1
|
Konno N, Togashi A, Miyanishi H, Azuma M, Nakamachi T, Matsuda K. Regulation of Branchial Anoctamin 1 Expression in Freshwater- and Seawater-Acclimated Japanese Medaka, Oryzias latipes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:356-372. [PMID: 39718083 DOI: 10.1002/jez.2894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024]
Abstract
In euryhaline teleosts, the cystic fibrosis transmembrane conductance regulator (CFTR) in seawater (SW)-type chloride cells facilitates apical Cl- secretion for SW adaptation, while alternative Cl- excretion pathways remain understudied. This study investigates the role of the calcium-activated chloride channel, Anoctamin 1 (ANO1), in the gills of the euryhaline Japanese medaka (Oryzias latipes) under hyperosmolality and cortisol (CORT) influence. Acclimation to artificial SW, NaCl, mannitol, or glucose significantly upregulated ANO1 and CFTR mRNA expression in gills, unlike urea treatment. In situ hybridization revealed ANO1 mRNA in chloride cells co-expressing CFTR and Na+, K+-ATPase under hyperosmotic conditions. ANO1 inhibition elevated plasma Cl- concentration, indicating impaired Cl- excretion. CORT or dexamethasone administration in freshwater (FW) fish significantly increased branchial ANO1 and CFTR mRNA expression, an effect attenuated by the glucocorticoid receptor (GR) antagonist RU486. Hyperosmotic treatment of isolated gill tissues rapidly induced ANO1 mRNA expression independent of CFTR mRNA changes, and this induction was unaffected by RU486. These findings highlight the dual regulation of ANO1 expression via hyperosmolality-induced cellular response and the CORT-GR system. Thus, branchial ANO1 may likely complement CFTR in Cl⁻ excretion, playing a key role in the hyperosmotic adaptation of euryhaline teleosts.
Collapse
Affiliation(s)
- Norifumi Konno
- Departement of Biology, Faculty of Science, Academic Assembly, University of Toyama, Gofuku, Toyama, Japan
| | - Ayane Togashi
- Departement of Biology, Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, Japan
| | - Hiroshi Miyanishi
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Morio Azuma
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Tomoya Nakamachi
- Departement of Biology, Faculty of Science, Academic Assembly, University of Toyama, Gofuku, Toyama, Japan
| | - Kouhei Matsuda
- Departement of Biology, Faculty of Science, Academic Assembly, University of Toyama, Gofuku, Toyama, Japan
| |
Collapse
|
2
|
Toso A, Garoche C, Balaguer P. Human and fish differences in steroid receptors activation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174889. [PMID: 39047839 DOI: 10.1016/j.scitotenv.2024.174889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Steroid receptors (SRs) are transcription factors activated by steroid hormones (SHs) that belong to the nuclear receptors (NRs) superfamily. Several studies have shown that SRs are targets of endocrine disrupting chemicals (EDCs), widespread substances in the environment capable of interfering with the endogenous hormonal pathways and causing adverse health effects in living organisms and/or their progeny. Cell lines with SRs reporter gene are currently used for in vitro screening of large quantities of chemicals with suspected endocrine-disrupting activities. However, most of these cell lines express human SRs and therefore the toxicological data obtained are also extrapolated to non-mammalian species. In parallel, in vivo tests have recently been developed on fish species whose data are also extrapolated to mammalian species. As some species-specific differences in SRs activation by natural and synthetic chemicals have been recently reported, the aim of this review is to summarize those between human and fish SRs, as representatives of mammalian and non-mammalian toxicology, respectively. Overall, this literature study aims to improve inter-species extrapolation of toxicological data on EDCs and to understand which reporter gene cell lines expressing human SRs are relevant for the assessment of effects in fish and whether in vivo tests on fish can be properly used in the assessment of adverse effects on human health.
Collapse
Affiliation(s)
- Anna Toso
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France; Department Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland.
| | - Clémentine Garoche
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France
| |
Collapse
|
3
|
Chang RJA, Celino-Brady FT, Seale AP. Changes in cortisol and corticosteroid receptors during dynamic salinity challenges in Mozambique tilapia. Gen Comp Endocrinol 2023; 342:114340. [PMID: 37364646 DOI: 10.1016/j.ygcen.2023.114340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
In estuarine environments, euryhaline fish maintain a narrow range of internal osmolality despite daily changes in environmental salinity that can range from fresh water (FW) to seawater (SW). The capacity of euryhaline fish to maintain homeostasis in a range of environmental salinities is primarily facilitated by the neuroendocrine system. One such system, the hypothalamic-pituitary-interrenal (HPI) axis, culminates in the release of corticosteroids such as cortisol into circulation. Cortisol functions as both a mineralocorticoid and glucocorticoid in fish because of its roles in osmoregulation and metabolism, respectively. The gill, a key site for osmoregulation, and the liver, the primary storage site for glucose, are known targets of cortisol's actions during salinity stress. While cortisol facilitates acclimation to SW environments, less is known on its role during FW adaptation. In this study, we characterized the responses of plasma cortisol, mRNA expression of pituitary pro-opiomelanocortin (pomc), and mRNA expression of liver and gill corticosteroid receptors (gr1, gr2, and mr) in the euryhaline Mozambique tilapia (Oreochromis mossambicus) under salinity challenges. Specifically, tilapia were subjected to salinity transfer regimes from steady-state FW to SW, SW to FW (experiment 1) or steady state FW or SW to tidal regimen (TR, experiment 2). In experiment 1, fish were sampled at 0 h, 6 h, 1, 2, and 7 d post transfer; while in experiment 2, fish were sampled at day 0 and day 15. We found a rise in pituitary pomc expression and plasma cortisol following transfer to SW while branchial corticosteroid receptors were immediately downregulated after transfer to FW. Moreover, branchial expression of corticosteroid receptors changed with each salinity phase of the TR, suggesting rapid environmental modulation of corticosteorid action. Together, these results support the role of the HPI-axis in promoting salinity acclimation, including in dynamically-changing environments.
Collapse
Affiliation(s)
- Ryan J A Chang
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Fritzie T Celino-Brady
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Andre P Seale
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| |
Collapse
|
4
|
Su M, Zhang R, Liu N, Zhang J. Modulation of inflammatory response by cortisol in the kidney of spotted scat (Scatophagus argus) in vitro under different osmotic stresses. FISH & SHELLFISH IMMUNOLOGY 2020; 104:46-54. [PMID: 32474084 DOI: 10.1016/j.fsi.2020.05.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Salinity changes on renal osmoregulation have often been investigated while the immune response of the kidney under osmotic stress is poorly understood in teleosts. Acute stress is generally associated with enhancement of circulating cortisol. The effects of osmotic stress on renal immune response and its regulation by cortisol deserve more attention. In the present study, the effects of exogenous cortisol treatment on the lipopolysaccharide (LPS)-induced immune response were analyzed in renal masses of Scatophagus argus under different osmotic stresses in vitro. mRNA expression of pro-inflammatory cytokines (TNF-α, IL1-β and IL-6) and immune-regulatory related genes (GR and SOCS1) was measured over a short course (15 h). Comprehensive analysis reveals that transcript abundances of pro-inflammatory cytokine genes such as TNF-α, IL-1β, and IL-6 induced by LPS, alone or in the combination of cortisol, are tightly associated with osmoregulation under acute osmotic stress. Our results showed that osmotic challenge could significantly enhance mRNA expression levels of pro-inflammatory cytokines in renal masses in vitro. Based on our analysis, it can be inferred that cortisol suppresses the magnitude of renal inflammatory response and attenuates LPS-induced immune response through GR signaling in the face of challenging environmental conditions.
