1
|
Brumbaugh K, Liao WC, Houchins JP, Cooper J, Stoesz S. Phosphosite-Specific Antibodies: A Brief Update on Generation and Applications. Methods Mol Biol 2017; 1554:1-40. [PMID: 28185181 DOI: 10.1007/978-1-4939-6759-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phosphate addition is a posttranslational modification of proteins, and this modification can affect the activity and other properties of intracellular proteins. Different animal species can be used to generate phosphosite-specific antibodies as either polyclonals or monoclonals, and each approach offers its own benefits and disadvantages. The validation of phosphosite-specific antibodies requires multiple techniques and tactics to demonstrate their specificity. These antibodies can be used in arrays, flow cytometry, and imaging platforms. The specificity of phosphosite-specific antibodies is vital for their use in proteomics and profiling of disease.
Collapse
Affiliation(s)
- Kathy Brumbaugh
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA.
| | - Wen-Chie Liao
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA
| | - J P Houchins
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA
| | - Jeff Cooper
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA
| | - Steve Stoesz
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA
| |
Collapse
|
2
|
Yayama K, Sasahara T, Ohba H, Funasaka A, Okamoto H. Orthovanadate-induced vasocontraction is mediated by the activation of Rho-kinase through Src-dependent transactivation of epidermal growth factor receptor. Pharmacol Res Perspect 2014; 2:e00039. [PMID: 25505586 PMCID: PMC4184709 DOI: 10.1002/prp2.39] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/25/2014] [Accepted: 02/28/2014] [Indexed: 01/26/2023] Open
Abstract
Orthovanadate (OVA), a protein tyrosine phosphatase (PTPase) inhibitor, exerts contractile effects on smooth muscle in a Rho-kinase-dependent manner, but the precise mechanisms are not elucidated. The aim of this study was to determine the potential roles of Src and epidermal growth factor receptor (EGFR) in the OVA-induced contraction of rat aortas and the phosphorylation of myosin phosphatase target subunit 1 (MYPT1; an index of Rho-kinase activity) in vascular smooth muscle cells (VSMCs). Aortic contraction by OVA was significantly blocked not only by Rho kinase inhibitors Y-27632 [R-[+]-trans-N-[4-pyridyl]-4-[1-aminoethyl]-cyclohexanecarboxamide] and hydroxyfasudil [1-(1-hydroxy-5-isoquinolinesulfonyl)homopiperazine] but also by Src inhibitors PP2 [4-amino-3-(4-chlorophenyl)-1-(t-butyl)-1H-pyrazolo[3,4-d]pyrimidine] and Src inhibitor No. 5 [4-(3′-methoxy-6′-chloro-anilino)-6-methoxy-7(morpholino-3-propoxy)-quinazoline], and the EGFR inhibitors AG1478 [4-(3-chloroanilino)-6,7-dimethoxyquinazoline] and EGFR inhibitor 1 [cyclopropanecarboxylic acid-(3-(6-(3-trifluoromethyl-phenylamino)-pyrimidin-4-ylamino)-phenyl)-amide]. OVA induced rapid increases in the phosphorylation of MYPT1 (Thr-853), Src (Tyr-416), and EGFR (Tyr-1173) in VSMCs, and Src inhibitors abolished these effects. OVA-induced Src phosphorylation was abrogated by Src inhibitors, but not affected by inhibitors of EGFR and Rho-kinase. Inhibitors of Src and EGFR, but not Rho-kinase, also blocked OVA-induced EGFR phosphorylation. Furthermore, a metalloproteinase inhibitor TAPI-0 [N-(R)-[2-(hydroxyaminocarbonyl) methyl]-4-methylpentanoyl-l-naphthylalanyl-l-alanine amide] and an inhibitor of heparin-binding EGF (CRM 197) not only abrogated the OVA-induced aortic contraction, but also OVA-induced EGFR and MYPT1 phosphorylation, suggesting the involvement of EGFR transactivation. OVA also induced EGFR phosphorylation at Tyr-845, one of residues phosphorylated by Src. These results suggest that OVA-induced vasocontraction is mediated by the Rho-kinase-dependent inactivation of myosin light-chain phosphatase via signaling downstream of Src-induced transactivation of EGFR.
Collapse
Affiliation(s)
- Katsutoshi Yayama
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University Minatojima 1-1-3, Chuo-ku, Kobe, 650-8586, Japan
| | - Tomoya Sasahara
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University Minatojima 1-1-3, Chuo-ku, Kobe, 650-8586, Japan
| | - Hisaaki Ohba
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University Minatojima 1-1-3, Chuo-ku, Kobe, 650-8586, Japan
| | - Ayaka Funasaka
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University Minatojima 1-1-3, Chuo-ku, Kobe, 650-8586, Japan
| | - Hiroshi Okamoto
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University Minatojima 1-1-3, Chuo-ku, Kobe, 650-8586, Japan
| |
Collapse
|
3
|
Gorostizaga A, Mori Sequeiros García MM, Acquier A, Gomez NV, Maloberti PM, Mendez CF, Paz C. Modulation of albumin-induced endoplasmic reticulum stress in renal proximal tubule cells by upregulation of mapk phosphatase-1. Chem Biol Interact 2013; 206:47-54. [PMID: 23994741 DOI: 10.1016/j.cbi.2013.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/18/2013] [Accepted: 08/16/2013] [Indexed: 01/16/2023]
Abstract
High amounts of albumin in urine cause tubulointerstitial damage that leads to a rapid deterioration of the renal function. Albumin exerts its injurious effects on renal cells through a process named endoplasmic reticulum (ER) stress due to the accumulation of unfolded proteins in the ER lumen. In addition, albumin promotes phosphorylation and consequent activation of MAPKs such as ERK1/2. Since ERK1/2 activation promoted by albumin is a transient event, the aims of the present work were to identify the phosphatase involved in their dephosphorylation in albumin-exposed cells and to analyze the putative regulation of this phosphatase by albumin. We also sought to determine the role played by the phospho/dephosphorylation of ERK1/2 in the cellular response to albumin-induced ER stress. MAP kinase phosphatase-1, MKP-1, is a nuclear enzyme involved in rapid MAPK dephosphorylation. Here we present evidence supporting the notion that this phosphatase is responsible for ERK1/2 dephosphorylation after albumin exposure in OK cells. Moreover, we demonstrate that exposure of OK cells to albumin transiently increases MKP-1 protein levels. The increase was evident after 15 min of exposure, peaked at 1 h (6-fold) and declined thereafter. In cells overexpressing flag-MKP-1, albumin caused the accumulation of this chimera, promoting MKP-1 stabilization by a posttranslational mechanism. Albumin also promoted a transient increase in MKP-1 mRNA levels (3-fold at 1 h) through the activation of gene transcription. In addition, we also show that albumin increased mRNA levels of GRP78, a key marker of ER stress, through an ERK-dependent pathway. In line with this finding, our studies demonstrate that flag-MKP-1 overexpression blunted albumin-induced GRP78 upregulation. Thus, our work demonstrates that albumin overload not only triggers MAPK activation but also tightly upregulates MKP-1 expression, which might modulate ER stress response to albumin overload.
Collapse
Affiliation(s)
- Alejandra Gorostizaga
- Laboratory of Phosphatases in Signal Transduction, Institute for Biomedical Research (INBIOMED), Department of Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
4
|
Requirement and redundancy of the Src family kinases Fyn and Lyn in perforin-dependent killing of Cryptococcus neoformans by NK cells. Infect Immun 2013; 81:3912-22. [PMID: 23918783 DOI: 10.1128/iai.00533-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Natural killer (NK) cells directly recognize and kill fungi, such as the pathogenic fungus Cryptococcus neoformans, via cytolytic mechanisms. However, the precise signaling pathways governing this NK cell microbicidal activity and the implications for fungal recognition are still unknown. Previously, it was reported that NK cell anticryptococcal activity is mediated through a conserved phosphatidylinositol 3-kinase-extracellular signal-regulated kinase 1/2 (PI3K-ERK1/2) pathway. Using YT (a human NK-like cell line) and primary human NK cells, we sought to identify the upstream, receptor-proximal signaling elements that led to fungal cytolysis. We demonstrate that Src family kinases were activated in response to C. neoformans. Furthermore, pharmacologic inhibition with an Src kinase inhibitor blocked C. neoformans-induced downstream activation of PI3K and ERK1/2 and abrogated cryptococcal killing. At the same time, the inhibitor disrupted the polarization of perforin-containing granules toward the NK cell-cryptococcal synapse but had no effect on conjugate formation between the organism and the NK cell. Finally, small interfering RNA (siRNA) double (but not single) knockdown of two Src family kinases, Fyn and Lyn, blocked cryptococcal killing. Together these data demonstrate a mechanism whereby the Src family kinases, Fyn and Lyn, redundantly mediate anticryptococcal activity through the activation of PI3K and ERK1/2, which in turn facilitates killing by inducing the polarization of perforin-containing granules to the NK cell-cryptococcal synapse.
