1
|
Villoslada P, Masso M, Paris S, Hutchings S, Koch A. A Phase 1 randomized study on the safety and pharmacokinetics of OCS-05, a neuroprotective disease modifying treatment for Acute Optic Neuritis and Multiple Sclerosis. Sci Rep 2023; 13:5099. [PMID: 36991169 PMCID: PMC10060579 DOI: 10.1038/s41598-023-32278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
OCS-05 (aka BN201) is a peptidomimetic that binds to serum glucocorticoid kinase-2 (SGK2), displaying neuroprotective activity. The objective of this randomized, double-blind 2-part study was to test safety and pharmacokinetics of OCS-05 administered by intravenous (i.v.) infusion in healthy volunteers. Subjects (n = 48) were assigned to receive placebo (n = 12) or OCS-05 (n = 36). , Doses tested were 0.05, 0.2, 0.4, 0.8, 1.6, 2.4 and 3.2 mg/kg in the single ascending dose (SAD) part. In the multiple ascending dose (MAD) part, 2.4 and 3.0 mg/kg doses were administered with 2 h i.v. infusion for 5 consecutive days. Safety assessments included adverse events, blood tests, ECG, Holter monitoring, brain MRI and EEG. No serious adverse events were reported in the OCS-05 group (there was one serious adverse event in the placebo group). Adverse events reported in the MAD part were not clinically significant, and no changes on the ECG, EEG or brain MRI were observed. Single-dose (0.05-3.2 mg/kg) exposure (Cmax and AUC) increased in a dose-proportional manner. Steady state was reached by Day 4 and no accumulation was observed. Elimination half-life ranged from 3.35 to 8.23 h (SAD) and 8.63 to 12.2 h (MAD). Mean individual Cmax concentrations in the MAD part were well below the safety thresholds. OCS-05 administered as 2-h i.v. infusions of multiple doses up to 3.0 mg/Kg daily for up to 5 consecutive days was safe and well tolerated. Based on this safety profile, OCS-05 is currently being tested in a phase 2 trial in patient with acute optic neuritis (NCT04762017, date registration 21/02/2021).
Collapse
Affiliation(s)
- Pablo Villoslada
- Institut d'Investigacions Biomediques August Pi Sunyer, Rosello 149, 08036, Barcelona, Spain.
| | - Mar Masso
- Bionure Farma/Accure Therapeutics SL, Barcelona, Spain
| | | | | | | |
Collapse
|
2
|
The Role of Platelets in the Pathogenesis and Pathophysiology of Adenomyosis. J Clin Med 2023; 12:jcm12030842. [PMID: 36769489 PMCID: PMC9918158 DOI: 10.3390/jcm12030842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Widely viewed as an enigmatic disease, adenomyosis is a common gynecological disease with bewildering pathogenesis and pathophysiology. One defining hallmark of adenomyotic lesions is cyclic bleeding as in eutopic endometrium, yet bleeding is a quintessential trademark of tissue injury, which is invariably followed by tissue repair. Consequently, adenomyotic lesions resemble wounds. Following each bleeding episode, adenomyotic lesions undergo tissue repair, and, as such, platelets are the first responder that heralds the subsequent tissue repair. This repeated tissue injury and repair (ReTIAR) would elicit several key molecular events crucial for lesional progression, eventually leading to lesional fibrosis. Platelets interact with adenomyotic cells and actively participate in these events, promoting the lesional progression and fibrogenesis. Lesional fibrosis may also be propagated into their neighboring endometrial-myometrial interface and then to eutopic endometrium, impairing endometrial repair and causing heavy menstrual bleeding. Moreover, lesional progression may result in hyperinnervation and an enlarged uterus. In this review, the role of platelets in the pathogenesis, progression, and pathophysiology is reviewed, along with the therapeutic implication. In addition, I shall demonstrate how the notion of ReTIAR provides a much needed framework to tether to and piece together many seemingly unrelated findings and how it helps to make useful predictions.
Collapse
|
3
|
Lu RQ, Zhang YY, Zhao HQ, Guo RQ, Jiang ZX, Guo R. SGK1, a Critical Regulator of Immune Modulation and Fibrosis and a Potential Therapeutic Target in Chronic Graft-Versus-Host Disease. Front Immunol 2022; 13:822303. [PMID: 35222400 PMCID: PMC8866649 DOI: 10.3389/fimmu.2022.822303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Patients with severe chronic graft-versus-host disease (cGVHD) always experience debilitating tissue injury and have poorer quality of life and shorter survival time. The early stage of cGVHD is characterized by inflammation, which eventually leads to extensive tissue fibrosis in various organs, such as skin and lung, eventually inducing scleroderma-like changes and bronchiolitis obliterans syndrome. Here we review the functions of serum/glucocorticoid regulated kinase 1 (SGK1), a hub molecule in multiple signal transduction pathways and cell phosphorylation cascades, which has important roles in cell proliferation and ion channel regulation, and its relevance in cGVHD. SGK1 phosphorylates the ubiquitin ligase, NEDD4, and induces Th cells to differentiate into Th17 and Th2 phenotypes, hinders Treg development, and promotes inflammatory fibrosis. Phosphorylation of NEDD4 by SGK1 also leads to up-regulation of the transcription factor SMAD2/3, thereby amplifying the fibrosis-promoting effect of TGF-β. SGK1 also up-regulates the inflammatory transcription factor, nuclear factor-κB (NF-κB), which in turn stimulates the expression of multiple inflammatory mediators, including connective tissue growth factor. Overexpression of SGK1 has been observed in various fibrotic diseases, including pulmonary fibrosis, diabetic renal fibrosis, liver cirrhosis, hypertensive cardiac fibrosis, peritoneal fibrosis, and Crohn’s disease. In addition, SGK1 inhibitors can attenuate, or even reverse, the effect of fibrosis, and may be used to treat inflammatory conditions and/or fibrotic diseases, such as cGVHD, in the future.
Collapse
Affiliation(s)
- Run-Qing Lu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yin-Yin Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hai-Qiu Zhao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rong-Qun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhong-Xing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rong Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Noor S, Mohammad T, Ashraf GM, Farhat J, Bilgrami AL, Eapen MS, Sohal SS, Yadav DK, Hassan MI. Mechanistic insights into the role of serum-glucocorticoid kinase 1 in diabetic nephropathy: A systematic review. Int J Biol Macromol 2021; 193:562-573. [PMID: 34715204 DOI: 10.1016/j.ijbiomac.2021.10.165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022]
Abstract
Aberrant expression of serum-glucocorticoid kinase 1 (SGK1) contributes to the pathogenesis of multiple disorders, including diabetes, hypertension, obesity, fibrosis, and metabolic syndrome. SGK1 variant is expressed in the presence of insulin and several growth factors, eventually modulating various ion channels, carrier proteins, and transcription factors. SGK1 also regulates the enzymatic activity of Na+ K+ ATPase, glycogen synthase kinase-3, ubiquitin ligase Nedd4-2, and phosphomannose mutase impacting cell cycle regulation, neuroexcitation, and apoptosis. Ample evidence supports the crucial role of aberrant SGK1 expression in hyperglycemia-mediated secondary organ damage. Diabetic nephropathy (DN), a dreadful microvascular complication of diabetes, is the leading cause of end-stage renal failures with high morbidity and mortality rate. The complex pathogenesis of DN encompasses several influencing factors, including transcriptional factors, inflammatory markers, cytokines, epigenetic modulators, and abnormal enzymatic activities. SGK1 plays a pivotal role by controlling various physiological functions associated with the occurrence and progression of DN; therefore, targeting SGK1 may favorably influence the clinical outcome in patients with DN. This review aimed to provide mechanistic insights into SGK1 regulated DN pathogenesis and summarize the evidence supporting the therapeutic potential of SGK1 inhibition and its consequences on human health.
Collapse
Affiliation(s)
- Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam M Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Joviana Farhat
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Entomology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City 21924, South Korea.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
5
|
Abstract
BACKGROUND The serum and glucocorticoid-induced kinase-1 (SGK1) belonging to the AGC protein kinase family phosphorylates serine and threonine residues of target proteins. It regulates numerous ion channels and transporters and promotes survival under cellular stress. Unique to SGK1 is a tight control at transcriptional and post-transcriptional levels. SGK1 regulates multiple signal transduction pathways related to tumor development. Several studies have reported that SGK1 is upregulated in different types of human malignancies and induces resistance against inhibitors, drugs, and targeted therapies. RESULTS AND CONCLUSION This review highlights the cellular functions of SGK1, its crucial role in cancer development, and clinical insights for SGK1 targeted therapies. Furthermore, the role of SGK1-mediated autophagy as a potential therapeutic target for cancer has been discussed.
Collapse
|
6
|
Harada Y, Tanaka T, Arai Y, Isomoto Y, Nakano A, Nakao S, Urasaki A, Watanabe Y, Kawamura T, Nakagawa O. ETS-dependent enhancers for endothelial-specific expression of serum/glucocorticoid-regulated kinase 1 during mouse embryo development. Genes Cells 2021; 26:611-626. [PMID: 34081835 DOI: 10.1111/gtc.12874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022]
Abstract
Serum/glucocorticoid-regulated kinase 1 (SGK1) is predominantly expressed in endothelial cells of mouse embryos, and Sgk1 null mice show embryonic lethality due to impaired vascular formation. However, how the SGK1 expression is controlled in developing vasculature remains unknown. In this study, we first identified a proximal endothelial enhancer through lacZ reporter mouse analyses. The mouse Sgk1 proximal enhancer was narrowed down to the 5' region of the major transcription initiation site, while a human corresponding region possessed relatively weak activity. We then searched for distal enhancer candidates using in silico analyses of publicly available databases for DNase accessibility, RNA polymerase association and chromatin modification. A region approximately 500 kb distant from the human SGK1 gene was conserved in the mouse, and the mouse and human genomic fragments drove transcription restricted to embryonic endothelial cells. Minimal fragments of both proximal and distal enhancers had consensus binding elements for the ETS transcription factors, which were essential for the responsiveness to ERG, FLI1 and ETS1 proteins in luciferase assays and the endothelial lacZ reporter expression in mouse embryos. These results suggest that endothelial SGK1 expression in embryonic vasculature is maintained through at least two ETS-regulated enhancers located in the proximal and distal regions.
