1
|
Banerjee S, Kane PM. Regulation of V-ATPase Activity and Organelle pH by Phosphatidylinositol Phosphate Lipids. Front Cell Dev Biol 2020; 8:510. [PMID: 32656214 PMCID: PMC7324685 DOI: 10.3389/fcell.2020.00510] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Luminal pH and the distinctive distribution of phosphatidylinositol phosphate (PIP) lipids are central identifying features of organelles in all eukaryotic cells that are also critical for organelle function. V-ATPases are conserved proton pumps that populate and acidify multiple organelles of the secretory and the endocytic pathway. Complete loss of V-ATPase activity causes embryonic lethality in higher animals and conditional lethality in yeast, while partial loss of V-ATPase function is associated with multiple disease states. On the other hand, many cancer cells increase their virulence by upregulating V-ATPase expression and activity. The pH of individual organelles is tightly controlled and essential for function, but the mechanisms for compartment-specific pH regulation are not completely understood. There is substantial evidence indicating that the PIP content of membranes influences organelle pH. We present recent evidence that PIPs interact directly with subunit isoforms of the V-ATPase to dictate localization of V-ATPase subpopulations and participate in their regulation. In yeast cells, which have only one set of organelle-specific V-ATPase subunit isoforms, the Golgi-enriched lipid PI(4)P binds to the cytosolic domain of the Golgi-enriched a-subunit isoform Stv1, and loss of PI(4)P binding results in mislocalization of Stv1-containing V-ATPases from the Golgi to the vacuole/lysosome. In contrast, levels of the vacuole/lysosome-enriched signaling lipid PI(3,5)P2 affect assembly and activity of V-ATPases containing the Vph1 a-subunit isoform. Mutations in the Vph1 isoform that disrupt the lipid interaction increase sensitivity to stress. These studies have decoded “zip codes” for PIP lipids in the cytosolic N-terminal domain of the a-subunit isoforms of the yeast V-ATPase, and similar interactions between PIP lipids and the V-ATPase subunit isoforms are emerging in higher eukaryotes. In addition to direct effects on the V-ATPase, PIP lipids are also likely to affect organelle pH indirectly, through interactions with other membrane transporters. We discuss direct and indirect effects of PIP lipids on organelle pH, and the functional consequences of the interplay between PIP lipid content and organelle pH.
Collapse
Affiliation(s)
- Subhrajit Banerjee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
2
|
Dykes SS, Steffan JJ, Cardelli JA. Lysosome trafficking is necessary for EGF-driven invasion and is regulated by p38 MAPK and Na+/H+ exchangers. BMC Cancer 2017; 17:672. [PMID: 28978320 PMCID: PMC5628462 DOI: 10.1186/s12885-017-3660-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/27/2017] [Indexed: 12/27/2022] Open
Abstract
Background Tumor invasion through a basement membrane is one of the earliest steps in metastasis, and growth factors, such as Epidermal Growth Factor (EGF) and Hepatocyte Growth Factor (HGF), stimulate this process in a majority of solid tumors. Basement membrane breakdown is one of the hallmarks of invasion; therefore, tumor cells secrete a variety of proteases to aid in this process, including lysosomal proteases. Previous studies demonstrated that peripheral lysosome distribution coincides with the release of lysosomal cathepsins. Methods Immunofluorescence microscopy, western blot, and 2D and 3D cell culture techniques were performed to evaluate the effects of EGF on lysosome trafficking and cell motility and invasion. Results EGF-mediated lysosome trafficking, protease secretion, and invasion is regulated by the activity of p38 mitogen activated protein kinase (MAPK) and sodium hydrogen exchangers (NHEs). Interestingly, EGF stimulates anterograde lysosome trafficking through a different mechanism than previously reported for HGF, suggesting that there are redundant signaling pathways that control lysosome positioning and trafficking in tumor cells. Conclusions These data suggest that EGF stimulation induces peripheral (anterograde) lysosome trafficking, which is critical for EGF-mediated invasion and protease release, through the activation of p38 MAPK and NHEs. Taken together, this report demonstrates that anterograde lysosome trafficking is necessary for EGF-mediated tumor invasion and begins to characterize the molecular mechanisms required for EGF-stimulated lysosome trafficking. Electronic supplementary material The online version of this article (10.1186/s12885-017-3660-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samantha S Dykes
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71130, USA.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center- Shreveport, Shreveport, LA, 71130, USA.,Present Address: Department of Radiation Oncology, University of Florida, Gainesville, FL, 32608, USA
| | - Joshua J Steffan
- Department of Natural Sciences, Dickinson State University, 291 Campus Dr, Dickinson, ND, 58601, USA.