Collapse
|
5
|
Involvement of phosphatases in proliferation, maturation, and hemoglobinization of developing erythroid cells. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:860985. [PMID: 21785724 PMCID: PMC3139203 DOI: 10.1155/2011/860985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/11/2011] [Accepted: 05/04/2011] [Indexed: 12/16/2022]
Abstract
Production of RBCs is triggered by the action of erythropoietin (Epo) through its binding to surface receptors
(Epo-R) on erythroid precursors in the bone marrow. The intensity and the duration of the Epo signal are regulated by several factors,
including the balance between the activities of kinesase and phosphatases. The Epo signal determines the proliferation and maturation
of the precursors into hemoglobin (Hb)-containing RBCs. The activity of various protein tyrosine phosphatases, including those involved in the
Epo pathway, can be inhibited by sodium orthovanadate (Na3VO4, vanadate). Adding vanadate to cultured erythroid precursors of normal
donors and patients with β-thalassemia enhanced cell proliferation and arrested maturation. This was associated with an increased production
of fetal hemoglobin (HbF). Increased HbF in patients with β-hemoglobinopathies (β-thalassemia and sickle cell disease) ameliorates the clinical
symptoms of the disease. These results raise the possibility that specific and nontoxic inhibitors of phosphatases may be considered as a
therapeutic modality for elevating HbF in patients with β-hemoglobinopathies
as well as for intensifying the Epo response in other forms of anemia.
Collapse
|
6
|
Brumbaugh K, Johnson W, Liao WC, Lin MS, Houchins JP, Cooper J, Stoesz S, Campos-Gonzalez R. Overview of the generation, validation, and application of phosphosite-specific antibodies. Methods Mol Biol 2011; 717:3-43. [PMID: 21370022 DOI: 10.1007/978-1-61779-024-9_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein phosphorylation is a universal key posttranslational modification that affects the activity and other properties of intracellular proteins. Phosphosite-specific antibodies can be produced as polyclonals or monoclonals in different animal species, and each approach offers its own benefits and disadvantages. The validation of phosphosite-specific antibodies requires multiple techniques and tactics to demonstrate their specificity. These antibodies can be used in arrays, flow cytometry, and imaging platforms. The specificity of phosphosite-specific antibodies is key for their use in proteomics and profiling of disease.
Collapse
|
7
|
Montes de Oca P, Malardé V, Proust R, Dautry-Varsat A, Gesbert F. Ectodomain shedding of interleukin-2 receptor beta and generation of an intracellular functional fragment. J Biol Chem 2010; 285:22050-8. [PMID: 20495002 DOI: 10.1074/jbc.m109.093088] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-2 (IL-2) regulates different functions of various lymphoid cell subsets. These are mediated by its binding to the IL-2 receptor (IL-2R) composed of three subunits (IL2-Ralpha, -beta, and -gamma(c)). IL-2Rbeta is responsible for the activation of several signaling pathways. Ectodomain shedding of membrane receptors is thought to be an important mechanism for down-regulation of cell surface receptor abundance but is also emerging as a mechanism that cell membrane-associated molecules require for proper action in vivo. Here, we demonstrate that IL-2Rbeta is cleaved in cell lines of different origin, including T cells, generating an intracellular 37-kDa fragment (37beta ic) that comprises the full intracellular C-terminal and transmembrane domains. Ectodomain shedding of IL-2Rbeta decreases in a mutant deleted of the juxtamembrane region, where cleavage is predicted to occur, and is inhibited by tissue inhibitor of metalloproteases-3. 37Beta ic is tyrosine-phosphorylated and associates with STAT-5, a canonic signal transducer of IL-2R. Finally, lymphoid cell transfection with a truncated form of IL-2Rbeta mimicking 37beta ic increases their proliferation. These data indicate that IL-2Rbeta is subject to ectodomain shedding generating an intracellular fragment biologically functional, because (i) it is phosphorylated, (ii) it associates with STAT5A, and (iii) it increases cell proliferation.
Collapse
Affiliation(s)
- Pavel Montes de Oca
- Institut Pasteur, Biologie des Interactions Cellulaires, CNRS URA2582, 25 rue du Dr. Roux, 75015 Paris, France.
| | | | | | | | | |
Collapse
|
8
|
Malardé V, Proust R, Dautry-Varsat A, Gesbert F. NEDD4-2 associates with gamma(c) and regulates its degradation rate. Biochem Biophys Res Commun 2009; 387:409-13. [PMID: 19615332 DOI: 10.1016/j.bbrc.2009.07.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 07/12/2009] [Indexed: 11/26/2022]
Abstract
Interleukin-2 (IL-2) is a cytokine that regulates proliferation, differentiation and survival of various lymphoid cell subsets. Its actions are mediated through its binding to the IL-2 receptor which is composed of three subunits (IL-2Ralpha, IL-2Rbeta and gamma(c)). Only beta and gamma(c) have been shown to transduce intra cellular signals. The gamma(c) chain is shared by the interleukin-2, 4, 7, 9, 15 and 21 receptors, and is essential for lymphocyte functions. The regulation of gamma(c) expression level is therefore critical for the ability of cells to respond to these cytokines. In the present work, we show that the IL-2R constitutively associates with the ubiquitin ligase NEDD4-2, and to a lesser extent NEDD4-1. We identified the specific binding site on gamma(c). And we show that the loss of NEDD4 association on gamma(c) is accompanied by a dramatic increase of the half-life of the receptor subunit.
Collapse
Affiliation(s)
- Valérie Malardé
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, URA CNRS-2582, 75015 Paris, France
| | | | | | | |
Collapse
|
9
|
The mixed-lineage kinase DLK undergoes Src-dependent tyrosine phosphorylation and activation in cells exposed to vanadate or platelet-derived growth factor (PDGF). Cell Signal 2008; 21:577-87. [PMID: 19146952 DOI: 10.1016/j.cellsig.2008.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 12/15/2008] [Accepted: 12/17/2008] [Indexed: 02/02/2023]
Abstract
Some data in the literature suggest that serine/threonine phosphorylation is required for activation of the mixed-lineage kinases (MLKs), a subgroup of mitogen-activated protein kinase kinase kinases (MAPKKKs). In this report, we demonstrate that the MLK family member DLK is activated and concurrently tyrosine-phosphorylated in cells exposed to the protein tyrosine phosphatase inhibitor vanadate. Tyrosine phosphorylation appears crucial for activation as incubation of vanadate-activated DLK molecules with a tyrosine phosphatase substantially reduced DLK enzymatic activity. Interestingly, the effects of vanadate on DLK are completely blocked by treatment with a Src family kinase inhibitor, PP2, or the expression of short hairpin RNA (shRNA) directed against Src. DLK also fails to undergo vanadate-stimulated tyrosine phosphorylation and activation in fibroblasts which lack expression of Src, Yes and Fyn, but reintroduction of wild-type Src or Fyn followed by vanadate treatment restores this response. In addition to vanadate, stimulation of cells with platelet-derived growth factor (PDGF) also induces tyrosine phosphorylation and activation of DLK by a Src-dependent mechanism. DLK seems important for PDGF signaling because its depletion by RNA interference substantially reduces PDGF-stimulated ERK and Akt kinase activation. Thus, our findings suggest that Src-dependent tyrosine phosphorylation of DLK may be important for regulation of its activity, and they support a role for DLK in PDGF signaling.
Collapse
|
10
|
Cohen MD. Pulmonary Immunotoxicology of Select Metals: Aluminum, Arsenic, Cadmium, Chromium, Copper, Manganese, Nickel, Vanadium, and Zinc. J Immunotoxicol 2008; 1:39-69. [DOI: 10.1080/15476910490438360] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
11
|
Jiang Y, Cheng H. Evidence of LAT as a dual substrate for Lck and Syk in T lymphocytes. Leuk Res 2007; 31:541-5. [PMID: 16938345 DOI: 10.1016/j.leukres.2006.07.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 06/08/2006] [Accepted: 07/01/2006] [Indexed: 11/29/2022]
Abstract
LAT is a linker protein essential for activation of T lymphocytes. Its rapid tyrosine-phosphorylation upon T cell receptor (TCR) stimulation recruits downstream signaling molecules for membrane targeting and activation. LAT is physically concentrated in cholesterol-enriched membrane microdomains and is known a substrate for Syk/Zap70 kinase. In this study, we demonstrate that LAT serves as a dual substrate for both Lck and Syk kinases. LAT phosphorylation is absent in Lck-deficient J.CaM1.6 cells and Lck is co-precipitated with LAT in pervanadate-activated Jurkat cells. Further, the in vitro kinase assay using purified Lck and LAT shows that Lck directly phosphorylates LAT. Both Lck and Syk, phosphorylate the ITAM-like motifs on LAT at Y171Y191, which is essential for induction of the interaction of LAT with downstream signaling molecules such as Grb2, PLC-gamma1 and c-Cbl, and for activation of MAPK-ERK. Collectively, our data indicate that LAT is an immediate substrate for Lck in one of the earliest events of T cell activation.
