1
|
Srinivasan G, Parida S, Pavithra S, Panigrahi M, Sahoo M, Singh TU, Madhu CL, Manickam K, Shyamkumar TS, Kumar D, Mishra SK. Leptin receptor stimulation in late pregnant mouse uterine tissue inhibits spontaneous contractions by increasing NO and cGMP. Cytokine 2020; 137:155341. [PMID: 33128919 DOI: 10.1016/j.cyto.2020.155341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022]
Abstract
The adipokine, leptin exerts inhibitory effect on both spontaneous and oxytocin-induced contractions in myometrium. However, the mechanisms involved in leptin-induced effect are not clear. In the present study, we studied the altered characteristics of uterine contractions in the presence of leptin and the possible mechanisms of its effect in late pregnant (18.5 day) mouse uterus. We conducted functional, biochemical and molecular biology studies to demonstrate the mechanism of leptin-induced response. Leptin exerted an inhibitory response (Emax 40.5 ± 3.99%) on basal uterine contractions. The extent of inhibition was less than that obtained with known uterine relaxants, salbutamol (Emax103 ± 8.66%) and BRL-37344 (Emax 84.79 ± 8.12%). Leptin-induced uterine response was inhibited by leptin receptor antagonist SHLA and JAK-STAT pathway inhibitor, AG-490. The relaxant response was also subdued by NO-cGMP-PK-G pathway blockers L-NAME, 1400W, ODQ and KT-5823. Further, leptin enhanced the levels of NO and cGMP in uterine tissues. Also, SHLA, AG-490 and a combination of 1400 W and L-NAME prevented leptin-induced increase in NO. Similar effect was observed on cGMP levels in presence of leptin and SHLA. However, leptin did not influence CaCl2-induced response in potassium-depolarized tissues. We also detected leptin receptor protein in late pregnant mouse uterus located in endometrial luminal epithelium and myometrial layers. Real-time PCR studies revealed significantly higher expression of short forms of the receptor (ObRa and ObRc) in comparison to the long form (ObRb). In conclusion, the results of the present study suggest that leptin inhibits mouse uterine contraction by stimulating short forms of the leptin receptors and activating NO pathway in a JAK-STAT-dependent manner.
Collapse
Affiliation(s)
- G Srinivasan
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| | - S Pavithra
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Manjit Panigrahi
- Division of Animal Genetics and Breeding, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Monalisa Sahoo
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Thakur Uttam Singh
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - C L Madhu
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Kesavan Manickam
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - T S Shyamkumar
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Dinesh Kumar
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Santosh K Mishra
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| |
Collapse
|
2
|
Inhibitory Effects of a Novel Chrysin-Derivative, CPD 6, on Acute and Chronic Skin Inflammation. Int J Mol Sci 2019; 20:ijms20112607. [PMID: 31141897 PMCID: PMC6600461 DOI: 10.3390/ijms20112607] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/16/2022] Open
Abstract
The skin is an important physiological barrier against external stimuli, such as ultraviolet radiation (UV), xenobiotics, and bacteria. Dermal inflammatory reactions are associated with various skin disorders, including chemical-induced irritation and atopic dermatitis. Modulation of skin inflammatory response is a therapeutic strategy for skin diseases. Here, we synthesized chrysin-derivatives and identified the most potent derivative of Compound 6 (CPD 6). We evaluated its anti-inflammatory effects in vitro cells of macrophages and keratinocytes, and in vivo dermatitis mouse models. In murine macrophages stimulated by lipopolysaccharide (LPS), CPD 6 significantly attenuated the release of inflammatory mediators such as nitric oxide (NO) (IC50 for NO inhibition: 3.613 μM) and other cytokines. In cultured human keratinocytes, CPD 6 significantly attenuated the release of inflammatory cytokines induced by the combination of IFN-γ and TNF-α, UV irradiation, or chemical irritant stimulation. CPD 6 inhibited NFκB and JAK2/STAT1 signaling pathways, and activated Nrf2/HO-1 signaling. In vivo relevancy of anti-inflammatory effects of CPD 6 was observed in acute and chronic skin inflammation models in mice. CPD 6 showed significant anti-inflammatory properties both in vitro cells and in vivo dermatitis animal models, mediated by the inhibition of the NFκB and JAK2-STAT1 pathways and activation of Nrf2/HO-1 signaling. We propose that the novel chrysin-derivative CPD 6 may be a potential therapeutic agent for skin inflammation.
