1
|
Thakur M, Mewara A, Lakshmi P, Guleria S, Khurana S. Evaluation of loop mediated isothermal amplification, quantitative real-time PCR, conventional PCR methods for identifying Ascaris lumbricoides in human stool samples. Diagn Microbiol Infect Dis 2025; 112:116808. [PMID: 40147149 DOI: 10.1016/j.diagmicrobio.2025.116808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Ascariasis, caused by Ascaris lumbricoides, is a widespread parasitic infection. Traditional diagnostic methods, such as microscopy, can miss infections with low worm burdens, leading to false negatives. This study compares four diagnostic methods-microscopy, conventional PCR, real-time PCR, and loop-mediated isothermal amplification (LAMP)-for detecting A. lumbricoides in 400 stool samples from children aged 2-16. Microscopy methods (direct wet mount, Kato-Katz, and concentration) detected 17, 23, and 21 positive samples, respectively. Molecular techniques identified 23 positive samples by conventional PCR, 29 by real-time PCR, and 25 by LAMP. Notably, real-time PCR detected two samples missed by microscopy, while conventional PCR failed to detect three samples positive by real-time PCR and LAMP. In limit-of-detection assays, conventional PCR detected A. lumbricoides DNA down to 150 pg, while qPCR and LAMP could detect as low as 15 fg. For egg number analysis, conventional PCR detected DNA from 100 eggs, while qPCR and LAMP identified DNA from just 10 eggs. The methods specifically targeted A. lumbricoides, without cross-reacting with other co-occurring parasites. Sensitivity and specificity analysis revealed that microscopy had sensitivities of 81.3 %, while conventional PCR, qPCR, and LAMP had sensitivities of 81.1 %, 99.2 %, and 88.1 %, respectively. Microscopy and conventional PCR had 100 % specificity, while qPCR and LAMP had 99.2 % and 99.9 % specificity. While Kato-Katz is advantageous for detecting active infections, molecular techniques, particularly LAMP's field applicability in resource-limited settings makes it a promising tool for surveillance and control of low-intensity infections.
Collapse
Affiliation(s)
- Mamta Thakur
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh
| | - Abhishek Mewara
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh
| | - Pvm Lakshmi
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research, Chandigarh
| | - Sucheta Guleria
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh
| | - Sumeeta Khurana
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh.
| |
Collapse
|
2
|
Stefanov BA, Nowacki M. Functions and mechanisms of eukaryotic RNA-guided programmed DNA elimination. Biochem Soc Trans 2025; 53:BST20253006. [PMID: 40305257 DOI: 10.1042/bst20253006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/08/2025] [Indexed: 05/02/2025]
Abstract
Many eukaryotic organisms, from ciliates to mammals, employ programmed DNA elimination during their postmeiotic reproduction. The process removes specific regions from the somatic DNA and has broad functions, including the irreversible silencing of genes, sex determination, and genome protection from transposable elements or integrating viruses. Multiple mechanisms have evolved that explain the sequence selectivity of the process. In some cases, the eliminated sequences lack centromeres and are flanked by conserved sequence motifs that are specifically recognized and cleaved by designated nucleases. Upon cleavage, all DNA fragments that lack centromeres are lost during the following mitosis. Alternatively, specific sequences can be destined for elimination by complementary small RNAs (sRNAs) as in some ciliates. These sRNAs enable a PIWI-mediated recruitment of chromatin remodelers, followed up by the precise positioning of a cleavage complex formed from a transposase like PiggyBac or Tc1. Here, we review the known molecular interplay of the cellular machinery that is involved in precise sRNA-guided DNA excision, and additionally, we highlight prominent knowledge gaps. We focus on the modes through which sRNAs enable the precise localization of the cleavage complex, and how the nuclease activity is controlled to prevent off-target cleavage. A mechanistic understanding of this process could enable the development of novel eukaryotic genome editing tools.
Collapse
Affiliation(s)
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern 3012, Switzerland
| |
Collapse
|
3
|
Mattiucci S, Palomba M, Belli B, Aco-Alburqueque R, Cipriani P, Roca-Gerones X, Santoro M, Webb SC, Nascetti G. Hybridization and introgression of the mitochondrial genome between the two species Anisakis pegreffii and A. simplex (s.s.) using a wide genotyping approach: evolutionary and ecological implications. Parasitology 2025:1-21. [PMID: 40181623 DOI: 10.1017/s0031182025000228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Anisakis pegreffii and A. simplex (s.s.) are the two zoonotic anisakids infecting cetaceans as well as pelagic/demersal fish and squids. In European waters, A. pegreffii prevails in the Mediterranean Sea, while A. simplex (s.s.) in the NE Atlantic Ocean. Abiotic conditions likely play a significant role in shaping their geographical distribution. The Iberian Atlantic and Alboran Sea waters are sympatric areas of the two species. A total of 429 adults and L3 stage from both sympatric and allopatric areas were studied by a wide nuclear genotyping approach (including newly and previously found diagnostic single nucleotide polymorphisms (SNPs) at nuclear DNA (nDNA) and microsatellite DNA loci) and sequenced at mitochondrial DNA (mtDNA) cox2. Admixture between the two species was detected in the sympatric areas studied by STRUCTURE Bayesian analysis; NEWHYBRIDS revealed different categories of hybridization between the two species, representing approximately 5%. A tendency for F1 female hybrids to interbreed with the parental species at the geographical distribution limits of both species was observed. This finding suggests that hybridization occurs when the two parental species significantly differ in abundance. Mitochondrial introgression of A. simplex (s.s.) in A. pegreffii from Mediterranean waters was also detected, likely as a result of past and/or paleo-introgression events. The high level of genetic differentiation between the two species and their backcrosses indicates that, despite current hybridization, reproductive isolation which maintains evolutionary boundaries between the two species, exists. Possible causes of hybridization phenomena are attempted, as well as their evolutionary and ecological implications, also considering a sea warming scenario in European waters.
Collapse
Affiliation(s)
- Simonetta Mattiucci
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
| | - Marialetizia Palomba
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Viterbo, Italy
| | - Beatrice Belli
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
| | - Renato Aco-Alburqueque
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paolo Cipriani
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
- Institute of Marine Research (IMR), Nordnes, Bergen, Norway
| | - Xavier Roca-Gerones
- Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Mario Santoro
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Stephen C Webb
- Private Bag 2, Nelson 7042, Cawthron Institute, Nelson, New Zealand
| | - Giuseppe Nascetti
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Viterbo, Italy
| |
Collapse
|
4
|
Macadangdang BR, Wang Y, Woodward C, Revilla JI, Shaw BM, Sasaninia K, Makanani SK, Berruto C, Ahuja U, Miller JF. Targeted protein evolution in the gut microbiome by diversity-generating retroelements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.621889. [PMID: 39605476 PMCID: PMC11601372 DOI: 10.1101/2024.11.15.621889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Diversity-generating retroelements (DGRs) accelerate evolution by rapidly diversifying variable proteins. The human gastrointestinal microbiota harbors the greatest density of DGRs known in nature, suggesting they play adaptive roles in this environment. We identified >1,100 unique DGRs among human-associated Bacteroides species and discovered a subset that diversify adhesive components of Type V pili and related proteins. We show that Bacteroides DGRs are horizontally transferred across species, that some are highly active while others are tightly controlled, and that they preferentially alter the functional characteristics of ligand-binding residues on adhesive organelles. Specific variable protein sequences are enriched when Bacteroides strains compete with other commensal bacteria in gnotobiotic mice. Analysis of >2,700 DGRs from diverse phyla in mother-infant pairs shows that Bacteroides DGRs are preferentially transferred to vaginally delivered infants where they actively diversify. Our observations provide a foundation for understanding the roles of stochastic, targeted genome plasticity in shaping host-associated microbial communities.
Collapse
Affiliation(s)
- Benjamin R. Macadangdang
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
- California NanoSystems Institute, Los Angeles, CA, United States
| | - Yanling Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States
| | - Cora Woodward
- California NanoSystems Institute, Los Angeles, CA, United States
| | - Jessica I. Revilla
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bennett M. Shaw
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kayvan Sasaninia
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States
| | - Sara K. Makanani
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Chiara Berruto
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States
| | - Umesh Ahuja
- California NanoSystems Institute, Los Angeles, CA, United States
| | - Jeff F. Miller
- California NanoSystems Institute, Los Angeles, CA, United States
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Lead contact
| |
Collapse
|
5
|
Estrem B, Davis R, Wang J. End resection and telomere healing of DNA double-strand breaks during nematode programmed DNA elimination. Nucleic Acids Res 2024; 52:8913-8929. [PMID: 38953168 PMCID: PMC11347171 DOI: 10.1093/nar/gkae579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
Most DNA double-strand breaks (DSBs) are harmful to genome integrity. However, some forms of DSBs are essential to biological processes, such as meiotic recombination and V(D)J recombination. DSBs are also required for programmed DNA elimination (PDE) in ciliates and nematodes. In nematodes, the DSBs are healed with telomere addition. While telomere addition sites have been well characterized, little is known regarding the DSBs that fragment nematode chromosomes. Here, we used embryos from the human and pig parasitic nematode Ascaris to characterize the DSBs. Using END-seq, we demonstrate that DSBs are introduced before mitosis, followed by extensive end resection. The resection profile is unique for each break site, and the resection generates 3'-overhangs before the addition of neotelomeres. Interestingly, telomere healing occurs much more frequently on retained DSB ends than on eliminated ends. This biased repair of the DSB ends may be due to the sequestration of the eliminated DNA into micronuclei, preventing neotelomere formation at their ends. Additional DNA breaks occur within the eliminated DNA in both Ascaris and Parascaris, ensuring chromosomal breakage and providing a fail-safe mechanism for PDE. Overall, our data indicate that telomere healing of DSBs is specific to the break sites responsible for nematode PDE.