Collapse
Affiliation(s)
- Yukihiro Harada
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.,Laboratory of Stem Cell & Regenerative Medicine, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Toru Tanaka
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Yuji Arai
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.,Laboratory of Animal Experiment and Medical Management, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Yoshie Isomoto
- Laboratory of Animal Experiment and Medical Management, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Atsushi Nakano
- Laboratory of Animal Experiment and Medical Management, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Shu Nakao
- Laboratory of Stem Cell & Regenerative Medicine, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Akihiro Urasaki
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Yusuke Watanabe
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Teruhisa Kawamura
- Laboratory of Stem Cell & Regenerative Medicine, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Osamu Nakagawa
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| |
Collapse
|
7
|
Guerriero I, Monaco G, Coppola V, Orlacchio A. Serum and Glucocorticoid-Inducible Kinase 1 (SGK1) in NSCLC Therapy. Pharmaceuticals (Basel) 2020; 13:ph13110413. [PMID: 33266470 PMCID: PMC7700219 DOI: 10.3390/ph13110413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) remains the most prevalent and one of the deadliest cancers worldwide. Despite recent success, there is still an urgent need for new therapeutic strategies. It is also becoming increasingly evident that combinatorial approaches are more effective than single modality treatments. This review proposes that the serum and glucocorticoid-inducible kinase 1 (SGK1) may represent an attractive target for therapy of NSCLC. Although ubiquitously expressed, SGK1 deletion in mice causes only mild defects of ion physiology. The frequent overexpression of SGK1 in tumors is likely stress-induced and provides a therapeutic window to spare normal tissues. SGK1 appears to promote oncogenic signaling aimed at preserving the survival and fitness of cancer cells. Most importantly, recent investigations have revealed the ability of SGK1 to skew immune-cell differentiation toward pro-tumorigenic phenotypes. Future studies are needed to fully evaluate the potential of SGK1 as a therapeutic target in combinatorial treatments of NSCLC. However, based on what is currently known, SGK1 inactivation can result in anti-oncogenic effects both on tumor cells and on the immune microenvironment. A first generation of small molecules to inactivate SGK1 has already been already produced.
Collapse
Affiliation(s)
- Ilaria Guerriero
- Biogem Institute for Genetic Research Gaetano Salvatore, Ariano Irpino, 83031 Avellino, Italy; (I.G.); (G.M.)
| | - Gianni Monaco
- Biogem Institute for Genetic Research Gaetano Salvatore, Ariano Irpino, 83031 Avellino, Italy; (I.G.); (G.M.)
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (V.C.); (A.O.); Tel.: +1-614-688-8038 (V.C.); +1-646-552-0641 (A.O.)
| | - Arturo Orlacchio
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (V.C.); (A.O.); Tel.: +1-614-688-8038 (V.C.); +1-646-552-0641 (A.O.)
| |
Collapse
|
8
|
Maestro I, Boya P, Martinez A. Serum- and glucocorticoid-induced kinase 1, a new therapeutic target for autophagy modulation in chronic diseases. Expert Opin Ther Targets 2020; 24:231-243. [PMID: 32067528 DOI: 10.1080/14728222.2020.1730328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Autophagy, a basic cellular degradation pathway essential for survival, is altered both in aging and in many chronic human diseases, including infections, cancer, heart disease, and neurodegeneration. Identifying new therapeutic targets for the control and modulation of autophagy events is therefore of utmost importance in drug discovery. Serum and glucocorticoid activated kinase 1 (SGK1), known for decades for its role in ion channel modulation, is now known to act as a switch for autophagy homeostasis, and has emerged as a novel and important therapeutic target likely to attract considerable research attention in the coming years.Areas covered: In this general review of SGK1 we describe the kinase's structure and its roles in physiological and pathological contexts. We also discuss small-molecule modulators of SGK1 activity. These modulators are of particular interest to medicinal chemists and pharmacists seeking to develop more potent and selective drug candidates for SGK1, which, despite its key role in autophagy, remains relatively understudied.Expert opinion: The main future challenges in this area are (i) deciphering the role of SGK1 in selective autophagy processes (e.g. mitophagy, lipophagy, and aggrephagy); (ii) identifying selective allosteric modulators of SGK1 with specific biological functions; and (iii) conducting first-in-man clinical studies.
Collapse
Affiliation(s)
- Inés Maestro
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Patricia Boya
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Lang F, Stournaras C, Zacharopoulou N, Voelkl J, Alesutan I. Serum- and glucocorticoid-inducible kinase 1 and the response to cell stress. Cell Stress 2018; 3:1-8. [PMID: 31225494 PMCID: PMC6551677 DOI: 10.15698/cst2019.01.170] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Expression of the serum- and glucocorticoid-inducible kinase 1 (SGK1) is up-regulated by several types of cell stress, such as ischemia, radiation and hyperosmotic shock. The SGK1 protein is activated by a signaling cascade involving phosphatidylinositide-3-kinase (PI3K), 3-phosphoinositide-dependent kinase 1 (PDK1) and mammalian target of rapamycin (mTOR). SGK1 up-regulates Na+/K+-ATPase, a variety of carriers including Na+-,K+-,2Cl−- cotransporter (NKCC), NaCl cotransporter (NCC), Na+/H+ exchangers, diverse amino acid transporters and several glucose carriers such as Na+-coupled glucose transporter SGLT1. SGK1 further up-regulates a large number of ion channels including epithelial Na+ channel ENaC, voltagegated Na+ channel SCN5A, Ca2+ release-activated Ca2+ channel (ORAI1) with its stimulator STIM1, epithelial Ca2+ channels TRPV5 and TRPV6 and diverse K+ channels. Furthermore, SGK1 influences transcription factors such as nuclear factor kappa-B (NF-κB), p53 tumor suppressor protein, cAMP responsive element-binding protein (CREB), activator protein-1 (AP-1) and forkhead box O3 protein (FOXO3a). Thus, SGK1 supports cellular glucose uptake and glycolysis, angiogenesis, cell survival, cell migration, and wound healing. Presumably as last line of defense against tissue injury, SGK1 fosters tissue fibrosis and tissue calcification replacing energy consuming cells.
Collapse
Affiliation(s)
- Florian Lang
- Department of Vegetative and Clinical Physiology, Eberhard-Karls-University, Tübingen, Germany
| | - Christos Stournaras
- Department of Biochemistry, University of Crete Medical School, Voutes, Heraklion, Greece
| | - Nefeli Zacharopoulou
- Department of Biochemistry, University of Crete Medical School, Voutes, Heraklion, Greece
| | - Jakob Voelkl
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Ioana Alesutan
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
10
|
Hernando N, Wagner CA. Mechanisms and Regulation of Intestinal Phosphate Absorption. Compr Physiol 2018; 8:1065-1090. [PMID: 29978897 DOI: 10.1002/cphy.c170024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
States of hypo- and hyperphosphatemia have deleterious consequences including rickets/osteomalacia and renal/cardiovascular disease, respectively. Therefore, the maintenance of appropriate plasma levels of phosphate is an essential requirement for health. This control is executed by the collaborative action of intestine and kidney whose capacities to (re)absorb phosphate are regulated by a number of hormonal and metabolic factors, among them parathyroid hormone, fibroblast growth factor 23, 1,25(OH)2 vitamin D3 , and dietary phosphate. The molecular mechanisms responsible for the transepithelial transport of phosphate across enterocytes are only partially understood. Indeed, whereas renal reabsorption entirely relies on well-characterized active transport mechanisms of phosphate across the renal proximal epithelia, intestinal absorption proceeds via active and passive mechanisms, with the molecular identity of the passive component still unknown. The active absorption of phosphate depends mostly on the activity and expression of the sodium-dependent phosphate cotransporter NaPi-IIb (SLC34A2), which is highly regulated by many of the factors, mentioned earlier. Physiologically, the contribution of NaPi-IIb to the maintenance of phosphate balance appears to be mostly relevant during periods of low phosphate availability. Therefore, its role in individuals living in industrialized societies with high phosphate intake is probably less relevant. Importantly, small increases in plasma phosphate, even within normal range, associate with higher risk of cardiovascular disease. Therefore, therapeutic approaches to treat hyperphosphatemia, including dietary phosphate restriction and phosphate binders, aim at reducing intestinal absorption. Here we review the current state of research in the field. © 2017 American Physiological Society. Compr Physiol 8:1065-1090, 2018.