Collapse
Affiliation(s)
- Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ran Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Nanxi Liu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
5
|
Jiang DL, Gu XH, Li BJ, Zhu ZX, Qin H, Meng ZN, Lin HR, Xia JH. Identifying a Long QTL Cluster Across chrLG18 Associated with Salt Tolerance in Tilapia Using GWAS and QTL-seq. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:250-261. [PMID: 30737627 DOI: 10.1007/s10126-019-09877-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Understanding the genetic mechanism of osmoregulation is important for the improvement of salt tolerance in tilapia. In our previous study, we have identified a major quantitative trait locus (QTL) region located at 23.0 Mb of chrLG18 in a Nile tilapia line by QTL-seq. However, the conservation of these QTLs in other tilapia populations or species is not clear. In this study, we successfully investigated the QTLs associated with salt tolerance in a mass cross population from the GIFT line of Nile tilapia (Oreochromis niloticus) using a ddRAD-seq-based genome-wide association study (GWAS) and in a full-sib family from the Malaysia red tilapia strain (Oreochromis spp) using QTL-seq. Our study confirmed the major QTL interval that is located at nearly 23.0 Mb of chrLG18 in Nile tilapia and revealed a long QTL cluster across chrLG18 controlling for the salt-tolerant trait in both red tilapia and Nile tilapia. This is the first GWAS analysis on salt tolerance in tilapia. Our finding provides important insights into the genetic architecture of salinity tolerance in tilapia and supplies a basis for fine mapping QTLs, marker-assisted selection, and further detailed functional analysis of the underlying genes for salt tolerance in tilapia.
Collapse
Affiliation(s)
- Dan Li Jiang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xiao Hui Gu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Bi Jun Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zong Xian Zhu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hui Qin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zi Ning Meng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Ran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jun Hong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
6
|
Tsalafouta A, Sarropoulou E, Papandroulakis N, Pavlidis M. Characterization and Expression Dynamics of Key Genes Involved in the Gilthead Sea Bream (Sparus aurata) Cortisol Stress Response during Early Ontogeny. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:611-622. [PMID: 29948235 DOI: 10.1007/s10126-018-9833-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/14/2018] [Indexed: 05/25/2023]
Abstract
The present study identified and characterized six key genes involved in the hypothalamic-pituitary-interrenal (HPI) axis of gilthead sea bream (Sparus aurata), a commercially important European aquaculture species. The key genes involved in the HPI axis for which gene structure and synteny analysis was carried out, comprised of two functional forms of glucocorticoid receptors (GR), as well as three forms of pro-opiomelanocortin (POMC) genes and one form of mineralocorticoid receptor (MR) gene. To explore their functional roles during development but also in the stress response, the expression profiles of gr1, gr2, mr, pomc_aI, pomc_aII, and pomc_β were examined during early ontogeny and after an acute stress challenge. The acute stress challenge was applied at the stage of full formation of all fins, where whole body cortisol was also measured. Both the cortisol and the molecular data implied that sea bream larvae at the stage of the full formation of all fins at 45 dph are capable of a response to stress of a similar profile as observed in adult fish.
Collapse
Affiliation(s)
- A Tsalafouta
- Department of Biology, University of Crete, P.O. Box 2208, 714 09, Heraklion, Crete, Greece.
| | - E Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, Heraklion, Crete, Greece
| | - N Papandroulakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, Heraklion, Crete, Greece
| | - M Pavlidis
- Department of Biology, University of Crete, P.O. Box 2208, 714 09, Heraklion, Crete, Greece
| |
Collapse
|
7
|
Gu XH, Jiang DL, Huang Y, Li BJ, Chen CH, Lin HR, Xia JH. Identifying a Major QTL Associated with Salinity Tolerance in Nile Tilapia Using QTL-Seq. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:98-107. [PMID: 29318417 DOI: 10.1007/s10126-017-9790-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Selection of new lines with high salinity tolerance allows for economically feasible production of tilapias in brackish water areas. Mapping QTLs and identifying the markers linked to salinity-tolerant traits are the first steps in the improvement of the tolerance in tilapia through marker-assisted selection techniques. By using QTL-seq strategy and linkage-based analysis, two significant QTL intervals (chrLG4 and chrLG18) on salinity-tolerant traits were firstly identified in the Nile tilapia. Fine mapping with microsatellite and SNP markers suggested a major QTL region that located at 23.0 Mb of chrLG18 and explained 79% of phenotypic variation with a LOD value of 95. Expression analysis indicated that at least 10 genes (e.g., LACTB2, KINH, NCOA2, DIP2C, LARP4B, PEX5R, and KCNJ9) near or within the QTL interval were significantly differentially expressed in intestines, brains, or gills under 10, 15, or 20 ppt challenges. Our findings suggest that QTL-seq can be effectively utilized in QTL mapping of salinity-tolerant traits in fish. The identified major QTL is a promising locus to improve our knowledge on the genetic mechanism of salinity tolerance in tilapia.
Collapse
Affiliation(s)
- Xiao Hui Gu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Dan Li Jiang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yan Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Bi Jun Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chao Hao Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Ran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jun Hong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
8
|
Breves JP, Inokuchi M, Yamaguchi Y, Seale AP, Hunt BL, Watanabe S, Lerner DT, Kaneko T, Grau EG. Hormonal regulation of aquaporin 3: opposing actions of prolactin and cortisol in tilapia gill. J Endocrinol 2016; 230:325-37. [PMID: 27402066 DOI: 10.1530/joe-16-0162] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022]
Abstract
Aquaporins (Aqps) are expressed within key osmoregulatory tissues where they mediate the movement of water and selected solutes across cell membranes. We leveraged the functional plasticity of Mozambique tilapia (Oreochromis mossambicus) gill epithelium to examine how Aqp3, an aquaglyceroporin, is regulated in response to osmoregulatory demands. Particular attention was paid to the actions of critical osmoregulatory hormones, namely, prolactin (Prl), growth hormone and cortisol. Branchial aqp3 mRNA levels were modulated following changes in environmental salinity, with enhanced aqp3 mRNA expression upon transfer from seawater to freshwater (FW). Accordingly, extensive Aqp3 immunoreactivity was localized to cell membranes of branchial epithelium in FW-acclimated animals. Upon transferring hypophysectomized tilapia to FW, we identified that a pituitary factor(s) is required for Aqp3 expression in FW. Replacement with ovine Prl (oPrl) was sufficient to stimulate Aqp3 expression in hypophysectomized animals held in FW, an effect blocked by coinjection with cortisol. Both oPrl and native tilapia Prls (tPrl177 and tPrl188) stimulated aqp3 in incubated gill filaments in a concentration-related manner. Consistent with in vivo responses, coincubation with cortisol blocked oPrl-stimulated aqp3 expression in vitro Our data indicate that Prl and cortisol act directly upon branchial epithelium to regulate Aqp3 in tilapia. Thus, within the context of the diverse actions of Prl on hydromineral balance in vertebrates, we define a new role for Prl as a regulator of Aqp expression.