Collapse
Affiliation(s)
- Brandon Estrem
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jianbin Wang
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
6
|
Sullivan W. Remarkable chromosomes and karyotypes: A top 10 list. Mol Biol Cell 2024; 35:pe1. [PMID: 38517328 PMCID: PMC11064663 DOI: 10.1091/mbc.e23-12-0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
Chromosomes and karyotypes are particularly rich in oddities and extremes. Described below are 10 remarkable chromosomes and karyotypes sprinkled throughout the tree of life. These include variants in chromosome number, structure, and dynamics both natural and engineered. This versatility highlights the robustness and tolerance of the mitotic and meiotic machinery to dramatic changes in chromosome and karyotype architecture. These examples also illustrate that the robustness comes at a cost, enabling the evolution of chromosomes that subvert mitosis and meiosis.
Collapse
Affiliation(s)
- William Sullivan
- Department of MCD Biology, University of California, Santa Cruz, CA 95064
| |
Collapse
|
7
|
Estrem B, Davis RE, Wang J. End resection and telomere healing of DNA double-strand breaks during nematode programmed DNA elimination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585292. [PMID: 38559121 PMCID: PMC10980081 DOI: 10.1101/2024.03.15.585292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Most DNA double-strand breaks (DSBs) are harmful to genome integrity. However, some forms of DSBs are essential to biological processes, such as meiotic recombination and V(D)J recombination. DSBs are also required for programmed DNA elimination (PDE) in ciliates and nematodes. In nematodes, the DSBs are healed with telomere addition. While telomere addition sites have been well-characterized, little is known regarding the DSBs that fragment nematode chromosomes. Here, we used embryos from the nematode Ascaris to study the timing of PDE breaks and examine the DSBs and their end processing. Using END-seq, we characterize the DSB ends and demonstrate that DNA breaks are introduced before mitosis, followed by extensive end resection. The resection profile is unique for each break site, and the resection generates 3' overhangs before the addition of telomeres. Interestingly, telomere healing occurs much more frequently on retained DSB ends than on eliminated ends. This biased repair of the DSB ends in Ascaris may be due to the sequestration of the eliminated DNA into micronuclei, preventing their ends from telomere healing. Additional DNA breaks occur within the eliminated DNA in both Ascaris and Parascaris, ensuring chromosomal breakage and providing a fail-safe mechanism for nematode PDE.
Collapse
Affiliation(s)
- Brandon Estrem
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Richard E. Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Jianbin Wang
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
8
|
Grishanin A. Chromatin diminution as a tool to study some biological problems. COMPARATIVE CYTOGENETICS 2024; 18:27-49. [PMID: 38369988 PMCID: PMC10870232 DOI: 10.3897/compcytogen.17.112152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/21/2024] [Indexed: 02/20/2024]
Abstract
This work reveals the opportunities to obtain additional information about some biological problems through studying species that possess chromatin diminution. A brief review of the hypothesized biological significance of chromatin diminution is discussed. This article analyzes the biological role of chromatin diminution as it relates to the C-value enigma. It is proposed to consider chromatin diminution as a universal mechanism of genome reduction, reducing the frequency of recombination events in the genome, which leads to specialization and adaptation of the species to more narrow environmental conditions. A hypothesis suggesting the role of non-coding DNA in homologous recombination in eukaryotes is proposed. Cyclopskolensis Lilljeborg, 1901 (Copepoda, Crustacea) is proposed as a model species for studying the mechanisms of transformation of the chromosomes and interphase nuclei structure of somatic line cells due to chromatin diminution. Chromatin diminution in copepods is considered as a stage of irreversible differentiation of embryonic cells during ontogenesis. The process of speciation in cyclopoids with chromatin diminution is considered.
Collapse
Affiliation(s)
- Andrey Grishanin
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Yaroslavl Prov., RussiaRussian Academy of SciencesBorokRussia
- Department of Biophisics, Faculty of Natural and Engineering Sciences, Dubna State University, Universitetskaya 19, 141980, Dubna, Moscow Prov., RussiaDubna State UniversityDubnaRussia
| |
Collapse
|
9
|
Lyu L, Zhang X, Gao Y, Zhang T, Fu J, Stover NA, Gao F. From germline genome to highly fragmented somatic genome: genome-wide DNA rearrangement during the sexual process in ciliated protists. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:31-49. [PMID: 38433968 PMCID: PMC10901763 DOI: 10.1007/s42995-023-00213-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/27/2023] [Indexed: 03/05/2024]
Abstract
Genomes are incredibly dynamic within diverse eukaryotes and programmed genome rearrangements (PGR) play important roles in generating genomic diversity. However, genomes and chromosomes in metazoans are usually large in size which prevents our understanding of the origin and evolution of PGR. To expand our knowledge of genomic diversity and the evolutionary origin of complex genome rearrangements, we focus on ciliated protists (ciliates). Ciliates are single-celled eukaryotes with highly fragmented somatic chromosomes and massively scrambled germline genomes. PGR in ciliates occurs extensively by removing massive amounts of repetitive and selfish DNA elements found in the silent germline genome during development of the somatic genome. We report the partial germline genomes of two spirotrich ciliate species, namely Strombidium cf. sulcatum and Halteria grandinella, along with the most compact and highly fragmented somatic genome for S. cf. sulcatum. We provide the first insights into the genome rearrangements of these two species and compare these features with those of other ciliates. Our analyses reveal: (1) DNA sequence loss through evolution and during PGR in S. cf. sulcatum has combined to produce the most compact and efficient nanochromosomes observed to date; (2) the compact, transcriptome-like somatic genome in both species results from extensive removal of a relatively large number of shorter germline-specific DNA sequences; (3) long chromosome breakage site motifs are duplicated and retained in the somatic genome, revealing a complex model of chromosome fragmentation in spirotrichs; (4) gene scrambling and alternative processing are found throughout the core spirotrichs, offering unique opportunities to increase genetic diversity and regulation in this group. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00213-x.
Collapse
Affiliation(s)
- Liping Lyu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Xue Zhang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Yunyi Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Tengteng Zhang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Jinyu Fu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Naomi A. Stover
- Department of Biology, Bradley University, Peoria, IL 61625 USA
| | - Feng Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laoshan Laboratory, Qingdao, 266237 China
| |
Collapse
|
10
|
Rey C, Launay C, Wenger E, Delattre M. Programmed DNA elimination in Mesorhabditis nematodes. Curr Biol 2023; 33:3711-3721.e5. [PMID: 37607549 DOI: 10.1016/j.cub.2023.07.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023]
Abstract
Some species undergo programmed DNA elimination (PDE), whereby portions of the genome are systematically destroyed in somatic cells. PDE has emerged independently in several phyla, but its function is unknown. Although the mechanisms are partially solved in ciliates, PDE remains mysterious in metazoans because the study species were not yet amenable to functional approaches. We fortuitously discovered massive PDE in the free-living nematode genus Mesorhabditis, from the same family as C. elegans. As such, these species offer many experimental advantages to start elucidating the PDE mechanisms in an animal. Here, we used cytology to describe the dynamics of chromosome fragmentation and destruction in early embryos. Elimination occurs once in development, at the third embryonic cell division in the somatic blastomeres. Chromosomes are first fragmented during S phase. Next, some of the fragments fail to align on the mitotic spindle and remain outside the re-assembled nuclei after mitosis. These fragments are gradually lost after a few cell cycles. The retained fragments form new mini chromosomes, which are properly segregated in the subsequent cell divisions. With genomic approaches, we found that Mesorhabditis mainly eliminate repeated regions and also about a hundred genes. Importantly, none of the eliminated protein-coding genes are shared between closely related Mesorhabditis species. Our results strongly suggest PDE has not been selected for regulating genes with important biological functions in Mesorhabditis but rather mainly to irreversibly remove repeated sequences in the soma. We propose that PDE may target genes, provided their elimination in the soma is invisible to selection.
Collapse
Affiliation(s)
- Carine Rey
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Superieure de Lyon, CNRS UMR5239, Inserm U1293, University Claude Bernard Lyon 1, Lyon, France
| | - Caroline Launay
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Superieure de Lyon, CNRS UMR5239, Inserm U1293, University Claude Bernard Lyon 1, Lyon, France
| | - Eva Wenger
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Superieure de Lyon, CNRS UMR5239, Inserm U1293, University Claude Bernard Lyon 1, Lyon, France
| | - Marie Delattre
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Superieure de Lyon, CNRS UMR5239, Inserm U1293, University Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
11
|
Skorobrekhova E, Nikishin V. Migration and ultrastructure of the acanthocephalan Echinorhynchus gadi Zoega in Müller, 1776 in intermediate host under experimental conditions. Parasitol Res 2023:10.1007/s00436-023-07899-z. [PMID: 37338583 DOI: 10.1007/s00436-023-07899-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Amphipods Eogammarus tiuschovi were experimentally infected by the acanthocephalan Echinorhynchus gadi (Acanthocephala: Echinorhynchidae). Within the first four days post-infection, acanthors of the acanthocephalan caused the cellular response of the host, which ended with their complete encapsulation on day 4 post-infection. The acanthors obtained through the experiment were examined ultrastructurally. Two syncytia (frontal and epidermal) and a central nuclear mass are found in the acanthor's body. The frontal syncytium has 3-4 nuclei and contains secretory granules with homogeneous, electron-dense contents. Since the secretory granules occupy only the anterior one-third of this syncytium, it is suggested that the contents of these granules are involved in the acanthor's migration through the gut wall of the amphipod. The central nuclear mass consists of an aggregation of fibrillar bodies and a few electron-light nuclei distributed on the periphery. Some of these nuclei, located near the central nuclear mass, are assumed to be a source of the acanthocephalan's internal organs. The epidermal syncytium surrounds the frontal syncytium and the central nuclear mass. It is represented by a superficial cytoplasmic layer, but the bulk of the cytoplasm is concentrated in the posterior one-third of the acanthor's body. Syncytial nuclei are evenly distributed throughout the cytoplasm. The muscular system of the acanthors consists of 10 longitudinal muscle fibers located below the superficial cytoplasmic layer and two muscle retractors crossing the frontal syncytium.