Collapse
Affiliation(s)
- Nati Hernando
- National Center for Competence in Research NCCR Kidney.CH, Institute of Physiology, University Zurich-Irchel, Zurich, Switzerland
| | - Carsten A Wagner
- National Center for Competence in Research NCCR Kidney.CH, Institute of Physiology, University Zurich-Irchel, Zurich, Switzerland
| |
Collapse
|
11
|
Serum/glucocorticoid-regulated kinase 1 as a novel transcriptional target of bone morphogenetic protein-ALK1 receptor signaling in vascular endothelial cells. Angiogenesis 2018; 21:415-423. [DOI: 10.1007/s10456-018-9605-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 02/16/2018] [Indexed: 12/11/2022]
|
12
|
Lang F, Guelinckx I, Lemetais G, Melander O. Two Liters a Day Keep the Doctor Away? Considerations on the Pathophysiology of Suboptimal Fluid Intake in the Common Population. Kidney Blood Press Res 2017; 42:483-494. [PMID: 28787716 DOI: 10.1159/000479640] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/19/2017] [Indexed: 11/19/2022] Open
Abstract
Suboptimal fluid intake may require enhanced release of antidiuretic hormone (ADH) or vasopressin for the maintenance of adequate hydration. Enhanced copeptin levels (reflecting enhanced vasopressin levels) in 25% of the common population are associated with enhanced risk of metabolic syndrome with abdominal obesity, type 2 diabetes, hypertension, coronary artery disease, heart failure, vascular dementia, cognitive impairment, microalbuminuria, chronic kidney disease, inflammatory bowel disease, cancer, and premature mortality. Vasopressin stimulates the release of glucocorticoids which in turn up-regulate the serum- and glucocorticoid-inducible kinase 1 (SGK1). Moreover, dehydration upregulates the transcription factor NFAT5, which in turn stimulates SGK1 expression. SGK1 is activated by insulin, growth factors and oxidative stress via phosphatidylinositide-3-kinase, 3-phosphoinositide-dependent kinase PDK1 and mTOR. SGK1 is a powerful stimulator of Na+/K+-ATPase, carriers (e.g. the Na+,K+,2Cl- cotransporter NKCC, the NaCl cotransporter NCC, the Na+/H+ exchanger NHE3, and the Na+ coupled glucose transporter SGLT1), and ion channels (e.g. the epithelial Na+ channel ENaC, the Ca2+ release activated Ca2+ channel Orai1 with its stimulator STIM1, and diverse K+ channels). SGK1 further participates in the regulation of the transcription factors nuclear factor kappa-B NFκB, p53, cAMP responsive element binding protein (CREB), activator protein-1, and forkhead transcription factor FKHR-L1 (FOXO3a). Enhanced SGK1 activity fosters the development of hypertension, obesity, diabetes, thrombosis, stroke, inflammation including inflammatory bowel disease and autoimmune disease, cardiac fibrosis, proteinuria, renal failure as well as tumor growth. The present brief review makes the case that suboptimal fluid intake in the common population may enhance vasopressin and glucocorticoid levels thus up-regulating SGK1 expression and favouring the development of SGK1 related pathologies.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology I, University of Tuebingen, Tuebingen, Germany
| | | | | | - Olle Melander
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
13
|
Sahu I, Pelzl L, Sukkar B, Fakhri H, al‐Maghout T, Cao H, Hauser S, Gutti R, Gawaz M, Lang F. NFAT5‐sensitive Orai1 expression and store‐operated Ca
2+
entry in megakaryocytes. FASEB J 2017; 31:3439-3448. [DOI: 10.1096/fj.201601211r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Itishri Sahu
- Department of Cardiology and Vascular Medicine and PhysiologyUniversity of Tübingen Tübingena Germany
- Department of BiochemistrySchool of Life SciencesUniversity of Hyderabad Hyderabad India
| | - Lisann Pelzl
- Department of Cardiology and Vascular Medicine and PhysiologyUniversity of Tübingen Tübingena Germany
| | - Basma Sukkar
- Department of Cardiology and Vascular Medicine and PhysiologyUniversity of Tübingen Tübingena Germany
| | - Hajar Fakhri
- Department of Cardiology and Vascular Medicine and PhysiologyUniversity of Tübingen Tübingena Germany
| | - Tamer al‐Maghout
- Department of Cardiology and Vascular Medicine and PhysiologyUniversity of Tübingen Tübingena Germany
| | - Hang Cao
- Department of Cardiology and Vascular Medicine and PhysiologyUniversity of Tübingen Tübingena Germany
| | - Stefan Hauser
- German Center for Neurodegenerative Diseases Tübingen Germany
| | - Ravi Gutti
- Department of BiochemistrySchool of Life SciencesUniversity of Hyderabad Hyderabad India
| | - Meinrad Gawaz
- Department of Cardiology and Vascular Medicine and PhysiologyUniversity of Tübingen Tübingena Germany
| | - Florian Lang
- Department of Cardiology and Vascular Medicine and PhysiologyUniversity of Tübingen Tübingena Germany
| |
Collapse
|
14
|
Abstract
Activation of the PI3K pathway is central to a variety of physiological and pathological processes. In these contexts, AKT is classically considered the de facto mediator of PI3K-dependent signaling. However, in recent years, accumulating data point to the existence of additional effectors of PI3K activity, parallel to and independent of AKT, that play critical and unique roles in mediating different developmental, homeostatic, and pathological processes. In this review, I summarize and discuss our current understanding of the function of the serine/threonine kinase SGK1 as a downstream effector of PI3K, and try to separate targets and pathways validated as uniquely SGK1-dependent from those shared with AKT.
Collapse
|
15
|
miR-17∼92 family clusters control iNKT cell ontogenesis via modulation of TGF-β signaling. Proc Natl Acad Sci U S A 2016; 113:E8286-E8295. [PMID: 27930306 DOI: 10.1073/pnas.1612024114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Invariant natural killer T cells (iNKT) cells are T lymphocytes displaying innate effector functions, acquired through a distinct thymic developmental program regulated by microRNAs (miRNAs). Deleting miRNAs by Dicer ablation (Dicer KO) in thymocytes selectively impairs iNKT cell survival and functional differentiation. To unravel this miRNA-dependent program, we systemically identified transcripts that were differentially expressed between WT and Dicer KO iNKT cells at different differentiation stages and predicted to be targeted by the iNKT cell-specific miRNAs. TGF-β receptor II (TGF-βRII), critically implicated in iNKT cell differentiation, was found up-regulated in iNKT Dicer KO cells together with enhanced TGF-β signaling. miRNA members of the miR-17∼92 family clusters were predicted to target Tgfbr2 mRNA upon iNKT cell development. iNKT cells lacking all three miR-17∼92 family clusters (miR-17∼92, miR-106a∼363, miR-106b∼25) phenocopied both increased TGF-βRII expression and signaling, and defective effector differentiation, displayed by iNKT Dicer KO cells. Consistently, genetic ablation of TGF-β signaling in the absence of miRNAs rescued iNKT cell differentiation. These results elucidate the global impact of miRNAs on the iNKT cell developmental program and uncover the targeting of a lineage-specific cytokine signaling by miRNAs as a mechanism regulating innate-like T-cell development and effector differentiation.
Collapse
|
16
|
Lou Y, Zhang F, Luo Y, Wang L, Huang S, Jin F. Serum and Glucocorticoid Regulated Kinase 1 in Sodium Homeostasis. Int J Mol Sci 2016; 17:ijms17081307. [PMID: 27517916 PMCID: PMC5000704 DOI: 10.3390/ijms17081307] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022] Open
Abstract
The ubiquitously expressed serum and glucocorticoid regulated kinase 1 (SGK1) is tightly regulated by osmotic and hormonal signals, including glucocorticoids and mineralocorticoids. Recently, SGK1 has been implicated as a signal hub for the regulation of sodium transport. SGK1 modulates the activities of multiple ion channels and carriers, such as epithelial sodium channel (ENaC), voltage-gated sodium channel (Nav1.5), sodium hydrogen exchangers 1 and 3 (NHE1 and NHE3), sodium-chloride symporter (NCC), and sodium-potassium-chloride cotransporter 2 (NKCC2); as well as the sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) and type A natriuretic peptide receptor (NPR-A). Accordingly, SGK1 is implicated in the physiology and pathophysiology of Na+ homeostasis. Here, we focus particularly on recent findings of SGK1’s involvement in Na+ transport in renal sodium reabsorption, hormone-stimulated salt appetite and fluid balance and discuss the abnormal SGK1-mediated Na+ reabsorption in hypertension, heart disease, edema with diabetes, and embryo implantation failure.
Collapse
Affiliation(s)
- Yiyun Lou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang, China.
| | - Fan Zhang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Yuqin Luo
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Liya Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Shisi Huang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
- Key Laboratory of Reproductive Genetics, National Ministry of Education (Zhejiang University), Women's Reproductive Healthy Laboratory of Zhejiang Province, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
17
|
Abdoli A. Salt and miscarriage: Is there a link? Med Hypotheses 2016; 89:58-62. [PMID: 26968910 DOI: 10.1016/j.mehy.2016.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/21/2016] [Accepted: 02/03/2016] [Indexed: 11/27/2022]
Abstract
Salt is a major mineral element that plays fundamental roles in health and disease. Excessive salt intake is a major cause of hypertension, cardiovascular disease and stroke. Miscarriage and preeclampsia are the most common pregnancy complications with multiple etiological factors, including inflammatory and autoimmune conditions. More recently, different studies indicated that excessive salt intake is involved in the development of inflammatory processes through induction of T helper-17 pathway and their inflammatory cytokines. On the other hand, several studies indicated the pivotal role of inflammation in the etiology of miscarriage, preeclampsia and adverse pregnancy outcome. Here, it is hypothesized that excessive salt intake around the time of conception or during pregnancy can trigger inflammatory processes, which consequently associated with increased risk of miscarriage, preeclampsia or adverse pregnancy outcome. Thus, this hypothesis suggests that low salt intake around the time of conception or during pregnancy can decrease the risk of miscarriage or adverse pregnancy outcome. This hypothesis also offers new insights about the role of salt in the etiology of miscarriage and preeclampsia.
Collapse
Affiliation(s)
- Amir Abdoli
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
18
|
Zhou H, Gao S, Duan X, Liang S, Scott DA, Lamont RJ, Wang H. Inhibition of serum- and glucocorticoid-inducible kinase 1 enhances TLR-mediated inflammation and promotes endotoxin-driven organ failure. FASEB J 2015; 29:3737-49. [PMID: 25993992 DOI: 10.1096/fj.15-270462] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/11/2015] [Indexed: 12/12/2022]
Abstract
Serum- and glucocorticoid-regulated kinase (SGK)1 is associated with several important pathologic conditions and plays a modulatory role in adaptive immune responses. However, the involvement and functional role of SGK1 in innate immune responses remain entirely unknown. In this study, we establish that SGK1 is a novel and potent negative regulator of TLR-induced inflammation. Pharmacologic inhibition of SGK1 or suppression by small interfering RNA enhances proinflammatory cytokine (TNF, IL-12, and IL-6) production in TLR-engaged monocytes, a result confirmed in Cre-loxP-mediated SGK1-deficient cells. SGK1 inhibition or gene deficiency results in increased phosphorylation of IKK, IκBα, and NF-κB p65 in LPS-stimulated cells. Enhanced NF-κB p65 DNA binding also occurs upon SGK1 inhibition. The subsequent enhancement of proinflammatory cytokines is dependent on the phosphorylation of TGF-β-activated kinase 1 (TAK1), as confirmed by TAK1 gene silencing. In vivo relevance was established in a murine endotoxin model, in which we found that SGK1 inhibition aggravates the severity of multiple organ damage and enhances the inflammatory response by heightening both proinflammatory cytokine levels and neutrophil infiltration. These findings have identified an anti-inflammatory function of SGK1, elucidated the underlying intracellular mechanisms, and establish, for the first time, that SGK1 holds potential as a novel target for intervention in the control of inflammatory diseases.