Collapse
Affiliation(s)
- Jason P Breves
- Department of BiologySkidmore College, Saratoga Springs, New York, USA
| | - Mayu Inokuchi
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA Department of Aquatic BioscienceGraduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo, Japan
| | - Yoko Yamaguchi
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
| | - Andre P Seale
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
| | - Bethany L Hunt
- Department of BiologySkidmore College, Saratoga Springs, New York, USA
| | - Soichi Watanabe
- Department of Aquatic BioscienceGraduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo, Japan
| | - Darren T Lerner
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA University of Hawai'i Sea Grant College ProgramUniversity of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Toyoji Kaneko
- Department of Aquatic BioscienceGraduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo, Japan
| | - E Gordon Grau
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
| |
Collapse
|
9
|
Yada T, Miyamoto K, Miura G, Munakata A. Seasonal changes in gene expression of corticoid receptors in anadromous and non-anadromous strains of rainbow trout Oncorhynchus mykiss. JOURNAL OF FISH BIOLOGY 2014; 85:1263-1278. [PMID: 25263192 DOI: 10.1111/jfb.12521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 08/03/2014] [Indexed: 06/03/2023]
Abstract
To clarify the regulation of expression of corticoid receptor (CR) genes during period of parr-smolt transformation of salmonids, seasonal changes in mRNA levels of glucocorticoid receptor (GR)-1, GR-2 and mineralocorticoid receptor (MR) were examined in gill, leucocytes, spleen and brain of anadromous and non-anadromous forms of Oncorhynchus mykiss. Increases in gill Na(+) , K(+) ATPase activity, plasma thyroxine levels and hypo-osmoregulatory ability assessed by 24 h seawater challenge test represented characteristics of smoltification in anadromous O. mykiss from May to June, whereas there was no apparent increase in the values of non-anadromous O. mykiss. Plasma cortisol levels of anadromous O. mykiss were higher than levels of non-anadromous O. mykiss from April to June. In gill of non-anadromous O. mykiss, there were significant increases in mRNA levels of three types of CR in spring. Although there were significant seasonal variations of CR mRNA levels in gill of anadromous O. mykiss, they appear to be less clear than those variations in non-anadromous O. mykiss. In anadromous O. mykiss, significant elevations in mRNA levels of the three types of CR were observed especially in the spleen. In both preoptic area and basal hypothalamus of the brain, there were tendencies to increase in CR mRNA levels from spring to summer in both anadromous and non-anadromous O. mykiss. These results showed difference in regulation of CR gene expression between the two forms of O. mykiss for osmoregulatory, immune and central nervous systems.
Collapse
Affiliation(s)
- T Yada
- Freshwater Fisheries Research Division, National Research Institute of Aquaculture, Nikko, Tochigi 321-1661, Japan; School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | | | | | | |
Collapse
|
10
|
Breves JP, Seale AP, Moorman BP, Lerner DT, Moriyama S, Hopkins KD, Grau EG. Pituitary control of branchial NCC, NKCC and Na+, K+-ATPase α-subunit gene expression in Nile tilapia, Oreochromis niloticus. J Comp Physiol B 2014; 184:513-23. [DOI: 10.1007/s00360-014-0817-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 02/03/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
|
11
|
Mitchell DL, Fernandez AA, Garcia R, Paniker L, Lin K, Hanninen A, Zigelsky K, May M, Nuttall M, Lo HH, Person MD, Earley R. Acute exposure to ultraviolet-B radiation modulates sex steroid hormones and receptor expression in the skin and may contribute to the sex bias of melanoma in a fish model. Pigment Cell Melanoma Res 2014; 27:408-17. [PMID: 24406016 DOI: 10.1111/pcmr.12213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 12/06/2013] [Accepted: 01/07/2014] [Indexed: 12/11/2022]
Abstract
Using the Xiphophorus fish melanoma model, we show a strong male bias for sunlight-induced malignant melanoma, consistent with that seen in the human population. To examine underlying factors, we exposed adult X. couchianus fish to a single, sublethal dose of UVB and measured circulating sex steroid hormones and expression of associated hormone receptor genes over a 24-h period. We found that a single exposure had profound effects on circulating levels of steroid hormones with significant decreases for all free sex steroids at 6 and 24 h and increases in conjugated 2-estradiol and 11-ketotestosterone at 6 and 24 h, respectively. Whereas ARα expression increased in male and female skin, neither ARβ nor either of the ERs showed significant responses to UVB in either sex. The rapid response of male androgens and their receptors in the skin after UVB irradiation implicates hormones in the male bias of skin cancer and suggests that the photoendocrine response immediately after UV exposure may be relevant to melanomagenesis.
Collapse
Affiliation(s)
- David L Mitchell
- Department of Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA; Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Baltzegar DA, Reading BJ, Douros JD, Borski RJ. Role for leptin in promoting glucose mobilization during acute hyperosmotic stress in teleost fishes. J Endocrinol 2014; 220:61-72. [PMID: 24194509 DOI: 10.1530/joe-13-0292] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Osmoregulation is critical for survival in all vertebrates, yet the endocrine regulation of this metabolically expensive process is not fully understood. Specifically, the function of leptin in the regulation of energy expenditure in fishes, and among ectotherms, in general, remains unresolved. In this study, we examined the effects of acute salinity transfer (72 h) and the effects of leptin and cortisol on plasma metabolites and hepatic energy reserves in the euryhaline fish, the tilapia (Oreochromis mossambicus). Transfer to 2/3 seawater (23 ppt) significantly increased plasma glucose, amino acid, and lactate levels relative to those in the control fish. Plasma glucose levels were positively correlated with amino acid levels (R2=0.614), but not with lactate levels. The mRNA expression of liver leptin A (lepa), leptin receptor (lepr), and hormone-sensitive and lipoprotein lipases (hsl and lpl) as well as triglyceride content increased during salinity transfer, but plasma free fatty acid and triglyceride levels remained unchanged. Both leptin and cortisol significantly increased plasma glucose levels in vivo, but only leptin decreased liver glycogen levels. Leptin decreased the expression of liver hsl and lpl mRNAs, whereas cortisol significantly increased the expression of these lipases. These findings suggest that hepatic glucose mobilization into the blood following an acute salinity challenge involves both glycogenolysis, induced by leptin, and subsequent gluconeogenesis of free amino acids. This is the first study to report that teleost leptin A has actions that are functionally distinct from those described in mammals acting as a potent hyperglycemic factor during osmotic stress, possibly in synergism with cortisol. These results suggest that the function of leptin may have diverged during the evolution of vertebrates, possibly reflecting differences in metabolic regulation between poikilotherms and homeotherms.