Collapse
Affiliation(s)
- Ekaterina Skorobrekhova
- Institute of Biological Problems of the North FEB RAS, Portovaya Str. 18, 685000, Magadan, Russia.
| | - Vladimir Nikishin
- Institute of Biological Problems of the North FEB RAS, Portovaya Str. 18, 685000, Magadan, Russia
| |
Collapse
|
12
|
Zhou M, Lu Y, Han L, Lu M, Guan C, Yu J, Liu H, Chen D, Li H, Yang Y, Zhang L, Tian L, Liu Q, Hou Z. Exploration of Parascaris species in three different Equus populations in China. Parasit Vectors 2023; 16:202. [PMID: 37322493 DOI: 10.1186/s13071-023-05768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/04/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND The roundworms, Parascaris spp., are important nematode parasites of foals and were historically model organisms in the field of cell biology, leading to many important discoveries. According to karyotype, ascarids in Equus are commonly divided into Parascaris univalens (2n = 2) and Parascaris equorum (2n = 4). METHODS Here, we performed morphological identification, karyotyping and sequencing of roundworms from three different hosts (horses, zebras and donkeys). Phylogenetic analysis was performed to study the divergence of these ascarids based on cytochrome c oxidase subunit I (COI) and internal transcribed spacer (ITS) sequences. RESULTS Karyotyping, performed on eggs recovered from worms of three different Equus hosts in China, showed two different karyotypes (2n = 2 in P. univalens collected from horses and zebras; 2n = 6 in Parascaris sp. collected from donkeys). There are some differences in the terminal part of the spicula between P. univalens (concave) and Parascaris sp. (rounded). Additionally, it was found that the egg's chitinous layer was significantly thicker in Parascaris sp. (> 5 μm) than P. univalens (< 5 μm) (F(2537) = 1967, P < 0.01). Phylogenetic trees showed that the sequences of Parascaris from Equus hosts were divided into two distinct lineages based on sequences of the COI and ITS. CONCLUSIONS Comparing the differences in roundworms collected from three different Equus hosts, this study describes a Parascaris species (Parascaris sp.) with six chromosomes in donkeys. It is worth noting that the thickness of the chitinous layer in the Parascaris egg may serve as a diagnostic indicator to distinguish the two roundworms (P. univalens and Parascaris sp.). The Parascaris sp. with six chromosomes in donkeys in the present study may be a species of P. trivalens described in 1934, but the possibility that it is a new Parascaris species cannot be ruled out. Both karyotyping and molecular analysis are necessary to solve the taxonomic problems in Parascaris species.
Collapse
Affiliation(s)
- Mengchao Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Yaxian Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Lei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Maolin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | | | - Jie Yu
- Dong-E-E-Jiao Co. Ltd, Shandong, China
| | - Hetong Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Denghui Chen
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Hongjia Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Yuling Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Lu Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Lihong Tian
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China.
| | - Quan Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China.
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China.
| |
Collapse
|
13
|
Abstract
In most organisms, the whole genome is maintained throughout the life span. However, exceptions occur in some species where the genome is reduced during development through a process known as programmed DNA elimination (PDE). In the human and pig parasite Ascaris, PDE occurs during the 4 to 16 cell stages of embryogenesis, when germline chromosomes are fragmented and specific DNA sequences are reproducibly lost in all somatic cells. PDE was identified in Ascaris over 120 years ago, but little was known about its molecular details until recently. Genome sequencing revealed that approximately 1,000 germline-expressed genes are eliminated in Ascaris, suggesting PDE is a gene silencing mechanism. All germline chromosome ends are removed and remodeled during PDE. In addition, PDE increases the number of chromosomes in the somatic genome by splitting many germline chromosomes. Comparative genomics indicates that these germline chromosomes arose from fusion events. PDE separates these chromosomes at the fusion sites. These observations indicate that PDE plays a role in chromosome karyotype and evolution. Furthermore, comparative analysis of PDE in other parasitic and free-living nematodes illustrates conserved features of PDE, suggesting it has important biological significance. We summarize what is known about PDE in Ascaris and its relatives. We also discuss other potential functions, mechanisms, and the evolution of PDE in these parasites of humans and animals of veterinary importance.
Collapse
|
14
|
Abstract
Programmed DNA elimination (PDE) occurs in various metazoans. Parasitic nematodes have long been the major experimental model for PDE investigation. New studies have reported that some genetically tractable free-living nematodes also undergo PDE, paving the way for understanding the molecular mechanisms of PDE in metazoans.
Collapse
Affiliation(s)
- Kazufumi Mochizuki
- Institute of Human Genetics (IGH), CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
15
|
Dockendorff TC, Estrem B, Reed J, Simmons JR, Zadegan SB, Zagoskin MV, Terta V, Villalobos E, Seaberry EM, Wang J. The nematode Oscheius tipulae as a genetic model for programmed DNA elimination. Curr Biol 2022; 32:5083-5098.e6. [PMID: 36379215 PMCID: PMC9729473 DOI: 10.1016/j.cub.2022.10.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
Programmed DNA elimination (PDE) is a notable exception to the paradigm of genome integrity. In metazoa, PDE often occurs coincident with germline to somatic cell differentiation. During PDE, portions of genomic DNA are lost, resulting in reduced somatic genomes. Prior studies have described the sequences lost, as well as chromosome behavior, during metazoan PDE. However, a system for studying the mechanisms and consequences of PDE in metazoa is lacking. Here, we present a functional and genetic model for PDE in the free-living Rhabditidae nematode Oscheius tipulae, a family that also includes Caenorhabditis elegans. O. tipulae was recently suggested to eliminate DNA. Using staged embryos and DNA FISH, we showed that O. tipulae PDE occurs during embryogenesis at the 8-16 cell stages. We identified a conserved motif, named Sequence For Elimination (SFE), for all 12 break sites on the six chromosomes at the junctions of retained and eliminated DNA. SFE mutants exhibited a "fail-to-eliminate" phenotype only at the modified sites. END-seq revealed that breaks can occur at multiple positions within the SFE, with extensive end resection followed by telomere addition to both retained and eliminated ends. We identified many functional SFEs at the chromosome ends through END-seq in the wild-type embryos, genome sequencing of SFE mutants, and comparative genomics of 23 wild isolates. We suggest that these alternative SFEs provide flexibility in the sequences eliminated and a fail-safe mechanism for PDE. These studies establish O. tipulae as a new, attractive model for studying the mechanisms and consequences of PDE in a metazoan.
Collapse
Affiliation(s)
- Thomas C Dockendorff
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Brandon Estrem
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jordan Reed
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - James R Simmons
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Sobhan Bahrami Zadegan
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Maxim V Zagoskin
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Vincent Terta
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Eduardo Villalobos
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Erin M Seaberry
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jianbin Wang
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
16
|
The equine ascarids: resuscitating historic model organisms for modern purposes. Parasitol Res 2022; 121:2775-2791. [PMID: 35986167 PMCID: PMC9391215 DOI: 10.1007/s00436-022-07627-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022]
Abstract
The equine ascarids, Parascaris spp., are important nematode parasites of juvenile horses and were historically model organisms in the field of cell biology, leading to many important discoveries, and are used for the study of chromatin diminution. In veterinary parasitology, Parascaris spp. are important not only because they can cause clinical disease in young horses but also because they are the only ascarid parasites to have developed widespread anthelmintic resistance. Despite this, much of the general biology and mechanisms of anthelmintic resistance are poorly understood. This review condenses known basic biological information and knowledge on the mechanisms of anthelmintic resistance in Parascaris spp., highlighting the importance of foundational research programs. Although two variants of this parasite were recognized based on the number of chromosomes in the 1870s and suggested to be two species in 1890, one of these, P. univalens, appears to have been largely forgotten in the veterinary scientific literature over the past 100 years. We describe how this omission has had a century-long effect on nomenclature and data analysis in the field, highlighting the importance of proper specimen identification in public repositories. A summary of important basic biology, including life cycle, in vitro maintenance, and immunology, is given, and areas of future research for the improvement of knowledge and development of new systems are given. Finally, the limited knowledge regarding anthelmintic resistance in Parascaris spp. is summarized, along with caution regarding assumptions that resistance mechanisms can be applied across clades.
Collapse
|
17
|
Liu SN, Su XY, Chen WQ, Yu JW, Li JR, Jiang P, Cui J, Wang ZQ, Zhang X. Transcriptome profiling of plerocercoid and adult developmental stages of the neglected medical tapeworm Spirometra erinaceieuropaei. Acta Trop 2022; 232:106483. [PMID: 35469749 DOI: 10.1016/j.actatropica.2022.106483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022]
Abstract
The plerocercoid larvae of the tapeworm Spirometra erinaceieuropaei can parasitize humans and animals and cause serious parasitic zoonosis. However, our knowledge of the developmental process of S. erinaceieuropaei is still inadequate. To better characterize differential and specific genes and pathways associated with parasite development, a comparative transcriptomic analysis of the plerocercoid stage and the adult stage was performed using RNA-seq and de novo analysis. Approximately 13,659 differentially expressed genes (DEGs) were identified in plerocercoids versus adults, of which 6455 DEGs were upregulated and 7204 were downregulated. DEGs involved in parasite immunoevasion were more active in plerocercoid larvae than in adults, while DEGs associated with metabolic activity were upregulated in adults. Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) analyses revealed that most DEGs involved in protein phosphorylation/dephosphorylation and the Wnt signalling pathway were much more active in plerocercoid larvae. The molecular functions of upregulated unigenes in adults were mainly enriched for metabolic activities. qPCR validated that the expression levels of 10 selected DEGs were consistent with those in RNA-seq, confirming the accuracy of the RNA-seq results. Our results contributed to increasing the knowledge on the S. erinaceieuropaei gene repertoire and expression profile and also provide valuable resources for functional studies on the molecular mechanisms of S. erinaceieuropaei.