Collapse
Affiliation(s)
- Huaxin Zhou
- *Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA; Department of Oncology, Cancer Institute, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China; and Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Shegan Gao
- *Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA; Department of Oncology, Cancer Institute, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China; and Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Xiaoxian Duan
- *Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA; Department of Oncology, Cancer Institute, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China; and Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Shuang Liang
- *Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA; Department of Oncology, Cancer Institute, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China; and Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - David A Scott
- *Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA; Department of Oncology, Cancer Institute, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China; and Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Richard J Lamont
- *Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA; Department of Oncology, Cancer Institute, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China; and Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Huizhi Wang
- *Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA; Department of Oncology, Cancer Institute, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China; and Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
19
|
Effect of TGFβ on calcium signaling in megakaryocytes. Biochem Biophys Res Commun 2015; 461:8-13. [DOI: 10.1016/j.bbrc.2015.03.159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 01/01/2023]
|
20
|
Lu X, Li M, Zhou L, Jiang H, Wang H, Chen J. Urinary serum- and glucocorticoid-inducible kinase SGK1 reflects renal injury in patients with immunoglobulin A nephropathy. Nephrology (Carlton) 2015; 19:307-17. [PMID: 24602173 DOI: 10.1111/nep.12225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM Serum- and glucocorticoid-inducible kinase SGK1 functions as an important regulator of transepithelial sodium transport by activating epithelial sodium channel in renal tubules. Considerable evidence demonstrated that SGK1 was associated with hypertension and fibrosing diseases, such as diabetic nephropathy and glomerulonephritis. The present study was performed to evaluate the role of SGK1 played in immunoglobulin A (IgA) nephropathy. METHODS Seventy-six patients of biopsy-proven IgA nephropathy and 33 healthy volunteers were enrolled in this study. All patients and healthy volunteers' urinary and serum samples were tested for SGK1 expression by indirect enzyme-linked immunosorbent assay. Meanwhile all patients' renal tissues were semi-quantified for SGK1 expression by immunohistochemistry assay. The relationships between SGK1 expressions and clinical or pathological parameters were also assessed. RESULTS SGK1 expression was upregulated in urine and renal tubules in patients of Oxford classification T1 and T2, whereas its expression in serum did not increase significantly. Relationship analysis indicated that urinary and tissue SGK1 expressions were associated with heavy proteinuria and renal insufficiency in patients with IgA nephropathy. On the other hand, RAS blockades would reduce the SGK1 levels both in urine and renal tissues. CONCLUSION These results suggested that urinary SGK1 should be a good indicator of tubulointerstitial damage in patients of IgA nephropathy. SGK1 expressions in urine and renal tissues were associated with the activity of renin-angiotensin-aldosterone system.
Collapse
Affiliation(s)
- Xiaoqian Lu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Kidney Disease Immunology Laboratory, The Third Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China; Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, China; Key Laboratory of Nephropathy of Zhejiang Province, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
21
|
Binger KJ, Linker RA, Muller DN, Kleinewietfeld M. Sodium chloride, SGK1, and Th17 activation. Pflugers Arch 2014; 467:543-50. [PMID: 25471348 DOI: 10.1007/s00424-014-1659-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 02/08/2023]
Abstract
The incidence of autoimmune diseases in Western civilizations is increasing rapidly, suggesting an influence of environmental factors, such as diet. The pathogenesis of several of these autoimmune diseases is characterized by aberrant activation of T helper 17 (Th17) cells. Recent reports have shown that the differentiation of Th17 cells is sensitive to changes in local microenvironments, in particular salt (NaCl) concentrations, in a molecular mechanism centered around the serum- and glucocorticoid-inducible kinase 1 (SGK1). In this review, we summarize the recently disclosed mechanisms by which salt has been shown to affect SGK1 and, subsequently, Th17 activation.
Collapse
Affiliation(s)
- Katrina J Binger
- Experimental and Clinical Research Center, an institutional cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, 13125, Germany
| | | | | | | |
Collapse
|
22
|
Hosseinzadeh Z, Schmid E, Shumilina E, Laufer S, Borst O, Gawaz M, Lang F. Effect of TGFβ on Na+/K+ ATPase activity in megakaryocytes. Biochem Biophys Res Commun 2014; 452:537-41. [DOI: 10.1016/j.bbrc.2014.08.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 08/20/2014] [Indexed: 11/26/2022]
|
23
|
Zhang L, Liu J, Liu Y, Xu Y, Zhao X, Qian J, Sun B, Xing C. Fluvastatin inhibits the expression of fibronectin in human peritoneal mesothelial cells induced by high-glucose peritoneal dialysis solution via SGK1 pathway. Clin Exp Nephrol 2014; 19:336-42. [PMID: 24942605 DOI: 10.1007/s10157-014-0991-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 05/19/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND Previous studies showed that statins may have protective effects on peritoneal mesothelial cells (PMC) cultured in high glucose. However, the mechanisms are not clear yet. Several studies demonstrated that serum- and glucocorticoid-inducible kinase 1 (SGK1) is implicated in tissue fibrosis of liver, lung and kidney by regulating the expression of many profibrogenic cytokines and extracellular matrix (e.g., fibronectin). However, few available reports elucidated whether the SGK1 is involved in the pathogenesis of peritoneal fibrosis (PF) in patients with peritoneal dialysis (PD). So far, there is no study about the interaction between the statins and SGK1 in PMC. The purpose of this study was to identify whether fluvastatin may decrease the expression of fibronectin (FN) in human peritoneal mesothelial cells (HPMC) cultured with high-glucose peritoneal dialysis solution (HGPDS) by affecting SGK1 signal pathway. METHODS Cultured HPMC were divided into groups of control, high-glucose peritoneal dialysis solution (HGPDS), HGPDS with fluvastatin (10(-8) mol/L ~ 10(-6) mol/L) or GSK650394 10(-5) mol/L (the competitive inhibitor of SGK1), fluvastatin 10(-6) mol/L or GSK650394 10(-5) mol/L alone. The expression of SGK1 and FN was detected by RT-PCR, western immunoblotting or ELISA. RESULTS Compared with the control, the mRNA and protein expression of SGK1 and FN increased significantly in HPMC treated with HGPDS (p < 0.05). GSK650394 significantly decreased the upregulated mRNA and protein expression of SGK1 and FN induced by HGPDS (p < 0.05), and fluvastatin had the same effects as GSK650394 in a dose-dependent manner (p < 0.05). CONCLUSIONS Expression of SGK1 and FN increased in HPMC induced by HGPDS. Treated with fluvastatin and the SGK1-inhibitor GSK650394, abnormalities of SGK1 and FN could be corrected partially, which suggested that the SGK1 pathway was implicated in the pathogenesis of PF, and that fluvastatin might decrease the expression of SGK1 so as to meliorate the progression of PF.
Collapse
Affiliation(s)
- Li Zhang
- Department of Nephrology, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jia Liu
- Department of Nephrology, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Yanchun Liu
- Department of Nephrology, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Yaguang Xu
- Department of Nephrology, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xiufen Zhao
- Department of Nephrology, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jun Qian
- Department of Nephrology, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Bin Sun
- Department of Nephrology, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Changying Xing
- Department of Nephrology, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| |
Collapse
|
24
|
Burgon J, Robertson AL, Sadiku P, Wang X, Hooper-Greenhill E, Prince LR, Walker P, Hoggett EE, Ward JR, Farrow SN, Zuercher WJ, Jeffrey P, Savage CO, Ingham PW, Hurlstone AF, Whyte MKB, Renshaw SA. Serum and glucocorticoid-regulated kinase 1 regulates neutrophil clearance during inflammation resolution. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:1796-805. [PMID: 24431232 PMCID: PMC3921102 DOI: 10.4049/jimmunol.1300087] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The inflammatory response is integral to maintaining health by functioning to resist microbial infection and repair tissue damage. Large numbers of neutrophils are recruited to inflammatory sites to neutralize invading bacteria through phagocytosis and the release of proteases and reactive oxygen species into the extracellular environment. Removal of the original inflammatory stimulus must be accompanied by resolution of the inflammatory response, including neutrophil clearance, to prevent inadvertent tissue damage. Neutrophil apoptosis and its temporary inhibition by survival signals provides a target for anti-inflammatory therapeutics, making it essential to better understand this process. GM-CSF, a neutrophil survival factor, causes a significant increase in mRNA levels for the known anti-apoptotic protein serum and glucocorticoid-regulated kinase 1 (SGK1). We have characterized the expression patterns and regulation of SGK family members in human neutrophils and shown that inhibition of SGK activity completely abrogates the antiapoptotic effect of GM-CSF. Using a transgenic zebrafish model, we have disrupted sgk1 gene function and shown this specifically delays inflammation resolution, without altering neutrophil recruitment to inflammatory sites in vivo. These data suggest SGK1 plays a key role in regulating neutrophil survival signaling and thus may prove a valuable therapeutic target for the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Joseph Burgon
- Medical Research Council Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, United Kingdom
| | - Anne L. Robertson
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| | - Pranvera Sadiku
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| | - Xingang Wang
- Institute of Molecular and Cellular Biology, 61, Biopolis Drive, Proteos, Singapore
| | - Edward Hooper-Greenhill
- Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline Research and Development Ltd., Stevenage, United Kingdom
| | - Lynne R. Prince
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| | - Paul Walker
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, The University of Manchester, Manchester, United Kingdom
| | - Emily E. Hoggett
- Medical Research Council Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, United Kingdom
| | - Jonathan R. Ward
- Medical Research Council Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, United Kingdom
| | - Stuart N. Farrow
- Respiratory Therapy Area, GlaxoSmithKline Research and Development Ltd., Stevenage, United Kingdom
| | - William J. Zuercher
- Department of Chemical Biology, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Philip Jeffrey
- Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline Research and Development Ltd., Stevenage, United Kingdom
| | - Caroline O. Savage
- Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline Research and Development Ltd., Stevenage, United Kingdom
| | - Philip W. Ingham
- Institute of Molecular and Cellular Biology, 61, Biopolis Drive, Proteos, Singapore
| | - Adam F. Hurlstone
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, The University of Manchester, Manchester, United Kingdom
| | - Moira K. B. Whyte
- Medical Research Council Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, United Kingdom
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- Medical Research Council Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, United Kingdom
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
25
|
Schmidt S, Schneider S, Yang W, Liu G, Schmidt EM, Schmid E, Mia S, Brucker S, Stournaras C, Wallwiener D, Brosens JJ, Lang F. TGFβ1 and SGK1-sensitive store-operated Ca2+ entry and Orai1 expression in endometrial Ishikawa cells. Mol Hum Reprod 2013; 20:139-47. [PMID: 24043696 DOI: 10.1093/molehr/gat066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The serum-and-glucocorticoid-inducible-kinase-1 (SGK1) is ubiquitously expressed and under genomic control by cell stress, hormones and further mediators. A most powerful stimulator of SGK1 expression is transforming growth factor TGFβ1. SGK1 is activated by insulin and growth factors via phosphatidylinositol-3-kinase and the 3-phosphoinositide-dependent kinase PDK1. As shown recently, SGK1 increases the store-operated Ca(2+) entry (SOCE), which is accomplished by the pore-forming ion channel unit Orai. Most recent observations further revealed that SGK1 plays a critical role in the regulation of fertility. SGK1 is up-regulated in the luminal epithelium of women with unexplained infertility but down-regulated in decidualizing stromal cells of patients with recurrent pregnancy loss. The present study explored whether Orai1 is expressed in endometrium and sensitive to regulation by SGK1 and/or TGFβ1. To this end, Orai1 protein abundance was determined by western blotting and SOCE by fura-2 fluorescence. As a result, Orai1 was expressed in human endometrium and in human endometrial Ishikawa cells. Orai1 expression and SOCE in Ishikawa cells were increased by transfection with constitutively active (S422D)SGK1 but not by transfection with inactive (K127N)SGK1. The difference of SOCE between (S422D)SGK1 and (K127N)SGK1-transfected cells was virtually abrogated in the presence of Orai1 inhibitor 2-aminoethoxydiphenyl borate (2-APB, 50 µM). Similar to (S422D)SGK1 transfection TGFβ1 treatment up-regulated both Orai1 protein abundance and SOCE. In conclusion, Orai1 is expressed in the human endometrium and is up-regulated by SGK1 and TGFβ1. The present observations thus uncover a novel element in SGK1-sensitive regulation of endometrial cells.
