation in protease mutants depends on yneA. Further, expression of YneA in protease mutants was sufficient to inhibit cell proliferation. Finally, we show that both proteases interact with YneA and that one of the two proteases, CtpA, directly cleaves YneA in vitro. With these results, we report the mechanism for DNA damage checkpoint recovery in bacteria that use membrane bound cell division inhibitors.
Collapse
Affiliation(s)
- Peter E. Burby
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Zackary W. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Jeremy W. Schroeder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
10
|
Baytshtok V, Chen J, Glynn SE, Nager AR, Grant RA, Baker TA, Sauer RT. Covalently linked HslU hexamers support a probabilistic mechanism that links ATP hydrolysis to protein unfolding and translocation. J Biol Chem 2017; 292:5695-5704. [PMID: 28223361 DOI: 10.1074/jbc.m116.768978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/07/2017] [Indexed: 11/06/2022] Open
Abstract
The HslUV proteolytic machine consists of HslV, a double-ring self-compartmentalized peptidase, and one or two AAA+ HslU ring hexamers that hydrolyze ATP to power the unfolding of protein substrates and their translocation into the proteolytic chamber of HslV. Here, we use genetic tethering and disulfide bonding strategies to construct HslU pseudohexamers containing mixtures of ATPase active and inactive subunits at defined positions in the hexameric ring. Genetic tethering impairs HslV binding and degradation, even for pseudohexamers with six active subunits, but disulfide-linked pseudohexamers do not have these defects, indicating that the peptide tether interferes with HslV interactions. Importantly, pseudohexamers containing different patterns of hydrolytically active and inactive subunits retain the ability to unfold protein substrates and/or collaborate with HslV in their degradation, supporting a model in which ATP hydrolysis and linked mechanical function in the HslU ring operate by a probabilistic mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | - Tania A Baker
- From the Department of Biology and.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | |
Collapse
|
11
|
Baytshtok V, Fei X, Grant RA, Baker TA, Sauer RT. A Structurally Dynamic Region of the HslU Intermediate Domain Controls Protein Degradation and ATP Hydrolysis. Structure 2016; 24:1766-1777. [PMID: 27667691 DOI: 10.1016/j.str.2016.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/02/2016] [Accepted: 08/06/2016] [Indexed: 11/30/2022]
Abstract
The I domain of HslU sits above the AAA+ ring and forms a funnel-like entry to the axial pore, where protein substrates are engaged, unfolded, and translocated into HslV for degradation. The L199Q I-domain substitution, which was originally reported as a loss-of-function mutation, resides in a segment that appears to adopt multiple conformations as electron density is not observed in HslU and HslUV crystal structures. The L199Q sequence change does not alter the structure of the AAA+ ring or its interactions with HslV but increases I-domain susceptibility to limited endoproteolysis. Notably, the L199Q mutation increases the rate of ATP hydrolysis substantially, results in slower degradation of some proteins but faster degradation of other substrates, and markedly changes the preference of HslUV for initiating degradation at the N or C terminus of model substrates. Thus, a structurally dynamic region of the I domain plays a key role in controlling protein degradation by HslUV.
Collapse
Affiliation(s)
- Vladimir Baytshtok
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xue Fei
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert A Grant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
12
|
Sung KH, Song HK. Insights into the molecular evolution of HslU ATPase through biochemical and mutational analyses. PLoS One 2014; 9:e103027. [PMID: 25050622 PMCID: PMC4106860 DOI: 10.1371/journal.pone.0103027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 06/26/2014] [Indexed: 11/18/2022] Open
Abstract
The ATP-dependent HslVU complexes are found in all three biological kingdoms. A single HslV protease exists in each species of prokaryotes, archaea, and eukaryotes, but two HslUs (HslU1 and HslU2) are present in the mitochondria of eukaryotes. Previously, a tyrosine residue at the C-terminal tail of HslU2 has been identified as a key determinant of HslV activation in Trypanosoma brucei and a phenylalanine at the equivalent position to E. coli HslU is found in T. brucei HslU1. Unexpectedly, we found that an F441Y mutation in HslU enhanced the peptidase and caseinolytic activity of HslV in E. coli but it showed partially reduced ATPase and SulA degradation activity. Previously, only the C-terminal tail of HslU has been the focus of HslV activation studies. However, the Pro315 residue interacting with Phe441 in free HslU has also been found to be critical for HslV activation. Hence, our current biochemical analyses explore the importance of the loop region just before Pro315 for HslVU complex functionality. The proline and phenylalanine pair in prokaryotic HslU was replaced with the threonine and tyrosine pair from the functional eukaryotic HslU2. Sequence comparisons between multiple HslUs from three different biological kingdoms in combination with biochemical analysis of E. coli mutants have uncovered important new insights into the molecular evolutionary pathway of HslU.
Collapse
Affiliation(s)
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul, Korea
- * E-mail:
| |
Collapse
|
13
|
San Martin-Uriz P, Mirete S, Alcolea PJ, Gomez MJ, Amils R, Gonzalez-Pastor JE. Nickel-resistance determinants in Acidiphilium sp. PM identified by genome-wide functional screening. PLoS One 2014; 9:e95041. [PMID: 24740277 PMCID: PMC3989265 DOI: 10.1371/journal.pone.0095041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 03/23/2014] [Indexed: 11/18/2022] Open
Abstract
Acidiphilium spp. are conspicuous dwellers of acidic, metal-rich environments. Indeed, they are among the most metal-resistant organisms; yet little is known about the mechanisms behind the metal tolerance in this genus. Acidiphilium sp. PM is an environmental isolate from Rio Tinto, an acidic, metal-laden river located in southwestern Spain. The characterization of its metal resistance revealed a remarkable ability to tolerate high Ni concentrations. Here we report the screening of a genomic library of Acidiphilium sp. PM to identify genes involved in Ni resistance. This approach revealed seven different genes conferring Ni resistance to E. coli, two of which form an operon encoding the ATP-dependent protease HslVU (ClpQY). This protease was found to enhance resistance to both Ni and Co in E. coli, a function not previously reported. Other Ni-resistance determinants include genes involved in lipopolysaccharide biosynthesis and the synthesis of branched amino acids. The diversity of molecular functions of the genes recovered in the screening suggests that Ni resistance in Acidiphilium sp. PM probably relies on different molecular mechanisms.
Collapse
Affiliation(s)
- Patxi San Martin-Uriz
- Centro de Astrobiología (INTA-CSIC), Instituto Nacional de Técnica Aeroespacial, Torrejón de Ardoz, Madrid, Spain
| | - Salvador Mirete
- Centro de Astrobiología (INTA-CSIC), Instituto Nacional de Técnica Aeroespacial, Torrejón de Ardoz, Madrid, Spain
| | - Pedro J. Alcolea
- Centro de Investigaciones Biológicas (CSIC), Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Manuel J. Gomez
- Centro de Astrobiología (INTA-CSIC), Instituto Nacional de Técnica Aeroespacial, Torrejón de Ardoz, Madrid, Spain
| | - Ricardo Amils
- Centro de Astrobiología (INTA-CSIC), Instituto Nacional de Técnica Aeroespacial, Torrejón de Ardoz, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose E. Gonzalez-Pastor
- Centro de Astrobiología (INTA-CSIC), Instituto Nacional de Técnica Aeroespacial, Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
14
|
Park E, Lee JW, Yoo HM, Ha BH, An JY, Jeon YJ, Seol JH, Eom SH, Chung CH. Structural alteration in the pore motif of the bacterial 20S proteasome homolog HslV leads to uncontrolled protein degradation. J Mol Biol 2013; 425:2940-54. [PMID: 23707406 DOI: 10.1016/j.jmb.2013.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/29/2013] [Accepted: 05/15/2013] [Indexed: 11/27/2022]
Abstract
In all cells, ATP-dependent proteases play central roles in the controlled degradation of short-lived regulatory or misfolded proteins. A hallmark of these enzymes is that proteolytic active sites are sequestered within a compartmentalized space, which is accessible to substrates only when they are fed into the cavity by protein-unfolding ATPases. HslVU is a prototype of such enzymes, consisting of the hexameric HslU ATPase and the dodecameric HslV protease. HslV forms a barrel-shaped proteolytic chamber with two constricted axial pores. Here, we report that structural alterations of HslV's pore motif dramatically affect the proteolytic activities of both HslV and HslVU complexes. Mutations of a conserved pore residue in HslV (Leu88 to Ala, Gly, or Ser) led to a tighter binding between HslV and HslU and a dramatic stimulation of both the proteolytic and ATPase activities. Furthermore, the HslV mutants alone showed a marked increase of basal hydrolytic activities toward small peptides and unstructured proteins. A synthetic peptide of the HslU C-terminal tail further stimulated the proteolytic activities of these mutants, even allowing degradation of certain folded proteins in the absence of HslU. Moreover, expression of the L88A mutant in Escherichia coli inhibited cell growth, suggesting that HslV pore mutations dysregulate the protease through relaxing the pore constriction, which normally prevents essential cellular proteins from random degradation. Consistent with these observations, an X-ray crystal structure shows that the pore loop of L88A-HslV is largely disordered. Collectively, these results suggest that substrate degradation by HslV is controlled by gating of its pores.