Collapse
Affiliation(s)
- Shi Nan Liu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao Yi Su
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wen Qing Chen
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jin Wei Yu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Ru Li
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Jiang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Cui
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhong Quan Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xi Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
18
|
Macadangdang BR, Makanani SK, Miller JF. Accelerated Evolution by Diversity-Generating Retroelements. Annu Rev Microbiol 2022; 76:389-411. [PMID: 35650669 DOI: 10.1146/annurev-micro-030322-040423] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diversity-generating retroelements (DGRs) create vast amounts of targeted, functional diversity by facilitating the rapid evolution of ligand-binding protein domains. Thousands of DGRs have been identified in bacteria, archaea, and their respective viruses. They are broadly distributed throughout the microbial world, with enrichment observed in certain taxa and environments. The diversification machinery works through a novel mechanism termed mutagenic retrohoming, whereby nucleotide sequence information is copied from an invariant DNA template repeat (TR) into an RNA intermediate, selectively mutagenized at TR adenines during cDNA synthesis by a DGR-encoded reverse transcriptase, and transferred to a variable repeat (VR) region within a variable-protein gene (54). This unidirectional flow of information leaves TR-DNA sequences unmodified, allowing for repeated rounds of mutagenic retrohoming to optimize variable-protein function. DGR target genes are often modular and can encode one or more of a wide variety of discrete functional domains appended to a diversifiable ligand-binding motif. Bacterial variable proteins often localize to cell surfaces, although a subset appear to be cytoplasmic, while phage-encoded DGRs commonly diversify tail fiber-associated receptor-binding proteins. Here, we provide a comprehensive review of the mechanism and consequences of accelerated protein evolution by these unique and beneficial genetic elements. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Benjamin R Macadangdang
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, California, USA; .,California NanoSystems Institute, University of California, Los Angeles, California, USA
| | - Sara K Makanani
- California NanoSystems Institute, University of California, Los Angeles, California, USA.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; .,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA;
| | - Jeff F Miller
- California NanoSystems Institute, University of California, Los Angeles, California, USA.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA; .,Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
19
|
Pervasive male-biased expression throughout the germline-specific regions of the sea lamprey genome supports key roles in sex differentiation and spermatogenesis. Commun Biol 2022; 5:434. [PMID: 35538209 PMCID: PMC9090840 DOI: 10.1038/s42003-022-03375-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/14/2022] [Indexed: 12/13/2022] Open
Abstract
Sea lamprey undergo programmed genome rearrangement (PGR) in which ∼20% of the genome is jettisoned from somatic cells during embryogenesis. Although the role of PGR in embryonic development has been studied, the role of the germline-specific region (GSR) in gonad development is unknown. We analysed RNA-sequence data from 28 sea lamprey gonads sampled across life-history stages, generated a genome-guided de novo superTranscriptome with annotations, and identified germline-specific genes (GSGs). Overall, we identified 638 GSGs that are enriched for reproductive processes and exhibit 36x greater odds of being expressed in testes than ovaries. Next, while 55% of the GSGs have putative somatic paralogs, the somatic paralogs are not differentially expressed between sexes. Further, putative orthologs of some the male-biased GSGs have known functions in sex determination or differentiation in other vertebrates. We conclude that the GSR of sea lamprey plays an important role in testicular differentiation and potentially sex determination. RNA-sequencing of sea lamprey gonads at different life-history stage identifies germline-specific genes which are highly expressed in males during spermatogenesis. This suggests a link between male-biased germline expression and sex differentiation in the sea lamprey.
Collapse
|
20
|
Dedukh D, Krasikova A. Delete and survive: strategies of programmed genetic material elimination in eukaryotes. Biol Rev Camb Philos Soc 2022; 97:195-216. [PMID: 34542224 PMCID: PMC9292451 DOI: 10.1111/brv.12796] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023]
Abstract
Genome stability is a crucial feature of eukaryotic organisms because its alteration drastically affects the normal development and survival of cells and the organism as a whole. Nevertheless, some organisms can selectively eliminate part of their genomes from certain cell types during specific stages of ontogenesis. This review aims to describe the phenomenon of programmed DNA elimination, which includes chromatin diminution (together with programmed genome rearrangement or DNA rearrangements), B and sex chromosome elimination, paternal genome elimination, parasitically induced genome elimination, and genome elimination in animal and plant hybrids. During programmed DNA elimination, individual chromosomal fragments, whole chromosomes, and even entire parental genomes can be selectively removed. Programmed DNA elimination occurs independently in different organisms, ranging from ciliate protozoa to mammals. Depending on the sequences destined for exclusion, programmed DNA elimination may serve as a radical mechanism of dosage compensation and inactivation of unnecessary or dangerous genetic entities. In hybrids, genome elimination results from competition between parental genomes. Despite the different consequences of DNA elimination, all genetic material destined for elimination must be first recognised, epigenetically marked, separated, and then removed and degraded.
Collapse
Affiliation(s)
- Dmitrij Dedukh
- Saint‐Petersburg State University7/9 Universitetskaya EmbankmentSaint‐Petersburg199034Russia
| | - Alla Krasikova
- Saint‐Petersburg State University7/9 Universitetskaya EmbankmentSaint‐Petersburg199034Russia
| |
Collapse
|
21
|
Programmed DNA elimination: silencing genes and repetitive sequences in somatic cells. Biochem Soc Trans 2021; 49:1891-1903. [PMID: 34665225 DOI: 10.1042/bst20190951] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022]
Abstract
In a multicellular organism, the genomes of all cells are in general the same. Programmed DNA elimination is a notable exception to this genome constancy rule. DNA elimination removes genes and repetitive elements in the germline genome to form a reduced somatic genome in various organisms. The process of DNA elimination within an organism is highly accurate and reproducible; it typically occurs during early embryogenesis, coincident with germline-soma differentiation. DNA elimination provides a mechanism to silence selected genes and repeats in somatic cells. Recent studies in nematodes suggest that DNA elimination removes all chromosome ends, resolves sex chromosome fusions, and may also promote the birth of novel genes. Programmed DNA elimination processes are diverse among species, suggesting DNA elimination likely has evolved multiple times in different taxa. The growing list of organisms that undergo DNA elimination indicates that DNA elimination may be more widespread than previously appreciated. These various organisms will serve as complementary and comparative models to study the function, mechanism, and evolution of programmed DNA elimination in metazoans.
Collapse
|
22
|
Abdyyev VK, Dashenkova NO, Dashinimaev EB, Vorotelyak EA, Vasiliev AV. NANOS3 downregulation in Down syndrome hiPSCs during primordial germ cell-like cell differentiation. Histochem Cell Biol 2021; 157:83-91. [PMID: 34652540 DOI: 10.1007/s00418-021-02040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Human infertility is a complex disorder at the genetic, molecular, cellular, organ, and hormonal levels. New developing technology based on the generation of human primordial germ cell-like cells (hPGCLCs) from induced pluripotent stem cells (hiPSCs) might improve understanding of early germ cell development (specification, migration, gametogenesis, and epigenetic reconstitutions), as well as offering a solution for infertility and hereditary disorders. In this study, we differentiated hiPSCs with trisomy 21 into hPGCLCs. In vitro-derived germ cells from hiPSCs with Down syndrome (DS) express hPGCLC core circuitry, EOMES, SOX17, and PRDM14 at relatively low levels. TFAP2C and PRDM1 were expressed and remained elevated, whereas NANOS3 and NANOG were downregulated in BMP4-induced hiPSCs with DS. The low level of NANOG and NANOS3 expression might negatively influence hPGCLC generation in DS hiPSCs. We suggest that DS hPGCLCs could be a suitable model for studying human early germ cell development, the epigenetic and molecular mechanisms of PGC specification and formation, as well as related infertility disorders, such as azoospermia and teratozoospermia.
Collapse
Affiliation(s)
- V K Abdyyev
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, ul. Vavilova, 26, Moscow, 119334, Russia.
| | - N O Dashenkova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, ul. Vavilova, 26, Moscow, 119334, Russia
| | - E B Dashinimaev
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, ul. Vavilova, 26, Moscow, 119334, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, ul.Ostrovityanova, 1, Moscow, 117997, Russia.,Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Per.Institutskiy, 9, Moscow, 141701, Russia
| | - E A Vorotelyak
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, ul. Vavilova, 26, Moscow, 119334, Russia.,Department of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119991, Russia
| | - A V Vasiliev
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, ul. Vavilova, 26, Moscow, 119334, Russia.,Department of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119991, Russia
| |
Collapse
|
23
|
von Samson-Himmelstjerna G, Janssen IJI, Ramünke S, Goday C, Borges FDA, Koudela B, Niedźwiedź A, Tomczuk K, Studzińska MB, Kornas S, Krücken J. Very low intraspecific sequence variation in selected nuclear and mitochondrial Parascaris univalens genes. INFECTION GENETICS AND EVOLUTION 2021; 95:105035. [PMID: 34384934 DOI: 10.1016/j.meegid.2021.105035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 11/18/2022]
Abstract
Equines were over decades considered to be infected by two morphologically virtually indistinguishable ascarid species, Parascaris univalens and Parascaris equorum. Reliable species discrimination is only possible using enzyme isoelectric focussing and karyotyping with P. univalens having one and P. equorum two chromosome pairs. However, presumably the complexity of both methods prevented their routine use in nearly all previous studies about prevalence and drug resistance of Parascaris spp. These have barely been performed on the species level although most studies stated presence of one or the other species. Recently, only P. univalens has been identified by karyotyping and the last published study identifying P. equorum dates back to 1989. In order to improve species-specific detection, molecular markers are required. Here, partial 12S rRNA, cytochrome oxidase I (COI) and complete internal transcribed spacer (ITS)-1 and - 2 sequences were obtained from 24 karyotyped Parascaris specimens from Poland and 6 German specimens (not karyotyped) and used in phylogenetic analyses with orthologous sequences from GenBank. All karyotyped specimens were identified as P. univalens. In the phylogenetic analysis, they formed very homogenous clusters for all target genes and in a multi-locus analysis. Within this cluster, almost all sequences from GenBank were also included, no matter if they had been assigned to P. univalens or P. equorum. However, a small number of P. univalens ITS and COI sequences originating from donkeys from a single farm in China formed a highly supported sister cluster suggesting that they might represent another Parascaris genotype or species. Our data also strongly suggest that nearly all ITS and COI sequences previously deposited in GenBank and assigned to P. equorum actually represent P. univalens. The fact that significantly different sequences can be found in Parascaris spp. suggests that PCR-based species diagnosis will be possible once molecular markers have been identified for P. equorum from karyotyped specimens.