| | - James A Cardelli
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71130, USA.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center- Shreveport, Shreveport, LA, 71130, USA
| |
Collapse
|
3
|
Tsutsui Y, Johnson JM, Demeler B, Kinter MT, Hays FA. Conformation-Dependent Human p52Shc Phosphorylation by Human c-Src. Biochemistry 2015; 54:3469-82. [PMID: 25961473 DOI: 10.1021/acs.biochem.5b00122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Phosphorylation of the human p52Shc adaptor protein is a key determinant in modulating signaling complex assembly in response to tyrosine kinase signaling cascade activation. The underlying mechanisms that govern p52Shc phosphorylation status are unknown. In this study, p52Shc phosphorylation by human c-Src was investigated using purified proteins to define mechanisms that affect the p52Shc phosphorylation state. We conducted biophysical characterizations of both human p52Shc and human c-Src in solution as well as membrane-mimetic environments using the acidic lipid phosphatidylinositol 4-phosphate or a novel amphipathic detergent (2,2-dihexylpropane-1,3-bis-β-D-glucopyranoside). We then identified p52Shc phosphorylation sites under various solution conditions, and the amount of phosphorylation at each identified site was quantified using mass spectrometry. These data demonstrate that the p52Shc phosphorylation level is altered by the solution environment without affecting the fraction of active c-Src. Mass spectrometry analysis of phosphorylated p52Shc implies functional linkage among phosphorylation sites. This linkage may drive preferential coupling to protein binding partners during signaling complex formation, such as during initial binding interactions with the Grb2 adaptor protein leading to activation of the Ras/MAPK signaling cascade. Remarkably, tyrosine residues involved in Grb2 binding were heavily phosphorylated in a membrane-mimetic environment. The increased phosphorylation level in Grb2 binding residues was also correlated with a decrease in the thermal stability of purified human p52Shc. A schematic for the phosphorylation-dependent interaction between p52Shc and Grb2 is proposed. The results of this study suggest another possible therapeutic strategy for altering protein phosphorylation to regulate signaling cascade activation.
Collapse
Affiliation(s)
- Yuko Tsutsui
- †Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Jennifer M Johnson
- †Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Borries Demeler
- ‡Department of Biochemistry, The University of Texas Health Sciences Center at San Antonio, 7750 Floyd Curl Drive, San Antonio, Texas 78229-3900, United States
| | - Michael T Kinter
- ∥Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Franklin A Hays
- †Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States.,⊥Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States.,∇Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
4
|
Bharde AA, Palankar R, Fritsch C, Klaver A, Kanger JS, Jovin TM, Arndt-Jovin DJ. Magnetic nanoparticles as mediators of ligand-free activation of EGFR signaling. PLoS One 2013; 8:e68879. [PMID: 23894364 PMCID: PMC3720882 DOI: 10.1371/journal.pone.0068879] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 06/03/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Magnetic nanoparticles (NPs) are of particular interest in biomedical research, and have been exploited for molecular separation, gene/drug delivery, magnetic resonance imaging, and hyperthermic cancer therapy. In the case of cultured cells, magnetic manipulation of NPs provides the means for studying processes induced by mechanotransduction or by local clustering of targeted macromolecules, e.g. cell surface receptors. The latter are normally activated by binding of their natural ligands mediating key signaling pathways such as those associated with the epidermal growth factor (EGFR). However, it has been reported that EGFR may be dimerized and activated even in the