Collapse
|
3
|
Akram M, Kim KA, Kim ES, Shin YJ, Noh D, Kim E, Kim JH, Majid A, Chang SY, Kim JK, Bae ON. Selective inhibition of JAK2/STAT1 signaling and iNOS expression mediates the anti-inflammatory effects of coniferyl aldehyde. Chem Biol Interact 2016; 256:102-10. [DOI: 10.1016/j.cbi.2016.06.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 06/07/2016] [Accepted: 06/29/2016] [Indexed: 01/15/2023]
|
4
|
Barcelos RP, Bresciani G, Rodriguez-Miguelez P, Cuevas MJ, Soares FAA, Barbosa NV, González-Gallego J. Diclofenac pretreatment effects on the toll-like receptor 4/nuclear factor kappa B-mediated inflammatory response to eccentric exercise in rat liver. Life Sci 2016; 148:247-53. [DOI: 10.1016/j.lfs.2016.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/04/2015] [Accepted: 02/03/2016] [Indexed: 01/22/2023]
|
5
|
Ruimi N, Petrova RD, Agbaria R, Sussan S, Wasser SP, Reznick AZ, Mahajna J. Inhibition of TNFα-induced iNOS expression in HSV-tk transduced 9L glioblastoma cell lines by Marasmius oreades substances through NF-κB- and MAPK-dependent mechanisms. Mol Biol Rep 2010; 37:3801-12. [PMID: 20224909 DOI: 10.1007/s11033-010-0035-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 02/24/2010] [Indexed: 01/01/2023]
Abstract
Nitric oxide (NO) is a gaseous, radical molecule that plays a role in various physiological processes. Previously, we reported that transduction of murine colon cancer cells (MC38) with herpes simplex virus thymidine kinase (HSV-tk) gene resulted in a significant over-expression of cyclooxygenase-2 (COX-2) and activation of NF-kB pathway. In this study we show that TNFα, but not LPS, was significantly able to stimulate the production of NO in HSV-tk transduced 9L glioblastoma cell lines, mediated by the up-regulation of iNOS transcript and iNOS protein. The TNFα-induced up-regulation of iNOS expression was mediated by MAPK and NF-κB signaling pathways as revealed by using selective pharmaceutical inhibitors. A culture liquid extract of the edible and medicinal mushroom Marasmius oreades that was previously shown to inhibit iNOS expression in MCF-7 was utilized to prepare fractions and evaluate their ability to affect TNFα-induced iNOS expression in HSV tk transduced 9L cell lines. While most of the tested fractions were shown to inhibit TNFα-induced iNOS expression, they targeted different signaling pathways in a selective fashion. Here, we report that fraction SiSiF1 interfered with IKBα phosphorylation and consequently interfered with NF-κB activation pathway. SiSiF1 showed minimal interference with the phosphorylation of p38 and JNK proteins. In contrast, fraction SiSiF3 selectively inhibited the phosphorylation of p38 and fractions SiSiF4 and SiSiF5 selectively inhibited the phosphorylation of JNK with no observed effect against IKBα and p38 phosphorylation. Our data illustrate the complexity of iNOS regulation in HSV tk transduced 9L cell lines and also the richness of natural products with bioactive substances that may act synergistically through different signaling pathways to affect iNOS gene expression.