Collapse
Affiliation(s)
- S Schmidt
- Department of Physiology, University of Tübingen, D72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pasham V, Rotte A, Gu S, Yang W, Bhandaru M, Rexhepaj R, Pathare G, Lang F. Upregulation of intestinal NHE3 following saline ingestion. Kidney Blood Press Res 2013; 37:48-57. [PMID: 23548792 DOI: 10.1159/000343401] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Little is known about the effect of salt content of ingested fluid on intestinal transport processes. Osmosensitive genes include the serum- and glucocorticoid-inducible kinase SGK1, which is up-regulated by hyperosmolarity and cell shrinkage. SGK1 is in turn a powerful stimulator of the intestinal Na(+)/H(+) exchanger NHE3. The present study was thus performed to elucidate, whether the NaCl content of beverages influences NHE3 activity. METHODS Mice were offered access to either plain water or isotonic saline ad libitum. NHE3 transcript levels and protein abundance in intestinal tissue were determined by confocal immunofluorescent microscopy, RT-PCR and western blotting, cytosolic pH (pHi) in intestinal cells from 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) fluorescence and Na(+)/H(+) exchanger activity from the Na(+) dependent realkalinization following an ammonium pulse. RESULTS Saline drinking significantly enhanced fluid intake and increased NHE3 transcript levels, NHE3 protein and Na(+)/H(+) exchanger activity. CONCLUSIONS Salt content of ingested fluid has a profound effect on intestinal Na(+)/H(+) exchanger expression and activity.
Collapse
Affiliation(s)
- Venkanna Pasham
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, Muller DN, Hafler DA. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 2013; 496:518-22. [PMID: 23467095 DOI: 10.1038/nature11868] [Citation(s) in RCA: 1022] [Impact Index Per Article: 85.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 12/19/2012] [Indexed: 12/13/2022]
Abstract
There has been a marked increase in the incidence of autoimmune diseases in the past half-century. Although the underlying genetic basis of this class of diseases has recently been elucidated, implicating predominantly immune-response genes, changes in environmental factors must ultimately be driving this increase. The newly identified population of interleukin (IL)-17-producing CD4(+) helper T cells (TH17 cells) has a pivotal role in autoimmune diseases. Pathogenic IL-23-dependent TH17 cells have been shown to be critical for the development of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, and genetic risk factors associated with multiple sclerosis are related to the IL-23-TH17 pathway. However, little is known about the environmental factors that directly influence TH17 cells. Here we show that increased salt (sodium chloride, NaCl) concentrations found locally under physiological conditions in vivo markedly boost the induction of murine and human TH17 cells. High-salt conditions activate the p38/MAPK pathway involving nuclear factor of activated T cells 5 (NFAT5; also called TONEBP) and serum/glucocorticoid-regulated kinase 1 (SGK1) during cytokine-induced TH17 polarization. Gene silencing or chemical inhibition of p38/MAPK, NFAT5 or SGK1 abrogates the high-salt-induced TH17 cell development. The TH17 cells generated under high-salt conditions display a highly pathogenic and stable phenotype characterized by the upregulation of the pro-inflammatory cytokines GM-CSF, TNF-α and IL-2. Moreover, mice fed with a high-salt diet develop a more severe form of EAE, in line with augmented central nervous system infiltrating and peripherally induced antigen-specific TH17 cells. Thus, increased dietary salt intake might represent an environmental risk factor for the development of autoimmune diseases through the induction of pathogenic TH17 cells.
Collapse
Affiliation(s)
- Markus Kleinewietfeld
- Departments of Neurology and Immunobiology, Yale School of Medicine, 15 York Street, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Translational regulation of the serum- and glucocorticoid-inducible kinase-1 (SGK1) in platelets. Biochem Biophys Res Commun 2012; 425:1-5. [DOI: 10.1016/j.bbrc.2012.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/07/2012] [Indexed: 12/25/2022]
|
29
|
Sgk1 sensitivity of Na(+)/H(+) exchanger activity and cardiac remodeling following pressure overload. Basic Res Cardiol 2012; 107:236. [PMID: 22212557 DOI: 10.1007/s00395-011-0236-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/15/2011] [Accepted: 12/04/2011] [Indexed: 01/08/2023]
Abstract
Sustained increase of cardiac workload is known to trigger cardiac remodeling with eventual development of cardiac failure. Compelling evidence points to a critical role of enhanced cardiac Na(+)/H(+) exchanger (NHE1) activity in the underlying pathophysiology. The signaling triggering up-regulation of NHE1 remained, however, ill defined. The present study explored the involvement of the serum- and glucocorticoid-inducible kinase Sgk1 in cardiac remodeling due to transverse aortic constriction (TAC). To this end, experiments were performed in gene targeted mice lacking functional Sgk1 (sgk1 (-/-)) and their wild-type controls (sgk1 (+/+)). Transcript levels have been determined by RT-PCR, cytosolic pH (pH( i )) utilizing 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) fluorescence, Na(+)/H(+) exchanger activity by the Na(+)-dependent realkalinization after an ammonium pulse, ejection fraction (%) utilizing cardiac cine magnetic resonance imaging and cardiac glucose uptake by PET imaging. As a result, TAC increased the mRNA expression of Sgk1 in sgk1 (+/+) mice, paralleled by an increase in Nhe1 transcript levels as well as Na(+)/H(+) exchanger activity, all effects virtually abrogated in sgk1 (-/-) mice. In sgk1 (+/+) mice, TAC induced a decrease in Pgc1a mRNA expression, while Spp1 mRNA expression was increased, both effects diminished in the sgk1 (-/-) mice. TAC was followed by a significant increase of heart and lung weight in sgk1 (+/+) mice, an effect significantly blunted in sgk1 (-/-) mice. TAC increased the transcript levels of Anp and Bnp, effects again significantly blunted in sgk1 (-/-) mice. TAC increased transcript levels of Collagen I and III as well as Ctgf mRNA and CTGF protein abundance, effects significantly blunted in sgk1 (-/-) mice. TAC further decreased the ejection fraction in sgk1 (+/+) mice, an effect again attenuated in sgk1 (-/-) mice. Also, cardiac FDG-glucose uptake was increased to a larger extent in sgk1 (+/+) mice than in sgk1 (-/-) mice after TAC. These observations point to an important role for SGK1 in cardiac remodeling and development of heart failure following an excessive work load.
Collapse
|
30
|
Serum- and glucocorticoid-inducible kinase 1 in the regulation of renal and extrarenal potassium transport. Clin Exp Nephrol 2011; 16:73-80. [DOI: 10.1007/s10157-011-0488-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 04/08/2010] [Indexed: 01/24/2023]
|
31
|
Rexhepaj R, Alesutan I, Gu S, Pelzl L, Eichenmüller M, Pathare G, Föller M, Kuhl D, Lang F. SGK1-dependent stimulation of intestinal SGLT1 activity by vitamin D. Pflugers Arch 2011; 462:489-94. [PMID: 21735060 DOI: 10.1007/s00424-011-0987-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 06/10/2011] [Accepted: 06/11/2011] [Indexed: 12/26/2022]
Abstract
The serum- and glucocorticoid-inducible kinase SGK1 has previously been shown to mediate the glucocorticoid-dependent stimulation of several intestinal transport systems including the electrogenic glucose transporter SGLT1. In squamous carcinoma cells, SGK1 expression is stimulated by 1,25(OH)₂D₃, the biologically active metabolite of vitamin D. The present study explored whether vitamin D influences the intestinal SGLT1 activity. Jejunal SGLT1 activity was determined by Ussing chamber experiments. Under a normal diet, the electrogenic glucose transport was similar in SGK1 knockout (sgk1 ( -/- )) and wild type mice (sgk1 ( +/+ )). Following a vitamin D-rich diet (14 days 10,000 I.U. vitamin D), the SGK1 transcript levels as well as the SGLT1 protein abundance were increased in sgk1(+/+) mice. Moreover, SGLT1 activity was increased in sgk1(+/+) mice but not in sgk1(-/-) mice following a vitamin D-rich diet. Furthermore, an oral glucose load was followed by an increase in the plasma glucose concentration to significantly higher values in sgk1(+/+) mice treated with a vitamin D-rich diet than in untreated sgk1(+/+) mice. In conclusion, vitamin D treatment upregulates the expression of SGK1, which in turn enhances SGLT1 activity.
Collapse
Affiliation(s)
- Rexhep Rexhepaj
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tang C, Zelenak C, Völkl J, Eichenmüller M, Regel I, Fröhlich H, Kempe D, Jimenez L, Le Bellego L, Vergne S, Lang F. Hydration-sensitive gene expression in brain. Cell Physiol Biochem 2011; 27:757-68. [PMID: 21691093 DOI: 10.1159/000330084] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2011] [Indexed: 12/16/2022] Open
Abstract
Dehydration has a profound influence on neuroexcitability. The mechanisms remained, however, incompletely understood. The present study addressed the effect of water deprivation on gene expression in the brain. To this end, animals were exposed to a 24 hours deprivation of drinking water and neuronal gene expression was determined by microarray technology with subsequent confirmation by RT-PCR. As a result, water deprivation was followed by significant upregulation of clathrin (light polypeptide Lcb), serum/glucocorticoid-regulated kinase (SGK) 1, and protein kinase A (PRKA) anchor protein 8-like. Water deprivation led to downregulation of janus kinase and microtubule interacting protein 1, neuronal PAS domain protein 4, thrombomodulin, purinergic receptor P2Y - G-protein coupled 13 gene, gap junction protein beta 1, neurotrophin 3, hyaluronan and proteoglycan link protein 1, G protein-coupled receptor 19, CD93 antigen, forkhead box P1, suppressor of cytokine signaling 3, apelin, immunity-related GTPase family M, serine (or cysteine) peptidase inhibitor clade B member 1a, serine (or cysteine) peptidase inhibitor clade H member 1, glutathion peroxidase 8 (putative), discs large (Drosophila) homolog-associated protein 1, zinc finger and BTB domain containing 3, and H2A histone family member V. Western blotting revealed the downregulation of forkhead box P1, serine (or cysteine) peptidase inhibitor clade H member 1, and gap junction protein beta 1 protein abundance paralleling the respective alterations of transcript levels. In conclusion, water deprivation influences the transcription of a wide variety of genes in the brain, which may participate in the orchestration of brain responses to water deprivation.