absence of ligands. The present study assessed whether receptor clustering induced by physical means alone suffices for activating EGFR in quiescent cells. METHODOLOGY/PRINCIPAL FINDINGS The EGFR on A431 cells was specifically targeted by superparamagnetic iron oxide NPs (SPIONs) carrying either a ligand-blocking monoclonal anti-EGFR antibody or a streptavidin molecule for targeting a chimeric EGFR incorporating a biotinylated amino-terminal acyl carrier peptide moiety. Application of a magnetic field led to SPION magnetization and clustering, resulting in activation of the EGFR, a process manifested by auto and transphosphorylation and downstream signaling. The magnetically-induced early signaling events were similar to those inherent to the ligand dependent EGFR pathways. Magnetization studies indicated that the NPs exerted magnetic dipolar forces in the sub-piconewton range with clustering dependent on Brownian motion of the receptor-SPION complex and magnetic field strength. CONCLUSIONS/SIGNIFICANCE We demonstrate that EGFR on the cell surface that have their ligand binding-pocket blocked by an antibody are still capable of transphosphorylation and initiation of signaling cascades if they are clustered by SPIONs either attached locally or targeted to another site of the receptor ectodomain. The results suggest that activation of growth factor receptors may be triggered by ligand-independent molecular crowding resulting from overexpression and/or sequestration in membrane microdomains.
Collapse
Affiliation(s)
- Atul A. Bharde
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Raghavendra Palankar
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Cornelia Fritsch
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Arjen Klaver
- Nanobiophysics, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Johannes S. Kanger
- Nanobiophysics, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Thomas M. Jovin
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Donna J. Arndt-Jovin
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- * E-mail:
| |
Collapse
|
5
|
Kon S, Minegishi N, Tanabe K, Watanabe T, Funaki T, Wong WF, Sakamoto D, Higuchi Y, Kiyonari H, Asano K, Iwakura Y, Fukumoto M, Osato M, Sanada M, Ogawa S, Nakamura T, Satake M. Smap1 deficiency perturbs receptor trafficking and predisposes mice to myelodysplasia. J Clin Invest 2013; 123:1123-37. [PMID: 23434593 DOI: 10.1172/jci63711] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 01/03/2013] [Indexed: 01/07/2023] Open
Abstract
The formation of clathrin-coated vesicles is essential for intracellular membrane trafficking between subcellular compartments and is triggered by the ARF family of small GTPases. We previously identified SMAP1 as an ARF6 GTPase-activating protein that functions in clathrin-dependent endocytosis. Because abnormalities in clathrin-dependent trafficking are often associated with oncogenesis, we targeted Smap1 in mice to examine its physiological and pathological significance. Smap1-deficent mice exhibited healthy growth, but their erythroblasts showed enhanced transferrin endocytosis. In mast cells cultured in SCF, Smap1 deficiency did not affect the internalization of c-KIT but impaired the sorting of internalized c-KIT from multivesicular bodies to lysosomes, resulting in intracellular accumulation of undegraded c-KIT that was accompanied by enhanced activation of ERK and increased cell growth. Interestingly, approximately 50% of aged Smap1-deficient mice developed anemia associated with morphologically dysplastic cells of erythroid-myeloid lineage, which are hematological abnormalities similar to myelodysplastic syndrome (MDS) in humans. Furthermore, some Smap1-deficient mice developed acute myeloid leukemia (AML) of various subtypes. Collectively, to our knowledge these results provide the first evidence in a mouse model that the deregulation of clathrin-dependent membrane trafficking may be involved in the development of MDS and subsequent AML.