Collapse
Affiliation(s)
- Eunyong Park
- School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sung KH, Lee SY, Song HK. Structural and biochemical analyses of the eukaryotic heat shock locus V (HslV) from Trypanosoma brucei. J Biol Chem 2013; 288:23234-43. [PMID: 23818520 DOI: 10.1074/jbc.m113.484832] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In many bacteria, heat shock locus V (HslV) functions as a protease, which is activated by heat shock locus U (HslU). The primary sequence and structure of HslV are well conserved with those of the β-subunit of the 20 S proteasome core particle in eukaryotes. To date, the HslVU complex has only been characterized in the prokaryotic system. Recently, however, the coexistence of a 20 S proteasome with HslV protease in the same living organism has been reported. In Trypanosoma brucei, a protozoan parasite that causes human sleeping sickness in Africa, HslV is localized in the mitochondria, where it has a novel function in regulating mitochondrial DNA replication. Although the prokaryotic HslVU system has been studied extensively, little is known regarding its eukaryotic counterpart. Here, we report the biochemical characteristics of an HslVU complex from T. brucei. In contrast to the prokaryotic system, T. brucei possesses two potential HslU molecules, and we found that only one of them activates HslV. A key activating residue, Tyr(494), was identified in HslU2 by biochemical and mutational studies. Furthermore, to our knowledge, this study is the first to report the crystal structure of a eukaryotic HslV, determined at 2.4 Å resolution. Drawing on our comparison of the biochemical and structural data, we discuss herein the differences and similarities between eukaryotic and prokaryotic HslVs.
Collapse
Affiliation(s)
- Kwang Hoon Sung
- Department of Life Sciences, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-701, Korea
| | | | | |
Collapse
|
16
|
Aminake MN, Arndt HD, Pradel G. The proteasome of malaria parasites: A multi-stage drug target for chemotherapeutic intervention? INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2012; 2:1-10. [PMID: 24533266 DOI: 10.1016/j.ijpddr.2011.12.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/21/2011] [Accepted: 12/24/2011] [Indexed: 12/13/2022]
Abstract
The ubiquitin/proteasome system serves as a regulated protein degradation pathway in eukaryotes, and is involved in many cellular processes featuring high protein turnover rates, such as cell cycle control, stress response and signal transduction. In malaria parasites, protein quality control is potentially important because of the high replication rate and the rapid transformations of the parasite during life cycle progression. The proteasome is the core of the degradation pathway, and is a major proteolytic complex responsible for the degradation and recycling of non-functional ubiquitinated proteins. Annotation of the genome for Plasmodium falciparum, the causative agent of malaria tropica, revealed proteins with similarity to human 26S proteasome subunits. In addition, a bacterial ClpQ/hslV threonine peptidase-like protein was identified. In recent years several independent studies indicated an essential function of the parasite proteasome for the liver, blood and transmission stages. In this review, we compile evidence for protein recycling in Plasmodium parasites and discuss the role of the 26S proteasome as a prospective multi-stage target for antimalarial drug discovery programs.
Collapse
Affiliation(s)
- Makoah Nigel Aminake
- Julius-Maximilians-University Würzburg, Research Center for Infectious Diseases, Josef-Schneider-Str. 2/D15, 97080 Würzburg, Germany
| | - Hans-Dieter Arndt
- Friedrich-Schiller-University Jena, Chair of Organic Chemistry I, Humboldtstr. 10, 07743 Jena, Germany
| | - Gabriele Pradel
- Julius-Maximilians-University Würzburg, Research Center for Infectious Diseases, Josef-Schneider-Str. 2/D15, 97080 Würzburg, Germany
| |
Collapse
|
17
|
Sundar S, Baker TA, Sauer RT. The I domain of the AAA+ HslUV protease coordinates substrate binding, ATP hydrolysis, and protein degradation. Protein Sci 2012; 21:188-98. [PMID: 22102327 DOI: 10.1002/pro.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 11/11/2022]
Abstract
In the AAA+ HslUV protease, substrates are bound and unfolded by a ring hexamer of HslU, before translocation through an axial pore and into the HslV degradation chamber. Here, we show that the N-terminal residues of an Arc substrate initially bind in the HslU axial pore, with key contacts mediated by a pore loop that is highly conserved in all AAA+ unfoldases. Disordered loops from the six intermediate domains of the HslU hexamer project into a funnel-shaped cavity above the pore and are positioned to contact protein substrates. Mutations in these I-domain loops increase K(M) and decrease V(max) for degradation, increase the mobility of bound substrates, and prevent substrate stimulation of ATP hydrolysis. HslU-ΔI has negligible ATPase activity. Thus, the I domain plays an active role in coordinating substrate binding, ATP hydrolysis, and protein degradation by the HslUV proteolytic machine.
Collapse
Affiliation(s)
- Shankar Sundar
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
18
|
Ribeiro DA, Ferraz LFC, Vicentini R, Ottoboni LMM. Gene expression modulation by heat stress in Acidithiobacillus ferrooxidans LR. Antonie van Leeuwenhoek 2011; 101:583-93. [PMID: 22086463 DOI: 10.1007/s10482-011-9673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/03/2011] [Indexed: 11/27/2022]
Abstract
During bioleaching, Acidithiobacillus ferrooxidans is subjected to different types of stress, including heat stress, which affect bacterial growth. In this work, real time quantitative PCR was used to analyze the expression of heat shock genes, as well as genes that encode proteins related to several functional categories in A. ferrooxidans. Cells were submitted to long-term growth and heat shock, both at 40°C. The results showed that heat shock affected the expression levels of most genes investigated, whilst long-term growth at 40°C resulted in minor changes in gene expression, except for certain genes related to iron transport, which were strongly down-regulated, suggesting that the iron processing capability of A. ferrooxidans was affected by long-term growth at 40°C. A bioinformatic analysis of the genes' promoter regions indicated a putative transcriptional regulation by the σ(32) factor in 12 of the 31 genes investigated, suggesting the involvement of other regulatory mechanisms in the response of A. ferrooxidans to heat stress.
Collapse
Affiliation(s)
- Daniela A Ribeiro
- Center for Molecular Biology and Genetic Engineering, State University of Campinas, Campinas, SP, Brazil
| | | | | | | |
Collapse
|
19
|
Tschan S, Mordmüller B, Kun JFJ. Threonine peptidases as drug targets against malaria. Expert Opin Ther Targets 2011; 15:365-78. [PMID: 21281254 DOI: 10.1517/14728222.2011.555399] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Malaria is caused by the intracellular parasite Plasmodium falciparum. Although numerous therapies are available to fight the disease, the number of pharmacophores is small, and constant development of novel therapies, especially with new targets, is desirable to fight developing resistance against presently prescribed drugs. AREAS COVERED This review discusses research on plasmodial threonine peptidases along with recent advances in proteasome inhibitor development. EXPERT OPINION While PfHslV is an attractive drug target in malaria, more investigation is required to clarify its functional role in the parasite. More efforts should also be invested in assessing the plasmodial proteasome as a drug target. The few papers investigating the effect of proteasome inhibitors on different stages of the life cycle point towards important roles not only during asexual, but also in hepatic and sexual stages, in humans and the mosquito. If this holds true, this is a key argument to further develop proteasome inhibitors for use against malaria.