Collapse
Affiliation(s)
- David A Baltzegar
- Department of Biological Sciences, North Carolina State University, Campus Box 7617, Raleigh, North Carolina 27695-7617, USA
| | | | | | | |
Collapse
|
13
|
Seale AP, Yamaguchi Y, Johnstone WM, Borski RJ, Lerner DT, Grau EG. Endocrine regulation of prolactin cell function and modulation of osmoreception in the Mozambique tilapia. Gen Comp Endocrinol 2013; 192:191-203. [PMID: 23722201 DOI: 10.1016/j.ygcen.2013.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/11/2013] [Accepted: 05/14/2013] [Indexed: 01/06/2023]
Abstract
Prolactin (PRL) cells of the Mozambique tilapia, Oreochromis mossambicus, are osmoreceptors by virtue of their intrinsic osmosensitivity coupled with their ability to directly regulate hydromineral homeostasis through the actions of PRL. Layered upon this fundamental osmotic reflex is an array of endocrine control of PRL synthesis and secretion. Consistent with its role in fresh water (FW) osmoregulation, PRL release in tilapia increases as extracellular osmolality decreases. The hyposmotically-induced release of PRL can be enhanced or attenuated by a variety of hormones. Prolactin release has been shown to be stimulated by gonadotropin-releasing hormone (GnRH), 17-β-estradiol (E2), testosterone (T), thyrotropin-releasing hormone (TRH), atrial natriuretic peptide (ANP), brain-natriuretic peptide (BNP), C-type natriuretic peptide (CNP), ventricular natriuretic peptide (VNP), PRL-releasing peptide (PrRP), angiotensin II (ANG II), leptin, insulin-like growth factors (IGFs), ghrelin, and inhibited by somatostatin (SS), urotensin-II (U-II), dopamine, cortisol, ouabain and vasoactive intestinal peptide (VIP). This review is aimed at providing an overview of the hypothalamic and extra-hypothalamic hormones that regulate PRL release in euryhaline Mozambique tilapia, particularly in the context on how they may modulate osmoreception, and mediate the multifunctional actions of PRL. Also considered are the signal transduction pathways through which these secretagogues regulate PRL cell function.
Collapse
Affiliation(s)
- A P Seale
- Hawai'i Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Johnstone WM, Mills KA, Alyea RA, Thomas P, Borski RJ. Characterization of membrane receptor binding activity for cortisol in the liver and kidney of the euryhaline teleost, Mozambique tilapia (Oreochromis mossambicus). Gen Comp Endocrinol 2013; 192:107-14. [PMID: 23851043 DOI: 10.1016/j.ygcen.2013.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/11/2013] [Accepted: 06/19/2013] [Indexed: 11/22/2022]
Abstract
Glucocorticoids (GCs) regulate an array of physiological responses in vertebrates. Genomic GC actions mediated by nuclear steroid receptors require a lag time on the order of hours to days to generate an appreciable physiological response. Experimental evidence has accumulated that GCs, can also act rapidly through a nongenomic mechanism to modulate cellular physiology in vertebrates. Causal evidence in the Mozambique tilapia (Oreochromis mossambicus) suggests that the GC cortisol exerts rapid, nongenomic actions in the gills, liver, and pituitary of this euryhaline teleost, but the membrane receptor mediating these actions has not been characterized. Radioreceptor binding assays were conducted to identify a putative GC membrane receptor site in O. mossambicus. The tissue distribution, binding kinetics, and pharmacological signature of the GC membrane-binding activity were characterized. High affinity (Kd=9.527±0.001 nM), low-capacity (Bmax=1.008±0.116 fmol/mg protein) [(3)H] cortisol binding was identified on plasma membranes prepared from the livers and a lower affinity (Kd=30.08±2.373 nM), low capacity (Bmax=4.690±2.373 fmol/mg protein) binding was found in kidney membrane preparations. Competitors with high binding affinity for nuclear GC receptors, mifepristone (RU486), dexamethasone, and 11-deoxycorticosterone, displayed no affinity for the membrane GC receptor. The association and dissociation kinetics of [(3)H] cortisol binding to membranes were orders of magnitude faster (t1/2=1.7-2.6 min) than those for the intracellular (nuclear) GC receptor (t1/2=10.2h). Specific [(3)H] cortisol membrane binding was also detected in the gill and pituitary but not in brain tissue. This study represents the first characterization of a membrane GC receptor in fishes and one of only a few characterized in vertebrates.
Collapse
Affiliation(s)
- William M Johnstone
- Department of Biology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
15
|
Aruna A, Nagarajan G, Chang CF. Differential expression patterns and localization of glucocorticoid and mineralocorticoid receptor transcripts in the osmoregulatory organs of tilapia during salinity stress. Gen Comp Endocrinol 2012; 179:465-76. [PMID: 23085115 DOI: 10.1016/j.ygcen.2012.08.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 08/19/2012] [Accepted: 08/24/2012] [Indexed: 12/12/2022]
Abstract
The glucocorticoid receptor (GR) plays an essential role during seawater (SW) acclimation. However, the regulation of GR isoforms 1 and 2 (GR1 and GR2) and the mineralocorticoid receptor (MR) during SW acclimation is poorly understood. To address this, we localized and examined the GR1, GR2 and MR transcripts in the tilapia gill, kidney and intestine. Our results indicated that the GR1, GR2 and MR levels were increased in the kidney and intestine on day 1 in seawater (SW) fish, which is in agreement with the recognized osmoregulatory role of the corticosteroid receptors. The SW transfer increased the GR2 and MR transcripts in the gill on day 1 and 4, respectively. Surprisingly, no significant difference was obtained for the GR1 mRNA level. Analysis of the plasma parameters in freshwater (FW) and SW tilapia showed that the plasma cortisol levels were significantly increased at day 1 in the SW fish compared to the FW fish. This is the first study that focused on the spatial distribution of GR1, GR2 and MR in the osmoregulatory organs of freshwater (FW)- and SW-acclimated tilapia by in situ hybridization. Consistent with the Q-PCR results, the expression levels of the GR1, GR2 and MR transcripts were increased or decreased in the SW-acclimated tilapia's gill, kidney and intestine compared to the FW fish. We observed that GR1, GR2 and MR were localized in the branchial epithelial cells and chloride cells of the gill, proximal tubules of the kidney and columnar cells of the intestine. Together, these results indicate that the mobilization of corticosteroid receptors is dependent on the target tissue, salinity and exposure time.