Collapse
Affiliation(s)
- Shunsuke Kon
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ramachandran S, Palanisamy V. Horizontal transfer of RNAs: exosomes as mediators of intercellular communication. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:286-93. [PMID: 22012863 DOI: 10.1002/wrna.115] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multicellular organisms are similar to biological communities, consisting of various cell types; thus, inter-cell communication is critical for the functioning of the whole system that ultimately constitutes a living being. Conventional models of cellular exchange include signaling molecules and direct contact-mediated cell communications. Exosomes, small vesicles originating from an inward budding of the plasma membrane, represent a new avenue for signaling between cells. This interchange is achieved by packaging RNA species into exosomes endowed with specific cell surface-targeting motifs. The delivered RNA molecules are functional, and mRNA can be translated into new proteins, while microRNAs (miRNAs) target host mRNAs in the recipient cell. RNA involved in transmitting information or molecules between cells is called exosomal RNA (esRNA). This review summarizes the characteristics of exosomes, specifically focusing on their role in the horizontal transfer of cellular information.
Collapse
Affiliation(s)
- Saraswathi Ramachandran
- Department of Craniofacial Biology, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
7
|
Zhang C, Li A, Zhang X, Xiao H. A novel TIP30 protein complex regulates EGF receptor signaling and endocytic degradation. J Biol Chem 2011; 286:9373-81. [PMID: 21252234 PMCID: PMC3058969 DOI: 10.1074/jbc.m110.207720] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/18/2011] [Indexed: 01/07/2023] Open
Abstract
Activated epidermal growth factor receptor (EGFR) continues to signal in the early endosome, but how this signaling process is regulated is less well understood. Here we describe a protein complex consisting of TIP30, endophilin B1, and acyl-CoA synthetase long chain family member 4 (ACSL4) that interacts with Rab5a and regulates EGFR endocytosis and signaling. These proteins are required for the proper endocytic trafficking of EGF-EGFR. Knockdown of TIP30, ACSL4, endophilin B1, or Rab5a in human liver cancer cells or genetic knock-out of Tip30 in mouse primary hepatocytes results in the trapping of EGF-EGFR complexes in early endosomes, leading to delayed EGFR degradation and prolonged EGFR signaling. Furthermore, we show that Rab5a colocalizes with vacuolar (H(+))-ATPases (V-ATPases) on transport vesicles. The TIP30 complex facilitates trafficking of Rab5a and V-ATPases to EEA1-positive endosomes in response to EGF. Together, these results suggest that this TIP30 complex regulates EGFR endocytosis by facilitating the transport of V-ATPases from trans-Golgi network to early endosomes.
Collapse
Affiliation(s)
- Chengliang Zhang
- From the Department of Biomedical and Integrative Physiology and
- Genetics Program, Michigan State University, East Lansing, Michigan 48824 and
| | - Aimin Li
- From the Department of Biomedical and Integrative Physiology and
- the Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinchun Zhang
- Genetics Program, Michigan State University, East Lansing, Michigan 48824 and
| | - Hua Xiao
- From the Department of Biomedical and Integrative Physiology and
| |
Collapse
|
8
|
Song W, Xuan H, Lin Q. Epidermal growth factor induces changes of interaction between epidermal growth factor receptor and actin in intact cells. Acta Biochim Biophys Sin (Shanghai) 2008. [DOI: 10.1111/j.1745-7270.2008.00447.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
9
|
El Hage T, Decottignies P, Authier F. Endosomal proteolysis of diphtheria toxin without toxin translocation into the cytosol of rat liver in vivo. FEBS J 2008; 275:1708-22. [DOI: 10.1111/j.1742-4658.2008.06326.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
