1
|
Billah MM, Ahmed M, Islam MZ, Yamazaki M. Processes and mechanisms underlying burst of giant unilamellar vesicles induced by antimicrobial peptides and compounds. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184330. [PMID: 38679311 DOI: 10.1016/j.bbamem.2024.184330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
To clarify the damage of lipid bilayer region in bacterial cell membrane caused by antimicrobial peptides (AMPs) and antimicrobial compounds (AMCs), their interactions with giant unilamellar vesicles (GUVs) of various lipid compositions have been examined. The findings revealed two main causes for the leakage: nanopore formation in the membrane and burst of GUVs. Although GUV burst has been explained previously based on the carpet model, the supporting evidence is limited. In this review, to better clarify the mechanism of GUV burst by AMPs, AMCs, and other membrane-active peptides, we described current knowledge of the conditions, characteristics, and detailed processes of GUV burst and the changes in the shape of the GUVs during burst. We identified several physical factors that affect GUV burst, such as membrane tension, electrostatic interaction, structural changes of GUV membrane such as membrane folding, and oil in the membrane. We also clarified one of the physical mechanisms underlying the instability of lipid bilayers that are associated with leakage in the carpet model. Based on these results, we propose a mechanism underlying some types of GUV burst induced by these substances: the growth of a nanopore to a micropore, resulting in GUV burst.
Collapse
Affiliation(s)
- Md Masum Billah
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan; Department of Physics, Jashore University and Science and Technology, Jashore 7408, Bangladesh
| | - Marzuk Ahmed
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Md Zahidul Islam
- Nanomaterials Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka 422-8529, Japan
| | - Masahito Yamazaki
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan; Nanomaterials Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka 422-8529, Japan; Department of Physics, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| |
Collapse
|
2
|
Ahmed M, Islam MZ, Billah MM, Yamazaki M. Effect of Phosphatidylethanolamine on Pore Formation Induced by the Antimicrobial Peptide PGLa. J Phys Chem B 2024; 128:2684-2696. [PMID: 38450565 DOI: 10.1021/acs.jpcb.3c08098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Most antimicrobial peptides (AMPs) induce pore formation and a burst of lipid bilayers and plasma membranes. This causes severe leakage of the internal contents and cell death. The AMP PGLa forms nanopores in giant unilamellar vesicles (GUVs) comprising dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylglycerol (DOPG). We here elucidated the effect of the line tension of a prepore rim on PGLa-induced nanopore formation by investigating the interaction of PGLa with single GUVs comprising dioleoylphosphatidylethanolamine (DOPE)/DOPG (6:4) in buffer using the single GUV method. We found that PGLa forms nanopores in the GUV membrane, which evolved into a local burst and burst of GUVs. The rate of pore formation in DOPE/DOPG-GUVs was smaller than that in DOPC/DOPG-GUVs. PGLa is located only in the outer leaflet of a GUV bilayer just before a fluorescent probe AF647 leakage from the inside, indicating that this asymmetric distribution induces nanopore formation. PGLa-induced local burst and burst of GUVs were observed at 10 ms-time resolution. After nanopore formation started, dense particles and small vesicles appeared in the GUVs, followed by a decrease in the GUV diameter. The GUV was finally converted into smaller GUV or lipid membrane aggregates. We discuss the mechanisms of PGLa-induced nanopore formation and its direct evolution to a GUV burst.
Collapse
Affiliation(s)
- Marzuk Ahmed
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Md Zahidul Islam
- Nanomaterials Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka 422-8529, Japan
| | - Md Masum Billah
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Masahito Yamazaki
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
- Nanomaterials Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka 422-8529, Japan
- Department of Physics, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
3
|
Ostrówka M, Duda-Madej A, Pietluch F, Mackiewicz P, Gagat P. Testing Antimicrobial Properties of Human Lactoferrin-Derived Fragments. Int J Mol Sci 2023; 24:10529. [PMID: 37445717 DOI: 10.3390/ijms241310529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Lactoferrin, an iron-binding glycoprotein, plays a significant role in the innate immune system, with antibacterial, antivirial, antifungal, anticancer, antioxidant and immunomodulatory functions reported. It is worth emphasizing that not only the whole protein but also its derived fragments possess antimicrobial peptide (AMP) activity. Using AmpGram, a top-performing AMP classifier, we generated three novel human lactoferrin (hLF) fragments: hLF 397-412, hLF 448-464 and hLF 668-683, predicted with high probability as AMPs. For comparative studies, we included hLF 1-11, previously confirmed to kill some bacteria. With the four peptides, we treated three Gram-negative and three Gram-positive bacterial strains. Our results indicate that none of the three new lactoferrin fragments have antimicrobial properties for the bacteria tested, but hLF 1-11 was lethal against Pseudomonas aeruginosa. The addition of serine protease inhibitors with the hLF fragments did not enhance their activity, except for hLF 1-11 against P. aeruginosa, which MIC dropped from 128 to 64 µg/mL. Furthermore, we investigated the impact of EDTA with/without serine protease inhibitors and the hLF peptides on selected bacteria. We stress the importance of reporting non-AMP sequences for the development of next-generation AMP prediction models, which suffer from the lack of experimentally validated negative dataset for training and benchmarking.
Collapse
Affiliation(s)
- Michał Ostrówka
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| | - Filip Pietluch
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
| | - Paweł Mackiewicz
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
| | - Przemysław Gagat
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
| |
Collapse
|
4
|
Ohradanova-Repic A, Praženicová R, Gebetsberger L, Moskalets T, Skrabana R, Cehlar O, Tajti G, Stockinger H, Leksa V. Time to Kill and Time to Heal: The Multifaceted Role of Lactoferrin and Lactoferricin in Host Defense. Pharmaceutics 2023; 15:1056. [PMID: 37111542 PMCID: PMC10146187 DOI: 10.3390/pharmaceutics15041056] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Lactoferrin is an iron-binding glycoprotein present in most human exocrine fluids, particularly breast milk. Lactoferrin is also released from neutrophil granules, and its concentration increases rapidly at the site of inflammation. Immune cells of both the innate and the adaptive immune system express receptors for lactoferrin to modulate their functions in response to it. On the basis of these interactions, lactoferrin plays many roles in host defense, ranging from augmenting or calming inflammatory pathways to direct killing of pathogens. Complex biological activities of lactoferrin are determined by its ability to sequester iron and by its highly basic N-terminus, via which lactoferrin binds to a plethora of negatively charged surfaces of microorganisms and viruses, as well as to mammalian cells, both normal and cancerous. Proteolytic cleavage of lactoferrin in the digestive tract generates smaller peptides, such as N-terminally derived lactoferricin. Lactoferricin shares some of the properties of lactoferrin, but also exhibits unique characteristics and functions. In this review, we discuss the structure, functions, and potential therapeutic uses of lactoferrin, lactoferricin, and other lactoferrin-derived bioactive peptides in treating various infections and inflammatory conditions. Furthermore, we summarize clinical trials examining the effect of lactoferrin supplementation in disease treatment, with a special focus on its potential use in treating COVID-19.