Collapse
Affiliation(s)
- Cai Tang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sabbagh Y, Giral H, Caldas Y, Levi M, Schiavi SC. Intestinal phosphate transport. Adv Chronic Kidney Dis 2011; 18:85-90. [PMID: 21406292 PMCID: PMC3071860 DOI: 10.1053/j.ackd.2010.11.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/03/2010] [Accepted: 11/12/2010] [Indexed: 12/14/2022]
Abstract
Phosphate is absorbed in the small intestine by a minimum of 2 distinct mechanisms: paracellular phosphate transport which is dependent on passive diffusion, and active transport which occurs through the sodium-dependent phosphate cotransporters. Despite evidence emerging for other ions, regulation of the phosphate-specific paracellular pathways remains largely unexplored. In contrast, there is a growing body of evidence that active transport through the sodium-dependent phosphate cotransporter, Npt2b, is highly regulated by a diverse set of hormones and dietary conditions. Furthermore, conditional knockout of Npt2b suggests that it plays an important role in maintenance of phosphate homeostasis by coordinating intestinal phosphate absorption with renal phosphate reabsorption. The knockout mouse also suggests that Npt2b is responsible for the majority of sodium-dependent phosphate uptake. The type-III sodium-dependent phosphate transporters, Pit1 and Pit2, contribute to a minor role in total phosphate uptake. Despite coexpression along the apical membrane, differential responses of Pit1 and Npt2b regulation to chronic versus dietary changes illustrates another layer of phosphate transport control. Finally, a major problem in patients with CKD is management of hyperphosphatemia. The present evidence suggests that targeting key regulatory pathways of intestinal phosphate transport may provide novel therapeutic approaches for patients with CKD.
Collapse
Affiliation(s)
- Yves Sabbagh
- Endocrine and Renal Sciences, Genzyme Corporation, Framingham, MA, USA
| | | | | | | | | |
Collapse
|
34
|
Wallace K, Long Q, Fairhall EA, Charlton KA, Wright MC. Serine/threonine protein kinase SGK1 in glucocorticoid-dependent transdifferentiation of pancreatic acinar cells to hepatocytes. J Cell Sci 2011; 124:405-13. [PMID: 21224398 DOI: 10.1242/jcs.077503] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Elevated glucocorticoid levels result in the transdifferentiation of pancreatic acinar cells into hepatocytes through a process that requires a transient repression of WNT signalling upstream of the induction of C/EBP-β. However, the mechanism by which glucocorticoid interacts with WNT signalling is unknown. A screen of microarray data showed that the serine/threonine protein kinase SGK1 (serum- and glucocorticoid-regulated kinase 1) was markedly induced in the model B-13 pancreatic rat acinar cell line after glucocorticoid treatment (which converts them into hepatocyte-like 'B-13/H' cells) and this was confirmed at the level of mRNA (notably an alternatively transcribed SGK1C form) and protein. Knockdown of SGK1 using an siRNA designed to target all variant transcripts inhibited glucocorticoid-dependent transdifferentiation, whereas overexpression of the human C isoform (and also the human SGK1F isoform, for which no orthologue in the rat has been identified) alone - but not the wild-type A form - inhibited distal WNT signalling Tcf/Lef transcription factor activity, and converted B-13 cells into B-13/H cells. These effects were lost when the kinase functions of SGK1C and SGK1F were mutated. Inhibition of SGK1 kinase activity also inhibited glucocorticoid-dependent transdifferentiation. Expression of SGK1C and SGK1F resulted in the appearance of phosphorylated β-catenin, and recombinant SGK1 was shown to directly phosphorylate purified β-catenin in vitro in an ATP-dependent reaction. These data therefore demonstrate a crucial role for SGK1 induction in B-13 cell transdifferentiation to B-13/H hepatocytes and suggest that direct phosphorylation of β-catenin by SGK1C represents the mechanism of crosstalk between glucocorticoid and WNT signalling pathways.
Collapse
Affiliation(s)
- Karen Wallace
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE24HH, UK
| | | | | | | | | |
Collapse
|
35
|
Abstract
The serum and glucocorticoid kinase (SGK) family of serine/threonine kinases consists of three isoforms, SGK-1, SGK-2 and SGK-3. This family of kinases is highly homologous to the AKT kinase family, sharing similar upstream activators and downstream targets. SGKs have been implicated in the regulation of cell growth, proliferation, survival and migration: cellular processes that are dysregulated in cancer. Furthermore, SGKs lie downstream of phosphoinositide-3-kinase (PI3Kinase) signalling and interact at various levels with RAS/RAF/ERK signalling, two pathways that are involved in promoting tumorigenesis. Recent evidence suggests that mutant PI3Kinase can induce tumorigenesis through an AKT-independent but SGK3-dependent mechanism, thus implicating SGKs as potential players in malignant transformation. Here, we will review the current state of knowledge on the regulation of the SGKs and their role in normal cell physiology and transformation with a particular focus on SGK3.
Collapse
Affiliation(s)
- Maressa A Bruhn
- Growth Control and Differentiation Program, Peter MacCallum Cancer Centre, Melbourne, 3002, Victoria, Australia
| | | | | | | |
Collapse
|
36
|
Lessi F, Beggs A, de Palo M, Anti M, Macarone Palmieri R, Francesconi S, Gomes V, Bevilacqua G, Tomlinson I, Segditsas S. Down-regulation of serum/glucocorticoid regulated kinase 1 in colorectal tumours is largely independent of promoter hypermethylation. PLoS One 2010; 5:e13840. [PMID: 21079778 PMCID: PMC2974649 DOI: 10.1371/journal.pone.0013840] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 10/14/2010] [Indexed: 01/28/2023] Open
Abstract
Background We have previously shown that serum/glucocorticoid regulated kinase 1 (SGK1) is down-regulated in colorectal cancers (CRC) with respect to normal tissue. As hyper-methylation of promoter regions is a well-known mechanism of gene silencing in cancer, we tested whether the SGK1 promoter region was methylated in colonic tumour samples. Methodology/Principal Findings We investigated the methylation profile of the two CpG islands present in the promoter region of SGK1 in a panel of 5 colorectal cancer cell lines by sequencing clones of bisulphite-treated DNA samples. We further confirmed our findings in a panel of 10 normal and 10 tumour colonic tissue samples of human origin. We observed CpG methylation only in the smaller and more distal CpG island in the promoter region of SGK1 in both normal and tumour samples of colonic origin. We further identified a single nucleotide polymorphism (SNP, rs1743963) which affects methylation of the corresponding CpG. Conclusions/Significance Our results show that even though partial methylation of the promoter region of SGK1 is present, this does not account for the different expression levels seen between normal and tumour tissue.
Collapse
Affiliation(s)
- Francesca Lessi
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Division of Surgical, Molecular and Ultrastructural Pathology, Department of Oncology, University of Pisa and Pisa University Hospital, Pisa, Italy
| | - Andrew Beggs
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Marcello Anti
- Presidio Ospedaliero Belcolle Viterbo, Viterbo, Italy
| | | | | | - Vito Gomes
- Presidio Ospedaliero Belcolle Viterbo, Viterbo, Italy
| | - Generoso Bevilacqua
- Division of Surgical, Molecular and Ultrastructural Pathology, Department of Oncology, University of Pisa and Pisa University Hospital, Pisa, Italy
| | - Ian Tomlinson
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Stefania Segditsas
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Mesure L, De Visscher G, Vranken I, Lebacq A, Flameng W. Gene expression study of monocytes/macrophages during early foreign body reaction and identification of potential precursors of myofibroblasts. PLoS One 2010; 5:e12949. [PMID: 20886081 PMCID: PMC2944875 DOI: 10.1371/journal.pone.0012949] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 08/16/2010] [Indexed: 12/14/2022] Open
Abstract
Foreign body reaction (FBR), initiated by adherence of macrophages to biomaterials, is associated with several complications. Searching for mechanisms potentially useful to overcome these complications, we have established the signaling role of monocytes/macrophages in the development of FBR and the presence of CD34+ cells that potentially differentiate into myofibroblasts. Therefore, CD68+ cells were in vitro activated with fibrinogen and also purified from the FBR after 3 days of implantation in rats. Gene expression profiles showed a switch from monocytes and macrophages attracted by fibrinogen to activated macrophages and eventually wound-healing macrophages. The immature FBR also contained a subpopulation of CD34+ cells, which could be differentiated into myofibroblasts. This study showed that macrophages are the clear driving force of FBR, dependent on milieu, and myofibroblast deposition and differentiation.
Collapse
Affiliation(s)
- Lindsay Mesure
- Laboratory of Experimental Cardiac Surgery, Department of Cardiovascular Diseases, KULeuven, Leuven, Belgium
| | - Geofrey De Visscher
- Laboratory of Experimental Cardiac Surgery, Department of Cardiovascular Diseases, KULeuven, Leuven, Belgium
- * E-mail:
| | - Ilse Vranken
- Laboratory of Experimental Cardiac Surgery, Department of Cardiovascular Diseases, KULeuven, Leuven, Belgium
| | - An Lebacq
- Laboratory of Experimental Cardiac Surgery, Department of Cardiovascular Diseases, KULeuven, Leuven, Belgium
| | - Willem Flameng
- Laboratory of Experimental Cardiac Surgery, Department of Cardiovascular Diseases, KULeuven, Leuven, Belgium
| |
Collapse
|
38
|
Szebeni B, Vannay A, Sziksz E, Prókai A, Cseh A, Veres G, Dezsofi A, Gyorffy H, Szabó IRK, Arató A. Increased expression of serum- and glucocorticoid-regulated kinase-1 in the duodenal mucosa of children with coeliac disease. J Pediatr Gastroenterol Nutr 2010; 50:147-153. [PMID: 19966577 DOI: 10.1097/mpg.0b013e3181b47608] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Enterocyte apoptosis induced by activated intraepithelial lymphocytes is increased in coeliac disease (CD). Serum- and glucocorticoid-regulated kinase-1 (SGK1) is a serine/threonine protein kinase that may inhibit apoptosis and compensate for the excessive death of surface epithelial cells. The significance of SGK1 in CD is elusive so far. The aim of this study was to characterise the expression and localisation of SGK1 in duodenal biopsy samples taken from children with untreated CD, children with treated CD, and controls. PATIENTS AND METHODS Duodenal biopsy specimens were collected from 16 children with untreated CD, 9 children with treated CD, and 10 controls. The mRNA expression of SGK1 was determined by real-time reverse transcription-polymerase chain reaction. SGK1 and phosphorylated (P)-SGK1 protein levels and their localisation were determined by Western blot and immunofluorescent staining, respectively. RESULTS We found increased SGK1-mRNA expression as well as higher SGK1 and P-SGK1 protein levels in the duodenal mucosa of children with untreated CD compared with controls. In the duodenal mucosa of children with treated CD, SGK1-mRNA expression was decreased and SGK1 and P-SGK1 protein levels were lower than in untreated CD. SGK1 and P-SGK1 staining intensity was stronger in duodenal villous enterocytes of children with untreated CD compared with treated CD. CONCLUSIONS Our results of increased expression of SGK1 in untreated CD may suggest its contribution to the enterocyte survival in this disease.