Collapse
Affiliation(s)
- Nili Ruimi
- Migal-Galilee Technology Center, Cancer Drug Discovery Program, P.O. Box 831, Kiryat Shmona, Israel
| | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Kralisch S, Sommer G, Weise S, Lipfert J, Lossner U, Kamprad M, Schröck K, Bluher M, Stumvoll M, Fasshauer M. Interleukin-1beta is a positive regulator of TIARP/STAMP2 gene and protein expression in adipocytes in vitro. FEBS Lett 2009; 583:1196-200. [PMID: 19289123 DOI: 10.1016/j.febslet.2009.03.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 03/01/2009] [Accepted: 03/05/2009] [Indexed: 11/25/2022]
Abstract
The impact of interleukin (IL)-1beta on tumor necrosis factor alpha-induced adipose-related protein (TIARP)/six-transmembrane protein of prostate 2 (STAMP2) was determined in adipocytes. TIARP/STAMP2 mRNA synthesis was significantly stimulated by IL-1beta in a dose- and time-dependent fashion in 3T3-L1 adipocytes. Signaling studies suggested that janus kinase 2, nuclear factor kappaB, and p44/42 mitogen-activated protein kinase are involved in IL-1beta-induced TIARP/STAMP2 mRNA expression. Furthermore, IL-1beta, TNFalpha, and IL-6 showed synergistic stimulatory effects on TIARP/STAMP2 gene expression. Moreover, both TIARP/STAMP2 mRNA synthesis and protein expression were induced by IL-1beta in fully differentiated human mesenchymal stem cell-derived adipocytes (hMSC-Ad). Taken together, TIARP/STAMP2 is highly upregulated in 3T3-L1 cells and hMSC-Ad by IL-1beta and might, therefore, modulate proinflammatory and insulin resistance-inducing effects of IL-1beta.
Collapse
Affiliation(s)
- Susan Kralisch
- University of Leipzig, Department of Internal Medicine III, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kralisch S, Weise S, Sommer G, Lipfert J, Lossner U, Bluher M, Stumvoll M, Fasshauer M. Interleukin-1beta induces the novel adipokine chemerin in adipocytes in vitro. ACTA ACUST UNITED AC 2009; 154:102-6. [PMID: 19233230 DOI: 10.1016/j.regpep.2009.02.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 02/05/2009] [Accepted: 02/09/2009] [Indexed: 01/06/2023]
Abstract
Chemerin has recently been characterized as a novel adipokine playing a crucial role in adipocyte differentiation and insulin signalling. In the current study, the impact of insulin resistance-inducing and proinflammatory interleukin (IL)-1beta on chemerin protein secretion and mRNA expression was determined in 3T3-L1 adipocytes. Interestingly, IL-1beta significantly induced chemerin protein secretion almost 1.3-fold from 5.89 ng/ml (basal) to 7.52 ng/ml. Furthermore, chemerin mRNA synthesis was significantly stimulated by IL-1beta in a dose-dependent fashion with 1.5-fold induction seen at IL-1beta concentrations as low as 0.07 ng/ml and maximal 2.6-fold upregulation found at 2 ng/ml effector. Induction of chemerin mRNA by IL-1beta was time-dependent in both 3T3-L1 adipocytes and brown fat cells. Signalling studies suggested that Janus kinase 2, nuclear factor kappa B, p44/42 mitogen-activated protein kinase, and phosphatidylinositol 3-kinase are involved in IL-1beta-induced chemerin mRNA expression. Furthermore, recombinant chemerin downregulated insulin-stimulated glucose uptake. Taken together, we show that chemerin is upregulated in fat cells by IL-1beta and might modulate the effects of IL-1beta on adipocyte metabolism and insulin sensitivity.
Collapse
Affiliation(s)
- Susan Kralisch
- University of Leipzig, Department of Internal Medicine III, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Sommer G, Weise S, Kralisch S, Lossner U, Bluher M, Stumvoll M, Fasshauer M. Lipocalin-2 is induced by interleukin-1beta in murine adipocytes in vitro. J Cell Biochem 2009; 106:103-8. [PMID: 19009554 DOI: 10.1002/jcb.21980] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lipocalin-2 (Lcn2) has recently been isolated as an adipocyte-secreted acute phase reactant that plays a role in insulin resistance, obesity, and atherosclerotic disease. In the current study, we determined regulation of Lcn2 by the proinflammatory and insulin resistance-inducing cytokine interleukin (IL)-1beta in 3T3-L1 and brown adipocytes by relative real-time reverse transcription-polymerase chain reaction. Interestingly, IL-1beta dramatically induced Lcn2 mRNA in both adipocyte models. Furthermore, Lcn2 protein secretion was dramatically upregulated in 3T3-L1 adipocytes after 24 h of IL-1beta treatment. Experiments using pharmacological inhibitors indicated that IL-1beta-induced Lcn2 expression is mediated via nuclear factor kappaB and janus kinase 2. Taken together, our results show an upregulation of Lcn2 by IL-1beta in fat cells implicating a potential role of this adipocyte-secreted acute phase reactant in the development of insulin resistance, obesity, and associated disorders including cardiovascular disease.