Collapse
Affiliation(s)
- Anna Ohradanova-Repic
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Romana Praženicová
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Laura Gebetsberger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tetiana Moskalets
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Rostislav Skrabana
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Ondrej Cehlar
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Gabor Tajti
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Vladimir Leksa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| |
Collapse
|
5
|
Billah MM, Or Rashid MM, Ahmed M, Yamazaki M. Antimicrobial peptide magainin 2-induced rupture of single giant unilamellar vesicles comprising E. coli polar lipids. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184112. [PMID: 36567034 DOI: 10.1016/j.bbamem.2022.184112] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Most antimicrobial peptides (AMPs) damage the cell membrane of bacterial cells and induce rapid leakage of the internal cell contents, which is a main cause of their bactericidal activity. One of the AMPs, magainin 2 (Mag), forms nanopores in giant unilamellar vesicles (GUVs) comprising phosphatidylcholine (PC) and phosphatidylglycerol (PG), inducing leakage of fluorescent probes. In this study, to elucidate the Mag-induced pore formation in lipid bilayer region in E. coli cell membrane, we examined the interaction of Mag with single GUVs comprising E. coli polar lipids (E. coli-lipid-GUVs). First, we investigated the Mag-induced leakage of a fluorescent probe AF488 from single E. coli-lipid-GUVs, and found that Mag caused rupture of GUVs, inducing rapid AF488 leakage. The rate constant of Mag-induced GUV rupture increased with the Mag concentration. Using fluorescence microscopy with a time resolution of 5 ms, we revealed the GUV rupture process: first, a small micropore was observed in the GUV membrane, then the pore radius increased within 50 ms without changing the GUV diameter, the thickness of the membrane at the pore rim concomitantly increased, and eventually membrane aggregates were formed. Mag bound to only the outer monolayer of the GUV before GUV rupture, which increased the area of the GUV bilayer. We also examined the physical properties of E. coli-lipid-GUVs themselves. We found that the rate constant of the constant tension-induced rupture of E. coli-lipid-GUVs was higher than that of PG/PC-GUVs. Based on these results, we discussed the Mag-induced rupture of E. coli-lipid-GUVs and its mechanism.
Collapse
Affiliation(s)
- Md Masum Billah
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Md Mamun Or Rashid
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Marzuk Ahmed
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Masahito Yamazaki
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan; Nanomaterials Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka 422-8529, Japan; Department of Physics, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| |
Collapse
|
6
|
Billah MM, Saha SK, Or Rashid MM, Hossain F, Yamazaki M. Effect of Osmotic Pressure on Pore Formation in Lipid bilayers by the Antimicrobial Peptide Magainin 2. Phys Chem Chem Phys 2022; 24:6716-6731. [DOI: 10.1039/d1cp05764b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osmotic pressure (Π) induces membrane tension in cells and lipid vesicles, which may affect the activity of antimicrobial peptides (AMPs) by an unknown mechanism. We recently quantitated the membrane tension...
Collapse
|
7
|
Effects of Substituting Arginine by Lysine in Bovine Lactoferricin Derived Peptides: Pursuing Production Lower Costs, Lower Hemolysis, and Sustained Antimicrobial Activity. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10207-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Lee BC, Hung CW, Lin CY, Shih CH, Tsai HJ. Oral administration of transgenic biosafe microorganism containing antimicrobial peptide enhances the survival of tilapia fry infected bacterial pathogen. FISH & SHELLFISH IMMUNOLOGY 2019; 95:606-616. [PMID: 31682999 DOI: 10.1016/j.fsi.2019.10.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/16/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
To develop an alternative to conventional antibiotics used in the aquaculture and livestock industries, we employed Bacillus subtilis, considered a biosafe microorganism, to express the degradable antimicrobial peptide lactoferricin. An expression plasmid pP43-6LFBII-GFP, in which reporter GFP cDNA was fused downstream of lactoferricin cDNA driven by an endogenous constitutive P43 promoter was electroporated into B. subtilis, followed by regeneration and cultivation. The putative colonies harboring plasmids were primarily screened by PCR-amplification of lactoferricin cDNA. Four transformants which were stable inheritance of plasmid containing lactoferricin cDNA included strains T1, T4, T7 and T13. Based on Western blot and Southern blot analyses, we found that transgenic strains T1 and T13 not only highly expressed exogenous recombinant lactoferricin, but also exhibited more stable inheritance of plasmids with 931 and 647 copies per cell, respectively. In the antibacterial in vitro experiment, the bactericidal activity of each microliter of cell lysate from transgenic strains T1 and T13 (5 × 108 CFU) for Escherichia coli was equivalent to 56 and 53 ng of Ampicillin dosage, respectively, while for Staphylococcus epidermidis, the equivalency T1 and T13 was 154 and 130 ng of Ampicillin dosage, respectively. Equivalencies of bacterial activity for Vibrio parahaemolyticus and Edwardsiella tarda followed suit. In the antibacterial in vivo experiment, we oral-in-tube fed tilapia fry (Oreochromis mossambicus X O. niloticus) with cell lysate from transgenic strain T1 and T13 individually. After 1-h of incubation, we immersed these treated fish fry in a water tank containing E. tarda (5 × 1011 CFU) for a 5-hr bacterial challenge. After one month cultivation, an average survival rate of 63 and 67% was observed after having fed the fish fry with transgenic strains T1 and T13, respectively. However, the average survival rate of fish fry fed with B. subtilis WT strain and transgenic strain T19 without expressing recombinant lactoferricin reached only 5 and 9%, respectively. These data indicate that the survival of fish fry infected by the intestinal pathogen tested could be significantly enhanced by feeding transgenic B. subtilis containing antibacterial peptide. Therefore, we suggest that this strategy could be applied to both aquaculture and livestock industries to (i) reduce the dependency on conventional antibiotics during seasonal outbreaks and (ii) eliminate the problem of antibiotic resistance.
Collapse
Affiliation(s)
- Bing-Chang Lee
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan, ROC
| | - Chun-Wei Hung
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan, ROC
| | - Cheng-Yung Lin
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan, ROC
| | - Chen-Han Shih
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, USA
| | - Huai-Jen Tsai
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan, ROC.
| |
Collapse
|
9
|
Hasan M, Moghal MMR, Saha SK, Yamazaki M. The role of membrane tension in the action of antimicrobial peptides and cell-penetrating peptides in biomembranes. Biophys Rev 2019; 11:431-448. [PMID: 31093936 DOI: 10.1007/s12551-019-00542-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/29/2019] [Indexed: 12/28/2022] Open
Abstract
For antimicrobial peptides (AMPs) with antimicrobial and bactericidal activities and cell-penetrating peptides (CPPs) with activity to permeate through plasma membrane, their interactions with lipid bilayer region in plasma membrane play important roles in these functions. However, the elementary processes and mechanisms of their functions have not been clear. The single giant unilamellar vesicle (GUV) method has revealed the details of elementary processes of interaction of some AMPs and CPPs with lipid vesicles. In this review, we summarize the mode of action of AMPs such as magainin 2 (Mag) and CPPs such as transportan 10 (TP10), revealed by the single GUV methods, and especially we focus on the role of membrane tension in actions of Mag and TP10 and the mechanisms of their actions. First, we explain the characteristics of the single GUV method briefly. Next, we summarize the recent view on the effect of tension on physical properties of lipid bilayers and describe the role of tension in actions of Mag and TP10. Some experimental results indicate that Mag-induced pore is a stretch-activated pore. The effect of packing of transbilayer asymmetric lipid on Mag-induced pore formation is described. On the other hand, entry of fluorescent dye, carboxyfluorescein (CF)-labeled TP10 (i.e., CF-TP10), into single GUVs without pore formation is affected by tension and high concentration of cholesterol. Pre-pore model for translocation of CF-TP10 across lipid bilayer is described. The experimental methods and their analysis described here are useful for investigation of functions of the other types of AMPs, CPPs, and proteins.