Collapse
Affiliation(s)
| | - I Jana I Janssen
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany
| | - Sabrina Ramünke
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany
| | - Clara Goday
- Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Fernando de A Borges
- School of Veterinary Medicine and Animal Science, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Bretislav Koudela
- Central European Institute of Technology (CEITEC), University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, Brno 612 42, Czech Republic; Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Artur Niedźwiedź
- Department of Internal Medicine and Clinic for Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Krzysztof Tomczuk
- Sub-Department of Parasitology and Invasive Diseases, Veterinary Faculty, University of Life Sciences, Lublin, Poland
| | - Maria Bernadeta Studzińska
- Sub-Department of Parasitology and Invasive Diseases, Veterinary Faculty, University of Life Sciences, Lublin, Poland
| | - Slawomir Kornas
- Department of Zoology and Animal Welfare, Faculty of Animal Sciences, University of Agriculture, Al. Mickiewicza 24/28, Kraków, Poland
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany
| |
Collapse
|
24
|
Bello E, Palomba M, Webb SC, Paoletti M, Cipriani P, Nascetti G, Mattiucci S. Investigating the genetic structure of the parasites Anisakis pegreffii and A. berlandi (Nematoda: Anisakidae) in a sympatric area of the southern Pacific Ocean waters using a multilocus genotyping approach: first evidence of their interspecific hybridization. INFECTION GENETICS AND EVOLUTION 2021; 92:104887. [PMID: 33940197 DOI: 10.1016/j.meegid.2021.104887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
The southern Pacific Ocean, off the New Zealand coast, has been reported as one sympatric area of the two parasite species Anisakis pegreffii and A. berlandi. Here, a multilocus genotyping approach, based on a panel of eleven DNA microsatellite (SSR) loci plus the sequences analysis of the nuclear nas10 nDNA and the mitochondrial mtDNA cox2 gene loci, was applied to a total of N = 344 adults and larvae of Anisakis spp. from cetacean and fish species, respectively. Out of the newly scored SSR loci, Anisl 15 and Anisl 2 showed fixed alternative alleles between A. pegreffii and A. berlandi resulting as 100% diagnostic loci. Out of SSRs Anisl 00314 and Anisl 7 previously disclosed, two additional loci, i.e., Anisl 4 and Anisl 22, were found to be sex-linked. The Bayesian genotypes clustering approach (STRUCTURE) allowed identification, with a 100% of probability value, N = 208 specimens to the "pure parental" A. pegreffii, N = 133 to the "pure parental" A. berlandi, while one adult and two larval stages showed mixed ancestry between the two groups having, in all cases, a Q-value = 0.50. NEWHYBRIDS analysis assigned (100% of probability) those specimens to their F1 hybrid category. This represents the first evidence of contemporary hybridization between the two parasite species in a sympatric area. The pairwise FST values estimated at intraspecific and interspecific level, inferred from both SSR loci and mitochondrial mtDNA cox2 sequences, have also demonstrated the existence of two distinct panmictic units in this study area, corresponding respectively to A. pegreffii and A. berlandi. The results obtained support the useful application of a multilocus approach in the identification of sibling species and their hybrid categories in sympatric areas. The possible use of sex-linked SSR loci of the two species of the A. simplex (s. l.), for sex determination of their larval stages, is also suggested.
Collapse
Affiliation(s)
- Eleonora Bello
- Department of Biological and Ecological Sciences, Tuscia University, Viale dell'Università snc, 01100 Viterbo, Italy; Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Laboratory affiliated to "Istituto Pasteur Italy - Fondazione Cenci-Bolognetti", P.le Aldo Moro 5, 00185 Rome, Italy
| | - Marialetizia Palomba
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Laboratory affiliated to "Istituto Pasteur Italy - Fondazione Cenci-Bolognetti", P.le Aldo Moro 5, 00185 Rome, Italy; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121 Naples, Italy
| | | | - Michela Paoletti
- Department of Biological and Ecological Sciences, Tuscia University, Viale dell'Università snc, 01100 Viterbo, Italy
| | | | - Giuseppe Nascetti
- Department of Biological and Ecological Sciences, Tuscia University, Viale dell'Università snc, 01100 Viterbo, Italy
| | - Simonetta Mattiucci
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Laboratory affiliated to "Istituto Pasteur Italy - Fondazione Cenci-Bolognetti", P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
25
|
Wang J. Genomics of the Parasitic Nematode Ascaris and Its Relatives. Genes (Basel) 2021; 12:493. [PMID: 33800545 PMCID: PMC8065839 DOI: 10.3390/genes12040493] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
Nematodes of the genus Ascaris are important parasites of humans and swine, and the phylogenetically related genera (Parascaris, Toxocara, and Baylisascaris) infect mammals of veterinary interest. Over the last decade, considerable genomic resources have been established for Ascaris, including complete germline and somatic genomes, comprehensive mRNA and small RNA transcriptomes, as well as genome-wide histone and chromatin data. These datasets provide a major resource for studies on the basic biology of these parasites and the host-parasite relationship. Ascaris and its relatives undergo programmed DNA elimination, a highly regulated process where chromosomes are fragmented and portions of the genome are lost in embryonic cells destined to adopt a somatic fate, whereas the genome remains intact in germ cells. Unlike many model organisms, Ascaris transcription drives early development beginning prior to pronuclear fusion. Studies on Ascaris demonstrated a complex small RNA network even in the absence of a piRNA pathway. Comparative genomics of these ascarids has provided perspectives on nematode sex chromosome evolution, programmed DNA elimination, and host-parasite coevolution. The genomic resources enable comparison of proteins across diverse species, revealing many new potential drug targets that could be used to control these parasitic nematodes.
Collapse
Affiliation(s)
- Jianbin Wang
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA;
- UT-Oak Ridge National Laboratory Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
26
|
Abstract
Over the last few decades, an increasing number of vertebrate taxa have been identified that undergo programmed genome rearrangement, or programmed DNA loss, during development. In these organisms, the genome of germ cells is often reproducibly different from the genome of all other cells within the body. Although we clearly have not identified all vertebrate taxa that undergo programmed genome loss, the list of species known to undergo loss now represents ∼10% of vertebrate species, including several basally diverging lineages. Recent studies have shed new light on the targets and mechanisms of DNA loss and their association with canonical modes of DNA silencing. Ultimately, expansion of these studies into a larger collection of taxa will aid in reconstructing patterns of shared/independent ancestry of programmed DNA loss in the vertebrate lineage, as well as more recent evolutionary events that have shaped the structure and content of eliminated DNA.
Collapse
Affiliation(s)
- Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA; , ,
| | | | - Cody Saraceno
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA; , ,
| |
Collapse
|
27
|
Abstract
Programmed DNA elimination occurs in many eukaryotes. A new study provides a comprehensive view of programmed DNA elimination in a parasitic nematode, defining what sequences are eliminated from which chromosomal locations and presenting a new road map to investigate its molecular mechanism and evolution.
Collapse
Affiliation(s)
- Kazufumi Mochizuki
- Institute of Human Genetics (IGH), CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
28
|
Construction and analysis of artificial chromosomes with de novo holocentromeres in Caenorhabditis elegans. Essays Biochem 2020; 64:233-249. [PMID: 32756873 DOI: 10.1042/ebc20190067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
Artificial chromosomes (ACs), generated in yeast (YACs) and human cells (HACs), have facilitated our understanding of the trans-acting proteins, cis-acting elements, such as the centromere, and epigenetic environments that are necessary to maintain chromosome stability. The centromere is the unique chromosomal region that assembles the kinetochore and connects to microtubules to orchestrate chromosome movement during cell division. While monocentromeres are the most commonly characterized centromere organization found in studied organisms, diffused holocentromeres along the chromosome length are observed in some plants, insects and nematodes. Based on the well-established DNA microinjection method in holocentric Caenorhabditis elegans, concatemerization of foreign DNA can efficiently generate megabase-sized extrachromosomal arrays (Exs), or worm ACs (WACs), for analyzing the mechanisms of WAC formation, de novo centromere formation, and segregation through mitosis and meiosis. This review summarizes the structural, size and stability characteristics of WACs. Incorporating LacO repeats in WACs and expressing LacI::GFP allows real-time tracking of newly formed WACs in vivo, whereas expressing LacI::GFP-chromatin modifier fusions can specifically adjust the chromatin environment of WACs. The WACs mature from passive transmission to autonomous segregation by establishing a holocentromere efficiently in a few cell cycles. Importantly, WAC formation does not require any C. elegans genomic DNA sequence. Thus, DNA substrates injected can be changed to evaluate the effects of DNA sequence and structure in WAC segregation. By injecting a complex mixture of DNA, a less repetitive WAC can be generated and propagated in successive generations for DNA sequencing and analysis of the established holocentromere on the WAC.