Collapse
Affiliation(s)
- Beáta Szebeni
- Research Group for Pediatrics and Nephrology, Semmelweis University and Hungarian Academy of Sciences, Bókay J. u. 53-54, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lang F, Görlach A. Heterocyclic indazole derivatives as SGK1 inhibitors, WO2008138448. Expert Opin Ther Pat 2009; 20:129-35. [DOI: 10.1517/13543770903365209] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Sobiesiak M, Shumilina E, Lam RS, Wölbing F, Matzner N, Kaesler S, Zemtsova IM, Lupescu A, Zahir N, Kuhl D, Schaller M, Biedermann T, Lang F. Impaired Mast Cell Activation in Gene-Targeted Mice Lacking the Serum- and Glucocorticoid-Inducible Kinase SGK1. THE JOURNAL OF IMMUNOLOGY 2009; 183:4395-402. [DOI: 10.4049/jimmunol.0803017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Rexhepaj R, Rotte A, Kempe DS, Sopjani M, Föller M, Gehring EM, Bhandaru M, Gruner I, Mack AF, Rubio-Aliaga I, Nässl AM, Daniel H, Kuhl D, Lang F. Stimulation of electrogenic intestinal dipeptide transport by the glucocorticoid dexamethasone. Pflugers Arch 2009; 459:191-202. [PMID: 19672619 DOI: 10.1007/s00424-009-0701-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/03/2009] [Accepted: 07/11/2009] [Indexed: 01/09/2023]
Abstract
According to recent in vitro experiments, the peptide transporter PepT2 is stimulated by the serum- and glucocorticoid-inducible kinase SGK1. The present study explored the contribution of SGK1 to the regulation of electrogenic intestinal peptide transport. Intestinal PepT1 was expressed in Xenopus oocytes, and peptide transport was determined by dual electrode voltage clamping. Peptide transport in intestinal segments was determined utilizing Ussing chamber. Cytosolic pH (pH( i )) was determined by BCECF fluorescence and Na(+)/H(+) exchanger activity was estimated from Na(+)-dependent pH recovery (pH ( i )) following an ammonium pulse. In PepT1-expressing Xenopus oocytes, coexpression of SGK1 enhanced electrogenic peptide transport. Intestinal transport and pH( i ) of untreated mice were similar in SGK1 knockout mice (sgk1 ( -/- )) and their wild-type littermates (sgk1 ( +/+ )). Glucocorticoid treatment (4 days 10 microg/g body weight (bw)/day dexamethasone) increased peptide transport in sgk1 ( +/+ ) but not in sgk1 (-/-) mice. Irrespective of dexamethasone treatment, luminal peptide (5 mM glycyl-glycine) led to a similar early decrease of pH( i ) in sgk1 (-/-) and sgk1 (+/+) mice, but to a more profound and sustained decline of pH( i ) in sgk1 (-/-) than in sgk1 ( +/+ ) mice. In the presence and absence of glycyl-glycine, pH ( i ) was significantly enhanced by dexamethasone treatment in sgk1 ( +/+ ) mice, an effect significantly blunted in sgk1 ( -/- ) mice. During sustained exposure to glycyl-glycine, pH ( i ) was significantly larger in sgk1 (+/+) mice than in sgk1 (-/-) mice, irrespective of dexamethasone treatment. In conclusion, basal intestinal peptide transport does not require stimulation by SGK1. Glucocorticoid treatment stimulates both Na(+)/H(+) exchanger activity and peptide transport, effects partially dependent on SGK1. Moreover, chronic exposure to glycyl-glycine stimulates Na(+)/H(+) exchanger activity, an effect again involving SGK1.
Collapse
Affiliation(s)
- Rexhep Rexhepaj
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Won M, Park KA, Byun HS, Kim YR, Choi BL, Hong JH, Park J, Seok JH, Lee YH, Cho CH, Song IS, Kim YK, Shen HM, Hur GM. Protein kinase SGK1 enhances MEK/ERK complex formation through the phosphorylation of ERK2: implication for the positive regulatory role of SGK1 on the ERK function during liver regeneration. J Hepatol 2009; 51:67-76. [PMID: 19447520 DOI: 10.1016/j.jhep.2009.02.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 01/06/2009] [Accepted: 02/04/2009] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Based on the observation of biphasic induction of SGK1 expression in the regenerating liver, we investigated the role of SGK1 in the regulation of MEK/ERK signaling pathway which plays a crucial role in regulating growth and survival signaling. METHODS To determine the role of SGK1 in the activation of MEK/ERK signaling cascade, we infected primary hepatocytes with recombinant adenoviral vector encoding SGK1, and assessed its effect on the MEK/ERK signaling pathway. RESULTS Partial hepatectomy resulted in the biphasic transcriptional induction of SGK1 in regenerating liver tissues. Infection of primary hepatocytes with an adenoviral vector encoding SGK1 enhanced the ERK phosphorylation under serum-starved conditions and this was blocked by the expression of kinase-dead SGK1. SGK1 was found to physically interact with ERK1/2 as well as MEK1/2. Furthermore, SGK1 mediated the phosphorylation of ERK2 on Ser(29) in a serum-dependent manner. Replacement of Ser(29) to aspartic acid, which mimics the phosphorylation of Ser(29), enhanced the ERK2 activity as well as the MEK/ERK complexes formation. CONCLUSIONS SGK1 expression during liver regeneration is a part of a signaling pathway that is necessary for enhancing ERK signaling activation through modulating the MEK/ERK complex formation.
Collapse
Affiliation(s)
- Minho Won
- Department of Pharmacology, Research Institute for Medical Science, Infection Signaling Network Research Center, Daejeon Regional Cancer Center, College of Medicine, Chungnam National University, 6 Munhwa-dong, Jung-gu, Daejeon 301-131, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chen S, Grigsby CL, Law CS, Ni X, Nekrep N, Olsen K, Humphreys MH, Gardner DG. Tonicity-dependent induction of Sgk1 expression has a potential role in dehydration-induced natriuresis in rodents. J Clin Invest 2009; 119:1647-58. [PMID: 19436108 DOI: 10.1172/jci35314] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 03/18/2009] [Indexed: 01/06/2023] Open
Abstract
In various mammalian species, including humans, water restriction leads to an acute increase in urinary sodium excretion. This process, known as dehydration natriuresis, helps prevent further accentuation of hypernatremia and the accompanying rise in extracellular tonicity. Serum- and glucocorticoid-inducible kinase (Sgk1), which is expressed in the renal medulla, is regulated by extracellular tonicity. However, the mechanism of its regulation and the physiological role of hypertonicity-induced SGK1 gene expression remain unclear. Here, we identified a tonicity-responsive enhancer (TonE) upstream of the rat Sgk1 transcriptional start site. The transcription factor NFAT5 associated with TonE in a tonicity-dependent fashion in cultured rat renal medullary cells, and selective blockade of NFAT5 activity resulted in suppression of the osmotic induction of the Sgk1 promoter. In vivo, water restriction of rats or mice led to increased urine osmolality, increased Sgk1 expression, increased expression of the type A natriuretic peptide receptor (NPR-A), and dehydration natriuresis. In cultured rat renal medullary cells, siRNA-mediated Sgk1 knockdown blocked the osmotic induction of natriuretic peptide receptor 1 (Npr1) gene expression. Furthermore, Npr1-/- mice were resistant to dehydration natriuresis, which suggests that Sgk1-dependent activation of the NPR-A pathway may contribute to this response. Collectively, these findings define a specific mechanistic pathway for the osmotic regulation of Sgk1 gene expression and suggest that Sgk1 may play an important role in promoting the physiological response of the kidney to elevations in extracellular tonicity.
Collapse
Affiliation(s)
- Songcang Chen
- Diabetes Center, UCSF, San Francisco, California 94143-0540, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Suthanthiran M, Gerber LM, Schwartz JE, Sharma VK, Medeiros M, Marion R, Pickering TG, August P. Circulating transforming growth factor-beta1 levels and the risk for kidney disease in African Americans. Kidney Int 2009; 76:72-80. [PMID: 19279557 PMCID: PMC3883576 DOI: 10.1038/ki.2009.66] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transforming growth factor-β1 (TGF-β1) is well known to induce progression of experimental renal disease. Here we determined whether there is an association between serum levels of TGF-β1 and the risk factors for progression of clinically relevant renal disorders in 186 black and 147 white adults none of whom had kidney disease or diabetes. Serum TGF-β1 protein levels were positively and significantly associated with plasma renin activity along with the systolic and diastolic blood pressure in blacks but not whites after controlling for age, gender and body mass index. These TGF-β1 protein levels were also significantly associated with body mass index and metabolic syndrome and more predictive of microalbuminuria in blacks than in whites. The differential association between TGF-β1 and renal disease risk factors in blacks and whites suggests an explanation for the excess burden of end-stage renal disease in the black population but this requires validation in an independent cohort. Whether these findings show that it is the circulating levels of TGF-β1 that contributes to renal disease progression or reflects other unmeasured factors will need to be tested in longitudinal studies.