Collapse
Affiliation(s)
- Yixing Jiang
- Department of Medicine and Pennstate Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033, United States
| | | |
Collapse
|
12
|
Takahashi H, Suzuki K, Namiki H. Pervanadate-induced reverse translocation and tyrosine phosphorylation of phorbol ester-stimulated protein kinase C betaII are mediated by Src-family tyrosine kinases in porcine neutrophils. Biochem Biophys Res Commun 2004; 314:830-7. [PMID: 14741711 DOI: 10.1016/j.bbrc.2003.12.163] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Protein kinase C (PKC), upon activation, translocates from the cytosol to the plasma membrane. Phorbol 12-myristate 13-acetate (PMA), a potent PKC activator, is known to induce irreversible translocation of PKC to the plasma membrane, in contrast to the reversible translocation resulting from physiological stimuli and subsequent rapid return to the cytosol (reverse translocation). However, we have previously shown that tyrosine phosphatase (PTPase) inhibitors induce reverse translocation of PMA-stimulated PKCbetaII in porcine polymorphonuclear leukocytes (PMNs). In the present study, we showed that pervanadate, a potent PTPase inhibitor, also induces tyrosine phosphorylation of PMA-stimulated PKCbetaII in porcine PMNs. Furthermore, PP2, a specific inhibitor of Src-family tyrosine kinases (PTKs), was found to inhibit both pervanadate-induced reverse translocation and tyrosine phosphorylation of PMA-stimulated PKCbetaII, suggesting that these two pervanadate-induced responses are mediated by Src-family PTKs. Our findings provide novel insight into the relationship between the subcellular localization and tyrosine phosphorylation of PKC.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Department of Biology, School of Education, Waseda University, Shinjuku-ku, 169-0051, Tokyo, Japan
| | | | | |
Collapse
|
13
|
Boulven I, Robin P, Desmyter C, Harbon S, Leiber D. Differential involvement of Src family kinases in pervanadate-mediated responses in rat myometrial cells. Cell Signal 2002; 14:341-9. [PMID: 11858941 DOI: 10.1016/s0898-6568(01)00269-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We previously described that pervanadate, a potent tyrosine phosphatase inhibitor, induced contraction of rat myometrium via phospholipase (PL) C-gamma1 activation [Biol Reprod 54 (1996) 1383]. In this study, we found that pervanadate induced tyrosine phosphorylation of the platelet-derived growth factor (PDGF)-beta receptor, interaction of the phosphorylated PDGF receptor with the phosphorylated PLC-gamma1, production of inositol phosphates (InsPs), extracellular signal-regulated kinase (ERK) activation and DNA synthesis. All these responses were insensitive to PDGF receptor kinase inhibition or PDGF receptor down-regulation. We showed that Src family kinases were activated by pervanadate, and that InsPs production and phosphorylation of both PLC-gamma1 and the PDGF receptor were blocked by PP1, an Src inhibitor. In contrast, the stimulation of ERK by pervanadate was totally refractory to PP1. These results demonstrated that the activation of Src by pervanadate is involved in PLC-gamma1/InsPs signalling but does not play a major role in ERK activation.
Collapse
Affiliation(s)
- Isaline Boulven
- Laboratoire de Signalisation et Régulations Cellulaires, Centre National de la Recherche Scientifique (CNRS) UMR 8619, Bâtiment 430, Université de Paris-Sud, 91405 Orsay cedex, France
| | | | | | | | | |
Collapse
|
14
|
Xu F, Xu MJ, Zhao R, Guerrah A, Zeng F, Zhao ZJ. Tyrosine phosphatases SHP-1 and SHP-2 are associated with distinct tyrosine-phosphorylated proteins. Exp Cell Res 2002; 272:75-83. [PMID: 11740867 DOI: 10.1006/excr.2001.5397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SHP-1 and SHP-2 are two SH2 domain-containing tyrosine phosphatases. They share significant overall sequence identity but their functions are often opposite. The mechanism underlying this is not well understood. In this study, we have investigated the association of SHP-1 and SHP-2 with tyrosine-phosphorylated proteins in mouse tissues and in cultured cells treated with a potent tyrosine phosphatase inhibitor, pervanadate. Pervanadate was introduced into mice by intravenous injection. It induced robust tyrosine phosphorylation of cellular proteins in a variety of tissues. Both SHP-1 and SHP-2 were phosphorylated on tyrosyl residues upon pervanadate treatment, and they became associated with distinct tyrosine-phosphorylated proteins in different tissues and cells. Among these proteins, PZR and PECAM were identified as major SHP-2-binding proteins while LAIR-1 was shown to be a major SHP-1-binding protein. A number of other proteins are to be identified. We believe that the different binding proteins may determine the distinct physiological functions of SHP-1 and SHP-2. The present study also provides a general method to induce tyrosine phosphorylation of cellular proteins and to study protein-protein interactions involving tyrosine phosphorylation in vivo and in vitro.
Collapse
Affiliation(s)
- Fengping Xu
- Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee 37232-6305, USA
| | | | | | | | | | | |
Collapse
|
15
|
Fortin JF, Barbeau B, Robichaud GA, Paré ME, Lemieux AM, Tremblay MJ. Regulation of nuclear factor of activated T cells by phosphotyrosyl-specific phosphatase activity: a positive effect on HIV-1 long terminal repeat-driven transcription and a possible implication of SHP-1. Blood 2001; 97:2390-400. [PMID: 11290602 DOI: 10.1182/blood.v97.8.2390] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Although protein tyrosine phosphatase (PTP) inhibitors used in combination with other stimuli can induce interleukin 2 (IL-2) production in T cells, a direct implication of nuclear factor of activated T cells (NFAT) has not yet been demonstrated. This study reports that exposure of leukemic T cells and human peripheral blood mononuclear cells to bis-peroxovanadium (bpV) PTP inhibitors markedly induce activation and nuclear translocation of NFAT. NFAT activation by bpV was inhibited by the immunosuppressive drugs FK506 and cyclosporin A, as well as by a specific peptide inhibitor of NFAT activation. Mobility shift assays showed specific induction of the NFAT1 member by bpV molecules. The bpV-mediated NFAT activation was observed to be important for the up-regulation of the human immunodeficiency virus 1 (HIV-1) long terminal repeat (LTR) and the IL-2 promoter; NFAT1 was demonstrated to be particularly important in bpV-dependent positive action on HIV-1 LTR transcription. The active participation of p56(lck), ZAP-70, p21(ras), and calcium in the bpV-mediated signaling cascade leading to NFAT activation was confirmed, using deficient cell lines and dominant-negative mutants. Finally, overexpression of wild-type SHP-1 resulted in a greatly diminished activation of NFAT by bpV, suggesting an involvement of SHP-1 in the regulation of NFAT activation. These data were confirmed by constitutive NFAT translocation observed in Jurkat cells stably expressing a dominant-negative version of SHP-1. The study proposes that PTP activity attenuates constitutive kinase activities that otherwise would lead to constant NFAT activation and that this activation is participating in HIV-1 LTR stimulation by PTP inhibition.
Collapse
Affiliation(s)
- J F Fortin
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Miermont AM, Mohamed AS, Swope SL. Generation of phosphorylation state-specific SRC-class kinase antibodies for analysis of kinase activation. J Immunol Methods 2000; 246:203-15. [PMID: 11121560 DOI: 10.1016/s0022-1759(00)00292-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protein phosphorylation is a major molecular mechanism by which cellular function is regulated. In order to accomplish rapid and specific biochemical changes via phosphorylation, the activity of a protein kinase must be dynamically regulated. Historically, the activity of each protein kinase has been analyzed using a unique in vitro biochemical assay with a specific substrate and detection procedure. These assays require the use of radioactivity and are often labor intensive. Upon activation, most protein kinases autophosphorylate. Thus, a technical approach to detect changes in kinase activity is to measure autophosphorylation. The purpose of this protocol is to provide a detailed stepwise procedure for measuring the regulation of Src-class kinase activity using phosphorylation state-specific antibodies. Antibodies to a phosphorylated peptide derived from the autophosphorylation site of Src-family kinases are developed and affinity purified. The purified antibodies are used to analyze the regulation of Src and Fyn activity in a mouse muscle cell line. It is anticipated that the utility of these phosphorylation state-specific antibodies will ultimately result in the development of similar antibodies useful for analyzing the activity of many different kinases.
Collapse
Affiliation(s)
- A M Miermont
- EP08 Research Bld, Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC 20007-2197, USA
| | | | | |
Collapse
|
17
|
Ratcliffe CF, Qu Y, McCormick KA, Tibbs VC, Dixon JE, Scheuer T, Catterall WA. A sodium channel signaling complex: modulation by associated receptor protein tyrosine phosphatase beta. Nat Neurosci 2000; 3:437-44. [PMID: 10769382 DOI: 10.1038/74805] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Voltage-gated sodium channels in brain neurons were found to associate with receptor protein tyrosine phosphatase beta (RPTPbeta) and its catalytically inactive, secreted isoform phosphacan, and this interaction was regulated during development. Both the extracellular domain and the intracellular catalytic domain of RPTPbeta interacted with sodium channels. Sodium channels were tyrosine phosphorylated and were modulated by the associated catalytic domains of RPTPbeta. Dephosphorylation slowed sodium channel inactivation, positively shifted its voltage dependence, and increased whole-cell sodium current. Our results define a sodium channel signaling complex containing RPTPbeta, which acts to regulate sodium channel modulation by tyrosine phosphorylation.