Collapse
Affiliation(s)
- Adimoolam Aruna
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | | | | |
Collapse
|
16
|
Van Anholt RD, Spanings FAT, Nixon O, Wendelaar Bonga SE, Koven WM. The effects of arachidonic acid on the endocrine and osmoregulatory response of tilapia (Oreochromis mossambicus) acclimated to seawater and subjected to confinement stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:703-713. [PMID: 21874336 DOI: 10.1007/s10695-011-9552-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 08/18/2011] [Indexed: 05/31/2023]
Abstract
In previous studies in freshwater tilapia (Oreochromis mossambicus), dietary supplementation with arachidonic acid (ArA; 20:4n - 6) had considerable, opposing effects on the main ion-transporting enzyme Na(+)/K(+)-ATPase in gills and kidneys and changed the release of osmoregulatory hormones, such as cortisol. The present study was performed to assess the influence of dietary ArA on (1) the osmoregulatory capacity of tilapia acclimated to seawater (SW) (34‰) and (2) the osmoregulatory imbalance associated with acute stress. The increased ambient salinity was associated with significant alterations in the tissue fatty acid composition, particularly the n - 6 polyunsaturated fatty acids (PUFAs). Tissue levels of ArA were further increased as a result of dietary supplementation, whereas docosahexaenoic acid (DHA, 22:6n - 3) and eicosapentaenoic acid (EPA, 20:5n - 3) decreased in gills and kidneys. Basal plasma cortisol as well as lactate levels were elevated in the ArA-supplemented SW-acclimated tilapia compared with the control group. The 5 min of confinement (transient stress) increased plasma cortisol, glucose, and lactate levels with significantly higher levels in ArA-supplemented tilapia. Confinement was also associated with significantly elevated plasma osmolality, sodium, chloride, and potassium levels. ArA-supplemented tilapia showed markedly lower ionic disturbances after confinement, suggesting that dietary ArA can attenuate the hydromineral imbalance associated with acute stress. These results emphasize the involvement of ArA and/or its metabolites in the endocrine and osmoregulatory processes and the response to confinement stress.
Collapse
Affiliation(s)
- R D Van Anholt
- Department of Animal Ecology and Ecophysiology, Faculty of Science, Radboud University Nijmegen, Toernooiveld 1, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Kim MA, Kim DS, Sohn YC. Characterization of two functional glucocorticoid receptors in the marine medaka Oryzias dancena. Gen Comp Endocrinol 2011; 171:341-9. [PMID: 21362423 DOI: 10.1016/j.ygcen.2011.02.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 02/03/2011] [Accepted: 02/21/2011] [Indexed: 01/01/2023]
Abstract
The cDNAs that encode the glucocorticoid receptors odGR1 and odGR2 were cloned from a euryhaline teleost, the marine medaka (Oryzias dancena). The open reading frames of odGR1 and odGR2 encode 790 and 783 amino acids, respectively, and show a sequence identity of 46% with each other. When inter- and intra-species comparisons of the GR domains were made, the N-terminal AF-1 (A/B) and hinge (D) domains showed relatively low identities, whereas the DNA-binding (C) domain (DBD) and ligand-binding (E) domain showed relatively high identities. Through phylogenetic analysis, we revealed that odGR1 and odGR2 belong to the teleost GR1 and GR2 groups, respectively. Transfection of odGR1 or odGR2 expression vectors into COS-7 cells along with a reporter vector demonstrated that cortisol and dexamethasone dose-dependently induce transcriptional activity in both GRs. As described in other teleostean fish, the transactivity of odGR2 was more sensitive at far lower concentrations of ligands than the transactivity of odGR1. When treated with aldosterone, the reporter gene was activated in COS-7 cells transfected with odGR2 but not in cells transfected with odGR1. RU486 inhibited transactivation by both GRs, but odGR2 was less sensitive to the inhibitor. Interestingly, alterations in coregulators, GRIP-1 and SMILE, mediated transactivation that was more drastic for odGR2 than odGR1. A nine-amino acid insertion (WRARQNTDG) in the DBD of odGR1 had a weak but significant influence on the transactivity of odGR2 with respect to responsiveness to agonists or coregulators. Taken together, these results indicate that the two odGRs possess distinct features not only for ligand sensitivity but also for preferential coregulator recruitment.
Collapse
Affiliation(s)
- Mi Ae Kim
- Department of Marine Molecular Biotechnology, Gangneung-Wonju National University, Gangneung 210-702, Republic of Korea
| | | | | |
Collapse
|
18
|
Breves JP, Fox BK, Pierce AL, Hirano T, Grau EG. Gene expression of growth hormone family and glucocorticoid receptors, osmosensors, and ion transporters in the gill during seawater acclimation of Mozambique tilapia, Oreochromis mossambicus. ACTA ACUST UNITED AC 2010; 313:432-41. [PMID: 20623800 DOI: 10.1002/jez.613] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study characterized endocrine and ionoregulatory responses accompanying seawater (SW) acclimation in Mozambique tilapia (Oreochromis mossambicus). Changes in plasma hormones and gene expression of hormone receptors, putative osmosensors, and ion transporters in the gill were measured. Transfer of freshwater (FW)-acclimated tilapia to SW resulted in a marked elevation in plasma osmolality and a significant rise in plasma growth hormone (GH) levels at 12 hr and 14 days after transfer. Significant reductions in plasma prolactin (PRL(177) and PRL(188)) levels also occurred in SW-transferred fish; no effect of transfer upon plasma cortisol or insulin-like growth factor I was observed. Gene expression of GH receptor increased strongly 6 hr after transfer, whereas PRL receptor was lower than controls at 12 hr. By contrast, mRNA levels of somatolactin and glucocorticoid receptors were unaffected by SW transfer. Osmotic stress transcription factor 1 mRNA levels rose significantly between 3 and 12 hr, whereas the calcium-sensing receptor was unaffected. Aquaporin-3 gene expression was strongly down-regulated during SW acclimation from 12 hr until the conclusion of the experiment. Na(+)/K(+)/2Cl(-) cotransporter gene expression increased significantly 3 hr after transfer, whereas expression of Na(+)/Cl(-) cotransporter, specific to FW-type chloride cells, declined by 6 hr into SW acclimation. The response of Na(+)/H(+) exchanger was less pronounced, but showed a similar pattern to that of the Na(+)/Cl(-) cotransporter. These results suggest that acquisition of hyposmoregulatory mechanisms in Mozambique tilapia entails the coordinated interaction of systemic hormones with local factors in the gill, including hormone receptors, ion transporters, and osmosensors.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | | | | | | | | |
Collapse
|
19
|
Kammerer BD, Cech JJ, Kültz D. Rapid changes in plasma cortisol, osmolality, and respiration in response to salinity stress in tilapia (Oreochromis mossambicus). Comp Biochem Physiol A Mol Integr Physiol 2010; 157:260-5. [PMID: 20647048 DOI: 10.1016/j.cbpa.2010.07.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 07/05/2010] [Accepted: 07/07/2010] [Indexed: 11/24/2022]
Abstract
We elucidated a time course for cortisol release in tilapia as it corresponds to changes in plasma osmolytes and respiration. Following exposure of freshwater (FW) tilapia to 25 per thousand seawater (SW), we measured plasma osmolality, [Na(+)], [K(+)], [Cl(-)], hematocrit, cortisol concentration, oxygen-consumption rate (MO2), and ventilation frequency over 5days and compared them to FW control fish. Cortisol increased rapidly by 3h and remained elevated for 3days. Plasma osmolality, [Na(+)], and [Cl(-)] were elevated at 6-8h, peaked 24h following SW exposure, and then decreased to near-FW levels by 3days. MO2 increased at 24h post-SW exposure relative to FW, while ventilation frequency increased by 3h. Overall, we interpret changes in cortisol as resulting from a change in salinity, in contrast to changes in plasma solute concentrations that could be due to adjustments resulting from the fish's cortisol response as it faces osmoregulatory distress. Increases in oxygen-consumption rate at 24h and ventilation frequency at 3h are likely as a result of the cellular stress response occurring during salinity stress. No significant changes in blood hematocrit were observed, which suggests that tilapia are capable of rapidly counteracting dehydration during acute hyperosmotic stress.