El Hage T, Merlen C, Fabrega S, Authier F. Role of receptor-mediated endocytosis, endosomal acidification and cathepsin D in cholera toxin cytotoxicity. FEBS J 2007; 274:2614-29. [PMID: 17451437 DOI: 10.1111/j.1742-4658.2007.05797.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using the in situ liver model system, we have recently shown that, after cholera toxin binding to hepatic cells, cholera toxin accumulates in a low-density endosomal compartment, and then undergoes endosomal proteolysis by the aspartic acid protease cathepsin-D [Merlen C, Fayol-Messaoudi D, Fabrega S, El Hage T, Servin A, Authier F (2005) FEBS J272, 4385-4397]. Here, we have used a subcellular fractionation approach to address the in vivo compartmentalization and cytotoxic action of cholera toxin in rat liver parenchyma. Following administration of a saturating dose of cholera toxin to rats, rapid endocytosis of both cholera toxin subunits was observed, coincident with massive internalization of both the 45 kDa and 47 kDa Gsalpha proteins. These events coincided with the endosomal recruitment of ADP-ribosylation factor proteins, especially ADP-ribosylation factor-6, with a time course identical to that of toxin and the A subunit of the stimulatory G protein (Gsalpha) translocation. After an initial lag phase of 30 min, these constituents were linked to NAD-dependent ADP-ribosylation of endogenous Gsalpha, with maximum accumulation observed at 30-60 min postinjection. Assessment of the subsequent postendosomal fate of internalized Gsalpha revealed sustained endolysosomal transfer of the two Gsalpha isoforms. Concomitantly, cholera toxin increased in vivo endosome acidification rates driven by the ATP-dependent H(+)-ATPase pump and in vitro vacuolar acidification in hepatoma HepG2 cells. The vacuolar H(+)-ATPase inhibitor bafilomycin and the cathepsin D inhibitor pepstatin A partially inhibited, both in vivo and in vitro, the cAMP response to cholera toxin. This cathepsin D-dependent action of cholera toxin under the control of endosomal acidity was confirmed using cellular systems in which modification of the expression levels of cathepsin D, either by transfection of the cathepsin D gene or small interfering RNA, was followed by parallel changes in the cytotoxic response to cholera toxin. Thus, in hepatic cells, a unique endocytic pathway was revealed following cholera toxin administration, with regulation specificity most probably occurring at the locus of the endosome and implicating endosomal proteases, such as cathepsin D, as well as organelle acidification.
Collapse
Affiliation(s)
- Tatiana El Hage
- INSERM, U756; and Université Paris-Sud, Faculté de Pharmacie, Châtenay, Malabry, France
| | | | | | | |
Collapse
|
11
|
Merlen C, Fabrega S, Desbuquois B, Unson CG, Authier F. Glucagon-mediated internalization of serine-phosphorylated glucagon receptor and Gsalpha in rat liver. FEBS Lett 2006; 580:5697-704. [PMID: 17010343 DOI: 10.1016/j.febslet.2006.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 07/25/2006] [Accepted: 09/12/2006] [Indexed: 10/24/2022]
Abstract
To assess glucagon receptor compartmentalization and signal transduction in liver parenchyma, we have studied the functional relationship between glucagon receptor endocytosis, phosphorylation and coupling to the adenylate cyclase system. Following administration of a saturating dose of glucagon to rats, a rapid internalization of glucagon receptor was observed coincident with its serine phosphorylation both at the plasma membrane and within endosomes. Co-incident with glucagon receptor endocytosis, a massive internalization of both the 45- and 47-kDa Gsalpha proteins was also observed. In contrast, no change in the subcellular distribution of adenylate cyclase or beta-arrestin 1 and 2 was observed. In response to des-His(1)-[Glu(9)]glucagon amide, a glucagon receptor antagonist, the extent and rate of glucagon receptor endocytosis and Gsalpha shift were markedly reduced compared with wild-type glucagon. However, while the glucagon analog exhibited a wild-type affinity for endosomal acidic glucagonase activity and was processed at low pH with similar kinetics and rates, its proteolysis at neutral pH was 3-fold lower. In response to tetraiodoglucagon, a glucagon receptor agonist of enhanced biological potency, glucagon receptor endocytosis and Gsalpha shift were of higher magnitude and of longer duration, and a marked and prolonged activation of adenylate cyclase both at the plasma membrane and in endosomes was observed. The subsequent post-endosomal fate of internalized Gsalpha was evaluated in a cell-free rat liver endosome-lysosome fusion system following glucagon injection. A sustained endo-lysosomal transfer of the two 45- and 47-kDa Gsalpha isoforms was observed. Therefore, these results reveal that within hepatic target cells and consequent to glucagon-mediated internalization of the serine-phosphorylated glucagon receptor and the Gsalpha protein, extended signal transduction may occur in vivo at the locus of the endo-lysosomal apparatus.