Collapse
Affiliation(s)
- Moynul Hasan
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan.,Department of Pharmacy, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Mizanur Rahman Moghal
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Samiron Kumar Saha
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Masahito Yamazaki
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan. .,Nanomaterials Research Division, Research Institute of Electronics, Shizuoka University, 836 Oya, Suruga-ku, Shizuoka, 422-8529, Japan. .,Department of Physics, Faculty of Science, Shizuoka University, Shizuoka, 422-8529, Japan.
| |
Collapse
|
10
|
Huertas Méndez NDJ, Vargas Casanova Y, Gómez Chimbi AK, Hernández E, Leal Castro AL, Melo Diaz JM, Rivera Monroy ZJ, García Castañeda JE. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076. Molecules 2017; 22:molecules22030452. [PMID: 28287494 PMCID: PMC6155255 DOI: 10.3390/molecules22030452] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/01/2017] [Accepted: 03/08/2017] [Indexed: 12/14/2022] Open
Abstract
Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B–containing non-natural amino acids and the RWQWR motif were synthesized, purified, and characterized using RP-HPLC, MALDI-TOF mass spectrometry, and circular dichroism. The antibacterial activity of peptides against Escherichia coli ATCC 11775, Stenotrophomonas maltophilia ATCC 13636, and Salmonella enteritidis ATCC 13076 was evaluated. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The synthetic bovine lactoferricin exhibited antibacterial activity against E. coli ATCC 11775 and S. enteritidis ATCC 13076. The dimeric peptide (RRWQWR)2K-Ahx exhibited the highest antibacterial activity against the tested bacterial strain. The monomeric, cyclic, tetrameric, and palindromic peptides containing the RWQWR motif exhibited high and specific activity against E. coli ATCC 11775. The results suggest that short peptides derived from lactoferricin B could be considered as potential candidates for the development of antibacterial agents against infections caused by E. coli.
Collapse
Affiliation(s)
- Nataly De Jesús Huertas Méndez
- Chemistry Department, Universidad Nacional de Colombia, Bogotá Carrera 45 No 26-85, Building 451, office 409, Bogotá 11321, Colombia.
| | - Yerly Vargas Casanova
- Bacteriology Department, Universidad Colegio Mayor de Cundinamarca, Bogotá Calle 28 No. 5B-02, Bogotá 110311; Colombia.
| | | | - Edith Hernández
- Bacteriology Department, Universidad Colegio Mayor de Cundinamarca, Bogotá Calle 28 No. 5B-02, Bogotá 110311; Colombia.
| | - Aura Lucia Leal Castro
- Medicine Faculty, Universidad Nacional de Colombia, Bogotá Carrera 45 No 26-85, Building 471, Bogotá 11321, Colombia.
| | - Javier Mauricio Melo Diaz
- Chemistry Department, Universidad Nacional de Colombia, Bogotá Carrera 45 No 26-85, Building 451, office 409, Bogotá 11321, Colombia.
| | - Zuly Jenny Rivera Monroy
- Chemistry Department, Universidad Nacional de Colombia, Bogotá Carrera 45 No 26-85, Building 451, office 409, Bogotá 11321, Colombia.
| | - Javier Eduardo García Castañeda
- Pharmacy Department, Universidad Nacional de Colombia, Bogotá Carrera 45 No 26-85, Building 450, office 203, Bogotá 11321, Colombia.
| |
Collapse
|
11
|
Chen R, Cole N, Dutta D, Kumar N, Willcox MDP. Antimicrobial activity of immobilized lactoferrin and lactoferricin. J Biomed Mater Res B Appl Biomater 2016; 105:2612-2617. [PMID: 27758034 DOI: 10.1002/jbm.b.33804] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/02/2016] [Accepted: 10/08/2016] [Indexed: 12/18/2022]
Abstract
Lactoferrin and lactoferricin were immobilized on glass surfaces via two linkers, 4-azidobenzoic acid (ABA) or 4-fluoro-3-nitrophenyl azide (FNA). The resulting surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The antimicrobial activity of the surfaces was determined using Pseudomonas aeruginosa and Staphylococcus aureus strains by fluorescence microscopy. Lactoferrin and lactoferricin immobilization was confirmed by XPS showing significant increases (p < 0.05) in nitrogen on the glass surface. The immobilization of both proteins slightly increased the overall hydrophobicity of the glass. Both lactoferrin and lactoferricin immobilized on glass significantly (p < 0.05) reduced the numbers of viable bacterial cells adherent to the glass. For P. aeruginosa, the immobilized proteins consistently increased the percentage of dead cells compared to the total cells adherent to the glass surfaces (p < 0.03). Lactoferrin and lactoferricin were successfully immobilized on glass surfaces and showed promising antimicrobial activity against pathogenic bacteria. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2612-2617, 2017.
Collapse
Affiliation(s)
- Renxun Chen
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.,School of Chemistry, University of New South Wales, Sydney, Australia
| | - Nerida Cole
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.,School of Mathematical and Physical Sciences, University of Technology, Sydney, Australia
| | - Debarun Dutta
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Naresh Kumar
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
12
|
The influence of rough lipopolysaccharide structure on molecular interactions with mammalian antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:197-209. [DOI: 10.1016/j.bbamem.2015.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/03/2015] [Accepted: 11/12/2015] [Indexed: 11/21/2022]
|
13
|
Chilton CH, Crowther GS, Śpiewak K, Brindell M, Singh G, Wilcox MH, Monaghan TM. Potential of lactoferrin to prevent antibiotic-induced Clostridium difficile infection. J Antimicrob Chemother 2016; 71:975-85. [PMID: 26759363 PMCID: PMC4790624 DOI: 10.1093/jac/dkv452] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/24/2015] [Indexed: 12/15/2022] Open
Abstract
Objectives Clostridium difficile infection (CDI) is a global healthcare problem. Recent evidence suggests that the availability of iron may be important for C. difficile growth. This study evaluated the comparative effects of iron-depleted (1% Fe3+ saturated) bovine apo-lactoferrin (apo-bLf) and iron-saturated (85% Fe3+ saturated) bovine holo-lactoferrin (holo-bLf) in a human in vitro gut model that simulates CDI. Methods Two parallel triple-stage chemostat gut models were inoculated with pooled human faeces and spiked with C. difficile spores (strain 027 210, PCR ribotype 027). Holo- or apo-bLf was instilled (5 mg/mL, once daily) for 35 days. After 7 days, clindamycin was instilled (33.9 mg/L, four times daily) to induce simulated CDI. Indigenous microflora populations, C. difficile total counts and spores, cytotoxin titres, short chain fatty acid concentrations, biometal concentrations, lactoferrin concentration and iron content of lactoferrin were monitored daily. Results In the apo-bLf model, germination of C. difficile spores occurred 6 days post instillation of clindamycin, followed by rapid vegetative cell proliferation and detectable toxin production. By contrast, in the holo-bLf model, only a modest vegetative cell population was observed until 16 days post antibiotic administration. Notably, no toxin was detected in this model. In separate batch culture experiments, holo-bLf prevented C. difficile vegetative cell growth and toxin production, whereas apo-bLf and iron alone did not. Conclusions Holo-bLf, but not apo-bLf, delayed C. difficile growth and prevented toxin production in a human gut model of CDI. This inhibitory effect may be iron independent. These observations suggest that bLf in its iron-saturated state could be used as a novel preventative or treatment strategy for CDI.