Collapse
Affiliation(s)
- Grit Sommer
- Department of Internal Medicine III, University of Leipzig, 04103 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Sommer G, Weise S, Kralisch S, Scherer PE, Lössner U, Blüher M, Stumvoll M, Fasshauer M. The adipokine SAA3 is induced by interleukin-1beta in mouse adipocytes. J Cell Biochem 2008; 104:2241-7. [PMID: 18452164 DOI: 10.1002/jcb.21782] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Serum amyloid A (SAA) 3 has been characterized as an inflammatory adipocyte-secreted acute-phase reactant. In the current study, regulation of SAA3 by the proinflammatory and insulin resistance-inducing cytokine interleukin (IL)-1beta was determined in 3T3-L1 and brown adipocytes. Interestingly, SAA3 mRNA and protein synthesis were dramatically increased by IL-1beta in a time-dependent fashion with maximal induction after 24 h. Furthermore, IL-1beta significantly induced SAA3 mRNA expression dose-dependently with maximal 36.4-fold upregulation seen at 2 ng/ml effector. Moreover, IL-1beta-induced SAA3 expression was mediated by nuclear factor-kappaB and janus kinase 2. Taken together, our data show a potent upregulation of SAA3 by IL-1beta.
Collapse
Affiliation(s)
- Grit Sommer
- Department of Internal Medicine III, University of Leipzig, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Juan CC, Lien CC, Chang CL, Huang YH, Ho LT. Involvement of iNOS and NO in TNF-alpha-downregulated resistin gene expression in 3T3-L1 adipocytes. Obesity (Silver Spring) 2008; 16:1219-25. [PMID: 18369347 DOI: 10.1038/oby.2008.200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE In order to characterize the regulation of resistin gene expression, we explore the effect of tumornecrosis factor-alpha (TNF-alpha) on resistin mRNA expression and its underlying mechanism in 3T3-L1 adipocytes. METHODS AND PROCEDURES Differentiated 3T3-L1 adipocytes were treated for 24 h with 0-10 ng/ml of TNF-alpha or with 2.5 ng/ml of TNF-alpha for 0-24 h, and then resistin mRNA levels were measured by northern blotting. To further explore the involvement of nitric oxide (NO) in TNF-alpha-regulated resistin expression, the effect of the NO donor, sodium nitroprusside (SNP), on resistin mRNA levels in adipocytes and the effect of the nitric oxide synthase (NOS) inhibitors, N(G)-nitro-L-arginine methyl ester (L-NAME), and S,S'-1,3-phenylene-bis(1,2-ethanediyl)-bis-isothiourea.2HBr (PBITU), on the TNF-alpha effect in adipocytes were examined. The effects of TNF-alpha on inducible NOS (iNOS) protein expression in adipocytes were also measured by western blotting. RESULTS Our results showed that TNF-alpha caused a dose-dependent reduction in resistin mRNA levels. This effect seemed to be associated with the TNF-alpha-induced expression of iNOS. The results showed that TNF-alpha induced iNOS expression and release of NO after 24-h treatment of differentiated 3T3-L1 adipocytes. Pretreatment with L-NAME and PBITU significantly reversed the TNF-alpha-induced downregulation of resistin expression, while treatment with SNP mimicked the inhibitory effect of TNF-alpha on resistin expression. In addition, pretreatment with protein tyrosine kinase (PTK) inhibitors, genistein and AG-1288, prevented TNF-alpha-induced iNOS expression and subsequent resistin downregulation. DISCUSSION Our data suggest that TNF-alpha suppresses resistin expression by inducing iNOS expression, thus causing overproduction of NO, which downregulates resistin gene expression.