Collapse
Affiliation(s)
- Clémence Merlen
- Institut National de la Santé et de la Recherche Médicale Unité 756, Faculté de Pharmacie Paris XI, 92296 Châtenay-Malabry, France
| | | | | | | | | |
Collapse
|
12
|
Tsacoumangos A, Tsacoumango A, Kil SJ, Ma L, Sönnichsen FD, Carlin C. A novel dileucine lysosomal-sorting-signal mediates intracellular EGF-receptor retention independently of protein ubiquitylation. J Cell Sci 2005; 118:3959-71. [PMID: 16105874 DOI: 10.1242/jcs.02527] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
One of the main goals of this study was to understand the relationship between an epidermal growth factor (EGF) receptor dileucine (LL)-motif (679-LL) required for lysosomal sorting and the protein ubiquitin ligase CBL. We show that receptors containing 679-AA (di-alanine) substitutions that are defective for ligand-induced degradation nevertheless bind CBL and undergo reversible protein ubiquitylation similar to wild-type receptors. We also demonstrate that 679-LL but not CBL is required for EGF receptor downregulation by an endosomal membrane protein encoded by human adenoviruses that uncouples internalization from post-endocytic sorting to lysosomes. 679-LL is necessary for endosomal retention as well as degradation by the adenovirus protein, and is also transferable to reporter molecules. Using NMR spectroscopy, we show that peptides with wild-type 679-LL or mutant 679-AA sequences both exhibit alpha-helical structural propensities but that this structure is not stable in water. A similar analysis carried out in hydrophobic media showed that the alpha-helical structure of the wild-type peptide is stabilized by specific interactions mediated by side-chains in both leucine residues. This structure distinguishes 679-LL from other dileucine-based sorting-signals with obligatory amino-terminal acidic residues that are recognized in the form of an extended beta or beta-like conformation. Taken together, these data show that 679-LL is an alpha-helical stabilizing motif that regulates a predominant step during lysosomal sorting, involving intracellular retention under both sub-saturating and saturating conditions.
Collapse
Affiliation(s)
- Amy Tsacoumangos
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | | | | | | | |
Collapse
|
13
|
Authier F, Merlen C, Amessou M, Danielsen GM. Use of high affinity insulin analogues to assess the functional relationships between insulin receptor trafficking, mitogenic signaling and mRNA expression in rat liver. Biochimie 2004; 86:157-66. [PMID: 15134829 DOI: 10.1016/j.biochi.2004.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Accepted: 03/12/2004] [Indexed: 11/21/2022]
Abstract
We have investigated the functional relationships between insulin receptor (IR) trafficking, mitogenic signaling and mRNA expression in rat liver and primary hepatocytes. The low-K(d) insulin analogues [His(A8),His(B4), Glu(B10),His(B27)]-human insulin (-HI) (the H2-analogue), [Asp(B10)]HI and [Glu(A13),Glu(B10)]HI, were studied in liver parenchymal cells and compared with wild-type HI and epidermal growth factor (EGF), a mitogenic inducer. The extent and duration of IR endocytosis were markedly increased in response to the H2-analogue and [Asp(B10)]HI compared to wild-type HI, but similar to HI after [Glu(A13),Glu(B10)]HI administration. Importantly, the insulin analogues induced a higher and more prolonged tyrosine phosphorylation of the IR-beta subunit in endosomes compared to authentic HI. A low cell-free endosome-lysosome transfer of the internalized IR was only observed in response to HI and H2-analogue injection. Concomitant with the low endosome-lysosome transfer of the intact IR-beta subunit, 47 and 50 kDa fragments of the IR-beta subunit accumulated in lysosomal fractions. Neither HI nor the insulin analogues promoted the endosomal recruitment and tyrosine phosphorylation of Shc, whereas EGF accessed the Shc signaling pathway. Moreover, EGF induced a fast and prolonged activation of Raf-1 and MAP-kinase pathways whereas HI and insulin analogues displayed a moderate and transient effect. Finally, treatment of primary rat hepatocytes with HI and the protease-resistant H2-analogue did not affect the total level and relative expression of isotype A and B of IR mRNA regardless of time of exposure. These results suggest a lack of relationship between IR trafficking, endosomal tyrosine phosphorylation and mitogenic signaling in rat liver in vivo.