Collapse
Affiliation(s)
- C H Chilton
- Leeds Institute for Molecular Medicine, University of Leeds, Leeds, UK
| | - G S Crowther
- Leeds Institute for Molecular Medicine, University of Leeds, Leeds, UK
| | - K Śpiewak
- Department of Inorganic Chemistry, Jagiellonian University, Krakow, Poland
| | - M Brindell
- Department of Inorganic Chemistry, Jagiellonian University, Krakow, Poland
| | - G Singh
- NIHR Biomedical Research Unit in Gastrointestinal and Liver Diseases at Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, UK
| | - M H Wilcox
- Leeds Institute for Molecular Medicine, University of Leeds, Leeds, UK
| | - T M Monaghan
- NIHR Biomedical Research Unit in Gastrointestinal and Liver Diseases at Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, UK
| |
Collapse
|
14
|
Moniruzzaman M, Alam JM, Dohra H, Yamazaki M. Antimicrobial Peptide Lactoferricin B-Induced Rapid Leakage of Internal Contents from Single Giant Unilamellar Vesicles. Biochemistry 2015; 54:5802-14. [DOI: 10.1021/acs.biochem.5b00594] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Md. Moniruzzaman
- Integrated Bioscience Section, Graduate School of
Science and Technology, ‡Nanomaterials Research
Division, Research Institute of Electronics, §Instrumental Research Support Office,
Research Institute of Green Science and Technology, and ∥Department of Physics, Faculty of
Science, Shizuoka University, Shizuoka 422-8529, Japan
| | - Jahangir Md. Alam
- Integrated Bioscience Section, Graduate School of
Science and Technology, ‡Nanomaterials Research
Division, Research Institute of Electronics, §Instrumental Research Support Office,
Research Institute of Green Science and Technology, and ∥Department of Physics, Faculty of
Science, Shizuoka University, Shizuoka 422-8529, Japan
| | - Hideo Dohra
- Integrated Bioscience Section, Graduate School of
Science and Technology, ‡Nanomaterials Research
Division, Research Institute of Electronics, §Instrumental Research Support Office,
Research Institute of Green Science and Technology, and ∥Department of Physics, Faculty of
Science, Shizuoka University, Shizuoka 422-8529, Japan
| | - Masahito Yamazaki
- Integrated Bioscience Section, Graduate School of
Science and Technology, ‡Nanomaterials Research
Division, Research Institute of Electronics, §Instrumental Research Support Office,
Research Institute of Green Science and Technology, and ∥Department of Physics, Faculty of
Science, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
15
|
Functional, antioxidant and antibacterial properties of protein hydrolysates prepared from fish meat fermented by Bacillus subtilis A26. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.03.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Wada Y, Lönnerdal B. Bioactive peptides derived from human milk proteins — mechanisms of action. J Nutr Biochem 2014; 25:503-14. [DOI: 10.1016/j.jnutbio.2013.10.012] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/03/2013] [Accepted: 10/23/2013] [Indexed: 01/14/2023]
|
17
|
Théolier J, Fliss I, Jean J, Hammami R. Antimicrobial Peptides of Dairy Proteins: From Fundamental to Applications. FOOD REVIEWS INTERNATIONAL 2014. [DOI: 10.1080/87559129.2014.896017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
18
|
Antimicrobial lactoferrin peptides: the hidden players in the protective function of a multifunctional protein. INTERNATIONAL JOURNAL OF PEPTIDES 2013; 2013:390230. [PMID: 23554820 PMCID: PMC3608178 DOI: 10.1155/2013/390230] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/22/2013] [Indexed: 11/17/2022]
Abstract
Lactoferrin is a multifunctional, iron-binding glycoprotein which displays a wide array of modes of action to execute its primary antimicrobial function. It contains various antimicrobial peptides which are released upon its hydrolysis by proteases. These peptides display a similarity with the antimicrobial cationic peptides found in nature. In the current scenario of increasing resistance to antibiotics, there is a need for the discovery of novel antimicrobial drugs. In this context, the structural and functional perspectives on some of the antimicrobial peptides found in N-lobe of lactoferrin have been reviewed. This paper provides the comparison of lactoferrin peptides with other antimicrobial peptides found in nature as well as interspecies comparison of the structural properties of these peptides within the native lactoferrin.
Collapse
|
19
|
Silva T, Abengózar MÁ, Fernández-Reyes M, Andreu D, Nazmi K, Bolscher JGM, Bastos M, Rivas L. Enhanced leishmanicidal activity of cryptopeptide chimeras from the active N1 domain of bovine lactoferrin. Amino Acids 2012; 43:2265-77. [PMID: 22543751 DOI: 10.1007/s00726-012-1304-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 04/17/2012] [Indexed: 11/28/2022]
Abstract
Two antimicrobial cryptopeptides from the N1 domain of bovine lactoferrin, lactoferricin (LFcin17-30) and lactoferrampin (LFampin265-284), together with a hybrid version (LFchimera), were tested against the protozoan parasite Leishmania. All peptides were leishmanicidal against Leishmania donovani promastigotes, and LFchimera showed a significantly higher activity over its two composing moieties. Besides, it was the only peptide active on Leishmania pifanoi axenic amastigotes, already showing activity below 10 μM. To investigate their leishmanicidal mechanism, promastigote membrane permeabilization was assessed by decrease of free ATP levels in living parasites, entrance of the vital dye SYTOX Green (MW = 600 Da) and confocal and transmission electron microscopy. The peptides induced plasma membrane permeabilization and bioenergetic collapse of the parasites. To further clarify the structural traits underlying the increased leishmanicidal activity of LFchimera, the activity of several analogues was assessed. Results revealed that the high activity of these hybrid peptides seems to be related to the order and sequence orientation of the two cryptopeptide moieties, rather than to their particular linkage through an additional lysine, as in the initial LFchimera. The incorporation of both antimicrobial cryptopeptide motifs into a single linear sequence facilitates chemical synthesis and should help in the potential clinical application of these optimized analogues.