Collapse
Affiliation(s)
- C F Ratcliffe
- Department of Pharmacology, Mailstop 357280, University of Washington, Seattle, Washington 98195-7280, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Yang XY, Wang LH, Chen T, Hodge DR, Resau JH, DaSilva L, Farrar WL. Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor gamma (PPARgamma) agonists. PPARgamma co-association with transcription factor NFAT. J Biol Chem 2000; 275:4541-4. [PMID: 10671476 DOI: 10.1074/jbc.275.7.4541] [Citation(s) in RCA: 300] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
T lymphocyte activation is highlighted by the induction of interleukin-2 (IL-2) gene expression, which governs much of the early lymphocyte proliferation responses. Peroxisome proliferator-activated receptor-gamma (PPARgamma) is a member of the nuclear receptor superfamily of ligand-activated transcription factors. PPARgamma mRNA expression was found in human peripheral blood T lymphocytes, raising the possibility of PPARgamma involvement in the regulation of T cell function. Here we show that PPARgamma ligands, troglitazone and 15-deoxy-Delta(12,14) prostaglandin J(2), but not PPARalpha agonist Wy14643, inhibited IL-2 production and phytohemagglutinin-inducible proliferation in human peripheral blood T-cells in a dose-dependent manner. This inhibitory effect on IL-2 was restricted to the PPARgamma2-expressing, not the PPARgamma-lacking, subpopulation of transfected Jurkat cells. The activated PPARgamma physically associates with transcriptional factor NFAT regulating the IL-2 promoter, blocking NFAT DNA binding and transcriptional activity. This interaction with T-cell-specific transcription factors indicates an important immunomodulatory role for PPARgamma in T lymphocytes and could suggest a previously unrecognized clinical potential for PPARgamma ligands as immunotherapeutic drugs to treat T-cell-mediated diseases by targeting IL-2 gene expression.
Collapse
Affiliation(s)
- X Y Yang
- Intramural Research Support Program, SAIC Frederick, NCI, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Paz C, Cornejo MacIel F, Mendez C, Podesta EJ. Corticotropin increases protein tyrosine phosphatase activity by a cAMP-dependent mechanism in rat adrenal gland. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:911-8. [PMID: 10518784 DOI: 10.1046/j.1432-1327.1999.00759.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Corticotropin signal transduction pathway involves serine/threonine protein phosphorylation. Recent reports suggest that protein tyrosine dephosphorylation may also be an integral component of that pathway. The present study was performed to investigate the role played by protein tyrosine phosphatases (PTPs) on acute response to corticotropin and the hypothetical regulation of PTPs by this hormone. We have used two powerful cell permeant PTP inhibitors, phenylarsine oxide (PAO) and pervanadate (PV), in order to examine the relevance of PTP activity on hormone-stimulated and 8-bromo-adenosine 3',5'-phosphate (8Br-cAMP is a permeant analogue of adenosine 3',5'-phosphate)-stimulated steroidogenesis in adrenal zona fasciculata (ZF) cells. In both cases, PAO and PV inhibited the steroid production in a dose-dependent fashion, and had no effect on steroidogenesis supported by a permeant analogue of cholesterol. The effect of hormonal stimulation on PTP activity was analyzed in rat adrenal ZF. In vivo corticotropin treatment reduced phosphotyrosine content in endogenous proteins and produced a transient increase of PTP activity in the cytosolic fraction, reaching a maximum (twofold) after 15 min. Incubation of adrenal ZF with 8Br-cAMP also produced PTP activation, suggesting that it can be mediated by cAMP-dependent protein kinase (PKA)-dependent phosphorylation. Detection of PTP activity in an in-gel assay showed three corticotropin-stimulated soluble PTPs with molecular masses of 115, 80 and 50 kDa. In summary, we report for the first time a hormone-dependent PTP activation in a steroidogenic tissue and provide evidence that PTP activity plays an important role in corticotropin signal pathway, acting downstream of PKA activation and upstream of cholesterol transport across the mitochondrial membrane.
Collapse
Affiliation(s)
- C Paz
- Department of Biochemistry, School of Medicine, University of Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
20
|
Féraille E, Carranza ML, Gonin S, Béguin P, Pedemonte C, Rousselot M, Caverzasio J, Geering K, Martin PY, Favre H. Insulin-induced stimulation of Na+,K(+)-ATPase activity in kidney proximal tubule cells depends on phosphorylation of the alpha-subunit at Tyr-10. Mol Biol Cell 1999; 10:2847-59. [PMID: 10473631 PMCID: PMC25522 DOI: 10.1091/mbc.10.9.2847] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Phosphorylation of the alpha-subunit of Na+,K(+)-ATPase plays an important role in the regulation of this pump. Recent studies suggest that insulin, known to increase solute and fluid reabsorption in mammalian proximal convoluted tubule (PCT), is stimulating Na+,K(+)-ATPase activity through the tyrosine phosphorylation process. This study was therefore undertaken to evaluate the role of tyrosine phosphorylation of the Na+,K(+)-ATPase alpha-subunit in the action of insulin. In rat PCT, insulin and orthovanadate (a tyrosine phosphatase inhibitor) increased tyrosine phosphorylation level of the alpha-subunit more than twofold. Their effects were not additive, suggesting a common mechanism of action. Insulin-induced tyrosine phosphorylation was prevented by genistein, a tyrosine kinase inhibitor. The site of tyrosine phosphorylation was identified on Tyr-10 by controlled trypsinolysis in rat PCTs and by site-directed mutagenesis in opossum kidney cells transfected with rat alpha-subunit. The functional relevance of Tyr-10 phosphorylation was assessed by 1) the abolition of insulin-induced stimulation of the ouabain-sensitive (86)Rb uptake in opossum kidney cells expressing mutant rat alpha1-subunits wherein tyrosine was replaced by alanine or glutamine; and 2) the similarity of the time course and dose dependency of the insulin-induced increase in ouabain-sensitive (86)Rb uptake and tyrosine phosphorylation. These findings indicate that phosphorylation of the Na+,K(+)-ATPase alpha-subunit at Tyr-10 likely participates in the physiological control of sodium reabsorption in PCT.
Collapse
Affiliation(s)
- E Féraille
- Division de Néphrologie, Fondation pour Recherches Médicales, 1211 Genève 4, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ashwell JD, D'Oro U. CD45 and Src-family kinases: and now for something completely different. IMMUNOLOGY TODAY 1999; 20:412-6. [PMID: 10462741 DOI: 10.1016/s0167-5699(99)01505-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- J D Ashwell
- Laboratory of Immune Cell Biology, National Cancer Institute, Room 1B-40, Building 10, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
22
|
Wang LH, Kirken RA, Erwin RA, Yu CR, Farrar WL. JAK3, STAT, and MAPK Signaling Pathways as Novel Molecular Targets for the Tyrphostin AG-490 Regulation of IL-2-Mediated T Cell Response. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.7.3897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
AG-490 is a member of the tyrphostin family of tyrosine kinase inhibitors. While AG-490 has been considered to be a Janus kinase (JAK)2-specific inhibitor, these conclusions were primarily drawn from acute lymphoblastic leukemia cells that lack readily detectable levels of JAK3. In the present study, evidence is provided that clearly demonstrates AG-490 potently suppresses IL-2-induced T cell proliferation, a non-JAK2-dependent signal, in a dose-dependent manner in T cell lines D10 and CTLL-2. AG-490 blocked JAK3 activation and phosphorylation of its downstream counterpart substrates, STATs. Inhibition of JAK3 by AG-490 also compromised the Shc/Ras/Raf/mitogen-activated protein kinase (MAPK) signaling pathways as measured by phosphorylation of Shc and extracellular signal-related kinase 1 and 2 (ERK1/2). AG-490 effectively inhibited tyrosine phosphorylation and DNA binding activities of several transcription factors including STAT1, -3, -5a, and -5b and activating protein-1 (AP-1) as judged by Western blot analysis and electrophoretic mobility shift assay. These data suggest that AG-490 is a potent inhibitor of the JAK3/STAT, JAK3/AP-1, and JAK3/MAPK pathways and their cellular consequences. Taken together, these findings support the notion that AG-490 possesses previously unrecognized clinical potential as an immunotherapeutic drug due to its inhibitory effects on T cell-derived signaling pathways.