Collapse
Affiliation(s)
- François Authier
- Faculté de Pharmacie Paris XI, Institut National de la Santé et de la Recherche Médicale U510, 5, rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France.
| | | | | | | |
Collapse
|
14
|
Abstract
A variety of receptors have been analyzed in sufficient detail to identify sorting motifs. Initial studies focused on the identification of sequences in the cytoplasmic tails of the LDL and transferrin receptors that mediated their internalization. These motifs have since been found in the cytoplasmic domains of a wide variety of receptors and provide for numerous sorting functions. This review will outline the early studies on LDL and transferrin receptors and will then focus on two classes of signaling receptors, receptor tyrosine kinases (EGF and the insulin receptors) and heterotrimeric G-protein coupled receptors (beta2-adrenergic receptors). The identification of sorting motifs and proteins that bind these motifs will be discussed. Importantly, the studies identify a variety of potential targets for modulating the sorting and hence activity of these medically important receptors.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Endocytosis/physiology
- ErbB Receptors/metabolism
- ErbB Receptors/physiology
- Humans
- Protein Sorting Signals/physiology
- Receptor, Insulin/metabolism
- Receptor, Insulin/physiology
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/physiology
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/physiology
- Receptors, LDL/metabolism
- Receptors, LDL/physiology
- Receptors, Transferrin/metabolism
- Receptors, Transferrin/physiology
- Signal Transduction
Collapse
Affiliation(s)
- Richard C Kurten
- Department Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72005, USA.
| |
Collapse
|
15
|
Lycett G, Blass C, Louis C. Developmental variation in epidermal growth factor receptor size and localization in the malaria mosquito, Anopheles gambiae. INSECT MOLECULAR BIOLOGY 2001; 10:619-628. [PMID: 11903632 DOI: 10.1046/j.0962-1075.2001.00302.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The AGER gene encoding the epidermal growth factor receptor (EGFR) of the malaria mosquito Anopheles gambiae was cloned and sequenced. It represents a canonical member of this family of tyrosine kinase proteins exhibiting many similarities to orthologues from other species, both on the level of genomic organization and protein structure. The mRNA can be detected throughout development. Western analysis with an antibody raised against the extracellular domain of the mosquito protein suggests developmental variation in protein size and location that may be involved in the function of EGFR in the mosquito.