Collapse
Affiliation(s)
- Tânia Silva
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro Investigação em Química CIQ(UP), Universidade do Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Arseneault M, Bédard S, Boulet-Audet M, Pézolet M. Study of the interaction of lactoferricin B with phospholipid monolayers and bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:3468-3478. [PMID: 20112931 DOI: 10.1021/la903014w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bovine lactoferricin (LfcinB) is an antimicrobial peptide obtained from the pepsin cleavage of lactoferrin. The activity of LfcinB has been extensively studied on diverse pathogens, but its mechanism of action still has to be elucidated. Because of its nonspecificity, its mode of action is assumed to be related to interactions with membranes. In this study, the interaction of LfcinB with a negatively charged monolayer of dipalmitoylphosphatidylglycerol has been investigated as a function of the surface pressure of the lipid film using in situ Brewster angle and polarization modulation infrared reflection absorption spectroscopy and on transferred monolayers by atomic force microscopy and polarized attenuated total reflection infrared spectroscopy. The data show clearly that LfcinB forms stable films at the air-water interface. They also reveal that the interaction of LfcinB with the lipid monolayer is modulated by the surface pressure. At low surface pressure, LfcinB inserts within the lipid film with its long molecular axis oriented mainly parallel to the acyl chains, while at high surface pressure, LfcinB is adsorbed under the lipid film, the hairpin being preferentially aligned parallel to the plane of the interface. The threshold for which the behavior changes is 20 mN/m. At this critical surface pressure, LfcinB interacts with the monolayer to form discoidal lipid-peptide assemblies. This structure may actually represent the mechanism of action of this peptide. The results obtained on monolayers are correlated by fluorescent probe release measurements of dye-containing vesicles made of lipids in different phases and support the important role of the lipid fluidity and packing on the activity of LfcinB.
Collapse
Affiliation(s)
- Marjolaine Arseneault
- Centre de recherche sur les matériaux avancés, Département de chimie, Université Laval, Québec, Québec Canada, G1V OA6
| | | | | | | |
Collapse
|
22
|
Molecular weight dependent antistaphylococcal activities of oligomers/polymers synthesized from 3-aminopyridine. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2010. [DOI: 10.2298/jsc100201104a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The main aim of this study was to investigate the relationship between molecular weight and the antistaphylococcal activity of oligomers/polymers synthesized from 3-aminopyridine. Different oligomers/polymers were synthesized from 3-aminopyridine by changing the oxidative polycondensation reaction conditions. They were characterized by size exclusion chromatography and their antibacterial activities were compared by employing standardized susceptibility assays. The obtained experimental results demonstrated that 3-aminopyridine had no antistaphylococcal activity. However, as a result of polymerization, strong antistaphylococcal activity was obtained. Oligomers/polymers synthesized from 3-aminopyridine had varying degrees of antistaphylococcal activity and the maximum activity was obtained from relatively very short oligomers. It was therefore concluded that polymerization of 3-aminopyridine is required for antistaphylococcal activity and strength of this activity depends on the molecular weights of the synthesized molecules.
Collapse
|
23
|
Structure-microbicidal activity relationship of synthetic fragments derived from the antibacterial alpha-helix of human lactoferrin. Antimicrob Agents Chemother 2009; 54:418-25. [PMID: 19917761 DOI: 10.1128/aac.00908-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is a need for new microbicidal agents with therapeutic potential due to antibiotic resistance in bacteria and fungi. In this study, the structure-microbicidal activity relationship of amino acid residues 14 to 31 (sequence 14-31) from the N-terminal end, corresponding to the antibacterial alpha-helix of human lactoferrin (LF), was investigated by downsizing, alanine scanning, and substitution of amino acids. Microbicidal analysis (99% killing) was performed by a microplate assay using Escherichia coli, Staphylococcus aureus, and Candida albicans as test organisms. Starting from the N-terminal end, downsizing of peptide sequence 14-31 showed that the peptide sequence 19-31 (KCFQWQRNMRKVR, HL9) was the optimal length for antimicrobial activity. Furthermore, HL9 bound to lipid A/lipopolysaccharide, as shown by neutralizing endotoxic activity in a Limulus assay. Alanine scanning of peptide sequence 20-31 showed that Cys20, Trp23, Arg28, Lys29, or Arg31 was important for expressing full killing activity, particularly against C. albicans. Substituting the neutral hydrophilic amino acids Gln24 and Asn26 for Lys and Ala (HLopt2), respectively, enhanced microbicidal activity significantly against all test organisms compared to the amino acids natural counterpart, also, in comparison with HL9, HLopt2 had more than 10-fold-stronger fungicidal activity. Furthermore, HLopt2 was less affected by metallic salts than HL9. The microbicidal activity of HLopt2 was slightly reduced only at pH 7.0, as tested in the pH range of 4.5 to 7.5. The results showed that the microbicidal activity of synthetic peptide sequences, based on the antimicrobial alpha-helix region of LF, can be significantly enhanced by optimizing the length and substitution of neutral amino acids at specific positions, thus suggesting a sequence lead with therapeutic potential.
Collapse
|
24
|
The interactions between phosphatidylglycerol and phosphatidylethanolamines in model bacterial membranes. Colloids Surf B Biointerfaces 2009; 72:32-9. [DOI: 10.1016/j.colsurfb.2009.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 03/08/2009] [Accepted: 03/17/2009] [Indexed: 11/24/2022]
|
25
|
Williams TJ, Schneider RP, Willcox MDP. The effect of protein-coated contact lenses on the adhesion and viability of gram negative bacteria. Curr Eye Res 2009; 27:227-35. [PMID: 14562174 DOI: 10.1076/ceyr.27.4.227.16602] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Gram negative bacterial adhesion to contact lenses can cause adverse responses. During contact lens wear, components of the tear film adsorb to the contact lens. This study aimed to investigate the effect of this conditioning film on the viability of bacteria. METHODS Bacteria adhered to contact lenses which were either unworn, worn for daily-, extended- or overnight-wear or coated with lactoferrin or lysozyme. Numbers of viable and total cells were estimated. RESULTS The number of viable attached cells was found to be significantly lower than the total number of cells on worn (50% for strain Paer1 on daily-wear lenses) or lactoferrin-coated lenses (56% for strain Paer1). Lysozyme-coated lenses no statistically significant effect on adhesion. DISCUSSION The conditioning film gained through wear may not inhibit bacterial adhesion, but may act adversely upon those bacteria that succeed in attaching.