Collapse
Affiliation(s)
- Brittany D Kammerer
- Physiological Genomics Group, Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | | | |
Collapse
|
20
|
McGuire A, Aluru N, Takemura A, Weil R, Wilson JM, Vijayan MM. Hyperosmotic shock adaptation by cortisol involves upregulation of branchial osmotic stress transcription factor 1 gene expression in Mozambique Tilapia. Gen Comp Endocrinol 2010; 165:321-9. [PMID: 19651127 DOI: 10.1016/j.ygcen.2009.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 07/21/2009] [Accepted: 07/24/2009] [Indexed: 10/20/2022]
Abstract
The Mozambique tilapia (Oreochromis mossambicus) is a euryhaline species that does not survive direct seawater exposure. Cortisol is involved in re-establishing electrolyte homeostasis in seawater and is thought to play a role in allowing tilapia to cope with abrupt seawater exposure, but the mechanism(s) are far from clear. Recently, osmotic stress transcription factor 1 (OSTF1) was identified as a key signaling molecule involved in hyperosmotic stress adaptation in tilapia. Consequently, we tested the hypothesis that upregulation of OSTF1 expression by cortisol is a key response for hyperosmotic stress adaptation in tilapia. Fish were exposed to different salinities over a 24h period, while a major electrolyte disturbance and mortality was observed only with full-strength seawater exposure. Therefore, we administered cocoa butter implants of cortisol (50mg/kg) intraperitoneally to tilapia maintained in fresh water and after three days exposed these fish to full-strength seawater. There was 50% mortality in the control fish upon seawater exposure, but this was abolished by cortisol treatment. Abrupt seawater exposure did not affect plasma cortisol levels, while, as expected, exogenous administration of this steroid elevated plasma cortisol levels both in fresh water and seawater. Cortisol treatment significantly induced OSTF1 gene expression in fresh water tilapia, and also enhanced further the seawater-induced OSTF1 mRNA abundance. Plasma osmolality decreased, while gill Na(+)/K(+)-ATPase activity was suppressed in the cortisol group in seawater compared to the sham group. This corresponded with a significant reduction in gill ionocyte size and Na(+)/K(+)-ATPase activity and protein expression after seawater exposure. Cortisol did not modify liver metabolism, but significantly suppressed gill metabolic capacity in seawater. Overall, cortisol adapts tilapia to a hyperosmotic shock associated with abrupt seawater exposure. This involves upregulation of OSTF1 gene expression and a concomitant suppression of branchial metabolism in tilapia.
Collapse
Affiliation(s)
- Alison McGuire
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
21
|
MacIver B, Cutler CP, Yin J, Hill MG, Zeidel ML, Hill WG. Expression and functional characterization of four aquaporin water channels from the European eel (Anguilla anguilla). ACTA ACUST UNITED AC 2009; 212:2856-63. [PMID: 19684221 DOI: 10.1242/jeb.025882] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The European eel is a euryhaline teleost which has been shown to differentially up- and downregulate aquaporin (AQP) water channels in response to changes in environmental salinity. We have characterized the transport properties of four aquaporins localized to osmoregulatory organs - gill, esophagus, intestine and kidney. By sequence comparison these four AQP orthologs resemble human AQP1 (eel AQP1), AQP3 (eel AQP3) and AQP10 (AQPe). The fourth member is a duplicate form of AQP1 (AQP1dup) thought to arise from a duplication of the teleost genome. Using heterologous expression in Xenopus oocytes we demonstrate that all four eel orthologs transport water and are mercury inhibitable. Eel AQP3 and AQPe also transport urea and glycerol, making them aquaglyceroporins. Eel AQP3 is dramatically inhibited by extracellular acidity (91% and 69% inhibition of water and glycerol transport respectively at pH 6.5) consistent with channel gating by protons. Maximal water flux of eel AQP3 occurred around pH 8.2 - close to the physiological pH of plasma in the eel. Exposure of AQP-expressing oocytes to heavy metals revealed that eel AQP3 is highly sensitive to extracellular nickel and zinc (88.3% and 86.3% inhibition, respectively) but less sensitive to copper (56.4% inhibition). Surprisingly, copper had a stimulatory effect on eel AQP1 (153.7% activity of control). Copper, nickel and zinc did not affect AQP1dup or AQPe. We establish that all four eel AQP orthologs have similar transport profiles to their human counterparts, with eel AQP3 exhibiting some differences in its sensitivity to metals. This is the first investigation of the transport properties and inhibitor sensitivity of salinity-regulated aquaporins from a euryhaline species. Our results indicate a need to further investigate the deleterious effects of metal pollutants on AQP-containing epithelial cells of the gill and gastrointestinal tract at environmentally appropriate concentrations.
Collapse
Affiliation(s)
- Bryce MacIver
- Nephrology Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
22
|
Gravel A, Wilson JM, Pedro DFN, Vijayan MM. Non-steroidal anti-inflammatory drugs disturb the osmoregulatory, metabolic and cortisol responses associated with seawater exposure in rainbow trout. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:481-90. [PMID: 19049905 DOI: 10.1016/j.cbpc.2008.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 11/03/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
Abstract
While detectable levels of non-steroidal anti-inflammatory drugs (NSAIDs) have been reported in various aquatic habitats, little is known about the mechanism of action of these pharmaceutical drugs on organisms. Recently we demonstrated that NSAIDs disrupt corticosteroidogenesis in rainbow trout (Oncorhynchus mykiss). As cortisol is a seawater adapting hormone, we hypothesized that exposure to NSAIDs will impair the hyposmoregulatory capacity of this species in seawater. Trout were exposed to either waterborne salicylate or ibuprofen in fresh water for four days and the salinity switched to 50% seawater for two days, followed by 100% seawater and sampled two days later. NSAIDs disturbed the seawater-induced elevation in plasma osmolality and concentrations of Cl(-) and K(+), but not Na(+) in rainbow trout. This was accompanied by enhanced gill glycolytic capacity and reduced liver glycogen content in seawater with NSAIDs, suggesting enhanced metabolic demand to fuel ion pumps. While salicylate did not affect gill Na(+)/K(+)-ATPase activity, ibuprofen inhibited the seawater-induced elevation in gill Na(+)/K(+)-ATPase activity. The drugs also further enhanced the seawater-induced elevation in plasma cortisol concentration; this response was greater with salicylate compared to ibuprofen. There were no changes in the transcript levels of key proteins involved in steroidogenesis with NSAIDs, whereas gill and brain GR protein expression expression was reduced with salicylate. Altogether, salicylate and ibuprofen exposures impaired the hyposmoregulatory capacity of rainbow trout in seawater, but the mode of action of the two drugs in bringing about these changes appears distinct in trout.