Collapse
|
29
|
Bello E, Paoletti M, Webb SC, Nascetti G, Mattiucci S. Cross-species utility of microsatellite loci for the genetic characterisation of Anisakis berlandi (Nematoda: Anisakidae). ACTA ACUST UNITED AC 2020; 27:9. [PMID: 32043965 PMCID: PMC7011781 DOI: 10.1051/parasite/2020004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/20/2020] [Indexed: 11/14/2022]
Abstract
Eight microsatellite loci, recently developed in the species Anisakis pegreffii, were successfully amplified in Anisakis berlandi, sibling species of the A. simplex (s. l.) complex. They were validated on adult specimens (n = 46) of the parasite species, collected from two individuals of the definitive host, the long-finned pilot whale Globicephala melas from New Zealand waters. Among the eight loci scored, one, Anisl 07132, had null alleles in A. berlandi and was thus excluded from the subsequent genetic analysis. Two loci, Anisl 00314 and Anisl 10535, were monomorphic. In addition, as also previously detected in the other species of the A. simplex (s. l.) complex, the Anisl 7 locus was seen to be sex-linked, showing hemizygosity in male specimens. Differential allele frequency distributions of A. berlandi, with respect to those previously observed in A. pegreffii and A. simplex (s. s.), were found at some microsatellite loci. The Anisl 7 locus provided 100% diagnosis between A. berlandi and A. pegreffii, while others resulted in 99% diagnosis between A. berlandi and the other two species. Simple sequence repeat (SSR) loci also allowed us to estimate the genetic differentiation of A. berlandi from A. pegreffii (F st ≈ 0.45, Dc = 0.82) and A. simplex (s. s.) (F st ≈ 0.57, Dc = 0.73). The results suggest that SSRs provide a set of candidate markers for population genetics analysis of A. berlandi, as well as for the investigation, through a multi-locus genotyping approach, of possible patterns of hybridisation/introgression events between A. berlandi and the other two Anisakis species in sympatric conditions.
Collapse
Affiliation(s)
- Eleonora Bello
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza-University of Rome, P.le Aldo Moro 5, 00185 10 Rome, Italy - Department of Ecological and Biological Sciences, Tuscia University, Viale dell'Università s/n, 01100 Viterbo, Italy
| | - Michela Paoletti
- Department of Ecological and Biological Sciences, Tuscia University, Viale dell'Università s/n, 01100 Viterbo, Italy
| | - Stephen C Webb
- Cawthron Institute, 98 Halifax Street East, The Wood, 7010 Nelson, New Zealand
| | - Giuseppe Nascetti
- Department of Ecological and Biological Sciences, Tuscia University, Viale dell'Università s/n, 01100 Viterbo, Italy
| | - Simonetta Mattiucci
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza-University of Rome, P.le Aldo Moro 5, 00185 10 Rome, Italy
| |
Collapse
|
30
|
Characterization and Evolution of Germ1, an Element that Undergoes Diminution in Lampreys (Cyclostomata: Petromyzontidae). J Mol Evol 2019; 87:298-308. [PMID: 31486871 DOI: 10.1007/s00239-019-09909-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/23/2019] [Indexed: 12/23/2022]
Abstract
The sea lamprey (Petromyzon marinus) undergoes substantial genomic alterations during embryogenesis in which specific sequences are deleted from the genome of somatic cells yet retained in cells of the germ line. One element that undergoes diminution in P. marinus is Germ1, which consists of a somatically rare (SR) region and a fragment of 28S rDNA. Although the SR-region has been used as a marker for genomic alterations in lampreys, the evolutionary significance of its diminution is unknown. We examined the Germ1 element in five additional species of lamprey to better understand its evolutionary significance. Each representative species contained sequences similar enough to the Germ1 element of P. marinus to be detected via PCR and Southern hybridizations, although the SR-regions of Lampetra aepyptera and Lethenteron appendix are quite divergent from the homologous sequences of Petromyzon and three species of Ichthyomyzon. Lamprey Germ1 sequences have a number of features characteristic of the R2 retrotransposon, a mobile element that specifically targets 28S rDNA. Phylogenetic analyses of the SR-regions revealed patterns generally consistent with relationships among the species included in our study, although the 28S-fragments of each species/genus were most closely related to its own functional rDNA, suggesting that the two components of Germ1 were assembled independently in each lineage. Southern hybridizations showed evidence of genomic alterations involving Germ1 in each species. Our results suggest that Germ1 is a R2 retroelement that occurs in the genome of P. marinus and other petromyzontid lampreys, and that its diminution is incidental to the reduction in rDNA copies during embryogenesis.
Collapse
|
31
|
Novel polymorphic microsatellite loci in Anisakis pegreffii and A. simplex (s. s.) (Nematoda: Anisakidae): implications for species recognition and population genetic analysis. Parasitology 2019; 146:1387-1403. [PMID: 31196233 DOI: 10.1017/s003118201900074x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The species of Anisakis constitute one of the most widespread groups of ascaridoid nematodes in the marine ecosystem. Three closely related taxa are recognised in the A. simplex (s. l.) complex, i.e. A. pegreffii, A. simplex (s. s.) and A. berlandi. They are distributed in populations of their intermediate/paratenic (fish and squids) and definitive (cetaceans) hosts. A panel of seven microsatellite loci (Anisl 05784, Anisl 08059, Anisl 00875, Anisl 07132, Anisl 00314, Anisl 10535 and Anisl 00185), were developed and validated on a total of N = 943 specimens of A. pegreffii and A. simplex (s. s.), collected in fish and cetacean hosts from allopatric areas within the range of distribution of these parasite species. In addition, the locus Anisl 7, previously detected in those Anisakis spp., was investigated. The parasites were first identified by sequence analysis of the EF1 α-1 nDNA. The panel of the microsatellites loci here developed have allowed to: (i) detect diagnostic microsatellite loci between the two species; (ii) identify specimens of the two species A. pegreffii, A. simplex (s. s.) in a multi-marker nuclear genotyping approach; (iii) discover two sex-linked loci in both Anisakis species and (iv) estimate levels of genetic differentiation at both the inter- and intra-specific level.
Collapse
|
32
|
Korhonen PK, Hall RS, Young ND, Gasser RB. Common workflow language (CWL)-based software pipeline for de novo genome assembly from long- and short-read data. Gigascience 2019; 8:giz014. [PMID: 30821816 PMCID: PMC6451199 DOI: 10.1093/gigascience/giz014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/03/2018] [Accepted: 01/25/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Here, we created an automated pipeline for the de novoassembly of genomes from Pacific Biosciences long-read and Illumina short-read data using common workflow language (CWL). To evaluate the performance of this pipeline, we assembled the nuclear genomes of the eukaryotes Caenorhabditis elegans (∼100 Mb), Drosophila melanogaster (∼138 Mb), and Plasmodium falciparum (∼23 Mb) directly from publicly accessible nucleotide sequence datasets and assessed the quality of the assemblies against curated reference genomes. FINDINGS We showed a dependency of the accuracy of assembly on sequencing technology and GC content and repeatedly achieved assemblies that meet the high standards set by the National Human Genome Research Institute, being applicable to gene prediction and subsequent genomic analyses. CONCLUSIONS This CWL pipeline overcomes current challenges of achieving repeatability and reproducibility of assembly results and offers a platform for the re-use of the workflow and the integration of diverse datasets. This workflow is publicly available via GitHub (https://github.com/vetscience/Assemblosis) and is currently applicable to the assembly of haploid and diploid genomes of eukaryotes.
Collapse
Affiliation(s)
- Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ross S Hall
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
33
|
Zhang T, Wang C, Katz LA, Gao F. A paradox: rapid evolution rates of germline-limited sequences are associated with conserved patterns of rearrangements in cryptic species of Chilodonella uncinata (Protista, Ciliophora). SCIENCE CHINA-LIFE SCIENCES 2018; 61:1071-1078. [DOI: 10.1007/s11427-018-9333-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/06/2018] [Indexed: 10/28/2022]
|
34
|
Tikhodeyev ON. The mechanisms of epigenetic inheritance: how diverse are they? Biol Rev Camb Philos Soc 2018; 93:1987-2005. [PMID: 29790249 DOI: 10.1111/brv.12429] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/22/2018] [Accepted: 04/27/2018] [Indexed: 12/18/2022]
Abstract
Although epigenetic inheritance (EI) is a rapidly growing field of modern biology, it still has no clear place in fundamental genetic concepts which are traditionally based on the hereditary role of DNA. Moreover, not all mechanisms of EI attract the same attention, with most studies focused on DNA methylation, histone modification, RNA interference and amyloid prionization, but relatively few considering other mechanisms such as stable inhibition of plastid translation. Herein, we discuss all known and some hypothetical mechanisms that can underlie the stable inheritance of phenotypically distinct hereditary factors that lack differences in DNA sequence. These mechanisms include (i) regulation of transcription by DNA methylation, histone modifications, and transcription factors, (ii) RNA splicing, (iii) RNA-mediated post-transcriptional silencing, (iv) organellar translation, (v) protein processing by truncation, (vi) post-translational chemical modifications, (vii) protein folding, and (viii) homologous and non-homologous protein interactions. The breadth of this list suggests that any or almost any regulatory mechanism that participates in gene expression or gene-product functioning, under certain circumstances, may produce EI. Although the modes of EI are highly variable, in many epigenetic systems, stable allelic variants can be distinguished. Irrespective of their nature, all such alleles have an underlying similarity: each is a bimodular hereditary unit, whose features depend on (i) a certain epigenetic mark (epigenetic determinant) in the DNA sequence or its product, and (ii) the DNA sequence itself (DNA determinant; if this is absent, the epigenetic allele fails to perpetuate). Thus, stable allelic epigenetic inheritance (SAEI) does not contradict the hereditary role of DNA, but involves additional molecular mechanisms with no or almost no limitations to their variety.