Collapse
Affiliation(s)
- Li Hua Wang
- *Cytokine Molecular Mechanisms Section, Laboratory of Molecular Immunoregulation, Division of Basic Sciences, and
| | - Robert A. Kirken
- ‡Intramural Research Support Program, Science Applications International Corporation (SAIC)-Frederick, Frederick Cancer Research and Development Center, Frederick, MD 21702; and
- §Department of Integrative Biology, Pharmacology, and Physiology, University of Texas, Houston, TX 77030
| | - Rebecca A. Erwin
- ‡Intramural Research Support Program, Science Applications International Corporation (SAIC)-Frederick, Frederick Cancer Research and Development Center, Frederick, MD 21702; and
| | - Cheng-Rong Yu
- †Laboratory of Experimental Immunology, National Cancer Institute, Frederick, MD 21702
| | - William L. Farrar
- *Cytokine Molecular Mechanisms Section, Laboratory of Molecular Immunoregulation, Division of Basic Sciences, and
| |
Collapse
|
23
|
Arts J, Grimbergen J, Toet K, Kooistra T. On the role of c-Jun in the induction of PAI-1 gene expression by phorbol ester, serum, and IL-1alpha in HepG2 cells. Arterioscler Thromb Vasc Biol 1999; 19:39-46. [PMID: 9888864 DOI: 10.1161/01.atv.19.1.39] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have characterized the regulation of plasminogen activator inhibitor-1 (PAI-1) gene expression by phorbol 12-myristate 13-acetate (PMA), serum, and interleukin-1alpha (IL-1alpha) in the human hepatoma cell line HepG2. PMA, serum, and IL-1alpha induced a rapid and transient 28-fold (PMA), 9-fold (serum), and 23-fold (IL-1alpha) increase in PAI-1 mRNA, peaking after approximately 4 hours. These inductions of PAI-1 mRNA accumulation were reduced by pretreatment of the HepG2 cells with the protein tyrosine kinase inhibitor genistein. Conversely, stimulation of tyrosine phosphorylation by sodium orthovanadate, an inhibitor of protein tyrosine phosphatases, caused an increase in PAI-1 mRNA levels. The effects of PMA, serum, and IL-1alpha on PAI-1 mRNA expression have been compared with their ability to modulate the expression of a chloramphenicol acetyltransferase (CAT) reporter plasmid, which was under control of the -489 to +75 region of the PAI-1 promoter, and stably transfected into HepG2 cells. This region of the PAI-1 promoter was previously found to contain a tetradecanoyl phorbol acetate-response element (TRE; between -58 and -50) necessary for PMA responsiveness and with a high affinity for c-Jun homodimers. Whereas incubation of these transfected HepG2 cells with PMA and serum showed an induction profile of CAT mRNA similar to that of PAI-1 mRNA, hardly any induction of CAT mRNA was found with IL-1alpha. In line with these findings, IL-1alpha poorly induced c-Jun homodimer binding to the PAI-1 TRE in gel mobility-shift assays. Pretreatment of HepG2 cells with the protein kinase C inhibitor Ro 31-8220 or the mitogen-activated protein kinase kinase (MAPKK)1,2 activity blocker PD98059 selectively suppressed the induction of PAI-1 (and CAT) expression by PMA, but not that by IL-1alpha. In contrast, the protein tyrosine kinase inhibitor herbimycin A blocked PAI-1 mRNA induction by IL-1 alpha only. We propose 2 separate PAI-1 inductory pathways for PMA and IL-1alpha in HepG2, both involving protein tyrosine kinase activation; the serum-induced signaling pathway may (partially) overlap with the PMA-activated protein kinase C/mitogen-activated protein kinase kinase pathway, leading to c-Jun homodimer binding to the PAI-1 TRE.
Collapse
Affiliation(s)
- J Arts
- Gaubius Laboratory, TNO-PG, Leiden, The Netherlands
| | | | | | | |
Collapse
|
24
|
Chen XL, Tummala PE, Olbrych MT, Alexander RW, Medford RM. Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells. Circ Res 1998; 83:952-9. [PMID: 9797345 DOI: 10.1161/01.res.83.9.952] [Citation(s) in RCA: 265] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Monocyte infiltration into the vessel wall, a key initial step in the process of atherosclerosis, is mediated in part by monocyte chemoattractant protein-1 (MCP-1). Hypertension, particularly in the presence of an activated renin-angiotensin system, is a major risk factor for the development of atherosclerosis. To investigate a potential molecular basis for a link between hypertension and atherosclerosis, we studied the effects of angiotensin II (Ang II) on MCP-1 gene expression in rat aortic smooth muscle cells. Rat smooth muscle cells treated with Ang II exhibited a dose-dependent increase in MCP-1 mRNA accumulation that was prevented by the AT1 receptor antagonist losartan. Ang II also activated MCP-1 gene transcription. Inhibition of NADH/NADPH oxidase, which generates superoxide and H2O2, with diphenylene iodonium or apocynin decreased Ang II-induced MCP-1 mRNA accumulation. Induction of MCP-1 gene expression by Ang II was inhibited by catalase, suggesting a second messenger role for H2O2. The tyrosine kinase inhibitor genistein and the mitogen-activated protein kinase kinase inhibitor PD098059 inhibited Ang II-induced MCP-1 gene expression, consistent with a mitogen-activated protein kinase-dependent signaling mechanism. Ang II may thus promote atherogenesis by direct activation of MCP-1 gene expression in vascular smooth muscle cells.
Collapse
Affiliation(s)
- X L Chen
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
25
|
Cornejo Maciel F, Paz C, Neuman MI, Podestá EJ. Phosphotyrosine protein phosphatases activation by ACTH in rat adrenal gland. Endocr Res 1998; 24:381-6. [PMID: 9888510 DOI: 10.3109/07435809809032618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The steady state level of most cellular phosphoproteins is dependent on the relative catalytic activities of intracellular protein kinases and phosphatases. In adrenal cortex, ACTH acts through PKA activation and Ser/Tre phosphorylation. Phosphatases involved in this pathway are not completely described, particularly the role of phosphotyrosine protein phosphatase (PTP) activity on ACTH action. We investigated potential changes in PTPs activity in adrenal gland upon in vivo and in vitro PKA activation. In vivo ACTH stimulates cytosolic PTP activity (2-fold). Similar effect is detected by in vitro stimulation. In accordance with the effects of ACTH on PTP activity, cell permeable PTP inhibitors block ACTH stimulation on adrenal zona fasciculata (ZF) cells: ACTH (1 nM) = 108.2 +/- 3.5 ng corticosterone/10(5) cells vs. ACTH + phenylarsine oxide (2 nM) = 60 +/- 4 (P < 0.001) and ACTH + pervanadate (10 mM) = 68 +/- 2 (P < 0.01). These results are reproduced when cells are stimulated with cAMP. The inhibition is not observed when steroidogenesis is supported by 22(R)OH cholesterol. We describe, for the first time, a hormonal regulation of PTP activity. According to the effect of PTP inhibitors on steroid production activated by ACTH we propose that PTP activation is a crucial event in hormone action in the steroidogenic pathway. We also propose that PTP activity is located after PKA activation and prior to cholesterol transport to the inner mitochondrial membrane.
Collapse
Affiliation(s)
- F Cornejo Maciel
- Department of Biochemistry, School of Medicine, University of Buenos Aires, Argentine
| | | | | | | |
Collapse
|
26
|
Mikalsen SO, Kaalhus O. Properties of pervanadate and permolybdate. Connexin43, phosphatase inhibition, and thiol reactivity as model systems. J Biol Chem 1998; 273:10036-45. [PMID: 9545350 DOI: 10.1074/jbc.273.16.10036] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pervanadate and permolybdate are irreversible protein-tyrosine phosphatase inhibitors, with IC50 values of 0.3 and 20 microM, respectively, in intact cells. Maximal inhibition was obtained within 1 min at higher concentrations of the compounds. They induced prominent changes in the phosphorylation status of the gap junction protein, connexin43. These effects were utilized as model systems to assess the stability and inactivation of the compounds. Although the concentrated stock solutions were relatively stable, the diluted compounds were unstable. The biological activity had decreased to 20-30% after 6 h of incubation in a phosphate buffer, 1 h in phosphate buffer with 10% fetal calf serum, and 1-3 minutes in culture medium. Thiols reacted rapidly with the compounds and inactivated them (initial reaction rates with cysteine: permolybdate > pervanadate > H2O2). Catalase inactivated the compounds, and permolybdate was the more sensitive. The cells inactivated permolybdate faster than pervanadate. Cellular inactivation of permolybdate, and to a lesser degree pervanadate, appeared to be partly dependent on catalase and thiols. However, a general decrease in cellular thiols was not the mediator of the biological effects of pervanadate or permolybdate. Mathematical modeling of the thiol reactivity suggested that monoperoxovanadate at maximum could possess 20% of the biological activity of diperoxovanadate.