Collapse
Affiliation(s)
- Timothy J Williams
- Cooperative Research Centre for Eye Research and Technology, School of Optometry and Vision Science, Australia
| | | | | |
Collapse
|
26
|
Silva LP, Leite JRSA, Brand GD, Regis WB, Tedesco AC, Azevedo RB, Freitas SM, Bloch C. Dermaseptins from Phyllomedusa oreades and Phyllomedusa distincta: liposomes fusion and/or lysis investigated by fluorescence and atomic force microscopy. Comp Biochem Physiol A Mol Integr Physiol 2007; 151:329-335. [PMID: 17409003 DOI: 10.1016/j.cbpa.2007.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 01/22/2007] [Accepted: 02/26/2007] [Indexed: 11/17/2022]
Abstract
Three dermaseptins, DS 01, DD K, and DD L, were compared with respect to their structural features and interactions with liposomes. Circular dichroic spectra at alcohols of different chain lengths revealed that DS 01 has the higher helicogenic potential in hydrophobic media. Binding of DS 01, DD K, and DD L to liposomes induced significant blue shifts of the emission spectra of the single tryptophan located at position 3 of all sequences indicating association of the peptides with bilayers. Kinetics evaluation of atomic force microscopy images evidenced the strong fusogenic activity of DS 01 whereas DD K and DD L showed increased lytic activities.
Collapse
Affiliation(s)
- Luciano P Silva
- Laboratório de Morfologia e Morfogênese, Departamento de Genética e Morfologia, Instituto de Biologia, Universidade de Brasília, Brasília, DF, 70910-900, Brazil; Laboratório de Espectrometria de Massa, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)-Recursos Genéticos e Biotecnologia, Estação Parque Biológico, Final W5, Asa Norte, Brasília, DF, 70770-900, Brazil.
| | - José Roberto S A Leite
- Laboratório de Espectrometria de Massa, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)-Recursos Genéticos e Biotecnologia, Estação Parque Biológico, Final W5, Asa Norte, Brasília, DF, 70770-900, Brazil; Campus Ministro Reis Velloso, Universidade Federal do Piauí-UFPI, Parnaíba, Piauí, 64202-020, PI, Brazil
| | - Guilherme D Brand
- Laboratório de Espectrometria de Massa, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)-Recursos Genéticos e Biotecnologia, Estação Parque Biológico, Final W5, Asa Norte, Brasília, DF, 70770-900, Brazil
| | - Willian B Regis
- Grupo de Biofísica Molecular-Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron (LNLS), Campinas, SP, Brazil
| | - Antonio C Tedesco
- FFCLRP-USP, Universidade de São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Ricardo B Azevedo
- Laboratório de Morfologia e Morfogênese, Departamento de Genética e Morfologia, Instituto de Biologia, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Sonia M Freitas
- Laboratório de Biofísica, Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, 70910-900 Brazil
| | - Carlos Bloch
- Laboratório de Espectrometria de Massa, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)-Recursos Genéticos e Biotecnologia, Estação Parque Biológico, Final W5, Asa Norte, Brasília, DF, 70770-900, Brazil.
| |
Collapse
|
27
|
Kim HK, Chun DS, Kim JS, Yun CH, Lee JH, Hong SK, Kang DK. Expression of the cationic antimicrobial peptide lactoferricin fused with the anionic peptide in Escherichia coli. Appl Microbiol Biotechnol 2006; 72:330-8. [PMID: 16421719 DOI: 10.1007/s00253-005-0266-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Revised: 10/17/2005] [Accepted: 10/22/2005] [Indexed: 11/29/2022]
Abstract
Direct expression of lactoferricin, an antimicrobial peptide, is lethal to Escherichia coli. For the efficient production of lactoferricin in E. coli, we developed an expression system in which the gene for the lysine- and arginine-rich cationic lactoferricin was fused to an anionic peptide gene to neutralize the basic property of lactoferricin, and successfully overexpressed the concatemeric fusion gene in E. coli. The lactoferricin gene was linked to a modified magainin intervening sequence gene by a recombinational polymerase chain reaction, thus producing an acidic peptide-lactoferricin fusion gene. The monomeric acidic peptide-lactoferricin fusion gene was multimerized and expressed in E. coli BL21(DE3) upon induction with isopropyl-beta-D-thiogalactopyranoside. The expression levels of the fusion peptide reached the maximum at the tetramer, while further increases in the copy number of the fusion gene substantially reduced the peptide expression level. The fusion peptides were isolated and cleaved to generate the separate lactoferricin and acidic peptide. About 60 mg of pure recombinant lactoferricin was obtained from 1 L of E. coli culture. The purified recombinant lactoferricin was found to have a molecular weight similar to that of chemically synthesized lactoferricin. The recombinant lactoferricin showed antimicrobial activity and disrupted bacterial membrane permeability, as the native lactoferricin peptide does.
Collapse
Affiliation(s)
- Ha-Kun Kim
- Department of Genetic Engineering, PaiChai University, 439-6, Doma-dong, Seo-ku, Daejon, 302-735, South Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Hunter HN, Demcoe AR, Jenssen H, Gutteberg TJ, Vogel HJ. Human lactoferricin is partially folded in aqueous solution and is better stabilized in a membrane mimetic solvent. Antimicrob Agents Chemother 2005; 49:3387-95. [PMID: 16048952 PMCID: PMC1196233 DOI: 10.1128/aac.49.8.3387-3395.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactoferricins are highly basic bioactive peptides that are released in the stomach through proteolytic cleavage of various lactoferrin proteins. Here we have determined the solution structure of human lactoferricin (LfcinH) by conventional two-dimensional nuclear magnetic resonance methods in both aqueous solution and a membrane mimetic solvent. Unlike the 25-residue bovine lactoferricin (LfcinB), which adopts a somewhat distorted antiparallel beta sheet, the longer LfcinH peptide shows a helical content from Gln14 to Lys29 in the membrane mimetic solvent but a nonexistent beta-sheet character in either the N- or C-terminal regions of the peptide. The helical characteristic of the LfcinH peptide resembles the conformation that this region adopts in the crystal structure of the intact protein. The LfcinH structure determined in aqueous solution displays a nascent helix in the form of a coiled conformation in the region from Gln14 to Lys29. Numerous hydrophobic interactions create the basis for the better-defined overall structure observed in the membrane mimetic solvent. The 49-residue LfcinH peptide isolated for these studies was found to be slightly longer than previously reported peptide preparations and was found to have an intact peptide bond between residues Ala11 and Val12. The distinct solution structures of LfcinH and LfcinB represent a novel difference in the physical properties of these two peptides, which contributes to their unique physiological activities.
Collapse
Affiliation(s)
- Howard N Hunter
- Department of Biological Sciences, University of Calgary, 2500 University N.W., Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
29
|
Viejo-Díaz M, Andrés MT, Fierro JF. Different anti-Candida activities of two human lactoferrin-derived peptides, Lfpep and kaliocin-1. Antimicrob Agents Chemother 2005; 49:2583-8. [PMID: 15980323 PMCID: PMC1168706 DOI: 10.1128/aac.49.7.2583-2588.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The synthetic peptides Lfpep and kaliocin-1 include the sequences from positions 18 to 40 and 153 to 183 of human lactoferrin, respectively. Lfpep is a cationic peptide with bactericidal and giardicidal effects, whereas kaliocin-1 is a novel bactericidal peptide that corresponds to a highly homologous sequence present in the transferrin family of proteins. Both peptides presented fungicidal activity against Candida spp., including fluconazole- and amphotericin B-resistant clinical isolates. Lfpep exhibited higher antifungal activity (8- to 30-fold) and salt resistance than kaliocin-1. The killing activity of Lfpep was mediated by its permeabilizing activity on Candida albicans cells, whereas kaliocin-1 was unable to disrupt the cytoplasmic membrane, as indicated by its inability to allow permeation of propidium iodide and the small amount of K+ released. The amino acid sequence of kaliocin-1 includes the "multidimensional antimicrobial signature" conserved in disulfide-containing antimicrobial peptides and a striking similarity to brevinin-1Sa, an antimicrobial peptide from frog skin secretions, exhibiting a "Rana box"-like sequence. These features may be of interest in the design of new antifungals.