Collapse
Affiliation(s)
- Serena Tschan
- University of Tübingen, Institute of Tropical Medicine, Wilhelmstr. 27, 72074 Tübingen, Germany
| | | | | |
Collapse
|
20
|
Sundar S, McGinness KE, Baker TA, Sauer RT. Multiple sequence signals direct recognition and degradation of protein substrates by the AAA+ protease HslUV. J Mol Biol 2010; 403:420-9. [PMID: 20837023 DOI: 10.1016/j.jmb.2010.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/02/2010] [Accepted: 09/03/2010] [Indexed: 11/25/2022]
Abstract
Proteolysis is important for protein quality control and for the proper regulation of many intracellular processes in prokaryotes and eukaryotes. Discerning substrates from other cellular proteins is a key aspect of proteolytic function. The Escherichia coli HslUV protease is a member of a major family of ATP-dependent AAA+ degradation machines. HslU hexamers recognize and unfold native protein substrates and then translocate the polypeptide into the degradation chamber of the HslV peptidase. Although a wealth of structural information is available for this system, relatively little is known about mechanisms of substrate recognition. Here, we demonstrate that mutations in the unstructured N-terminal and C-terminal sequences of two model substrates alter HslUV recognition and degradation kinetics, including changes in V(max). By introducing N- or C-terminal sequences that serve as recognition sites for specific peptide-binding proteins, we show that blocking either terminus of the substrate interferes with HslUV degradation, with synergistic effects when both termini are obstructed. These results support a model in which one terminus of the substrate is tethered to the protease and the other terminus is engaged by the translocation/unfolding machinery in the HslU pore. Thus, degradation appears to consist of discrete steps, which involve the interaction of different terminal sequence signals in the substrate with different receptor sites in the HslUV protease.
Collapse
Affiliation(s)
- Shankar Sundar
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
21
|
Paddling mechanism for the substrate translocation by AAA+ motor revealed by multiscale molecular simulations. Proc Natl Acad Sci U S A 2009; 106:18237-42. [PMID: 19828442 DOI: 10.1073/pnas.0904756106] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hexameric ring-shaped AAA+ molecular motors have a key function of active translocation of a macromolecular chain through the central pore. By performing multiscale molecular dynamics (MD) simulations, we revealed that HslU, a AAA+ motor in a bacterial homologue of eukaryotic proteasome, translocates its substrate polypeptide via paddling mechanism during ATP-driven cyclic conformational changes. First, fully atomistic MD simulations showed that the HslU pore grips the threaded signal peptide by the highly conserved Tyr-91 and Val-92 firmly in the closed form and loosely in the open form of the HslU. The grip depended on the substrate sequence. These features were fed into a coarse-grained MD, and conformational transitions of HslU upon ATP cycles were simulated. The simulations exhibited stochastic unidirectional translocation of a polypeptide. This unidirectional translocation is attributed to paddling motions of Tyr-91s between the open and the closed forms: downward motions of Tyr-91s with gripping the substrate and upward motions with slipping on it. The paddling motions were caused by the difference between the characteristic time scales of the pore-radius change and the up-down displacements of Tyr-91s. Computational experiments on mutations at the pore and the substrate were in accord with several experiments.
Collapse
|
22
|
Lee JW, Park E, Jeong MS, Jeon YJ, Eom SH, Seol JH, Chung CH. HslVU ATP-dependent protease utilizes maximally six among twelve threonine active sites during proteolysis. J Biol Chem 2009; 284:33475-84. [PMID: 19801685 DOI: 10.1074/jbc.m109.045807] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HslVU is a bacterial ATP-dependent protease distantly related to eukaryotic proteasomes consisting of hexameric HslU ATPase and dodecameric HslV protease. As a homolog of the 20 S proteasome beta-subunits, HslV also uses the N-terminal threonine as the active site residue. However, unlike the proteasome that has only 6 active sites among the 14 beta-subunits, HslV has 12 active sites that could potentially contribute to proteolytic activity. Here, by using a series of HslV dodecamers containing different numbers of active sites, we demonstrate that like the proteasome, HslV with only approximately 6 active sites is sufficient to support full catalytic activity. However, a further reduction of the number of active sites leads to a proportional decrease in activity. Using proteasome inhibitors, we also demonstrate that substrate-mediated stabilization of the HslV-HslU interaction remains unchanged until the number of the active sites is decreased to approximately 6 but is gradually compromised upon further reduction. These results with a mathematical model suggest HslVU utilizes no more than 6 active sites at any given time, presumably because of the action of HslU. These results also suggest that each ATP-bound HslU subunit activates one HslV subunit and that substrate bound to the HslV active site stimulates the HslU ATPase activity by stabilizing the HslV-HslU interaction. We propose this mechanism plays an important role in supporting complete degradation of substrates while preventing wasteful ATP hydrolysis in the resting state by controlling the interaction between HslV and HslU through the catalytic engagement of the proteolytic active sites.
Collapse
Affiliation(s)
- Jung Wook Lee
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Characterization of the Escherichia coli ClpY (HslU) substrate recognition site in the ClpYQ (HslUV) protease using the yeast two-hybrid system. J Bacteriol 2009; 191:4218-31. [PMID: 19395483 DOI: 10.1128/jb.00089-09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, ClpYQ (HslUV) is a two-component ATP-dependent protease in which ClpQ is the peptidase subunit and ClpY is the ATPase and the substrate-binding subunit. The ATP-dependent proteolysis is mediated by substrate recognition in the ClpYQ complex. ClpY has three domains, N, I, and C, and these domains are discrete and exhibit different binding preferences. In vivo, ClpYQ targets SulA, RcsA, RpoH, and TraJ molecules. In this study, ClpY was analyzed to identify the molecular determinants required for the binding of its natural protein substrates. Using yeast two-hybrid analysis, we showed that domain I of ClpY contains the residues responsible for recognition of its natural substrates, while domain C is necessary to engage ClpQ. Moreover, the specific residues that lie in the amino acid (aa) 137 to 150 (loop 1) and aa 175 to 209 (loop 2) double loops in domain I of ClpY were shown to be necessary for natural substrate interaction. Additionally, the two-hybrid system, together with random PCR mutagenesis, allowed the isolation of ClpY mutants that displayed a range of binding activities with SulA, including a mutant with no SulA binding trait. Subsequently, via methyl methanesulfonate tests and cpsB::lacZ assays with, e.g., SulA and RcsA as targets, we concluded that aa 175 to 209 of loop 2 are involved in the tethering of natural substrates, and it is likely that both loops, aa 137 to 150 and aa 175 to 209, of ClpY domain I may assist in the delivery of substrates into the inner core for ultimate degradation by ClpQ.
Collapse
|
24
|
Koodathingal P, Jaffe NE, Kraut DA, Prakash S, Fishbain S, Herman C, Matouschek A. ATP-dependent proteases differ substantially in their ability to unfold globular proteins. J Biol Chem 2009; 284:18674-84. [PMID: 19383601 DOI: 10.1074/jbc.m900783200] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-dependent proteases control the concentrations of hundreds of regulatory proteins and remove damaged or misfolded proteins from cells. They select their substrates primarily by recognizing sequence motifs or covalent modifications. Once a substrate is bound to the protease, it has to be unfolded and translocated into the proteolytic chamber to be degraded. Some proteases appear to be promiscuous, degrading substrates with poorly defined targeting signals, which suggests that selectivity may be controlled at additional levels. Here we compare the abilities of representatives from all classes of ATP-dependent proteases to unfold a model substrate protein and find that the unfolding abilities range over more than 2 orders of magnitude. We propose that these differences in unfolding abilities contribute to the fates of substrate proteins and may act as a further layer of selectivity during protein destruction.
Collapse
Affiliation(s)
- Prakash Koodathingal
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Lien HY, Yu CH, Liou CM, Wu WF. Regulation of clpQ⁺Y⁺ (hslV⁺U⁺) gene expression in Escherichia coli. Open Microbiol J 2009; 3:29-39. [PMID: 19440251 PMCID: PMC2681174 DOI: 10.2174/1874285800903010029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 02/17/2009] [Accepted: 02/24/2009] [Indexed: 11/24/2022] Open
Abstract
The Escherichia coli ClpYQ (HslUV) complex is an ATP-dependent protease, and the clpQ+Y+ (hslV+U+) operon encodes two heat shock proteins, ClpQ and ClpY, respectively. The transcriptional (op) or translational (pr) clpQ+::lacZ fusion gene was constructed, with the clpQ+Y+ promoter fused to a lacZ reporter gene. The clpQ+::lacZ (op or pr) fusion gene was each crossed into lambda phage. The λclpQ+::lacZ+ (op), a transcriptional fusion gene, was used to form lysogens in the wild-type, rpoH or/and rpoS mutants. Upon shifting the temperature up from 30 °C to 42 °C, the wild-type λclpQ+::lacZ+ (op) demonstrates an increased β-galactosidase (βGal) activity. However, the βGal activity of clpQ+::lacZ+ (op) was decreased in the rpoH and rpoH rpoS mutants but not in the rpoS mutant. The levels of clpQ+::lacZ+ mRNA transcripts correlated well to their βGal activity. Similarly, the expression of the clpQ+::lacZ+ gene fusion was nearly identical to the clpQ+Y+ transcript under the in vivo condition. The clpQm1::lacZ+, containing a point mutation in the -10 promoter region for RpoH binding, showed decreased βGal activity, independent of activation by RpoH. We conclude that RpoH itself regulates clpQ+Y+ gene expression. In addition, the clpQ+Y+ message carries a conserved 71 bp at the 5’ untranslated region (5’UTR) that is predicted to form the stem-loop structure by analysis of its RNA secondary structure. The clpQm2Δ40::lacZ+, with a 40 bp deletion in the 5’UTR, showed a decreased βGal activity. In addition, from our results, it is suggested that this stem-loop structure is necessary for the stability of the clpQ+Y+ message.