Collapse
Affiliation(s)
- S O Mikalsen
- Department of Environmental and Occupational Cancer, Institute for Cancer Research, The Norwegian Radium Hospital, N-0310 Oslo, Norway.
| | | |
Collapse
|
27
|
Feshchenko EA, Langdon WY, Tsygankov AY. Fyn, Yes, and Syk phosphorylation sites in c-Cbl map to the same tyrosine residues that become phosphorylated in activated T cells. J Biol Chem 1998; 273:8323-31. [PMID: 9525940 DOI: 10.1074/jbc.273.14.8323] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protooncogenic protein c-Cbl undergoes tyrosine phosphorylation in response to stimulation through the receptors for antigens, immunoglobulins, cytokines, and growth factors as well as through the integrins. Tyrosine phosphorylation of c-Cbl may play a functional role in signal transduction, since c-Cbl interacts with many crucial signaling molecules including protein-tyrosine kinases, adaptor proteins, and phosphatidylinositol 3'-kinase. Therefore, it is essential for our understanding of the functions of c-Cbl in signal transduction to identify its tyrosine phosphorylation sites, to determine the protein-tyrosine kinases that phosphorylate these sites, and to elucidate the role of these sites in the interactions of c-Cbl with other signaling proteins. In this report, we demonstrate that tyrosines 700, 731, and 774 are the major tyrosine phosphorylation sites of c-Cbl in T cells in response to pervanadate treatment, as well as in response to TcR/CD3 ligation. Coexpression experiments in COS cells demonstrate that among T cell-expressed Src- and Syk-related protein-tyrosine kinases, Fyn, Yes, and Syk appear to play a major role in phosphorylation of c-Cbl, whereas Lck and Zap phosphorylate c-Cbl ineffectively. Fyn, Yes, and Syk phosphorylate the same sites of c-Cbl that become phosphorylated in stimulated T cells. Among these kinases, Fyn and Yes demonstrate strong binding to c-Cbl, which involves both phosphotyrosine-dependent and phosphotyrosine-independent mechanisms.
Collapse
Affiliation(s)
- E A Feshchenko
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
28
|
Krady MM, Freyermuth S, Rogue P, Malviya AN. Pervanadate elicits proliferation and mediates activation of mitogen-activated protein (MAP) kinase in the nucleus. FEBS Lett 1997; 412:420-4. [PMID: 9276439 DOI: 10.1016/s0014-5793(97)00821-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
There is growing evidence for the role of protein tyrosine phosphatases in controlling such fundamental cellular processes as growth and differentiation. Pervanadate is a potent inhibitor of protein tyrosine phosphatase which has been observed here to induce proliferation in C3H10T1/2 mouse fibroblasts. Pervanadate also translocated/activated p42/44 mitogen-activated protein (MAP) kinase to the cell nucleus. An almost similar pattern of nuclear p42/44 MAP kinase stimulation is seen with TPA. On the other hand, TPA treatment results in a rapid activation of cytosolic MAP kinase which declines with time. Thus pervanadate appears as a very useful tool for studying tyrosine phosphorylation.
Collapse
Affiliation(s)
- M M Krady
- Laboratoire de Neurobiologie Moléculaire des Interactions Cellulaires, UPR 416 du CNRS, Strasbourg, France
| | | | | | | |
Collapse
|
29
|
Liu J, Reuland DJ, Rosenhein L, Cao ZX, Franklin LA, Ganguli S. Differential acute effects of oxovanadiums and insulin on glucose and lactate metabolism under in vivo and in vitro conditions. Metabolism 1997; 46:562-72. [PMID: 9160825 DOI: 10.1016/s0026-0495(97)90195-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Oxovanadium compounds such as vanadate and peroxovanadiums have been shown to have insulin-mimetic effects on various metabolic pathways, including glucose metabolism. A differential effect of various oxovanadium species on glucose metabolism in different tissues has been reported. The results from our present in vivo studies using rats show that peroxovanadiums and insulin have similar acute effects on decreasing blood glucose levels, but dissimilar effects on blood lactate levels. Furthermore, when bisperoxovanadate (BPV) was administered acutely to intact animals immediately before a bolus insulin challenge, it blunted the effectiveness of insulin in decreasing the blood lactate level, but at the same time demonstrated a synergistic effect on the hypoglycemic action of insulin. It was also observed in in vitro studies using normal 3T3-L1 adipocytes (not serum-deprived) that 1,10-phenanthroline bisperoxovanadate (PHEN-BPV) attenuates the incorporation of carbon from lactate but not from glucose, into lipid in both the absence and presence of insulin. Additionally, it was observed that PHEN-BPV had no effect on lactate dehydrogenase (LDH) activity. Thus, one may speculate that PHEN-BPV interferes with carrier-mediated lactate transport. These observations demonstrate that insulin and oxovanadiums differ in the handling of different metabolic substrates. Thus, even though oxovanadiums mimic many of the metabolic actions of insulin, their metabolic effects are by no means identical. Moreover, since vanadate had no acute effect on glucose metabolism under in vivo conditions, this may suggest that to be effective as a hypoglycemic agent vanadate needs to be converted to some other biologically active oxovanadium species. Finally, the observed interference by PHEN-BPV in the metabolism of lactate may predispose subjects using oral vanadate, as a part of the therapeutic regimen for management of diabetic hyperglycemia, to lactic acidosis.
Collapse
Affiliation(s)
- J Liu
- Terre Haute Center for Medical Education, Indiana University School of Medicine, 47809, USA
| | | | | | | | | | | |
Collapse
|
30
|
Duff JL, Quinlan KL, Paxton LL, Naik SM, Caughman SW. Pervanadate mimics IFNgamma-mediated induction of ICAM-1 expression via activation of STAT proteins. J Invest Dermatol 1997; 108:295-301. [PMID: 9036928 DOI: 10.1111/1523-1747.ep12286465] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Differential expression of intercellular adhesion molecule-1 (ICAM-1) in the epidermis plays a critical role in the regulation of cutaneous inflammation, immunologic reactions, and tissue repair. Transcriptional upregulation of ICAM-1 in response to interferon-gamma (IFNgamma) occurs through a palindromic response element pIgammaRE. pIgammaRE is homologous to IFNgamma-activated sequences, which bind to tyrosine phosphorylated members of the transcription factor family known as signal transducers and activators of transcription (STAT). The importance of tyrosine phosphorylation events in the STAT pathway led us to investigate the effect of the protein tyrosine phosphatase inhibitor, pervanadate, on ICAM-1 expression. We show that treatment of A431 cells and human keratinocytes with pervanadate stimulates protein complex formation on pIgammaRE in a time- and concentration-dependent manner. As demonstrated by mobility supershift assays, the pervanadate-stimulated complex is similar to the IFNgamma-stimulated complex and contains Stat1. Pervanadate treatment also led to an increase in overall protein tyrosine phosphorylation and phosphorylation of Stat1, as well as the subsequent increase in ICAM-1 mRNA and cell surface protein levels. These data show that pervanadate can mimic each step in the IFNgamma-mediated pathway leading to ICAM-1 expression, demonstrate the ability of a pharmacologic agent to bypass the standard cytokine-receptor interaction required for increased ICAM-1 expression, and emphasize the importance of protein tyrosine phosphatases and protein tyrosine kinases in mediating inflammatory responses in the skin.
Collapse
Affiliation(s)
- J L Duff
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia 30322, U.S.A
| | | | | | | | | |
Collapse
|
31
|
Vepa S, Scribner WM, Natarajan V. Activation of protein phosphorylation by oxidants in vascular endothelial cells: identification of tyrosine phosphorylation of caveolin. Free Radic Biol Med 1997; 22:25-35. [PMID: 8958127 DOI: 10.1016/s0891-5849(96)00241-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Oxidants play a significant role in endothelial cell dysfunction through modulation of diverse biochemical reactions and signal transduction pathways. Towards understanding the role of oxidants in vascular injury, we studied the effect of hydrogen peroxide (H2O2), vanadate, and pervanadate (V(4+)-OOH) on [32Pi] uptake and protein phosphorylation in bovine pulmonary artery endothelial cells (BPAEC). The incorporation of labelled [32Pi] into BPAEC was dependent on the concentration of the oxidant employed and time of incubation. Of the oxidants tested, pervanadate (10 microM) induced maximum incorporation of [32Pi] into cells (two- to threefold over control) followed by H2O2 (1 mM) and vanadate (100 microM) and clear differences in labeled protein profiles were noticed between control and oxidant treated cells. The proteins, analyzed by SDS-PAGE, showed distinct increases in labeling patterns ranging from 21-205 kDa, as evidenced by autoradiography. While the majority of the incorporated [32Pi] was in serine/threonine residues, immunoprecipitation and immunoblotting of cell lysates, using an antiphosphotyrosine antibody, revealed that oxidant treatment resulted in significant increases in total protein tyrosine phosphorylation. Most significantly, immunoprecipitation of cell lysates, from pervanadate treatment showed distinct tyrosine phosphorylation of 22 kDa protein, which was identified as caveolin, a marker of caveolae. Pervanadate-mediated phosphorylation was effectively inhibited by staurosporine (5 microM), while genistein showed only partial attenuation. Furthermore, H2O2 treatment resulted in enhanced phosphorylation of 24 kDa protein, which was attenuated by genistein. In addition, oxidant-treated cells exhibited increased tyrosine kinase activity and decreased phosphatase activity. These data show differences in labeling profiles of proteins in response to different oxidants, suggesting differential modulation of distinct protein kinases/phosphatases.