Collapse
Affiliation(s)
- Amélie Gravel
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | |
Collapse
|
23
|
Acerete L, Balasch JC, Castellana B, Redruello B, Roher N, Canario AV, Planas JV, MacKenzie S, Tort L. Cloning of the glucocorticoid receptor (GR) in gilthead seabream (Sparus aurata). Differential expression of GR and immune genes in gilthead seabream after an immune challenge. Comp Biochem Physiol B Biochem Mol Biol 2007; 148:32-43. [PMID: 17544309 DOI: 10.1016/j.cbpb.2007.04.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/19/2007] [Accepted: 04/19/2007] [Indexed: 01/22/2023]
Abstract
In order to determine the cortisol response after an immune challenge in the gilthead seabream (Sparus aurata), a cortisol receptor (GR) was cloned, sequenced and its expression determined after lipopolysaccharide (LPS) treatment. To clone the gilthead seabream GR (sbGR), consecutive PCR amplifications and screening of a pituitary cDNA library were performed. We obtained a clone of 4586 bp encoding a 784aa protein. Northern blot analysis from head kidney, heart and intestine revealed that the full length sbGR mRNA was approximately 6.5 Kb. A LPS treatment, used as an acute stress model, was employed to characterise the expression of sbGR and some selected genes involved in the immune response (IL-1beta, TNF-alpha, Mx protein, cathepsin D and PPAR-gamma). All genes were expressed in all tissues examined and responses were tissue and time dependent revealing differential gene expression profiles after LPS administration. Furthermore, analysis of plasma cortisol levels after LPS injection, showed an acute response to inflammatory stress with a significant increase two and six h after injection, recovering to basal levels 12 h post-stress in all LPS concentrations tested.
Collapse
Affiliation(s)
- L Acerete
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Facultat de Ciències, 08193 Bellaterra, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tipsmark CK, Luckenbach JA, Madsen SS, Borski RJ. IGF-I and branchial IGF receptor expression and localization during salinity acclimation in striped bass. Am J Physiol Regul Integr Comp Physiol 2007; 292:R535-43. [PMID: 16959864 DOI: 10.1152/ajpregu.00915.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The initial response of the IGF-I system and the expression and cellular localization of IGF type-I receptor (IGF-IR) were studied in the gill of a euryhaline teleost during salinity acclimation. Exposure of striped bass ( Morone saxatilis) to hyperosmotic and hypoosmotic challenges induced small, transitory (<24 h) deflections in hydromineral balance. Transfer from freshwater (FW) to seawater (SW) induced an initial decrease in plasma IGF-I levels after 24 h in both fed and fasted fish. There was an overall decrease in liver IGF-I mRNA levels after SW transfer, suggesting that decreased plasma levels may be due to a decline in hepatic IGF-I synthesis. No changes were observed in gill IGF-I mRNA, but SW transfer induced an increase in gill IGF-IR mRNA after 24 h. Transfer from SW to FW induced an increase in plasma IGF-I levels in fasted fish. In fed fish, no significant changes were observed in either plasma IGF-I, liver, or gill IGF-I mRNA, or gill IGF-IR mRNA levels. In a separate experiment, FW-acclimated fish were injected with saline or IGF-I prior to a 24-h SW challenge. Rapid regain of osmotic balance following SW transfer was hindered by IGF-I. Immunohistochemistry revealed for the first time in teleosts that IGF-IR and Na+-K+-ATPase are localized in putative chloride cells at the base of the lamellae, identifying these cells in the gill as a target for IGF-I and IGF-II. Overall the data suggest a hyperosmoregulatory role of IGF-I in this species.
Collapse
|
25
|
Prunet P, Sturm A, Milla S. Multiple corticosteroid receptors in fish: from old ideas to new concepts. Gen Comp Endocrinol 2006; 147:17-23. [PMID: 16545810 DOI: 10.1016/j.ygcen.2006.01.015] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 12/23/2005] [Accepted: 01/05/2006] [Indexed: 10/24/2022]
Abstract
The effect of corticosteroid hormones in fish are mediated through intracellular receptors that act as ligand-binding transcription factors. Many studies have been devoted to cortisol binding using radiolabeled ligand in fish and allowed characterization of a single class of high affinity binding sites in various tissues. Molecular characterization of cortisol receptors has only been initiated recently by cloning the different receptor forms: Following a isolation of a first glucocorticoid receptor (GR), a mineralocorticoid receptor (MR) was described and the presence of various GR isoforms was recently reported. Sequence comparison and phylogenetic analysis of these sequences confirm that fish possess both GR and MR and that GR gene is duplicated. The importance of these various corticosteroid receptor forms is also illustrated by analysis of their transcriptional activity. When tested in human cell lines, these receptors showed functionally distinct actions on GR-sensitive promotors, thus suggesting a more complicated corticosteroid signaling system than initially anticipated from binding studies. These results also suggest that, whereas cortisol is certainly the physiological ligand for GR, this may not be the case for MR which showed high sensitivity for deoxycorticosterone (DOC) and aldosterone. As this last hormone is probably absent in fish, these results raise the question as to whether DOC could be a physiological ligand for MR in fish. Information on DOC effect in fish is very scarce and clarification of the differential osmoregulatory roles of cortisol and DOC in fish needs ellucidation. This will require analysis of all actors of the corticosteroid signaling system at pre-receptor, receptor, and post-receptor levels.
Collapse
Affiliation(s)
- P Prunet
- INRA SCRIBE, IFR 140, Campus de Beaulieu, 35042 Rennes Cedex, France.
| | | | | |
Collapse
|
26
|
Takahashi H, Sakamoto T, Hyodo S, Shepherd BS, Kaneko T, Grau EG. Expression of glucocorticoid receptor in the intestine of a euryhaline teleost, the Mozambique tilapia (Oreochromis mossambicus): Effect of seawater exposure and cortisol treatment. Life Sci 2006; 78:2329-35. [PMID: 16376384 DOI: 10.1016/j.lfs.2005.09.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 09/20/2005] [Indexed: 11/21/2022]
Abstract
Cortisol plays an important role in controlling intestinal water and ion transport in teleosts possibly through glucocorticoid receptor (GR) and/or mineralocorticoid receptor. To better understand the role of GR in the teleost intestine, in a euryhaline tilapia, Oreochromis mossambicus, we examined (1) the intestinal localizations of GR; (2) the effects of environmental salinity challenge and cortisol treatment on GR mRNA expression. The mRNA abundance of GR in the posterior intestinal region of tilapia was found to be higher than that in the anterior and middle intestine. In the posterior intestine, GR appears to be localized in the mucosal layer. GR mRNA levels in the posterior intestine were elevated after exposure of freshwater fish to seawater for 7 days following an increase in plasma cortisol. Similarly, cortisol implantation in freshwater tilapia for 7 days elevated the intestinal GR mRNA. These results indicate that seawater acclimation is accompanied by upregulation of GR mRNA abundance in intestinal tissue, possibly as a consequence of the elevation of cortisol levels. In contrast, a single intraperitoneal injection of cortisol into freshwater tilapia decreased intestinal GR mRNA. This downregulation of the GR mRNA by cortisol suggests a dual mode of autoregulation of GR expression by cortisol.