Collapse
Affiliation(s)
- Chi-Chang Juan
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
12
|
Kawamura A, Baitsch D, Telgmann R, Feuerborn R, Weissen-Plenz G, Hagedorn C, Saku K, Brand-Herrmann SM, von Eckardstein A, Assmann G, Nofer JR. Apolipoprotein E interrupts interleukin-1beta signaling in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2007; 27:1610-7. [PMID: 17510469 DOI: 10.1161/atvbaha.106.129957] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Apolipoprotein E (apoE) exerts antiatherogenic effects but precise mechanisms remain unclear. We here investigated the effect of apoE on intracellular signaling by interleukin-1beta (IL-1beta), a proinflammatory cytokine present in atherosclerotic lesions. METHODS AND RESULTS IL-1beta-induced expression and activation of inducible nitric oxide synthase and cyclooxygenase-2 were inhibited by apoE in vascular smooth muscle cells (VSMCs). These inhibitory effects were linked to the suppression of both NF-kappaB and activating protein-1 (AP-1) transactivation, suggesting that the interruption of IL-1beta signaling occurs upstream of transcription factors. Studies in VSMCs overexpressing IL-1beta signaling intermediates revealed that NF-kappaB transactivation was inhibited by apoE in MyD88- and IRAK1- but not in TRAF6-transfected cells. Furthermore, apoE prevented IRAK1 phosphorylation and IRAK1-TRAF6 but not MyD88-IRAK1 complex formation. Inhibitory effects of apoE on IL-1beta signaling were abolished after silencing LDL receptor-related protein-1 (LRP1) expression with siRNA. In addition, inhibitors of adenylyl cyclase and protein kinase A (PKA) restored IL-1beta signaling in apoE-treated VSMCs, whereas apoE stimulated PKA activity. ApoE inhibited VSMC activation in response to IL-18 but not to tumor necrosis factor-alpha or polyinosinic:polycytidylic acid. CONCLUSION ApoE targets IRAK-1 activation and thereby interrupts IL-1beta and IL-18 signaling in VSMCs. This antiinflammatory effect represents a novel antiatherogenic activity of apoE.
Collapse
Affiliation(s)
- Akira Kawamura
- Department of Lipid Metabolism, Leibniz-Institut für Arterioskleroseforschung an der Universität Münster, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
de Lima TM, de Sa Lima L, Scavone C, Curi R. Fatty acid control of nitric oxide production by macrophages. FEBS Lett 2006; 580:3287-95. [PMID: 16698019 DOI: 10.1016/j.febslet.2006.04.091] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 04/26/2006] [Indexed: 10/24/2022]
Abstract
Modulation of macrophage functions by fatty acids (FA) has been studied by several groups, but the effect of FA on nitric oxide production by macrophages has been poorly examined. In the present study the effect of palmitic, stearic, oleic, linoleic, arachidonic, docosahexaenoic and eicosapentaenoic acids on NF-kappaB activity and NO production in J774 cells (a murine macrophage cell line) was investigated. All FA tested stimulated NO production at low doses (1-10 microM) and inhibited it at high doses (50-200 microM). An increase of iNOS expression and activity in J774 cells treated with a low concentration of FA (5 microM) was observed. The activity of NF-kappaB was time-dependently enhanced by the FA treatment. The inhibitory effect of FA on NO production may be due to their cytotoxicity, as observed by loss of membrane integrity and/or increase of DNA fragmentation in cells treated for 48 h with high concentrations. The results indicate that, at low concentrations FA increase NO production by J774 cells, whereas at high concentrations they cause cell death.
Collapse
Affiliation(s)
- Thais Martins de Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes, 1524, 05508-900, São Paulo, Brazil.
| | | | | | | |
Collapse
|
14
|
Kleinert H, Pautz A, Linker K, Schwarz PM. Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol 2005; 500:255-66. [PMID: 15464038 DOI: 10.1016/j.ejphar.2004.07.030] [Citation(s) in RCA: 449] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 01/24/2023]
Abstract
The role of nitric oxide (NO) generated by the inducible isoform of nitric oxide synthase (iNOS) is very complex. Induction of iNOS expression and hence NO production has been described to have beneficial antiviral, antiparasital, microbicidal, immunomodulatory, and antitumoral effects. However, induced at the wrong place or at the wrong time, iNOS has detrimental consequences and seems to be involved in the pathophysiology of different human diseases. The pathways regulating iNOS expression seem to vary in different cells or different species. In general, activation of the transcription factors nuclear factor (NF)-kappaB and signal transducer and activator of transcription (STAT)-1alpha and thereby activation of the iNOS promoter seems to be an essential step in the regulation of iNOS expression in most cells. Also, post-transcriptional mechanisms are critically involved in the regulation of iNOS expression.