Collapse
Affiliation(s)
- Manikkam Suthanthiran
- Department of Medicine, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ackermann TF, Boini KM, Völkl H, Bhandaru M, Bareiss PM, Just L, Vallon V, Amann K, Kuhl D, Feng Y, Hammes HP, Lang F. SGK1-sensitive renal tubular glucose reabsorption in diabetes. Am J Physiol Renal Physiol 2009; 296:F859-66. [PMID: 19158347 DOI: 10.1152/ajprenal.90238.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The hyperglycemia of diabetes mellitus increases the filtered glucose load beyond the maximal tubular transport rate and thus leads to glucosuria. Sustained hyperglycemia, however, may gradually increase the maximal renal tubular transport rate and thereby blunt the increase of urinary glucose excretion. The mechanisms accounting for the increase of renal tubular glucose transport have remained ill-defined. A candidate is the serum- and glucocorticoid-inducible kinase SGK1. The kinase has been shown to stimulate Na(+)-coupled glucose transport in vitro and mediate the stimulation of electrogenic intestinal glucose transport by glucocorticoids in vivo. SGK1 expression is confined to glomerula and distal nephron in intact kidneys but may extend to the proximal tubule in diabetic nephropathy. To explore whether SGK1 modifies glucose transport in diabetic kidneys, Akita mice (akita(+/-)), which develop spontaneous diabetes, have been crossbred with gene-targeted mice lacking SGK1 on one allele (sgk1(+/-)) to eventually generate either akita(+/-)/sgk1(-/-) or akita(+/-)/sgk1(+/+) mice. Both akita(+/-)/sgk1(-/-) and akita(+/-)/sgk1(+/+) mice developed profound hyperglycemia (>20 mM) within approximately 6 wk. Body weight and plasma glucose concentrations were not significantly different between these two genotypes. However, urinary excretion of glucose and urinary excretion of fluid, Na(+), and K(+), as well as plasma aldosterone concentrations, were significantly higher in akita(+/-)/sgk1(-/-) than in akita(+/-)/sgk1(+/+) mice. Studies in isolated perfused proximal tubules revealed that the electrogenic glucose transport was significantly lower in akita(+/-)/sgk1(-/-) than in akita(+/-)/sgk1(+/+) mice. The data provide the first evidence that SGK1 participates in the stimulation of renal tubular glucose transport in diabetic kidneys.
Collapse
Affiliation(s)
- Teresa F Ackermann
- Dept. of Physiology, Univ. of Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Artunc F, Nasir O, Amann K, Boini KM, Häring HU, Risler T, Lang F. Serum- and glucocorticoid-inducible kinase 1 in doxorubicin-induced nephrotic syndrome. Am J Physiol Renal Physiol 2008; 295:F1624-34. [PMID: 18768591 DOI: 10.1152/ajprenal.00032.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Doxorubicin-induced nephropathy leads to epithelial sodium channel (ENaC)-dependent volume retention and renal fibrosis. The aldosterone-sensitive serum- and glucocorticoid-inducible kinase SGK1 has been shown to participate in the stimulation of ENaC and to mediate renal fibrosis following mineralocorticoid and salt excess. The present study was performed to elucidate the role of SGK1 in the volume retention and fibrosis during nephrotic syndrome. To this end, doxorubicin (15 mug/g body wt) was injected intravenously into gene-targeted mice lacking SGK1 (sgk1(-/-)) and their wild-type littermates (sgk1(+/+)). Doxorubicin treatment resulted in heavy proteinuria (>100 mg protein/mg crea) in 15/44 of sgk1(+/+) and 15/44 of sgk1(-/-) mice leading to severe nephrotic syndrome with ascites, lipidemia, and hypoalbuminemia in both genotypes. Plasma aldosterone levels increased in nephrotic mice of both genotypes and was followed by increased SGK1 protein expression in sgk1(+/+) mice. Urinary sodium excretion reached signficantly lower values in sgk1(+/+) mice (15 +/- 5 mumol/mg crea) than in sgk1(-/-) mice (35 +/- 5 mumol/mg crea) and was associated with a significantly higher body weight gain in sgk1(+/+) compared with sgk1(-/-) mice (+6.6 +/- 0.7 vs. +4.1 +/- 0.8 g). During the course of nephrotic syndrome, serum urea concentrations increased significantly faster in sgk1(-/-) mice than in sgk1(+/+) mice leading to uremia and a reduced median survival in sgk1(-/-) mice (29 vs. 40 days in sgk1(+/+) mice). In conclusion, gene-targeted mice lacking SGK1 showed blunted volume retention, yet were not protected against renal fibrosis during experimental nephrotic syndrome.
Collapse
Affiliation(s)
- Ferruh Artunc
- Dept. of Physiology, Univ. Hospital of Tübingen, Otfried-Mueller-Str. 10, 72076 Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
47
|
Perera L, Kern M, Hofmann C, Tatro L, Chai K, Kuribayashi S, Lawal A, Shaker R. Manometric evidence for a phonation-induced UES contractile reflex. Am J Physiol Gastrointest Liver Physiol 2008; 294:G885-91. [PMID: 18239061 DOI: 10.1152/ajpgi.00470.2007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mechanism against entry of gastric content into the pharynx during high-intensity vocalization such as seen among professional singers is not known. We hypothesized that phonation-induced upper esophageal sphincter (UES) contraction enhances the pressure barrier against entry of gastroesophageal contents into pharynx. To determine and compare the effect of phonation on luminal pressures of the esophagus and its sphincters, we studied 17 healthy volunteers (7 male, 10 female) by concurrent high-resolution manometry and voice analysis. We tested high- and low-pitch vowel sounds. Findings were verified in six subjects by UES manometry using a water-perfused sleeve device. Eight of the volunteers (2 male, 6 female) had concurrent video fluoroscopy with high-resolution manometry and voice recording. Fluoroscopic images were analyzed for laryngeal movement. To define the sex-based effect, subgroup analysis was performed. All tested phonation frequencies and intensities induced a significant increase in UES pressure (UESP) compared with prephonation pressure. The magnitude of the UESP increase was significantly higher than that of the distal esophagus, the lower esophageal sphincter (LES), and the stomach. Concurrent videofluoroscopy did not show posterior laryngeal movement during phonation, eliminating a purely mechanical cause for phonation-induced UESP increase. Subgroup analysis demonstrated phonation-induced UESP increases in males that were significantly greater than those of females. Phonation induces a significant increase in UESP, suggesting the existence of a phonation-induced UES contractile reflex. UESP increase due to this reflex is significantly higher than that of the distal esophagus, LES, and stomach. The phonation-induced UESP increase is influenced by sex.
Collapse
Affiliation(s)
- Lilani Perera
- Division of Gastroenterology and Hepatology, Froedtert Hospital/Medical College of Wisconsin Dysphagia Institute, 9200 W Wisconsin Ave., Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hussain A, Wyatt AW, Wang K, Bhandaru M, Biswas R, Avram D, Föller M, Rexhepaj R, Friedrich B, Ullrich S, Müller G, Kuhl D, Risler T, Lang F. SGK1-dependent upregulation of connective tissue growth factor by angiotensin II. Kidney Blood Press Res 2008; 31:80-6. [PMID: 18319604 DOI: 10.1159/000119703] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 01/10/2008] [Indexed: 01/13/2023] Open
Abstract
Angiotensin II has previously been shown to trigger fibrosis, an effect involving connective tissue growth factor (CTGF). The signaling pathways linking angiotensin II to CTGF formation are, however, incompletely understood. A gene highly expressed in fibrosing tissue is the serum- and glucocorticoid-inducible kinase SGK1. The present study explored whether SGK1 is transcriptionally regulated by angiotensin II and participates in the angiotensin II-dependent regulation of CTGF expression. To this end, experiments have been performed in human kidney fibroblasts and mouse lung fibroblasts from gene-targeted mice lacking SGK1 (sgk1-/-) and their wild-type littermates (sgk1+/+). In human renal fibroblasts, SGK1 and CTGF protein expression were enhanced by angiotensin II (10 nM) within 4 h. In sgk1+/+ mouse fibroblasts, SGK1 transcript levels were significantly increased after 4 h of angiotensin II treatment. Angiotensin II stimulated both transcript and protein abundance of CTGF in fibroblasts from sgk1+/+ mice, effects significantly blunted in fibroblasts of sgk1-/- mice. In conclusion, angiotensin II stimulates the expression of SGK1, which is in turn required for the stimulating effect of angiotensin II on the expression of CTGF. Thus, SGK1 presumably contributes to the profibrotic effect of angiotensin II.
Collapse
|
49
|
Bareiss PM, Metzger M, Sohn K, Rupp S, Frick JS, Autenrieth IB, Lang F, Schwarz H, Skutella T, Just L. Organotypical tissue cultures from adult murine colon as an in vitro model of intestinal mucosa. Histochem Cell Biol 2008; 129:795-804. [PMID: 18320204 PMCID: PMC2584443 DOI: 10.1007/s00418-008-0405-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2008] [Indexed: 11/29/2022]
Abstract
Together with animal experiments, organotypical cell cultures are important models for analyzing cellular interactions of the mucosal epithelium and pathogenic mechanisms in the gastrointestinal tract. Here, we introduce a three-dimensional culture model from the adult mouse colon for cell biological investigations in an in vivo-like environment. These explant cultures were cultured for up to 2 weeks and maintained typical characteristics of the intestinal mucosa, including a high-prismatic epithelium with specific epithelial cell-to-cell connections, a basal lamina and various connective tissue cell types, as analyzed with immunohistological and electron microscopic methods. The function of the epithelium was tested by treating the cultures with dexamethasone, which resulted in a strong upregulation of the serum- and glucocorticoid-inducible kinase 1 similar to that found in vivo. The culture system was investigated in infection experiments with the fungal pathogen Candida albicans. Wildtype but not Deltacph1/Deltaefg1-knockout Candida adhered to, penetrated and infiltrated the epithelial barrier. The results demonstrate the potential usefulness of this intestinal in vitro model for studying epithelial cell-cell interactions, cellular signaling and microbiological infections in a three-dimensional cell arrangement.
Collapse
Affiliation(s)
- Petra M Bareiss
- Institute of Anatomy, Center for Regenerative Biology and Medicine, Eberhardt-Karls-University Tuebingen, Oesterbergstrasse 3, 72074, Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lee IH, Campbell CR, Cook DI, Dinudom A. Regulation of epithelial Na+ channels by aldosterone: role of Sgk1. Clin Exp Pharmacol Physiol 2008; 35:235-41. [PMID: 18197893 DOI: 10.1111/j.1440-1681.2007.04844.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. The epithelial sodium channel (ENaC) is tightly regulated by hormonal and humoral factors, including cytosolic ion concentration and glucocorticoid and mineralocorticoid hormones. Many of these regulators of ENaC control its activity by regulating its surface expression via neural precursor cell-expressed developmentally downregulated (gene 4) protein (Nedd4-2). 2. During the early phase of aldosterone action, Nedd4-2-dependent downregulation of ENaC is inhibited by the serum- and glucocorticoid-induced kinase 1 (Sgk1). 3. Sgk1 phosphorylates Nedd4-2. Subsequently, phosphorylated Nedd4-2 binds to the 14-3-3 protein and, hence, reduces binding of Nedd4-2 to ENaC. 4. Nedd4-2 is also phosphorylated by protein kinase B (Akt1). Both Sgk1 and Akt1 are part of the insulin signalling pathway that increases transepithelial Na(+) absorption by inhibiting Nedd4-2 and activating ENaC.
Collapse
Affiliation(s)
- Il-Ha Lee
- School of Medical Science, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|