Collapse
Affiliation(s)
- Mónica Viejo-Díaz
- Department of Functional Biology (Microbiology), Faculty of Medicine, University of Oviedo, C/ Julian Claveria, 6, 33006 Oviedo, Spain
| | | | | |
Collapse
|
30
|
Viejo-Díaz M, Andrés MT, Fierro JF. Effects of human lactoferrin on the cytoplasmic membrane of Candida albicans cells related with its candidacidal activity. ACTA ACUST UNITED AC 2004; 42:181-5. [PMID: 15364102 DOI: 10.1016/j.femsim.2004.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2003] [Revised: 03/16/2004] [Accepted: 04/28/2004] [Indexed: 11/17/2022]
Abstract
Human lactoferrin is an innate host defence protein with antimicrobial activity that exerts a candidacidal effect in a cation concentration-dependent manner. We investigated the ability of this cationic protein (with an isoelectric point of 8.7) to permeabilize the cytoplasmic membrane of Candida albicans cells. Despite minor K(+)-release in lactoferrin-treated C. albicans cells, the killing effect was not related to an extensive membrane permeabilization, as indicated by: (a) the non-release of macromolecular cytosolic constituents; (b) the non-permeabilization for extracellular propidium iodide nor for intracellular accumulated calcein; and (c) the inability to disrupt the phospholipid bilayer of 8-aminonaphthalene-1,3,6, trisulfonic acid/p-xylene-bis-pyridiniumbromide-loaded liposomes. These results suggest that lactoferrin exerts its candidacidal effect through a mechanism different from membrane permeabilization described for other cationic peptides.
Collapse
Affiliation(s)
- Mónica Viejo-Díaz
- Department of Functional Biology (Microbiology), Faculty of Medicine, University of Oviedo, C/Julian Claveria, 6, 33006 Oviedo, Asturias, Spain
| | | | | |
Collapse
|
31
|
Peschen D, Li HP, Fischer R, Kreuzaler F, Liao YC. Fusion proteins comprising a Fusarium-specific antibody linked to antifungal peptides protect plants against a fungal pathogen. Nat Biotechnol 2004; 22:732-8. [PMID: 15146196 DOI: 10.1038/nbt970] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 03/16/2004] [Indexed: 11/08/2022]
Abstract
In planta expression of recombinant antibodies recognizing pathogen-specific antigens has been proposed as a strategy for crop protection. We report the expression of fusion proteins comprising a Fusarium-specific recombinant antibody linked to one of three antifungal peptides (AFPs) as a method for protecting plants against fungal diseases. A chicken-derived single-chain antibody specific to antigens displayed on the Fusarium cell surface was isolated from a pooled immunocompetent phage display library. This recombinant antibody inhibited fungal growth in vitro when fused to any of the three AFPs. Expression of the fusion proteins in transgenic Arabidopsis thaliana plants conferred high levels of protection against Fusarium oxysporum f.sp. matthiolae, whereas plants expressing either the fungus-specific antibody or AFPs alone exhibited only moderate resistance. Our results demonstrate that antibody fusion proteins may be used as effective and versatile tools for the protection of crop plants against fungal infection.
Collapse
Affiliation(s)
- Dieter Peschen
- Institut für Biologie VII (Molekulare Biotechnologie), RWTH Aachen, D-52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
32
|
Abstract
Milk contains a variety of substances, which inhibit the infection of pathogens. This is of benefit to the mother, safeguarding the integrity of the lactating mammary gland, but also of huge importance for protection of the suckling offspring. The antimicrobial substances in milk can be classified into two categories. First, nonspecific, broad-spectrum defense substances, which have evolved over long periods of time, and secondly, substances like antibodies, which are specifically directed against particular pathogens and have developed during the mother's lifetime. Substances in both categories may be targets for biological intervention and manipulation with the goal of improving the antimicrobial properties of milk. These alterations of milk composition have applications in human as well as in animal health.
Collapse
Affiliation(s)
- A F Kolb
- Hannah Research Institute, Mauchline Road, Ayr, KA6 5HL, UK.
| |
Collapse
|
33
|
Aguilera O, Quiros LM, Fierro JF. Transferrins selectively cause ion efflux through bacterial and artificial membranes. FEBS Lett 2003; 548:5-10. [PMID: 12885398 DOI: 10.1016/s0014-5793(03)00719-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Serum transferrin, ovotransferrin and lactoferrin constitute the most notable members of the transferrin family. Among their multiple biological functions, they possess an important antibacterial activity. These proteins can permeate the Escherichia coli outer membrane, reaching the inner membrane where they selectively cause permeation of ions, resulting in dissipation of the electrical potential without affecting the pH gradient. Similar results were obtained using artificial liposomes, suggesting a direct action of the proteins on the lipid bilayer, which was mediated by detectable conformational changes in their structures.
Collapse
Affiliation(s)
- Oscar Aguilera
- Departamento de Biologia Funcional, Area de Microbiologia, Facultad de Medicina, Universidad de Oviedo, Spain.[corrected]
| | | | | |
Collapse
|
34
|
Murdock CA, Matthews KR. Antibacterial activity of pepsin-digested lactoferrin on foodborne pathogens in buffered broth systems and ultra-high temperature milk with EDTA. J Appl Microbiol 2003; 93:850-6. [PMID: 12392532 DOI: 10.1046/j.1365-2672.2002.01762.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To evaluate the antimicrobial activity in peptone yeast extract glucose (PYG) broth and ultra-high temperature (UHT) milk of bovine lactoferrin hydrolysate (LFH) with pepsin against the foodborne pathogens Salmonella Stanley, Escherichia coli, Listeria monocytogenes and Staphylococcus aureus. METHODS AND RESULTS The LFH was suspended in PYG and the minimum inhibitory concentration for each pathogen determined. The LFH was also suspended in UHT milk adjusted to pH 4 or 7, samples incubated at 4 or 35 degrees C and the change in bacterial cell population determined. Experiments in UHT milk were conducted using L. monocytogenes and E. coli O157:H7. At pH 4 LFH reduced the population of E. coli O157:H7 and L. monocytogenes by approx. 2 log; however, only E. coli O157:H7 was inhibited in samples adjusted to pH 7. The addition of EDTA (10 mg ml(-1)) to UHT milk supplemented with LFH did not markedly influence the growth of E. coli O157:H7 or L. monocytogenes. CONCLUSIONS The results suggest that, under low pH and refrigeration conditions, LFH can limit the growth or reduce the population of pathogenic bacteria in a dairy product. SIGNIFICANCE AND IMPACT OF THE STUDY Natural preservatives that are active against Gram-negative and Gram-positive bacteria are desirable to the food industry. This study demonstrates that LFH is effective in a complex food system. Moreover, the LFH used was not purified, making its use by industry more attractive.