Collapse
Affiliation(s)
- Hartmut Kleinert
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Strasse 67, D-55101 Mainz, Germany.
| | | | | | | |
Collapse
|
15
|
Otero M, Lago R, Lago F, Reino JJG, Gualillo O. Signalling pathway involved in nitric oxide synthase type II activation in chondrocytes: synergistic effect of leptin with interleukin-1. Arthritis Res Ther 2005; 7:R581-91. [PMID: 15899045 PMCID: PMC1174950 DOI: 10.1186/ar1708] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 01/14/2005] [Accepted: 02/03/2005] [Indexed: 11/10/2022] Open
Abstract
The objective of the present study was to investigate the effect of leptin, alone or in combination with IL-1, on nitric oxide synthase (NOS) type II activity in vitro in human primary chondrocytes, in the mouse chondrogenic ATDC5 cell line, and in mature and hypertrophic ATDC5 differentiated chondrocytes. For completeness, we also investigated the signalling pathway of the putative synergism between leptin and IL-1. For this purpose, nitric oxide production was evaluated using the Griess colorimetric reaction in culture medium of cells stimulated over 48 hours with leptin (800 nmol/l) and IL-1 (0.025 ng/ml), alone or combined. Specific pharmacological inhibitors of NOS type II (aminoguanidine [1 mmol/l]), janus kinase (JAK)2 (tyrphostin AG490 and Tkip), phosphatidylinositol 3-kinase (PI3K; wortmannin [1, 2.5, 5 and 10 micromol/l] and LY294002 [1, 2.5, 5 and 10 micromol/l]), mitogen-activated protein kinase kinase (MEK)1 (PD098059 [1, 5, 10, 20 and 30 micromol/l]) and p38 kinase (SB203580 [1, 5, 10, 20 and 30 micromol/l]) were added 1 hour before stimulation. Nitric oxide synthase type II mRNA expression in ATDC5 chondrocytes was investigated by real-time PCR and NOS II protein expression was analyzed by western blot. Our results indicate that stimulation of chondrocytes with IL-1 results in dose-dependent nitric oxide production. In contrast, leptin alone was unable to induce nitric oxide production or expression of NOS type II mRNA or its protein. However, co-stimulation with leptin and IL-1 resulted in a net increase in nitric oxide concentration over IL-1 challenge that was eliminated by pretreatment with the NOS II specific inhibitor aminoguanidine. Pretreatment with tyrphostin AG490 and Tkip (a SOCS-1 mimetic peptide that inhibits JAK2) blocked nitric oxide production induced by leptin/IL-1. Finally, wortmannin, LY294002, PD098059 and SB203580 significantly decreased nitric oxide production. These findings were confirmed in mature and hypertrophic ATDC5 chondrocytes, and in human primary chondrocytes. This study indicates that leptin plays a proinflammatory role, in synergy with IL-1, by inducing NOS type II through a signalling pathway that involves JAK2, PI3K, MEK-1 and p38 kinase.