Collapse
Affiliation(s)
- Oleg N Tikhodeyev
- Department of Genetics & Biotechnology, Saint-Petersburg State University, Saint-Petersburg 199034, Russia
| |
Collapse
|
35
|
Qiu GH, Huang C, Zheng X, Yang X. The protective function of noncoding DNA in genome defense of eukaryotic male germ cells. Epigenomics 2018; 10:499-517. [PMID: 29616594 DOI: 10.2217/epi-2017-0103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Peripheral and abundant noncoding DNA has been hypothesized to protect the genome and the central protein-coding sequences against DNA damage in somatic genome. In the cytosol, invading exogenous nucleic acids may first be deactivated by small RNAs encoded by noncoding DNA via mechanisms similar to the prokaryotic CRISPR-Cas system. In the nucleus, the radicals generated by radiation in the cytosol, radiation energy and invading exogenous nucleic acids are absorbed, blocked and/or reduced by peripheral heterochromatin, and damaged DNA in heterochromatin is removed and excluded from the nucleus to the cytoplasm through nuclear pore complexes. To further strengthen the hypothesis, this review summarizes the experimental evidence supporting the protective function of noncoding DNA in the genome of male germ cells. Based on these data, this review provides evidence supporting the protective role of noncoding DNA in the genome defense of sperm genome through similar mechanisms to those of the somatic genome.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Cuiqin Huang
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Xintian Zheng
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Xiaoyan Yang
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| |
Collapse
|
36
|
Wang J, Gao S, Mostovoy Y, Kang Y, Zagoskin M, Sun Y, Zhang B, White LK, Easton A, Nutman TB, Kwok PY, Hu S, Nielsen MK, Davis RE. Comparative genome analysis of programmed DNA elimination in nematodes. Genome Res 2017; 27:2001-2014. [PMID: 29118011 PMCID: PMC5741062 DOI: 10.1101/gr.225730.117] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022]
Abstract
Programmed DNA elimination is a developmentally regulated process leading to the reproducible loss of specific genomic sequences. DNA elimination occurs in unicellular ciliates and a variety of metazoans, including invertebrates and vertebrates. In metazoa, DNA elimination typically occurs in somatic cells during early development, leaving the germline genome intact. Reference genomes for metazoa that undergo DNA elimination are not available. Here, we generated germline and somatic reference genome sequences of the DNA eliminating pig parasitic nematode Ascaris suum and the horse parasite Parascaris univalens. In addition, we carried out in-depth analyses of DNA elimination in the parasitic nematode of humans, Ascaris lumbricoides, and the parasitic nematode of dogs, Toxocara canis. Our analysis of nematode DNA elimination reveals that in all species, repetitive sequences (that differ among the genera) and germline-expressed genes (approximately 1000–2000 or 5%–10% of the genes) are eliminated. Thirty-five percent of these eliminated genes are conserved among these nematodes, defining a core set of eliminated genes that are preferentially expressed during spermatogenesis. Our analysis supports the view that DNA elimination in nematodes silences germline-expressed genes. Over half of the chromosome break sites are conserved between Ascaris and Parascaris, whereas only 10% are conserved in the more divergent T. canis. Analysis of the chromosomal breakage regions suggests a sequence-independent mechanism for DNA breakage followed by telomere healing, with the formation of more accessible chromatin in the break regions prior to DNA elimination. Our genome assemblies and annotations also provide comprehensive resources for analysis of DNA elimination, parasitology research, and comparative nematode genome and epigenome studies.
Collapse
Affiliation(s)
- Jianbin Wang
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Shenghan Gao
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.,Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yulia Mostovoy
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, California 94158, USA
| | - Yuanyuan Kang
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Maxim Zagoskin
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Yongqiao Sun
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Laura K White
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Alice Easton
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, California 94158, USA
| | - Songnian Hu
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Martin K Nielsen
- Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
37
|
Abstract
Cell differentiation in yeast species is controlled by a reversible, programmed DNA-rearrangement process called mating-type switching. Switching is achieved by two functionally similar but structurally distinct processes in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. In both species, haploid cells possess one active and two silent copies of the mating-type locus (a three-cassette structure), the active locus is cleaved, and synthesis-dependent strand annealing is used to replace it with a copy of a silent locus encoding the opposite mating-type information. Each species has its own set of components responsible for regulating these processes. In this review, we summarize knowledge about the function and evolution of mating-type switching components in these species, including mechanisms of heterochromatin formation, MAT locus cleavage, donor bias, lineage tracking, and environmental regulation of switching. We compare switching in these well-studied species to others such as Kluyveromyces lactis and the methylotrophic yeasts Ogataea polymorpha and Komagataella phaffii. We focus on some key questions: Which cells switch mating type? What molecular apparatus is required for switching? Where did it come from? And what is the evolutionary purpose of switching?
Collapse
|
38
|
Hamilton EP, Kapusta A, Huvos PE, Bidwell SL, Zafar N, Tang H, Hadjithomas M, Krishnakumar V, Badger JH, Caler EV, Russ C, Zeng Q, Fan L, Levin JZ, Shea T, Young SK, Hegarty R, Daza R, Gujja S, Wortman JR, Birren BW, Nusbaum C, Thomas J, Carey CM, Pritham EJ, Feschotte C, Noto T, Mochizuki K, Papazyan R, Taverna SD, Dear PH, Cassidy-Hanley DM, Xiong J, Miao W, Orias E, Coyne RS. Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome. eLife 2016; 5. [PMID: 27892853 PMCID: PMC5182062 DOI: 10.7554/elife.19090] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/14/2016] [Indexed: 12/30/2022] Open
Abstract
The germline genome of the binucleated ciliate Tetrahymena thermophila undergoes programmed chromosome breakage and massive DNA elimination to generate the somatic genome. Here, we present a complete sequence assembly of the germline genome and analyze multiple features of its structure and its relationship to the somatic genome, shedding light on the mechanisms of genome rearrangement as well as the evolutionary history of this remarkable germline/soma differentiation. Our results strengthen the notion that a complex, dynamic, and ongoing interplay between mobile DNA elements and the host genome have shaped Tetrahymena chromosome structure, locally and globally. Non-standard outcomes of rearrangement events, including the generation of short-lived somatic chromosomes and excision of DNA interrupting protein-coding regions, may represent novel forms of developmental gene regulation. We also compare Tetrahymena's germline/soma differentiation to that of other characterized ciliates, illustrating the wide diversity of adaptations that have occurred within this phylum.
Collapse
Affiliation(s)
- Eileen P Hamilton
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Aurélie Kapusta
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Piroska E Huvos
- Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, United States
| | | | - Nikhat Zafar
- J. Craig Venter Institute, Rockville, United States
| | - Haibao Tang
- J. Craig Venter Institute, Rockville, United States
| | | | | | | | | | - Carsten Russ
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Qiandong Zeng
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Lin Fan
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Joshua Z Levin
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Terrance Shea
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Sarah K Young
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Ryan Hegarty
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Riza Daza
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Sharvari Gujja
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Jennifer R Wortman
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Bruce W Birren
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Chad Nusbaum
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Jainy Thomas
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Clayton M Carey
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Ellen J Pritham
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Tomoko Noto
- Institute of Molecular Biotechnology, Vienna, Austria
| | | | - Romeo Papazyan
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Sean D Taverna
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Paul H Dear
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Jie Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Miao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Eduardo Orias
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | | |
Collapse
|
39
|
Lin CYG, Lin IT, Yao MC. Programmed Minichromosome Elimination as a Mechanism for Somatic Genome Reduction in Tetrahymena thermophila. PLoS Genet 2016; 12:e1006403. [PMID: 27806059 PMCID: PMC5091840 DOI: 10.1371/journal.pgen.1006403] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/04/2016] [Indexed: 01/12/2023] Open
Abstract
The maintenance of chromosome integrity is crucial for genetic stability. However, programmed chromosome fragmentations are known to occur in many organisms, and in the ciliate Tetrahymena the five germline chromosomes are fragmented into hundreds of minichromosomes during somatic nuclear differentiation. Here, we showed that there are different fates of these minichromosomes after chromosome breakage. Among the 326 somatic minichromosomes identified using genomic data, 50 are selectively eliminated from the mature somatic genome. Interestingly, many and probably most of these minichromosomes are eliminated during the growth period between 6 and 20 doublings right after conjugation. Genes with potential conjugation-specific functions are found in these minichromosomes. This study revealed a new mode of programmed DNA elimination in ciliates similar to those observed in parasitic nematodes, which could play a role in developmental gene regulation.
Collapse
Affiliation(s)
- Chih-Yi Gabriela Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| | - I-Ting Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Meng-Chao Yao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
40
|
Opitz JM. Annals of morphologyTHEODOR BOVERI (1862-1915) To commemorate the centenary of his death and contributions to the Sutton-Boveri hypothesis. Am J Med Genet A 2016. [DOI: 10.1002/ajmg.a.37693] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- John M. Opitz
- Departments of Pediatrics (Medical Genetics), Pathology, Human Genetics, Obstetrics, and Gynecology; University of Utah School of Medicine; Salt Lake City Utah
| |
Collapse
|
41
|
Morsy K, Bashtar AR, Al Quraishy S, Adel S. Description of two equine nematodes, Parascaris equorum Goeze 1782 and Habronema microstoma Schneider 1866 from the domestic horse Equus ferus caballus (Famisly: Equidae) in Egypt. Parasitol Res 2016; 115:4299-4306. [DOI: 10.1007/s00436-016-5212-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 07/22/2016] [Indexed: 12/18/2022]
|
42
|
Marques A, Pedrosa-Harand A. Holocentromere identity: from the typical mitotic linear structure to the great plasticity of meiotic holocentromeres. Chromosoma 2016; 125:669-81. [PMID: 27530342 DOI: 10.1007/s00412-016-0612-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 07/28/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023]
Abstract
The centromere is the chromosomal site of kinetochore assembly and is responsible for the correct chromosome segregation during mitosis and meiosis in eukaryotes. Contrary to monocentrics, holocentric chromosomes lack a primary constriction, what is attributed to a kinetochore activity along almost the entire chromosome length during mitosis. This extended centromere structure imposes a problem during meiosis, since sister holocentromeres are not co-oriented during first meiotic division. Thus, regardless of the relatively conserved somatic chromosome structure of holocentrics, during meiosis holocentric chromosomes show different adaptations to deal with this condition. Recent findings in holocentrics have brought back the discussion of the great centromere plasticity of eukaryotes, from the typical CENH3-based holocentromeres to CENH3-less holocentric organisms. Here, we summarize recent and former findings about centromere/kinetochore adaptations shown by holocentric organisms during mitosis and meiosis and discuss how these adaptations are related to the type of meiosis found.