Collapse
Affiliation(s)
- C A Murdock
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901-8520, USA
| | | |
Collapse
|
35
|
Affiliation(s)
- Richard M Epand
- Department of Biochemistry, McMaster Health Sciences Center, Hamilton, Ontario L8N 3Z5, Canada
| | | |
Collapse
|
36
|
Vogel HJ, Schibli DJ, Jing W, Lohmeier-Vogel EM, Epand RF, Epand RM. Towards a structure-function analysis of bovine lactoferricin and related tryptophan- and arginine-containing peptides. Biochem Cell Biol 2002; 80:49-63. [PMID: 11908643 DOI: 10.1139/o01-213] [Citation(s) in RCA: 241] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The iron-binding protein lactoferrin is a multifunctional protein that has antibacterial, antifungal, antiviral, antitumour, anti-inflammatory, and immunoregulatory properties. All of these additional properties appear to be related to its highly basic N-terminal region. This part of the protein can be released in the stomach by pepsin cleavage at acid pH. The 25-residue antimicrobial peptide that is released is called lactoferricin. In this work, we review our knowledge about the structure of the peptide and attempt to relate this to its many functions. Microcalorimetry and fluorescence spectroscopy data regarding the interaction of the peptide with model membranes show that binding to net negatively charged bacterial and cancer cell membranes is preferred over neutral eukaryotic membranes. Binding of the peptide destabilizes the regular membrane bilayer structure. Residues that are of particular importance for the activity of lactoferricin are tryptophan and arginine. These two amino acids are also prevalent in "penetratins", which are regions of proteins or synthetic peptides that can spontaneously cross membranes and in short hexapeptide antimicrobial peptides derived through combinatorial chemistry. While the antimicrobial, antifungal, antitumour, and antiviral properties of lactoferricin can be related to the Trp/Arg-rich portion of the peptide, we suggest that the anti-inflammatory and immunomodulating properties are more related to a positively charged region of the molecule, which, like the alpha- and beta-defensins, may act as a chemokine. Few small peptides are involved in as wide a range of host defense functions as bovine and human lactoferricin.
Collapse
Affiliation(s)
- Hans J Vogel
- Department of Biological Sciences, University of Calgary, AB, Canada.
| | | | | | | | | | | |
Collapse
|
37
|
Haukland HH, Ulvatne H, Sandvik K, Vorland LH. The antimicrobial peptides lactoferricin B and magainin 2 cross over the bacterial cytoplasmic membrane and reside in the cytoplasm. FEBS Lett 2001; 508:389-93. [PMID: 11728458 DOI: 10.1016/s0014-5793(01)03100-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The localization of immunolabelled antimicrobial peptides was studied using transmission electron microscopy. Staphylococcus aureus and Escherichia coli were exposed to lactoferricin B (17-41), lactoferricin B (17-31) and D-lactoferricin B (17-31). E. coli was also exposed to cecropin P1 and magainin 2. The lactoferricins were found in the cytoplasm of both bacteria. In S. aureus the amount of cytoplasmic lactoferricin B (17-41) was time- and concentration-dependent, reaching a maximum within 30 min. Cecropin P1 was confined to the cell wall, while magainin 2 was found in the cytoplasm of E. coli. The finding of intracellularly localized magainin is not reported previously.
Collapse
Affiliation(s)
- H H Haukland
- Department of Medical Microbiology, University Hospital Tromsø, Norway.
| | | | | | | |
Collapse
|
38
|
Froidevaux R, Krier F, Nedjar-Arroume N, Vercaigne-Marko D, Kosciarz E, Ruckebusch C, Dhulster P, Guillochon D. Antibacterial activity of a pepsin-derived bovine hemoglobin fragment. FEBS Lett 2001; 491:159-63. [PMID: 11226440 DOI: 10.1016/s0014-5793(01)02171-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Peptic digestion of bovine hemoglobin yields a fragment with antibacterial activity. This peptide was purified to homogeneity by a two-step procedure including anion exchange chromatography and preparative reversed-phase HPLC. Mass determination and fragmentation indicated that this peptide corresponded to the 1-23 fragment of the alpha chain of hemoglobin. The minimum inhibitory concentration and mode of action of this peptide towards Micrococcus luteus strain A270 were determined. Hemolytic assay, interaction with liposomes, and study of its structure in solution were also performed.
Collapse
Affiliation(s)
- R Froidevaux
- Laboratoire de Technologie des Substances Naturelles, Institut Universitaire de Technologie, Département Génie Biologique, Université des Sciences et Technologie de Lille, PO Box 179, 59653 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ibrahim HR, Sugimoto Y, Aoki T. Ovotransferrin antimicrobial peptide (OTAP-92) kills bacteria through a membrane damage mechanism. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1523:196-205. [PMID: 11042384 DOI: 10.1016/s0304-4165(00)00122-7] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ovotransferrin antimicrobial peptide (OTAP-92) is a cationic fragment of hen ovotransferrin (OTf). OTAP-92 consists of 92 amino acid residues located within the 109-200 sequence of the N-lobe of OTf. This study was aimed to delineate the antimicrobial mechanism of OTAP-92 and to identify its interaction with bacterial membranes. OTAP-92 caused permeation of Escherichia coli outer membrane (OM) to 1-N-phenylnaphthylamine fluorescent probe in a dose-dependent manner. These results suggested that OTAP-92 crossed the bacterial OM by a self-promoted uptake. Cytoplasmic membrane of E. coli was found to be the target for OTAP-92 bactericidal activity, as assayed by the unmasking of cytoplasmic beta-galactosidase due to membrane permeabilization in a kinetic manner. Pretreatment of bacteria with uncoupler, carbonyl cyanide m-chlorophenylhydrazone, markedly enhanced permeation of cytoplasmic membrane, suggesting that the membrane permeation due to OTAP-92 is independent of the transmembrane potential. In an E. coli phospholipid liposome model, it was demonstrated that OTAP-92 has the ability to dissipate the transmembrane electrochemical potential. Intrinsic fluorescence spectra of the two tryptophan residues in OTAP-92, using liposomal membrane, have identified the lipid-binding region as a helix-sheet motif, and suggested an adjacent Ca(2+)-sensitive site within OTAP-92. These data indicated that OTAP-92 possesses a unique structural motif similar to the insect defensins. Further, this cationic antimicrobial peptide is capable of killing Gram-negative bacteria by crossing the OM by a self-promoted uptake and cause damage to the biological function of cytoplasmic membrane.
Collapse
Affiliation(s)
- H R Ibrahim
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, 890-0065, Kagoshima, Japan.
| | | | | |
Collapse
|