Collapse
Affiliation(s)
- Miguel Otero
- NEIRID (NeuroEndocrine Interactions in Rheumatology and Inflammatory Diseases) Laboratory, Santiago University Clinical Hospital, Research Laboratory 4, Santiago de Compostela, Spain
| | - Rocío Lago
- NEIRID (NeuroEndocrine Interactions in Rheumatology and Inflammatory Diseases) Laboratory, Santiago University Clinical Hospital, Research Laboratory 4, Santiago de Compostela, Spain
| | - Francisca Lago
- Laboratory of Molecular and Cellular Cardiology, Santiago University Clinical Hospital, Research Laboratory 1, Santiago de Compostela, Spain
| | - Juan Jesús Gomez Reino
- Rheumatology Division, Santiago University Clinical Hospital, Santiago de Compostela, Spain
- Department of Medicine, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Oreste Gualillo
- NEIRID (NeuroEndocrine Interactions in Rheumatology and Inflammatory Diseases) Laboratory, Santiago University Clinical Hospital, Research Laboratory 4, Santiago de Compostela, Spain
| |
Collapse
|
16
|
Ozawa N, Shichiri M, Iwashina M, Fukai N, Yoshimoto T, Hirata Y. Laminar Shear Stress Up-Regulates Inducible Nitric Oxide Synthase in the Endothelium. Hypertens Res 2004; 27:93-9. [PMID: 15005272 DOI: 10.1291/hypres.27.93] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Shear stress caused by blood flow is a potent physiological stimulus for the generation of nitric oxide (NO) in endothelial cells, which is believed to derive from the up-regulation and post-transcriptional activation of endothelial constitutive NO synthase (ecNOS). However, it has yet to be demonstrated that inducible NO synthase (iNOS) plays a significant role in shear stress-induced NO production from endothelial cells. We used parallel plate-type flow chambers that detect fluid shear stress to determine that shear stress, as quantified by a real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR), increased iNOS gene transcripts in cultured endothelial cells, which resulted in increased NO production. Shear stress-induced iNOS expression was inhibited by pyrrolidine dithiocarbamate (PDTC), an antioxidant and nuclear factor kappaB (NF-kappaB) blocker, and by MG132, an aldehyde peptide proteasome inhibitor that antagonizes I kappaB-kinase. Laminar shear stress increased the transcriptional activity of NF-kappaB, whereas over-expression of an I kappaB-alpha mutant that inhibits the activation of NF-KB in a dominant-negative fashion was found to attenuate the induction of endothelial iNOS by shear stress. The present results demonstrate that shear stress induces iNOS in the endothelium, mainly via the activation of NF-kappaB.
Collapse
Affiliation(s)
- Naoko Ozawa
- Department of Clinical and Molecular Endocrinology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Chatterjee PK, di Villa Bianca RD, Sivarajah A, McDonald MC, Cuzzocrea S, Thiemermann C. Pyrrolidine dithiocarbamate reduces renal dysfunction and injury caused by ischemia/reperfusion of the rat kidney. Eur J Pharmacol 2003; 482:271-80. [PMID: 14660032 DOI: 10.1016/j.ejphar.2003.09.071] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Dithiocarbamates can modulate the expression of genes associated with inflammation or development of ischemia/reperfusion injury. Here, we investigate the effects of pyrrolidine dithiocarbamate, an inhibitor of nuclear factor (NF)-kappaB activation, on the renal dysfunction and injury caused by ischemia/reperfusion of the rat kidney. Bilateral clamping of renal pedicles (45 min) followed by reperfusion (6 h) caused significant renal dysfunction and marked renal injury. Pyrrolidine dithiocarbamate (100 mg/kg, administered i.v.) significantly reduced biochemical and histological evidence of renal dysfunction and injury caused by ischemia/reperfusion of the rat kidney. Furthermore, pyrrolidine dithiocarbamate markedly reduced the expression of inducible nitric oxide synthase (iNOS) protein and significantly reduced serum levels of nitric oxide. Finally, pyrrolidine dithiocarbamate inhibited the activation of NF-kappaB by preventing its translocation from the cytoplasm into the nuclei of renal cells. These results demonstrate that pyrrolidine dithiocarbamate reduces renal ischemia/reperfusion injury and that dithiocarbamates may provide beneficial actions against ischemic acute renal failure.