Collapse
Affiliation(s)
- Hsiang-Yun Lien
- Department of Agricultural Chemistry, National Taiwan University, Taipei (106), Taiwan, R.O.C
| | | | | | | |
Collapse
|
26
|
Park E, Lee JW, Eom SH, Seol JH, Chung CH. Binding of MG132 or deletion of the Thr active sites in HslV subunits increases the affinity of HslV protease for HslU ATPase and makes this interaction nucleotide-independent. J Biol Chem 2008; 283:33258-66. [PMID: 18838376 DOI: 10.1074/jbc.m805411200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HslVU is an ATP-dependent protease in bacteria consisting of HslV dodecamer and HslU hexamer. Upon ATP binding, HslU ATPase allosterically activates the catalytic function of HslV protease by 1-2 orders of magnitude. However, relatively little is known about the role of HslV in the control of HslU function. Here we describe the involvement of the N-terminal Thr active sites (Thr-1) of HslV in the communication between HslV and HslU. Binding of proteasome inhibitors to Thr-1 led to a dramatic increase in the interaction between HslV and HslU with a marked increase in ATP hydrolysis by HslU. Moreover, carbobenzoxy-leucyl-leucyl-leucinal (MG132) could bind to Thr-1 of free HslV, and this binding induced a tight interaction between HslV and HslU with the activation of HslU ATPase, suggesting that substrate-bound HslV can allosterically regulate HslU function. Unexpectedly, the deletion of Thr-1 also caused a dramatic increase in the affinity between HslV and HslU even in the absence of ATP. Furthermore, the increase in the number of the Thr-1 deletion mutant subunit in place of HslV subunit in a dodecamer led to a proportional increase in the affinity between HslV and HslU with gradual activation of HslU ATPase. Although the molecular mechanism elucidating how the Thr-1 deletion influences the interaction between HslV and HslU remains unknown, these results suggest an additional allosteric mechanism for the control of HslU function by HslV. Taken together, our findings indicate a critical involvement of Thr-1 of HslV in the reciprocal control of HslU function and, thus, for their communication.
Collapse
Affiliation(s)
- Eunyong Park
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
27
|
Proteomic analysis of stationary phase in the marine bacterium "Candidatus Pelagibacter ubique". Appl Environ Microbiol 2008; 74:4091-100. [PMID: 18469119 DOI: 10.1128/aem.00599-08] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
"Candidatus Pelagibacter ubique," an abundant marine alphaproteobacterium, subsists in nature at low ambient nutrient concentrations and may often be exposed to nutrient limitation, but its genome reveals no evidence of global regulatory mechanisms for adaptation to stationary phase. High-resolution capillary liquid chromatography coupled online to an LTQ mass spectrometer was used to build an accurate mass and time (AMT) tag library that enabled quantitative examination of proteomic differences between exponential- and stationary-phase "Ca. Pelagibacter ubique" cells cultivated in a seawater medium. The AMT tag library represented 65% of the predicted protein-encoding genes. "Ca. Pelagibacter ubique" appears to respond adaptively to stationary phase by increasing the abundance of a suite of proteins that contribute to homeostasis rather than undergoing a major remodeling of its proteome. Stationary-phase abundances increased significantly for OsmC and thioredoxin reductase, which may mitigate oxidative damage in "Ca. Pelagibacter," as well as for molecular chaperones, enzymes involved in methionine and cysteine biosynthesis, proteins involved in rho-dependent transcription termination, and the signal transduction enzyme CheY-FisH. We speculate that this limited response may enable "Ca. Pelagibacter ubique" to cope with ambient conditions that deprive it of nutrients for short periods and, furthermore, that the ability to resume growth overrides the need for a more comprehensive global stationary-phase response to create a capacity for long-term survival.
Collapse
|
28
|
Li Z, Lindsay ME, Motyka SA, Englund PT, Wang CC. Identification of a bacterial-like HslVU protease in the mitochondria of Trypanosoma brucei and its role in mitochondrial DNA replication. PLoS Pathog 2008; 4:e1000048. [PMID: 18421378 PMCID: PMC2277460 DOI: 10.1371/journal.ppat.1000048] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 03/20/2008] [Indexed: 12/03/2022] Open
Abstract
ATP-dependent protease complexes are present in all living organisms, including the 26S proteasome in eukaryotes, Archaea, and Actinomycetales, and the HslVU protease in eubacteria. The structure of HslVU protease resembles that of the 26S proteasome, and the simultaneous presence of both proteases in one organism was deemed unlikely. However, HslVU homologs have been identified recently in some primordial eukaryotes, though their potential function remains elusive. We characterized the HslVU homolog from Trypanosoma brucei, a eukaryotic protozoan parasite and the causative agent of human sleeping sickness. TbHslVU has ATP-dependent peptidase activity and, like its bacterial counterpart, has essential lysine and N-terminal threonines in the catalytic subunit. By epitope tagging, TbHslVU localizes to mitochondria and is associated with the mitochondrial genome, kinetoplast DNA (kDNA). RNAi of TbHslVU dramatically affects the kDNA by causing over-replication of the minicircle DNA. This leads to defects in kDNA segregation and, subsequently, to continuous network growth to an enormous size. Multiple discrete foci of nicked/gapped minicircles are formed on the periphery of kDNA disc, suggesting a failure in repairing the gaps in the minicircles for kDNA segregation. TbHslVU is a eubacterial protease identified in the mitochondria of a eukaryote. It has a novel function in regulating mitochondrial DNA replication that has never been observed in other organisms. ATP-dependent protein-hydrolyzing enzyme complexes are present in all living organisms, including the 26S proteasome in eukaryotes and the HslVU complex in bacteria. A simultaneous presence of both complexes in an organism was originally deemed unlikely until some HslVU homologs were found in certain ancient eukaryotes, though their potential function in these organisms remains unclear. We characterized an HslVU complex in Trypanosoma brucei, a protozoan parasite that causes human sleeping sickness in Africa. The complex is an active enzyme localized to the mitochondria of the parasite and closely associated with the mitochondrial DNA complex, which consists of several thousand small circular DNAs and a few dozen mitochondrial genomic DNAs. Depletion of this HslVU from the parasite resulted in a continuous synthesis of the small circular DNA, which led to aberrant segregation and incessant growth of the mitochondrial DNA complex to an enormous size that eventually blocks cell division. This novel HslVU function, which has not been observed in other organisms previously, could be a potential target for anti-sleeping sickness chemotherapy.
Collapse
Affiliation(s)
- Ziyin Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Megan E. Lindsay
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Shawn A. Motyka
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Paul T. Englund
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Abstract
All organisms possess a diverse set of genetic programs that are used to alter cellular physiology in response to environmental cues. The gram-negative bacterium, Escherichia coli, mounts what is known as the "SOS response" following DNA damage, replication fork arrest, and a myriad of other environmental stresses. For over 50 years, E. coli has served as the paradigm for our understanding of the transcriptional, and physiological changes that occur following DNA damage (400). In this chapter, we summarize the current view of the SOS response and discuss how this genetic circuit is regulated. In addition to examining the E. coli SOS response, we also include a discussion of the SOS regulatory networks in other bacteria to provide a broader perspective on how prokaryotes respond to DNA damage.
Collapse
|
30
|
Lau-Wong IC, Locke T, Ellison MJ, Raivio TL, Frost LS. Activation of the Cpx regulon destabilizes the F plasmid transfer activator, TraJ, via the HslVU protease in Escherichia coli. Mol Microbiol 2007; 67:516-27. [PMID: 18069965 DOI: 10.1111/j.1365-2958.2007.06055.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Escherichia coli CpxAR two-component signal transduction system senses and responds to extracytoplasmic stress. The cpxA101* allele was previously found to reduce F plasmid conjugation by post-transcriptional inactivation of the positive activator TraJ. Microarray analysis revealed upregulation of the protease-chaperone pair, HslVU, which was shown to degrade TraJ in an E. coli C600 cpxA101* background. Double mutants of cpxA101* and hslV or hslU restored TraJ and F conjugation to wild-type levels. The constitutive overexpression of nlpE, an outer membrane lipoprotein that induces the Cpx stress response, also led to HslVU-mediated degradation of TraJ and repression of F transfer. However, Cpx-mediated TraJ degradation appears to be growth phase-dependent, as induction of nlpE in mid-log phase cells did not appreciably alter TraJ levels. Further, His6-TraJ was sensitive to HslVU degradation in vitro only when it was purified from cells overexpressing nlpE. Thus, TraJ appears to become resistant to HslVU during normal growth, with this resistance mapping to the F transfer region. Extracytoplasmic stress prevents this modification of TraJ, leaving it susceptible to HslVU. Thus, the CpxAR stress response indirectly controls the synthesis of the F mating apparatus, a complex transenvelope type IV secretion system, by degrading TraJ.