Collapse
Affiliation(s)
- André Marques
- Laboratory of Genetic Resources, Campus Arapiraca, Federal University of Alagoas, Arapiraca, Alagoas, 57309-005, Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil.
| |
Collapse
|
43
|
Wang X, Ma Z, Kong X, Lv Z. Effects of RNAs on chromatin accessibility and gene expression suggest RNA-mediated activation. Int J Biochem Cell Biol 2016; 79:24-32. [PMID: 27497987 DOI: 10.1016/j.biocel.2016.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 01/20/2023]
Abstract
The study of the interaction between RNA and DNA sequences in activating genes has important significance for understanding the mechanisms of RNA-mediated activation. Here, we used in vitro chromatin reconstitution approach to observe whether RNAs increase DNase I digestion, plasmid transfection to observe whether RNAs promote gene expression, and bioinformatics analysis to predict the binding ability of RNAs to centromere DNA (constitutive heterochromatin). Synthetic RNAs (23nt) that were complementary to mouse albumin gene and total liver RNA increased DNase I digestion sensitivity of mouse albumin gene, suggesting that RNAs can increase chromatin accessibility. Transcribed sense-antisense tandem Alu elements activated an enhanced green fluorescent protein reporter gene after stable transfection. Bioinformatics analysis showed that the binding strength of RNA population to centromere DNAs is significantly lower than that of their flanking sequences, which suggests that the centromere is not easily affected by RNAs produced from other transcribed regions and may be the reason why centromeres consist of constitutive heterochromatin. The results in this paper illustrate that RNAs complementary to DNA sequences play roles in activating genes. Since RNA is mainly produced from the cell's own DNA, the work presented in this paper suggests that RNAs transcribed from DNA create feedback that activates DNA transcription.
Collapse
Affiliation(s)
- Xiufang Wang
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China.
| | - Zhihong Ma
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China; Clinical Laboratory, The Second Hospital of Tangshan, 21 North Jianshe Road, Tangshan, Hebei Province, China.
| | - Xianglong Kong
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China; Clinical Laboratory, Hebei Chest Hospital, 372 Shengli North Street, Shijiazhuang, Hebei Province, China.
| | - Zhanjun Lv
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
44
|
Streit A, Wang J, Kang Y, Davis RE. Gene silencing and sex determination by programmed DNA elimination in parasitic nematodes. Curr Opin Microbiol 2016; 32:120-127. [PMID: 27315434 DOI: 10.1016/j.mib.2016.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/22/2016] [Accepted: 05/18/2016] [Indexed: 11/18/2022]
Abstract
Maintenance of genome integrity is essential. However, programmed DNA elimination removes specific DNA sequences from the genome during development. DNA elimination occurs in unicellular ciliates and diverse metazoa ranging from nematodes to vertebrates. Two distinct groups of nematodes use DNA elimination to silence germline-expressed genes in the soma (ascarids) or for sex determination (Strongyloides spp.). Data suggest that DNA elimination likely evolved independently in these nematodes. Recent studies indicate that differential CENP-A deposition within chromosomes defines which sequences are retained and lost during Ascaris DNA elimination. Additional studies are needed to determine the distribution, functions, and mechanisms of DNA elimination in nematodes.
Collapse
Affiliation(s)
- Adrian Streit
- Department Evolutionary Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Jianbin Wang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Yuanyuan Kang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, United States.
| |
Collapse
|
45
|
Abstract
The World Health Organization lists a constellation of 17 tropical diseases that afflict approximately one in six individuals on the planet and, until recently, few resources have been devoted to the treatment and eradication of those diseases. They are often referred to as the diseases of the “bottom billion,” because they are most prevalent among the poorest individuals in impoverished tropical nations. However, the few studies that have been performed reveal an extraordinary world of molecular and cellular adaptations that facilitate the pathogens’ survival in hosts ranging from insects to humans. A compelling case can be made that even a modest investment toward understanding the basic molecular and cell biology of these neglected pathogens has a high probability of yielding exciting new cellular mechanisms and insights into novel ways of combating these diseases.
Collapse
Affiliation(s)
- William Sullivan
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
46
|
Abstract
The ciliate Oxytricha is a microbial eukaryote with two genomes, one of which experiences extensive genome remodeling during development. Each round of conjugation initiates a cascade of events that construct a transcriptionally active somatic genome from a scrambled germline genome, with considerable help from both long and small noncoding RNAs. This process of genome remodeling entails massive DNA deletion and reshuffling of remaining DNA segments to form functional genes from their interrupted and scrambled germline precursors. The use of Oxytricha as a model system provides an opportunity to study an exaggerated form of programmed genome rearrangement. Furthermore, studying the mechanisms that maintain nuclear dimorphism and mediate genome rearrangement has demonstrated a surprising plasticity and diversity of noncoding RNA pathways, with new roles that go beyond conventional gene silencing. Another aspect of ciliate genetics is their unorthodox patterns of RNA-mediated, epigenetic inheritance that rival Mendelian inheritance. This review takes the reader through the key experiments in a model eukaryote that led to fundamental discoveries in RNA biology and pushes the biological limits of DNA processing.
Collapse
|
47
|
Cytogenetic evidences of genome rearrangement and differential epigenetic chromatin modification in the sea lamprey (Petromyzon marinus). Genetica 2014; 142:545-54. [PMID: 25432678 DOI: 10.1007/s10709-014-9802-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/22/2014] [Indexed: 10/24/2022]
Abstract
This work explores both the chromatin loss and the differential genome methylation in the sea lamprey (Petromyzon marinus) from a molecular cytogenetic point of view. Fluorescent in situ hybridization experiments on meiotic bivalents and mitotic chromosomes corroborate the chromatin loss previously observed during the development of the sea lamprey and demonstrate that the elimination affects not only to Germ1 sequences but also to the rpt200 satellite DNA and most part of the major ribosomal DNA present on the germinal line. 5-Methylcytosine immunolocation revealed that the GC-rich heterochromatin is highly methylated in the germ line but significantly less in somatic chromosomes. These findings not only support previous observations about genome rearrangements but also give new information about epigenetic changes in P. marinus. The key position of lampreys in the vertebrate phylogenetic tree makes them an interesting taxon to provide relevant information about genome evolution in vertebrates.
Collapse
|
48
|
Nielsen MK, Wang J, Davis R, Bellaw JL, Lyons ET, Lear TL, Goday C. Parascaris univalens—a victim of large-scale misidentification? Parasitol Res 2014; 113:4485-90. [DOI: 10.1007/s00436-014-4135-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
|
49
|
Wang J, Davis RE. Programmed DNA elimination in multicellular organisms. Curr Opin Genet Dev 2014; 27:26-34. [PMID: 24886889 DOI: 10.1016/j.gde.2014.03.012] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/17/2014] [Accepted: 03/25/2014] [Indexed: 10/25/2022]
Abstract
Genetic information typically remains constant in all cells throughout the life cycle of most organisms. However, there are exceptions where DNA elimination is an integral, developmental program for some organisms, associated with generating distinct germline versus somatic genomes. Programmed DNA elimination occurs in unicellular ciliates and diverse metazoa ranging from nematodes to vertebrates. DNA elimination can occur through chromosome breakage and selective loss of chromosome regions or the elimination of individual chromosomes. Recent studies provide compelling evidence that DNA elimination is a novel form of gene silencing, dosage compensation, and sex determination. Further identification of the eliminated sequences, genome changes, and in depth characterization of this phenomenon in diverse metazoans is needed to shed new light on the functions and mechanisms of this regulated process.
Collapse
Affiliation(s)
- Jianbin Wang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, United States.
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, United States.
| |
Collapse
|
50
|
Abstract
Discoveries in cytogenetics, molecular biology, and genomics have revealed that genome change is an active cell-mediated physiological process. This is distinctly at variance with the pre-DNA assumption that genetic changes arise accidentally and sporadically. The discovery that DNA changes arise as the result of regulated cell biochemistry means that the genome is best modelled as a read-write (RW) data storage system rather than a read-only memory (ROM). The evidence behind this change in thinking and a consideration of some of its implications are the subjects of this article. Specific points include the following: cells protect themselves from accidental genome change with proofreading and DNA damage repair systems; localized point mutations result from the action of specialized trans-lesion mutator DNA polymerases; cells can join broken chromosomes and generate genome rearrangements by non-homologous end-joining (NHEJ) processes in specialized subnuclear repair centres; cells have a broad variety of natural genetic engineering (NGE) functions for transporting, diversifying and reorganizing DNA sequences in ways that generate many classes of genomic novelties; natural genetic engineering functions are regulated and subject to activation by a range of challenging life history events; cells can target the action of natural genetic engineering functions to particular genome locations by a range of well-established molecular interactions, including protein binding with regulatory factors and linkage to transcription; and genome changes in cancer can usefully be considered as consequences of the loss of homeostatic control over natural genetic engineering functions.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCISW123B, 979 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|