Collapse
Affiliation(s)
- Prabal K Chatterjee
- Department of Experimental Medicine, Nephrology and Critical Care, William Harvey Research Institute, Queen Mary, University of London, Charterhouse Square, London EC1M 6BQ, UK
| | | | | | | | | | | |
Collapse
|
18
|
Murakami A, Matsumoto K, Koshimizu K, Ohigashi H. Effects of selected food factors with chemopreventive properties on combined lipopolysaccharide- and interferon-gamma-induced IkappaB degradation in RAW264.7 macrophages. Cancer Lett 2003; 195:17-25. [PMID: 12767507 DOI: 10.1016/s0304-3835(03)00058-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Degradation of IkappaB (IkappaB) is a key step for nuclear factor-kappaB (NF-kappaB)-induced transcription of certain proinflammatory genes, including inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. We selected seven chemopreventive agents and examined their effects on combined lipopolysaccharide- and interferon-gamma-induced IkappaB degradation in RAW264.7 murine macrophages. IkappaB degradation was notably suppressed by 1'-acetoxychavicol acetate (ACA), zerumbone (ZER), and benzylisothiocyanate (BITC), however, not by auraptene (AUR), while the suppressive potencies of nobiletin (NOB), genistein (GEN), and resveratrol (RES) were low, but significant. These results suggest that ACA, ZER, and BITC suppress iNOS/COX-2 gene expression mainly by attenuating IkappaB degradation, while other chemopreventive agents use alternative pathway(s) to suppress the expression of proinflammatory genes.
Collapse
Affiliation(s)
- Akira Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Transmission of external signals from the cell surface to the internal cellular environment occurs via tightly controlled complex transduction pathways. Alterations in these highly regulated signalling cascades in vascular smooth cells may play a fundamental role in the structural, mechanical and functional abnormalities that underlie vascular pathological processes in hypertension. The present review focuses on recent developments relating to two novel signalling pathways: angiotensin II signalling through tyrosine kinases; and oxidative stress and redox-dependent signal transduction. These pathways are emerging as critical mediators of hypertensive vascular disease because they influence multiple cellular responses that are involved in structural remodelling, vascular inflammation and altered tone. RECENT FINDINGS A recent advance in the field of angiotensin II signalling was the demonstration that, in addition to its vasoconstrictor properties, angiotensin II has potent mitogenic-like and proinflammatory-like characteristics. These actions are mediated through phosphorylation of both nonreceptor tyrosine kinases and receptor tyrosine kinases. It is also becoming increasingly apparent that many signalling events that underlie abnormal vascular function in hypertension are influenced by changes in intracellular redox status. In particular, increased bioavailability of reactive oxygen species (oxidative stress) stimulates growth-signalling pathways, induces expression of proinflammatory genes, alters contraction-excitation coupling and impairs endothelial function. SUMMARY A better understanding of the molecular pathways that regulate vascular smooth muscle cell function will provide further insights into the pathophysiological mechanisms that contribute to vascular changes and end-organ damage associated with high blood pressure, and could permit identification of potential novel therapeutic targets in the prevention and management of hypertension.
Collapse
Affiliation(s)
- Rhian M Touyz
- Canadian Institute of Health Research Multidisciplinary Research Group on Hypertension, Quebec, Canada.
| |
Collapse
|
20
|
Kleinert H, Schwarz PM, Förstermann U. Regulation of the Expression of Inducible Nitric Oxide Synthase. Biol Chem 2003; 384:1343-64. [PMID: 14669979 DOI: 10.1515/bc.2003.152] [Citation(s) in RCA: 291] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO), generated by the inducible isoform of nitric oxide synthase (iNOS), has been described to have beneficial microbicidal, antiviral, antiparasital, immunomodulatory, and antitumoral effects. However, aberrant iNOS induction at the wrong place or at the wrong time has detrimental consequences and seems to be involved in the pathophysiology of several human diseases. iNOS is primarily regulated at the expression level by transcriptional and post-transcriptional mechanisms. iNOS expression can be induced in many cell types with suitable agents such as bacterial lipopolysaccharides (LPS), cytokines, and other compounds. Pathways resulting in the induction of iNOS expression may vary in different cells or different species. Activation of the transcription factors NF-kappaB and STAT-1alpha, and thereby activation of the iNOS promoter, seems to be an essential step for iNOS induction in most cells. However, at least in the human system, also post-transcriptional mechanism are critically involved in the regulation of iNOS expression. The induction of iNOS can be inhibited by a wide variety of immunomodulatory compounds acting at the transcriptional levels and/or post-transcriptionally.
Collapse
Affiliation(s)
- Hartmut Kleinert
- Department of Pharmacology, Johannes Gutenberg University, D-55101 Mainz, Germany
| | | | | |
Collapse
|