Collapse
Affiliation(s)
- Isabella C Lau-Wong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | | | | | | | |
Collapse
|
31
|
Shin NR, Lee DY, Yoo HS. Identification of quorum sensing-related regulons in Vibrio vulnificus by two-dimensional gel electrophoresis and differentially displayed reverse transcriptase PCR. ACTA ACUST UNITED AC 2007; 50:94-103. [PMID: 17506728 DOI: 10.1111/j.1574-695x.2007.00236.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vibrio vulnificus is thought to employ a quorum-sensing system to control the expression of a global gene. In this study, proteomes and transcriptomes of a lacZ null mutant, VvSR Delta Z, and a luxS-smcR double mutant, VvSR Delta ZSR, were compared with the parent strain, VvAR, by means of two-dimensional gel electrophoresis (2D-PAGE) and differentially displayed reverse transcriptase PCR (DDRT-PCR). 2D-PAGE analysis showed that 36 protein spots were differentially expressed, 14 of which have been identified by peptide-mass fingerprinting. The expression of eight cellular proteins was repressed by luxS and smcR mutation: Zn-dependent protease, 6-phosophofructokinase, periplasmic ABC-type Fe3(+) transport system, deoxyribose-phosphate aldolase, phosphomannomutase, orotidine-5'-phosphate decarboxylase, uridylate kinase, and an unidentified protein. These proteins are involved in virulence, adaptation to environmental stress, biosynthesis of LPS, and cell multiplication. Phage shock protein A, a chemotaxis signal transduction protein, and an uncharacterized low-complexity protein were activated in the cellular components of the luxS-smcR mutant. However, only three proteins, of unknown function, were identified in the extracellular components of the mutants. Analysis of transcriptomes with DDRT-PCR showed that two genes, phosphoribosylformylglycinamidine synthase and ATP-dependent protease HslVU protease were regulated at the transcriptional level by luxS and smcR gene mutation. The results from this study show conclusively that luxS/smcR quorum sensing endows a global change in gene expression to V. vulnificus.
Collapse
Affiliation(s)
- Na-Ri Shin
- Department of Infectious Diseases, BK21 for Veterinary Science and KRF Zoonotic Priority Research Institute, College of Veterinary Medicine, Seoul National University, Korea
| | | | | |
Collapse
|
32
|
Ruvolo MV, Mach KE, Burkholder WF. Proteolysis of the replication checkpoint protein Sda is necessary for the efficient initiation of sporulation after transient replication stress in Bacillus subtilis. Mol Microbiol 2006; 60:1490-508. [PMID: 16796683 DOI: 10.1111/j.1365-2958.2006.05167.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cells of Bacillus subtilis actively co-ordinate the initiation of sporulation with DNA replication and repair. Conditions that perturb replication initiation or replication elongation induce expression of a small protein, Sda, that specifically inhibits the histidine kinases required to initiate spore development. Previously, the role of Sda has been studied during chronic blocks to DNA replication. Here we show that induction of Sda is required to delay the initiation of sporulation when replication elongation is transiently blocked or after UV irradiation. During the recovery phase, cells efficiently sporulated, but this required the proteolysis of Sda. The rapid proteolysis of Sda required the ClpXP protease and the uncharged C-terminal sequence of Sda. Replacing the last two residues of Sda, both serines, with aspartic acids markedly stabilized Sda. Strains expressing sdaDD from the endogenous sda locus were unable to efficiently initiate sporulation after transient replication stress. We conclude that the Sda replication checkpoint is required to delay the initiation of sporulation when DNA replication is transiently perturbed, and that the intrinsic instability of Sda contributes to shutting off the pathway. The Sda checkpoint thus co-ordinates early events of spore development, including the polar cell division, with successful completion of chromosome replication.
Collapse
Affiliation(s)
- Michael V Ruvolo
- Department of Biological Sciences, Stanford University, 371 Serra Mall, Stanford, CA 94305-5020, USA
| | | | | |
Collapse
|
33
|
Munavar H, Zhou Y, Gottesman S. Analysis of the Escherichia coli Alp phenotype: heat shock induction in ssrA mutants. J Bacteriol 2005; 187:4739-51. [PMID: 15995188 PMCID: PMC1169506 DOI: 10.1128/jb.187.14.4739-4751.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major phenotypes of lon mutations, UV sensitivity and overproduction of capsule, are due to the stabilization of two substrates, SulA and RcsA. Inactivation of transfer mRNA (tmRNA) (encoded by ssrA), coupled with a multicopy kanamycin resistance determinant, suppressed both lon phenotypes and restored the rapid degradation of SulA. This novel protease activity was named Alp but was never identified further. We report here the identification, mapping, and characterization of a chromosomal mutation, faa (for function affecting Alp), that leads to full suppression of a Deltalon ssrA::cat host and thus bypasses the requirement for multicopy Kan(r); faa and ssrA mutants are additive in their ability to suppress lon mutants. The faa mutation was mapped to the C terminus of dnaJ(G232); dnaJ null mutants have similar effects. The identification of a lon suppressor in dnaJ suggested the possible involvement of heat shock. We find that ssrA mutants alone significantly induce the heat shock response. The suppression of UV sensitivity, both in the original Alp strain and in faa mutants, is reversed by mutations in clpY, encoding a subunit of the heat shock-induced ClpYQ protease that is known to degrade SulA. However, capsule synthesis is not restored by clpY mutants, probably because less RcsA accumulates in the Alp strain and because the RcsA that does accumulate is inactive. Both ssrA effects are partially relieved by ssrA derivatives encoding protease-resistant tags, implicating ribosome stalling as the primary defect. Thus, ssrA and faa each suppress two lon mutant phenotypes but by somewhat different mechanisms, with heat shock induction playing a major role.
Collapse
Affiliation(s)
- Hussain Munavar
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | | | | |
Collapse
|
34
|
Groll M, Bochtler M, Brandstetter H, Clausen T, Huber R. Molecular machines for protein degradation. Chembiochem 2005; 6:222-56. [PMID: 15678420 DOI: 10.1002/cbic.200400313] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
One of the most precisely regulated processes in living cells is intracellular protein degradation. The main component of the degradation machinery is the 20S proteasome present in both eukaryotes and prokaryotes. In addition, there exist other proteasome-related protein-degradation machineries, like HslVU in eubacteria. Peptides generated by proteasomes and related systems can be used by the cell, for example, for antigen presentation. However, most of the peptides must be degraded to single amino acids, which are further used in cell metabolism and for the synthesis of new proteins. Tricorn protease and its interacting factors are working downstream of the proteasome and process the peptides into amino acids. Here, we summarise the current state of knowledge about protein-degradation systems, focusing in particular on the proteasome, HslVU, Tricorn protease and its interacting factors and DegP. The structural information about these protein complexes opens new possibilities for identifying, characterising and elucidating the mode of action of natural and synthetic inhibitors, which affects their function. Some of these compounds may find therapeutic applications in contemporary medicine.
Collapse
Affiliation(s)
- Michael Groll
- Adolf-Butenandt-Institut Physiological Chemistry, LMU München, Butenandtstrasse 5, Gebäude B, 81377 München, Germany.
| | | | | | | | | |
Collapse
|
35
|
Park E, Rho YM, Koh OJ, Ahn SW, Seong IS, Song JJ, Bang O, Seol JH, Wang J, Eom SH, Chung CH. Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase. J Biol Chem 2005; 280:22892-8. [PMID: 15849200 DOI: 10.1074/jbc.m500035200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HslVU is an ATP-dependent protease consisting of HslU ATPase and HslV peptidase. In an HslVU complex, the central pores of HslU hexamer and HslV dodecamer are aligned and the proteolytic active sites are sequestered in the inner chamber of HslV. Thus, the degradation of natively folded proteins requires unfolding and translocation processes for their access into the proteolytic chamber of HslV. A highly conserved GYVG(93) sequence constitutes the central pore of HslU ATPase. To determine the role of the pore motif on protein unfolding and translocation, we generated various mutations in the motif and examined their effects on the ability of HslU in supporting the proteolytic activity of HslV against three different substrates: SulA as a natively folded protein, casein as an unfolded polypeptide, and a small peptide. Flexibility provided by Gly residues and aromatic ring structures of the 91st amino acid were essential for degradation of SulA. The same structural features of the GYVG motif were highly preferred, although not essential, for degradation of casein. In contrast, none of the features were required for peptide hydrolysis. Mutations in the GYVG motif of HslU also showed marked influence on its ATPase activity, affinity to ADP, and interaction with HslV. These results suggest that the GYVG motif of HslU plays important roles in unfolding of natively folded proteins as well as in translocation of unfolded proteins for degradation by HslV. These results also implicate a role of the pore motif in ATP cleavage and in the assembly of HslVU complex.