Collapse
Affiliation(s)
- G Lycett
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Vassilika Vouton, 711 10 Heraklion, Crete, Greece
| | | | | |
Collapse
|
16
|
Navab R, Chevet E, Authier F, Di Guglielmo GM, Bergeron JJ, Brodt P. Inhibition of endosomal insulin-like growth factor-I processing by cysteine proteinase inhibitors blocks receptor-mediated functions. J Biol Chem 2001; 276:13644-9. [PMID: 11278993 DOI: 10.1074/jbc.m100019200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The receptor for the type 1 insulin-like growth factor (IGF-I) has been implicated in cellular transformation and the acquisition of an invasive/metastatic phenotype in various tumors. Following ligand binding, the IGF-I receptor is internalized, and the receptor.ligand complex dissociates as the ligand is degraded by endosomal proteinases. In the present study we show that the inhibition of endosomal IGF-I-degrading enzymes in human breast and murine lung carcinoma cells by the cysteine proteinase inhibitors, E-64 and CA074-methyl ester, profoundly altered receptor trafficking and signaling. In treated cells, intracellular ligand degradation was blocked, and although the receptor and two substrates, Shc and Insulin receptor substrate, were hyperphosphorylated on tyrosine, IGF-I-induced DNA synthesis, anchorage-independent growth, and matrix metalloproteinase synthesis were inhibited. The results suggest that ligand processing by endosomal proteinases is a key step in receptor signaling and function and a potential target for therapy.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Animals
- Blotting, Western
- Cell Membrane/metabolism
- Chromatography, High Pressure Liquid
- Cysteine Proteinase Inhibitors/pharmacology
- DNA/biosynthesis
- Dipeptides/pharmacology
- Dose-Response Relationship, Drug
- Endosomes/enzymology
- Endosomes/metabolism
- Female
- Flow Cytometry
- Humans
- Insulin-Like Growth Factor I/antagonists & inhibitors
- Insulin-Like Growth Factor I/metabolism
- Kinetics
- Leucine/analogs & derivatives
- Leucine/pharmacology
- Ligands
- Liver/metabolism
- Male
- Mice
- Models, Biological
- Neoplasm Metastasis
- Phosphorylation
- Precipitin Tests
- Protein Binding/drug effects
- Proteins/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, IGF Type 1/metabolism
- Shc Signaling Adaptor Proteins
- Signal Transduction
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Time Factors
- Tumor Cells, Cultured
- Tyrosine/metabolism
Collapse
Affiliation(s)
- R Navab
- Department of Surgery, McGill University Health Center, Royal Victoria Hospital, Montreal, Quebec H3A 1A4, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Sato K, Kimoto M, Kakumoto M, Horiuchi D, Iwasaki T, Tokmakov AA, Fukami Y. Adaptor protein Shc undergoes translocation and mediates up-regulation of the tyrosine kinase c-Src in EGF-stimulated A431 cells. Genes Cells 2000; 5:749-64. [PMID: 10971656 DOI: 10.1046/j.1365-2443.2000.00358.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Shc is the adaptor protein that exists in three isoforms, P46, P52 and P66, and acts as a bridge between activated cell surface receptors and downstream signalling molecules which act in extracellular signal-regulated cell events such as cell cycle progression. In our previous studies, Shc was shown to be a substrate of the tyrosine kinase c-Src in vitro and in vivo. RESULTS Using green fluorescent protein-fusion Shc (GFP-Shc), we have shown that following epidermal growth factor (EGF) stimulation of A431 cells, all Shc isoforms were rapidly recruited from the cytoplasm to the plasma membrane (within 5 min) and then redistributed to the cytoplasmic vesicle structures (in the next 10-20 min). Indirect immunofluorescent study demonstrated that all Shc isoforms co-localize with EGF receptor (EGFR) and activated c-Src in both plasma membranes and cytoplasmic vesicle structures. Our previous study has shown that EGF induces the indirect association of EGFR and c-Src and activation of c-Src in A431 cells. An immunoprecipitation study demonstrated that the EGFR-Src association and c-Src activation are augmented in cells expressing GFP-Shc P52 or P66, but not P46. In addition, P52 and P66, but not P46, are in association with EGFR-Src complex. We also found that EGFR and Shc can be dissociated from c-Src by the addition of a synthetic peptide that corresponds to the autophosphorylation site of c-Src. Interestingly, the peptide-induced dissociation of the complex was not affected by the tyrosine phosphorylation state of the peptide. CONCLUSION These results demonstrated a dynamic subcellular movement of Shc in response to EGF, and suggested a hitherto unknown scheme whereby Shc can work not only as a substrate of c-Src but also as a mediator of the EGF-induced activation of c-Src in an isoform-specific manner.
Collapse
Affiliation(s)
- K Sato
- Laboratory of Molecular Biology, Biosignal Research Center, and; Department of Biology, Faculty of Science, Kobe University, Kobe 657-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|