Collapse
Affiliation(s)
- S Vepa
- Department of Medicine, Indiana University School of Medicine, Indianapolis 46202-2879, USA
| | | | | |
Collapse
|
32
|
Han JD, Rubin CS. Regulation of cytoskeleton organization and paxillin dephosphorylation by cAMP. Studies on murine Y1 adrenal cells. J Biol Chem 1996; 271:29211-5. [PMID: 8910579 DOI: 10.1074/jbc.271.46.29211] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cyclic AMP induces corticosteroid production, differential gene transcription, and cell cycle arrest in adrenal cortex-derived Y1 cells. These responses follow a cAMP-controlled transformation in Y1 cell morphology: the conversion of flat epithelial cells into rounded, highly refractile cells with short processes. Little is known about effector proteins and mechanisms that link activated protein kinase A to the alteration in cell shape. We now report that cAMP causes rapid (</=1 min) and selective tyrosine dephosphorylation of paxillin, a focal adhesion protein. Paxillin is maximally dephosphorylated before other physiological effects of cAMP are detected in Y1 cells. Dephosphopaxillin translocates from focal adhesions to the cytoplasm as stress fibers vanish and F-actin accumulates in membrane ruffles and cytoplasmic aggregates. Remnants of focal adhesion complexes dissociate from the cell cortex and coalesce into large structures that contain aggregated F-actin. Pervanadate, an inhibitor of protein-tyrosine phosphatases, abrogates all effects of cAMP. Conversely, genistein-sensitive protein-tyrosine kinase activity is essential for establishing epithelial morphology and reversing effects of cAMP in Y1 cells. Thus, cAMP/protein kinase A (PKA) actions are initially targeted to focal adhesions and cortical actin cytoskeleton; paxillin is an early and unexpected downstream target in a PKA-mediated signaling pathway, and protein-tyrosine phosphatase activity provides an essential link between PKA activation and the control of cell shape.
Collapse
Affiliation(s)
- J D Han
- Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
33
|
Yan SR, Berton G. Regulation of Src family tyrosine kinase activities in adherent human neutrophils. Evidence that reactive oxygen intermediates produced by adherent neutrophils increase the activity of the p58c-fgr and p53/56lyn tyrosine kinases. J Biol Chem 1996; 271:23464-71. [PMID: 8798554 DOI: 10.1074/jbc.271.38.23464] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Src family tyrosine kinases have been implicated in the adhesion-dependent activation of neutrophil functions (Yan, S. R., Fumagalli, L., and Berton, G. (1995) J. Inflamm. 45, 297-312; Lowell, C. A., Fumagalli, L., and Berton, G. (1996) J. Cell Biol. 133, 895-910). Because the activity of tyrosine kinases can be affected by oxidants, we investigated whether reactive oxygen intermediates (ROI) produced by adherent neutrophils regulate Src family kinase activities. Inhibition of ROI production by diphenylene iodonium, an inhibitor of NADPH oxidase, or degradation of H2O2 by exogenously added catalase inhibited the adhesion-stimulated activities of p58(c-fgr) and p53/56(lyn). In addition, adhesion-stimulated p58(c-fgr) and p53/56(lyn) activities were greatly reduced in neutrophils from patients with chronic granulomatous disease (CGD) that are deficient in the production of ROI. Exogenously added H2O2 increased p58(c-fgr) and p53/56(lyn) activities in nonadherent neutrophils. Although ROI regulated the activities of p58(c-fgr) and p53/56(lyn), they did not affect the redistribution of the two kinases to a Triton X-100-insoluble, cytoskeletal fraction that occurs in adherent neutrophils. Tyrosine phosphorylation of proteins in adherent, CGD neutrophils was only partially inhibited, suggesting that the full activation of p58(c-fgr) and p53/56(lyn), which depends on endogenously produced ROI, does not represent an absolute requirement for protein tyrosine phosphorylation. The adhesion-stimulated activity of the tyrosine kinase p72(syk) was not affected by catalase in normal neutrophils, and it was comparable in normal and CGD neutrophils. These findings suggest that ROI endogenously produced by adherent neutrophils regulate Src family kinases activity selectively and establish the existence of a cross-talk between reorganization of the cytoskeleton, production of ROI, and Src family tyrosine kinase activities in signaling by adhesion.
Collapse
Affiliation(s)
- S R Yan
- Institute of General Pathology, University of Verona, 37134 Verona, Italy
| | | |
Collapse
|
34
|
Zhao Z, Tan Z, Diltz CD, You M, Fischer EH. Activation of mitogen-activated protein (MAP) kinase pathway by pervanadate, a potent inhibitor of tyrosine phosphatases. J Biol Chem 1996; 271:22251-5. [PMID: 8703041 DOI: 10.1074/jbc.271.36.22251] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Rapid tyrosine phosphorylation of key cellular proteins is a crucial event in signal transduction. The regulatory role of protein-tyrosine phosphatases (PTPs) in this process was explored by studying the effects of a powerful PTP inhibitor, pervanadate, on the activation of the mitogen-activated protein (MAP) kinase cascade. Treatment of HeLa cells with pervanadate resulted in a marked inhibition of PTP activity, accompanied by a drastic increase in tyrosine phosphorylation of cellular proteins. The increased tyrosine phosphorylation coincided with the activation of the MAP kinase cascade as indicated by enzymatic activity assays of MEK (MAP kinase/ERK-kinase) and MAP kinase and gel mobility shift analyses of Raf-1 and MAP kinase. The activation was sustained but reversible. Upon removal of pervanadate, both tyrosine phosphorylation and MAP kinase activation declined to basal levels. Therefore, inhibition of PTP activity is sufficient per se to initiate a complete MAP kinase activation program.
Collapse
Affiliation(s)
- Z Zhao
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232-6305, USA
| | | | | | | | | |
Collapse
|
35
|
Nakamura K, Hori T, Yodoi J. Alternative binding of p56lck and phosphatidylinositol 3-kinase in T cells by sulfhydryl oxidation: implication of aberrant signaling due to oxidative stress in T lymphocytes. Mol Immunol 1996; 33:855-65. [PMID: 8845017 DOI: 10.1016/0161-5890(96)84611-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent studies of the physiological effects induced by oxidative stress have revealed that not only does oxidative stress causes random and indiscriminate injury on cells or tissues but it may evoke a cascade of signaling, by which cells may manage themselves to counter the stress. We have previously reported that sulfhydryl oxidation induces tyrosine phosphorylation and activation of a src family protein tyrosine kinase, p56lck, in T lymphocytes (Nakamura et al., 1993, Oncogene 8, 3133-3139). However, the possible difference between receptor-mediated signals and oxidative stress-mediated signals is not clear yet. In this study using cultured peripheral blood T lymphocytes (PBL blasts), we show that upon the sulfhydryl oxidation-induced tyrosine phosphorylation of p56lck, the kinase associates with phosphatidylinositol (PI) 3-kinase p85 subunit via the binding of the C-terminal SH2 domain of p85 to the tyrosine-phosphorylated p56lck. This is in contrast to the association of these two molecules in the case of CD4-p56lck cross-linking or interleukin-2 stimulation, where PI 3-kinase p85 subunit binds to the SH3 or SH3/SH2 domain(s) of p56lck. Thus our results indicate the possibility that T cells may utilize an alternative signaling machinery upon an oxidative stress-induced activation of a src family protein tyrosine kinase, p56lck.
Collapse
Affiliation(s)
- K Nakamura
- Department of Biological Responses, Kyoto University, Japan
| | | | | |
Collapse
|
36
|
Cenciarelli C, Wilhelm KG, Guo A, Weissman AM. T cell antigen receptor ubiquitination is a consequence of receptor-mediated tyrosine kinase activation. J Biol Chem 1996; 271:8709-13. [PMID: 8621503 DOI: 10.1074/jbc.271.15.8709] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Engagement of the T cell antigen receptor results in both its phosphorylation and its ubiquitination. T cell antigen receptor ubiquitination was evaluated in Jurkat, a well characterized human T leukemia cell line. Treatment of cells with the tyrosine kinase inhibitor herbimycin A resulted in an inhibition of receptor ubiquitination. Consistent with this, pervanadate, which increases cellular tyrosine phosphorylation, enhanced receptor ubiquitination. A requirement for receptor-mediated tyrosine kinase activity for ubiquitination was confirmed in cells lacking the tyrosine kinase p56lck and also in cells that are defective in expression of CD45, a tyrosine phosphatase that regulates the activity of p56lck. The need for tyrosine kinase activation for ubiquitination was not bypassed by directly activating protein kinase C and stimulating endocytosis of receptors. These observations establish ubiquitination of the T cell antigen receptor as a tyrosine kinase-dependent manifestation of transmembrane signaling and suggest a role for tyrosine phosphorylation in the ligand-dependent ubiquitination of mammalian transmembrane receptors.