Collapse
Affiliation(s)
- Eunyong Park
- NRL of Protein Biochemistry, School of Biological Sciences, Seoul National University, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Azim MK, Goehring W, Song HK, Ramachandran R, Bochtler M, Goettig P. Characterization of the HslU chaperone affinity for HslV protease. Protein Sci 2005; 14:1357-62. [PMID: 15802652 PMCID: PMC2253264 DOI: 10.1110/ps.04970405] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The HslVU complex is a bacterial two-component ATP-dependent protease, consisting of HslU chaperone and HslV peptidase. Investigation of protein-protein interactions using SPR in Escherichia coli HslVU and the protein substrates demonstrates that HslU and HslV have moderate affinity (Kd = 1 microM) for each other. However, the affinity of HslU for HslV fivefold increased (Kd approximately 0.2 microM) after binding with the MBP approximately SulA protein indicating the formation of a "ternary complex" of HslV-HslU-MBP approximately SulA. The molecular interaction studies also revealed that HslU strongly binds to MBP approximately SulA with 10(-9) M affinity but does not associate with nonstructured casein. Conversely, HslV does not interact with the MBP-SulA whereas it strongly binds with casein (Kd = 0.2 microM) requiring an intact active site of HslV. These findings provide evidence for "substrate-induced" stable HslVU complex formation. Presumably, the binding of HslU to MBP approximately SulA stimulates a conformational change in HslU to a high-affinity form for HslV.
Collapse
Affiliation(s)
- M Kamran Azim
- Max-Planck-Institut für Biochemie, Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
37
|
Burton RE, Baker TA, Sauer RT. Nucleotide-dependent substrate recognition by the AAA+ HslUV protease. Nat Struct Mol Biol 2005; 12:245-51. [PMID: 15696175 DOI: 10.1038/nsmb898] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Accepted: 01/11/2005] [Indexed: 11/09/2022]
Abstract
ATP-dependent protein degradation is controlled principally by substrate recognition. The AAA+ HslU ATPase is thought to bind protein substrates, denature them, and translocate the unfolded polypeptide into the HslV peptidase. The lack of well-behaved high-affinity substrates for HslUV (ClpYQ) has hampered understanding of the rules and mechanism of substrate engagement. We show that HslUV efficiently degrades Arc repressor, especially at heat-shock temperatures. Degradation depends on sequences near the N terminus of Arc. Fusion protein and peptide-binding experiments demonstrate that this sequence is a degradation tag that binds directly to HslU. Strong binding of this tag to the enzyme requires ATP and Mg(2+). Furthermore, fusion of this sequence to a protein with marked mechanical stability leads to complete degradation. Thus, these experiments demonstrate that HslUV is a powerful protein unfoldase and that initial substrate engagement by the HslU ATPase must occur after ATP binding.
Collapse
Affiliation(s)
- Randall E Burton
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
38
|
Kuo MS, Chen KP, Wu WF. Regulation of RcsA by the ClpYQ (HslUV) protease in Escherichia coli. MICROBIOLOGY-SGM 2004; 150:437-446. [PMID: 14766922 DOI: 10.1099/mic.0.26446-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Escherichia coli ClpYQ protease and Lon protease possess a redundant function for degradation of SulA, a cell division inhibitor. An experimental cue implied that the capsule synthesis activator RcsA, a known substrate of Lon, is probably a specific substrate for the ClpYQ protease. This paper shows that overexpression of ClpQ and ClpY suppresses the mucoid phenotype of a lon mutant. Since the cpsB (wcaB) gene, involved in capsule synthesis, is activated by RcsA, the reporter construct cpsB-lacZ was used to assay for beta-galactosidase activity and thus follow RcsA stability. The expression of cpsB-lacZ was increased in double mutants of lon in combination with clpQ or/and clpY mutation(s) compared with the wild-type or lon single mutants. Overproduction of ClpYQ or ClpQ decreased cpsB-lacZ expression. Additionally, a P(BAD)-rcsA fusion construct showed quantitatively that an inducible RcsA activates cpsB-lacZ expression. The effect of RcsA on cpsB-lacZ expression was shown to be influenced by the ClpYQ activities. Moreover, a rcsA(Red)-lacZ translational fusion construct showed higher activity of RcsA(Red)-LacZ in a clpQ clpY strain than in the wild-type. By contrast, overproduction of cellular ClpYQ resulted in decreased beta-galactosidase levels of RcsA(Red)-LacZ. Taken together, the data indicate that ClpYQ acts as a secondary protease in degrading the Lon substrate RcsA.
Collapse
Affiliation(s)
- Mei-Shiue Kuo
- Department of Agricultural Chemistry, Bldg 2, R311, National Taiwan University, Taipei (106), Taiwan, ROC
| | - Kuei-Peng Chen
- Department of Agricultural Chemistry, Bldg 2, R311, National Taiwan University, Taipei (106), Taiwan, ROC
| | - Whi Fin Wu
- Department of Agricultural Chemistry, Bldg 2, R311, National Taiwan University, Taipei (106), Taiwan, ROC
| |
Collapse
|
39
|
Kwon AR, Trame CB, McKay DB. Kinetics of protein substrate degradation by HslUV. J Struct Biol 2004; 146:141-7. [PMID: 15037245 DOI: 10.1016/j.jsb.2003.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 10/24/2003] [Indexed: 11/28/2022]
Abstract
The HslUV protease-chaperone complex degrades specific protein substrates in an ATP-dependent reaction. Current models propose that the HslU chaperone, a AAA protein of the Clp/Hsp100 family, binds and unfolds substrates and translocates the polypeptide into the catalytic cavity of the HslV protease. These processes are being characterized using substrates that are targeted to HslUV with a carboxy-terminal fusion of the natural substrate SulA or the carboxy-terminal 11 amino acid residues thereof. In a tandem fusion of green fluorescent protein with SulA, HslUV degrades the SulA moiety but not green fluorescent protein. Wild type and mutant Arc repressor variants are degraded; over a range of substrate stabilities, the specific rate of degradation and its dependence on substrate stability is similar to that of ClpXP. For a hyperstable Arc variant having an intermolecular disulfide bond, the rate of degradation by HslUV is an order of magnitude slower than by ClpXP. Similarity in degradation rates for a subset of substrates by HslUV and ClpXP suggests a similarity in mechanism of the apparent rate-limiting steps of unfolding and translocation by the chaperone components HslU and ClpX. The fall-off in degradation by HslUV for the more stable substrates that are degraded by ClpXP is consistent with the two systems acting on different spectra of biological substrates.
Collapse
Affiliation(s)
- Ae-Ran Kwon
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
40
|
Song HK, Bochtler M, Azim MK, Hartmann C, Huber R, Ramachandran R. Isolation and characterization of the prokaryotic proteasome homolog HslVU (ClpQY) from Thermotoga maritima and the crystal structure of HslV. Biophys Chem 2003; 100:437-52. [PMID: 12646382 DOI: 10.1016/s0301-4622(02)00297-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heat-shock locus VU (HslVU) is an ATP-dependent proteolytic system and a prokaryotic homolog of the proteasome. It consists of HslV, the protease, and HslU, the ATPase and chaperone. We have cloned, sequenced and expressed both protein components from the hyperthermophile Thermotoga maritima. T. maritima HslU hydrolyzes a variety of nucleotides in a temperature-dependent manner, with the optimum lying between 75 and 80 degrees C. It is also nucleotide-unspecific for activation of HslV against amidolytic and caseinolytic activity. The Escherichia coli and T. maritima HslU proteins mutually stimulate HslV proteins from both sources, suggesting a conserved activation mechanism. The crystal structure of T. maritima HslV was determined and refined to 2.1-A resolution. The structure of the dodecameric enzyme is well conserved compared to those from E. coli and Haemophilus influenzae. A comparison of known HslV structures confirms the presence of a cation-binding site, although its exact role in the proteolytic mechanism of HslV remains unclear. Amongst factors responsible for the thermostability of T. maritima HslV, extensive ionic interactions/salt-bridge networks, which occur specifically in the T. maritima enzyme in comparison to its mesophilic counterparts, seem to play an important role.