Collapse
Affiliation(s)
- Hideya Takahashi
- Ushimado Marine Laboratory, Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama, 701-4303, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Fiol DF, Kültz D. Rapid hyperosmotic coinduction of two tilapia (Oreochromis mossambicus) transcription factors in gill cells. Proc Natl Acad Sci U S A 2005; 102:927-32. [PMID: 15642943 PMCID: PMC545544 DOI: 10.1073/pnas.0408956102] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Indexed: 11/18/2022] Open
Abstract
Gills of euryhaline teleosts are excellent models for studying osmotic-stress adaptation because they directly contact the aquatic environment and are an important effector tissue during osmotic stress. We acclimated tilapia (Oreochromis mossambicus) from fresh water (FW) to seawater (SW); performed suppression subtractive hybridization of gill mRNAs; and identified two transcription factors, osmotic stress transcription factor 1 (OSTF1) and the tilapia homolog of transcription factor II B (TFIIB), that are rapidly and transiently induced during hyperosmotic stress. mRNA levels increase 6-fold for OSTF1 and 4-fold for TFIIB, and they reach maxima 2 h after SW transfer. Protein levels increase 7.5-fold for OSTF1 and 9-fold for TFIIB, and they reach maxima 4 h after SW transfer. Induction of OSTF1 and TFIIB increases gradually with increasing salinity. Induction of OSTF1 and TFIIB is specific for osmotic stress and absent during oxidative stress (1 mM H2O2) or heat shock (+10 degrees C). Bioinformatic analysis of OSTF1 reveals that it is a transcription factor of the TGF-beta-stimulated clone 22/GILZ family. Because some mammalian homologs are strongly induced by glucocorticoids, OSTF1 may represent the molecular link between the SW hormone cortisol and transcriptional regulation of ion transport and cell differentiation in teleost gills. Coinduction of OSTF1 and TFIIB may serve to recruit TFIIB preferentially to OSTF1 target genes during hyperosmotic stress and compensate for reduced rates of transcription resulting from salt-induced chromatin compaction. We conclude that OSTF1 and TFIIB are critical elements of osmosensory signal transduction in euryhaline teleosts that mediate osmotic adaptation by means of transcriptional regulation.
Collapse
Affiliation(s)
- Diego F Fiol
- Physiological Genomics Group, Department of Animal Science, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
28
|
Evans DH, Piermarini PM, Choe KP. The Multifunctional Fish Gill: Dominant Site of Gas Exchange, Osmoregulation, Acid-Base Regulation, and Excretion of Nitrogenous Waste. Physiol Rev 2005; 85:97-177. [PMID: 15618479 DOI: 10.1152/physrev.00050.2003] [Citation(s) in RCA: 1653] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The fish gill is a multipurpose organ that, in addition to providing for aquatic gas exchange, plays dominant roles in osmotic and ionic regulation, acid-base regulation, and excretion of nitrogenous wastes. Thus, despite the fact that all fish groups have functional kidneys, the gill epithelium is the site of many processes that are mediated by renal epithelia in terrestrial vertebrates. Indeed, many of the pathways that mediate these processes in mammalian renal epithelial are expressed in the gill, and many of the extrinsic and intrinsic modulators of these processes are also found in fish endocrine tissues and the gill itself. The basic patterns of gill physiology were outlined over a half century ago, but modern immunological and molecular techniques are bringing new insights into this complicated system. Nevertheless, substantial questions about the evolution of these mechanisms and control remain.
Collapse
Affiliation(s)
- David H Evans
- Department of Zoology, University of Florida, Gainesville 32611, USA.
| | | | | |
Collapse
|
29
|
|
30
|
Hirose S, Kaneko T, Naito N, Takei Y. Molecular biology of major components of chloride cells. Comp Biochem Physiol B Biochem Mol Biol 2004; 136:593-620. [PMID: 14662288 DOI: 10.1016/s1096-4959(03)00287-2] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Current understanding of chloride cells (CCs) is briefly reviewed with emphasis on molecular aspects of their channels, transporters and regulators. Seawater-type and freshwater-type CCs have been identified based on their shape, location and response to different ionic conditions. Among the freshwater-type CCs, subpopulations are emerging that are implicated in the uptake of Na(+), Cl(-) and Ca(2+), respectively, and can be distinguished by their shape of apical crypt and affinity for lectins. The major function of the seawater CC is transcellular secretion of Cl(-), which is accomplished by four major channels and transporters: (1). CFTR Cl(-) channel, (2). Na(+),K(+)-ATPase, (3). Na(+)/K(+)/2Cl(-) cotransporter and (4). a K(+) channel. The first three components have been cloned and characterized, but concerning the K(+) channel that is essential for the continued generation of the driving force by Na(+),K(+)-ATPase, only one candidate is identified. Although controversial, freshwater CCs seem to perform the uptake of Na(+), Cl(-) and Ca(2+) in a manner analogous to but slightly different from that seen in the absorptive epithelia of mammalian kidney and intestine since freshwater CCs face larger concentration gradients than ordinary epithelial cells. The components involved in these processes are beginning to be cloned, but their CC localization remains to be established definitively. The most important yet controversial issue is the mechanism of Na(+) uptake. Two models have been postulated: (i). the original one involves amiloride-sensitive electroneutral Na(+)/H(+) exchanger (NHE) with the driving force generated by Na(+),K(+)-ATPase and carbonic anhydrase (CA) and (ii). the current model suggests that Na(+) uptake occurs through an amiloride-sensitive epithelial sodium channel (ENaC) electrogenically coupled to H(+)-ATPase. While fish ENaC remains to be identified by molecular cloning and database mining, fish NHE has been cloned and shown to be highly expressed on the apical membrane of CCs, reviving the original model. The CC is also involved in acid-base regulation. Analysis using Osorezan dace (Tribolodon hakonensis) living in a pH 3.5 lake demonstrated marked inductions of Na(+),K(+)-ATPase, CA-II, NHE3, Na(+)/HCO(3)(-) cotransporter-1 and aquaporin-3 in the CCs on acidification, leading to a working hypothesis for the mechanism of Na(+) retention and acid-base regulation.
Collapse
Affiliation(s)
- Shigehisa Hirose
- Department of Biological Sciences, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | | | | | | |
Collapse
|