Collapse
Affiliation(s)
- C Cenciarelli
- Laboratory of Immune Cell Biology, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892-1152, USA
| | | | | | | |
Collapse
|
37
|
Crowley MT, Harmer SL, DeFranco AL. Activation-induced association of a 145-kDa tyrosine-phosphorylated protein with Shc and Syk in B lymphocytes and macrophages. J Biol Chem 1996; 271:1145-52. [PMID: 8557643 DOI: 10.1074/jbc.271.2.1145] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Engagement of many cell surface receptors results in tyrosine phosphorylation of an overlapping set of protein substrates. Some proteins, such as the adaptor protein Shc, and a frequently observed Shc-associated protein, p145, are common substrates in a variety of receptor signaling pathways and are thus of special interest. Tyrosine-phosphorylated Shc and p145 coprecipitated with anti-Shc antibodies following B cell antigen receptor (BCR) cross-linking or interleukin-4 (IL-4) receptor activation in B cells, and after lipopolysaccharide (LPS) treatment or IgG Fc receptor (Fc gamma R) cross-linking in macrophages. In the case of BCR stimulation, we have shown that this represented the formation of an inducible complex. Furthermore, in response to LPS activation or Fc gamma R cross-linking of macrophages and BCR cross-linking (but not IL-4 treatment) of B cells, we observed a similar tyrosine-phosphorylated p145 protein associated with the tyrosine kinase Syk. We did not detect any Shc associated with Syk, indicating that a trimolecular complex of Shc, Syk, and p145 was not formed in significant amounts. By several criteria, the Syk-associated p145 was very likely the same protein as the previously identified Shc-associated p145. The Syk-associated p145 and the Shc-associated p145 exhibited identical mobility by SDS-polyacrylamide gel electrophoresis and identical patterns of induced tyrosine phosphorylation. The p145 protein that coprecipitated with either Shc or Syk bound to a GST-Shc fusion protein. In addition, a monoclonal antibody developed against Shc-associated p145 also immunoblotted the Syk-associated p145. The observations that p145 associated with both Shc and Syk proteins, in response to stimulation of a variety of receptors, suggest that it plays an important role in coordinating early signaling events.
Collapse
Affiliation(s)
- M T Crowley
- G. W. Hooper Foundation, University of California, San Francisco 94143-0552, USA
| | | | | |
Collapse
|
38
|
Evans GA, Goldsmith MA, Johnston JA, Xu W, Weiler SR, Erwin R, Howard OM, Abraham RT, O'Shea JJ, Greene WC. Analysis of interleukin-2-dependent signal transduction through the Shc/Grb2 adapter pathway. Interleukin-2-dependent mitogenesis does not require Shc phosphorylation or receptor association. J Biol Chem 1995; 270:28858-63. [PMID: 7499411 DOI: 10.1074/jbc.270.48.28858] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The interleukin (IL)-2 receptor system has previously been shown to signal through the association and tyrosine phosphorylation of Shc. This study demonstrates that the IL-2 receptor beta (IL-2R beta) chain is the critical receptor component required to mediate this effect. The use of IL-2R beta chain deletion mutants transfected into a Ba/F3 murine cell model describes a requirement for the IL-2R beta "acid-rich" domain between amino acids 315 and 384 for Shc tyrosine phosphorylation and receptor association. COS cell co-transfection studies of IL-2R beta chain constructs containing point mutations of tyrosine to phenylalanine along with the tyrosine kinase Jak-1 and a hemagglutinin-tagged Shc revealed that the motif surrounding phosphorylated tyrosine 338 within the acid-rich domain of the IL-2R beta is a binding site for Shc. Deletion of this domain has previously been shown to abrogate the ability of IL-2 to activate Ras but does not affect IL-2-dependent mitogenesis in the presence of serum. Proliferation assays of Ba/F3 cells containing IL-2R beta chain deletion mutants in serum-free medium with or without insulin shows that deletion of the acid-rich domain does not affect IL-2-driven mitogenesis regardless of the culture conditions. This study thus defines the critical domain within the IL-2R beta chain required to mediate Shc binding and Shc tyrosine phosphorylation and further shows that Shc binding and phosphorylation are not required for IL-2-dependent mitogenesis. Neither serum nor insulin is required to supplement the loss of induction of the Shc adapter or Ras pathways, which therefore suggests a novel mechanism for mitogenic signal transduction mediated by this hematopoietin receptor.
Collapse
Affiliation(s)
- G A Evans
- Biological Carcinogenesis and Development Program, Scientific Applications International Corporation, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Schieven GL, Wahl AF, Myrdal S, Grosmaire L, Ledbetter JA. Lineage-specific induction of B cell apoptosis and altered signal transduction by the phosphotyrosine phosphatase inhibitor bis(maltolato)oxovanadium(IV). J Biol Chem 1995; 270:20824-31. [PMID: 7657667 DOI: 10.1074/jbc.270.35.20824] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Protein tyrosine phosphorylation is known to play key roles in lymphocyte signal transduction, and phosphotyrosine phosphatases (PTP) can act as both positive and negative regulators of these lymphocyte signals. We sought to examine the role of PTP further in these processes by characterizing the effects of bis(maltolato)-oxovanadium(IV) (BMLOV), previously known to be a nontoxic insulin mimetic agent in vivo. BMLOV was found to be a potent phosphotyrosine phosphatase inhibitor. BMLOV induced cellular tyrosine phosphorylation in B cells in a pattern similar to that observed following antigen receptor stimulation, whereas little tyrosine phosphorylation was induced in T cells. In B cells, BMLOV treatment resulted in tyrosine phosphorylation of Syk and phospholipase C gamma 2, while sIgM-induced signals were inhibited. By contrast, T cell receptor signals were moderately increased by BMLOV, and the cells displayed greater induction of IL-2 receptor without toxicity. The compound selectively induced apoptosis in B cell lymphoma and myeloid leukemia cell lines, but not in T cell leukemia or colon carcinoma cells. Interleukin-4 plus anti-CD40 antibody treatment of normal human peripheral B cells rescued the cells from BMLOV-induced death. These results suggest that phosphotyrosine phosphatase inhibitors can activate B cell signal pathways in a lineage-specific manner, resulting in desensitization of receptor-mediated signaling and induction of apoptosis.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- B-Lymphocytes/cytology
- B-Lymphocytes/drug effects
- B-Lymphocytes/physiology
- Calcium/metabolism
- Cell Line
- Cytoplasm/metabolism
- Dose-Response Relationship, Drug
- Humans
- Hypoglycemic Agents/pharmacology
- Immunoglobulin M/physiology
- Kinetics
- Leukemia, Promyelocytic, Acute
- Leukemia, T-Cell
- Lymphocyte Activation
- Lymphoma, B-Cell
- Mice
- Phospholipases/metabolism
- Phytohemagglutinins
- Protein Tyrosine Phosphatases/antagonists & inhibitors
- Protein-Tyrosine Kinases/metabolism
- Proteins/metabolism
- Pyrones/pharmacology
- Receptors, Antigen, B-Cell/drug effects
- Receptors, Antigen, B-Cell/physiology
- Receptors, Antigen, T-Cell/drug effects
- Receptors, Antigen, T-Cell/physiology
- Receptors, Interleukin-2/biosynthesis
- Signal Transduction/drug effects
- TYK2 Kinase
- Tumor Cells, Cultured
- Vanadates/pharmacology
Collapse
Affiliation(s)
- G L Schieven
- Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, Washington 98121, USA
| | | | | | | | | |
Collapse
|
40
|
Singh S, Aggarwal BB. Protein-tyrosine phosphatase inhibitors block tumor necrosis factor-dependent activation of the nuclear transcription factor NF-kappa B. J Biol Chem 1995; 270:10631-9. [PMID: 7738000 DOI: 10.1074/jbc.270.18.10631] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Most of the inflammatory and proviral effects of tumor necrosis factor (TNF) are mediated through the activation of the nuclear transcription factor NF-kappa B. How TNF activates NF-kappa B, however, is not well understood. We examined the role of protein phosphatases in the TNF-dependent activation of NF-kappa B. Treatment of human myeloid ML-1a cells with TNF rapidly activated (within 30 min) NF-kappa B; this effect was abolished by treating cells with inhibitors of protein-tyrosine phosphatase (PTPase), including phenylarsine oxide (PAO), pervanadate, and diamide. The inhibition was dependent on the dose and occurred whether added before or at the same time as TNF. PAO also inhibited the activation even when added 15 min after the TNF treatment of cells. In contrast to inhibitors of PTPase, okadaic acid and calyculin A, which block serine-threonine phosphatase, had no effect. The effect of PTPase inhibitors was not due to the modulation of TNF receptors. Since both dithiothreitol and dimercaptopropanol reversed the inhibitory effect of PAO, critical sulfhydryl groups in the PTPase must be involved in NF-kappa B activation by TNF. PTPase inhibitors also blocked NF-kappa B activation induced by phorbol ester, ceramide, and interleukin-1 but not that activated by okadaic acid. The degradation of I kappa B protein, a critical step in NF-kappa B activation, was also abolished by the PTPase inhibitors as revealed by immunoblotting. Thus, overall, we demonstrate that PTPase is involved either directly or indirectly in the pathway leading to the activation of NF-kappa B.
Collapse
Affiliation(s)
- S Singh
- Department of Clinical Immunology and Biological Therapy, University of Texas M. D. Anderson Cancer Center, Houston 77030
| | | |
Collapse
|