Collapse
Affiliation(s)
- Hyun Kyu Song
- Abteilung Strukturforschung, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D-82152 Planegg-Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Nishii W, Takahashi K. Determination of the cleavage sites in SulA, a cell division inhibitor, by the ATP-dependent HslVU protease fromEscherichia coli. FEBS Lett 2003; 553:351-4. [PMID: 14572649 DOI: 10.1016/s0014-5793(03)01044-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
HslVU is an ATP-dependent protease from Escherichia coli and known to degrade SulA, a cell division inhibitor, both in vivo and in vitro, like the ATP-dependent protease Lon. In this study, the cleavage specificity of HslVU toward SulA was investigated. The enzyme was shown to produce 58 peptides with various sizes (3-31 residues), not following the 'molecular ruler' model. Cleavage occurred at 39 peptide bonds preferentially after Leu in an ATP-dependent manner and in a processive fashion. Interestingly, the central and C-terminal regions of SulA, which are known to be important for the function of SulA, such as inhibition of cell division and molecular interaction with certain other proteins, were shown to be preferentially cleaved by HslVU, as well as by Lon, despite the fact that the peptide bond specificities of the two enzymes were distinct from each other.
Collapse
Affiliation(s)
- Wataru Nishii
- School of Life Science, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, 192-0392 Tokyo, Japan
| | | |
Collapse
|
42
|
Abstract
BACKGROUND Heat Shock Protein (HSP) has been regarded as a pathogenic factor in Helicobacter pylori infection. Heat Shock Protein 20 (HSP20) of H. pylori is identified as Hs1V based on open reading frame predication of genome sequences. It is a homologue of HslV of E. coli, a peptidase involved in protein degradation. METHODS The HSP20 gene was cloned and inserted into pET16b fused with His-tag. Recombinant HSP20 protein (rHSP20) was expressed and purified by nickel column. Rabbit anti-rHSP20 was purified by Protein A affinity chromatography and used as a probe to localize HSP20 in H. pylori by immuno-gold labeling and Western blotting. rHSP20 was also used as antigen to test for antibody against HSP20 in patients with H. pylori infection by enzyme-linked immunosorbant assay. RESULTS Immuno-gold labeled transmission electron microscopy shows that HSP20 is located on the cell surface of H. pylori. Western blotting of 2-D gel shows that HSP20 has a pI of approximately 5.5 and a molecular weight of approximately 18 kDa. The ELISA result shows that there is no significant difference in antibody titre against rHSP20 in all sera tested. CONCLUSION The presence of IgG to rHSP20 may imply an earlier exposure of the patients and normal subjects to H. pylori. However, the mechanism has not been established. HSP20 has been shown to localize on the surface of H. pylori. Surface localization of H. pylori HSP20 may provide the path to a better understanding of the role and function of HSP20 in bacteria-host interaction.
Collapse
Affiliation(s)
- Rui Juan Du
- Department of Microbiology, National University of Singapore, 5 Science Drive 2, Singapore 117597
| | | |
Collapse
|
43
|
Kwon AR, Kessler BM, Overkleeft HS, McKay DB. Structure and reactivity of an asymmetric complex between HslV and I-domain deleted HslU, a prokaryotic homolog of the eukaryotic proteasome. J Mol Biol 2003; 330:185-95. [PMID: 12823960 DOI: 10.1016/s0022-2836(03)00580-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the prokaryotic homolog of the eukaryotic proteasome, HslUV, the "double donut" HslV protease is allosterically activated by HslU, an AAA protein of the Clp/Hsp100 family consisting of three (amino-terminal, carboxy-terminal, and intermediate) domains. The intermediate domains of HslU, which extend like tentacles from the hexameric ring formed by the amino-terminal and carboxy-terminal domains, have been deleted; an asymmetric HslU(DeltaI)(6)HslV(12) complex has been crystallized; and the structure has been solved to 2.5A resolution, revealing an assembly in which a HslU(DeltaI) hexamer binds one end of the HslV dodecamer. The conformation of the protomers of the HslU(DeltaI)-complexed HslV hexamer is similar to that in the symmetric wild-type HslUV complex, while the protomer conformation of the uncomplexed HslV hexamer is similar to that of HslV alone. Reaction in the crystals with a vinyl sulfone inhibitor reveals that the HslU(DeltaI)-complexed HslV hexamer is active, while the uncomplexed HslV hexamer is inactive. These results confirm that HslV can be activated by binding of a hexameric HslU(DeltaI)(6) ring lacking the I domains, that activation is effected through a conformational change in HslV rather than through alteration of the size of the entry channel into the protease catalytic cavity, and that the two HslV(6) rings in the protease dodecamer are activated independently rather than cooperatively.
Collapse
Affiliation(s)
- Ae-Ran Kwon
- Department of Structural Biology, Stanford University School of Medicine, Sherman Fairchild Building, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
44
|
Kang MS, Kim SR, Kwack P, Lim BK, Ahn SW, Rho YM, Seong IS, Park SC, Eom SH, Cheong GW, Chung CH. Molecular architecture of the ATP-dependent CodWX protease having an N-terminal serine active site. EMBO J 2003; 22:2893-902. [PMID: 12805205 PMCID: PMC162141 DOI: 10.1093/emboj/cdg289] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CodWX in Bacillus subtilis is an ATP-dependent, N-terminal serine protease, consisting of CodW peptidase and CodX ATPase. Here we show that CodWX is an alkaline protease and has a distinct molecular architecture. ATP hydrolysis is required for the formation of the CodWX complex and thus for its proteolytic function. Remarkably, CodX has a 'spool-like' structure that is formed by interaction of the intermediate domains of two hexameric or heptameric rings. In the CodWX complex, CodW consisting of two stacked hexameric rings (WW) binds to either or both ends of a CodX double ring (XX), forming asymmetric (WWXX) or symmetric cylindrical particles (WWXXWW). CodWX can also form an elongated particle, in which an additional CodX double ring is bound to the symmetric particle (WWXXWWXX). In addition, CodWX is capable of degrading EzrA, an inhibitor of FtsZ ring formation, implicating it in the regulation of cell division. Thus, CodWX appears to constitute a new type of protease that is distinct from other ATP-dependent proteases in its structure and proteolytic mechanism.
Collapse
Affiliation(s)
- Min Suk Kang
- NRL of Protein Biochemistry, School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lee YY, Chang CF, Kuo CL, Chen MC, Yu CH, Lin PI, Wu WF. Subunit oligomerization and substrate recognition of the Escherichia coli ClpYQ (HslUV) protease implicated by in vivo protein-protein interactions in the yeast two-hybrid system. J Bacteriol 2003; 185:2393-401. [PMID: 12670962 PMCID: PMC152601 DOI: 10.1128/jb.185.8.2393-2401.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli ClpYQ (HslUV) is an ATP-dependent protease that consists of an ATPase large subunit with homology to other Clp family ATPases and a peptidase small subunit related to the proteasomal beta-subunits of eukaryotes. Six identical subunits of both ClpY and ClpQ self-assemble into an oligomeric ring, and two rings of each subunit, two ClpQ rings surrounded by single ClpY rings, form a dumbbell shape complex. The ClpYQ protease degrades the cell division inhibitor, SulA, and a positive regulator of capsule transcription, RcsA, as well as RpoH, a heat shock sigma transcription factor. Using the yeast-two hybrid system, we explored the in vivo protein-protein interactions of the individual subunits of the ClpYQ protease involved in self-oligomerization, as well as in recognition of specific substrates. Interactions were detected with ClpQ/ClpQ, ClpQ/ClpY, and ClpY/SulA. No interactions were observed in experiments with ClpY/ClpY, ClpQ/RcsA, and ClpQ/SulA. However, ClpY, lacking domain I (ClpY(Delta I)) was able to interact with itself and with intact ClpY. The C-terminal region of ClpY is important for interaction with other ClpY subunits. The previously defined PDZ-like domains at the C terminus of ClpY, including both D1 and D2, were determined to be indispensable for substrate binding. Various deletion and random point mutants of SulA were also made to verify significant interactions with ClpY. Thus, we demonstrated in vivo hetero- and homointeractions of ClpQ and ClpY molecules, as well as a direct association between ClpY and substrate SulA, thereby supporting previous in vitro biochemical findings.
Collapse
Affiliation(s)
- Yi-Ying Lee
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | | | | | |
Collapse
|
46
|
Couvreur B, Wattiez R, Bollen A, Falmagne P, Le Ray D, Dujardin JC. Eubacterial HslV and HslU subunits homologs in primordial eukaryotes. Mol Biol Evol 2002; 19:2110-7. [PMID: 12446803 DOI: 10.1093/oxfordjournals.molbev.a004036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
ATP-dependent protease complexes are present in all three kingdoms of life, where they rid the cell of misfolded or damaged proteins and control the level of certain regulatory proteins. They include the proteasome in Eukaryotes, Archea, and Actinomycetales and the HslVU (ClpQY) complex in other eubacteria. We showed that genes homologous to eubacterial HslV (ClpQ) and HslU (ClpY) are present in the genome of trypanosomatid protozoa and are expressed. The features of the cDNAs indicated that bona fide trypanosomatid messengers had been cloned and ruled out bacterial contamination as the source of the material. The N-terminal microsequence of HslV from Leishmania infantum (Protozoa: Kinetoplastida) permitted the identification of the propeptide cleavage site and indicated that an active protease is present. High similarities (> or =57.5%) with the prototypical HslV and HslU from Escherichia coli and conservation of residues essential for biochemical activity suggested that a functional HslVU complex is present in trypanosomatid protozoa. The structure of the N-termini of HslV and HslU further suggested mitochondrial localization. Phylogenetic analysis indicated that HslV and HslU from trypanosomatids clustered with eubacterial homologs but did not point to any particular bacterial lineage. Because typical eukaryotic 20S proteasomes are present in trypanosomatids, we concluded that the eubacterial HslVU and the eukaryotic multicatalytic protease are simultaneously present in these organisms. To our knowledge this is the first report of a eubacterial HslVU complex in eukaryotes and, consequently, of the simultaneous occurrence of both a proteasome and HslVU in living cells.
Collapse
Affiliation(s)
- Bernard Couvreur
- Laboratory for Protozoology, Prince Leopold Institute for Tropical Medicine, Antwerp, Belgium.
| | | | | | | | | | | |
Collapse
|
47
|
Seong IS, Kang MS, Choi MK, Lee JW, Koh OJ, Wang J, Eom SH, Chung CH. The C-terminal tails of HslU ATPase act as a molecular switch for activation of HslV peptidase. J Biol Chem 2002; 277:25976-82. [PMID: 12011053 DOI: 10.1074/jbc.m202793200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial HslVU ATP-dependent protease is a homolog of the eukaryotic 26 S proteasome. HslU ATPase forms a hexameric ring, and HslV peptidase is a dodecamer consisting of two stacked hexameric rings. In HslVU complex, the HslU and HslV central pores are aligned, and the proteolytic active sites are sequestered in an internal chamber of HslV, with access to this chamber restricted to small axial pores. Here we show that the C-terminal tails of HslU play a critical role in the interaction with and activation of HslV peptidase. A synthetic tail peptide of 10 amino acids could replace HslU in supporting the HslV-mediated hydrolysis of unfolded polypeptide substrates such as alpha-casein, as well as of small peptides, suggesting that the HslU C terminus is involved in the opening of the HslV pore for substrate entry. Moreover, deletion of 7 amino acids from the C terminus prevented the ability of HslU to form an HslVU complex with HslV. In addition, deletion of the C-terminal 10 residues prevented the formation of an HslU hexamer, indicating that the C terminus is required for HslU oligomerization. These results suggest that the HslU C-terminal tails act as a molecular switch for the assembly of HslVU complex and the activation of HslV peptidase.
Collapse
Affiliation(s)
- Ihn Sik Seong
- National Research Laboratory of Protein Biochemistry, School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Khan MA, Isaacson RE. Identification of Escherichia coli genes that are specifically expressed in a murine model of septicemic infection. Infect Immun 2002; 70:3404-12. [PMID: 12065479 PMCID: PMC128117 DOI: 10.1128/iai.70.7.3404-3412.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Identification and characterization of bacterial genes that are induced during the disease process are important in understanding the molecular mechanism of disease and can be useful in designing antimicrobial drugs to control the disease. The identification of in vivo induced (ivi) genes of an Escherichia coli septicemia strain by using antibiotic-based in vivo expression technology is described. Bacterial clones resistant to chloramphenicol in vivo were recovered from the livers of infected mice. Most of the ivi clones were sensitive to chloramphenicol when grown in vitro. Using reverse transcription-PCR, it was demonstrated that selected ivi clones expressed cat in the livers of infected mice but not during in vitro growth. A total of 750 colonies were recovered after three successive rounds of in vivo selection, and 168 isolated ivi clones were sequenced. The sequence analysis revealed that 37 clones encoded hypothetical proteins found in E. coli K-12, whereas 10 clones contained genes that had no significant homology to DNA sequences in GenBank. Two clones were found to contain transposon-related functions. Other clones contained genes required for amino acid metabolism, anaerobic respiration, DNA repair, the heat shock response, and the cellular repressor of the SOS response. In addition, one clone contained the aerobactin biosynthesis gene iucA. Mutations were introduced in to seven of the identified ivi genes. An in vivo mouse challenge-competition assay was used to determine if the mutants were attenuated. The results suggested that these ivi genes were important for survival in vivo, and three of the seven mutant ivi clones were required for successful infection of mice.
Collapse
Affiliation(s)
- Muhammad A Khan
- Department of Veterinary Pathobiology, University of Illinois, Urbana, Illinois 61802, USA.
| | | |
Collapse
|
49
|
Ramachandran R, Hartmann C, Song HK, Huber R, Bochtler M. Functional interactions of HslV (ClpQ) with the ATPase HslU (ClpY). Proc Natl Acad Sci U S A 2002; 99:7396-401. [PMID: 12032294 PMCID: PMC124242 DOI: 10.1073/pnas.102188799] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2002] [Indexed: 11/18/2022] Open
Abstract
HslVU is a bacterial homolog of the proteasome, where HslV is the protease that is activated by HslU, an ATPase and chaperone. Structures of singly and doubly capped HslVU particles have been reported, and different binding modes have been observed. Even among HslVU structures with I-domains distal to HslV, no consensus mode of activation has emerged. A feature in the Haemophilus influenzae HslVU structure, insertion of the C termini of HslU into pockets in HslV, was not seen in all other structures of the enzyme. Here we report site-directed mutagenesis, peptide activation, and fluorescence experiments that strongly support the functional relevance of the C terminus insertion mechanism: we find that mutations in HslV that disrupt the interaction with the C termini of HslU invariably lead to inactive enzyme. Conversely, synthetic peptides derived from the C terminus of HslU bind to HslV with 10(-5) M affinity and can functionally replace full HslU particles for both peptide and casein degradation but fail to support degradation of a folded substrate. Thus, the data can be taken as evidence for separate substrate unfoldase and protease stimulation activities in HslU. Enhanced HslV proteolysis could be due to the opening of a gated channel or allosteric activation of the active sites. To distinguish between these possibilities, we have mutated a series of residues that line the entrance channel into the HslV particle. Our mutational and fluorescence experiments demonstrate that allosteric activation of the catalytic sites is required in HslV, but they do not exclude the possibility of channel opening taking place as well. The present data support the conclusion that the H. influenzae structure with I-domains distal to HslV captures the active species and point to significant differences in the activation mechanism of HslV, ClpP, and the proteasome.
Collapse
Affiliation(s)
- Ravishankar Ramachandran
- Abteilung Strukturforschung, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D-82152 Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
50
|
Ishii Y, Amano F. Regulation of SulA cleavage by Lon protease by the C-terminal amino acid of SulA, histidine. Biochem J 2001; 358:473-80. [PMID: 11513747 PMCID: PMC1222081 DOI: 10.1042/0264-6021:3580473] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
SulA protein, a cell division inhibitor in Escherichia coli, is degraded by Lon protease. The C-terminal eight residues of SulA have been shown to be recognized by Lon; however, it remains to be elucidated which amino acid in the C-terminus of SulA is critical for the recognition of SulA by Lon. To clarify this point, we constructed mutants of SulA with changes in the C-terminal residues, and examined the accumulation and stability of the resulting mutant SulA proteins in vivo. Substitution of the extreme C-terminal histidine residue with another amino acid led to marked accumulation and high stability of SulA in lon(+) cells. A SulA mutant in which the C-terminal eight residues were deleted (SulAC161) showed high accumulation and stability, but the addition of histidine to the C-terminus of SulAC161 (SulAC161+H) made it labile. Similarly, SulAC161+H fused to maltose-binding protein (MBP-SulAC161+H) formed a tight complex with and was degraded rapidly by Lon in vitro. Histidine competitively inhibited the degradation of MBP-SulA by Lon, while other amino acids did not. These results suggest that the histidine residue at the extreme C-terminus of SulA is recognized specifically by Lon, leading to a high-affinity interaction between SulA and Lon.
Collapse
Affiliation(s)
- Y Ishii
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | |
Collapse
|