1
|
Velagala V, Soundarrajan DK, Unger MF, Gazzo D, Kumar N, Li J, Zartman J. The multimodal action of G alpha q in coordinating growth and homeostasis in the Drosophila wing imaginal disc. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.08.523049. [PMID: 36711848 PMCID: PMC9881979 DOI: 10.1101/2023.01.08.523049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background G proteins mediate cell responses to various ligands and play key roles in organ development. Dysregulation of G-proteins or Ca 2+ signaling impacts many human diseases and results in birth defects. However, the downstream effectors of specific G proteins in developmental regulatory networks are still poorly understood. Methods We employed the Gal4/UAS binary system to inhibit or overexpress Gαq in the wing disc, followed by phenotypic analysis. Immunohistochemistry and next-gen RNA sequencing identified the downstream effectors and the signaling cascades affected by the disruption of Gαq homeostasis. Results Here, we characterized how the G protein subunit Gαq tunes the size and shape of the wing in the larval and adult stages of development. Downregulation of Gαq in the wing disc reduced wing growth and delayed larval development. Gαq overexpression is sufficient to promote global Ca 2+ waves in the wing disc with a concomitant reduction in the Drosophila final wing size and a delay in pupariation. The reduced wing size phenotype is further enhanced when downregulating downstream components of the core Ca 2+ signaling toolkit, suggesting that downstream Ca 2+ signaling partially ameliorates the reduction in wing size. In contrast, Gαq -mediated pupariation delay is rescued by inhibition of IP 3 R, a key regulator of Ca 2+ signaling. This suggests that Gαq regulates developmental phenotypes through both Ca 2+ -dependent and Ca 2+ -independent mechanisms. RNA seq analysis shows that disruption of Gαq homeostasis affects nuclear hormone receptors, JAK/STAT pathway, and immune response genes. Notably, disruption of Gαq homeostasis increases expression levels of Dilp8, a key regulator of growth and pupariation timing. Conclusion Gαq activity contributes to cell size regulation and wing metamorphosis. Disruption to Gαq homeostasis in the peripheral wing disc organ delays larval development through ecdysone signaling inhibition. Overall, Gαq signaling mediates key modules of organ size regulation and epithelial homeostasis through the dual action of Ca 2+ -dependent and independent mechanisms.
Collapse
|
2
|
Phospholipase Cγ1 links inflammation and tumorigenesis in colitis-associated cancer. Oncotarget 2017; 9:5752-5763. [PMID: 29464031 PMCID: PMC5814171 DOI: 10.18632/oncotarget.23430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is the third diagnosed cancer and the second leading cause of cancer-related deaths in the United States. Colorectal cancer is linked to inflammation and phospholipase Cγ1 (PLCγ1) is associated with tumorigenesis and the development of colorectal cancer; however, evidence of mechanisms connecting them remains unclear. The tight junctions (TJ), as intercellular junctional complexes, have an important role for integrity of the epithelial barrier to regulate the cellular permeability. Here we found that PLCγ1 regulated colitis and tumorigenesis in intestinal epithelial cells (IEC). To induce the colitis-associated cancer (CAC), we used the AOM/DSS model. Mice were sacrificed at 100 days (DSS three cycles) and 120 days (DSS one cycle). In a CAC model, we showed that the deletion of PLCγ1 in IEC decreased the incidence of tumors by enhancing apoptosis and inhibiting proliferation during tumor development. Accordingly, the deletion of PLCγ1 in IEC reduced colitis-induced epithelial inflammation via inhibition of pro-inflammatory cytokines and mediators. The PLCγ1 pathway in IEC accelerated colitis-induced epithelial damage via regulation of TJ proteins. Conclusions: Our findings suggest that PLCγ1 is a critical regulator of colitis and colorectal cancer and could further help in the development of therapy for colitis-associated cancer.
Collapse
|
3
|
Murillo-Maldonado JM, Zeineddine FB, Stock R, Thackeray J, Riesgo-Escovar JR. Insulin receptor-mediated signaling via phospholipase C-γ regulates growth and differentiation in Drosophila. PLoS One 2011; 6:e28067. [PMID: 22132213 PMCID: PMC3221684 DOI: 10.1371/journal.pone.0028067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 10/31/2011] [Indexed: 02/06/2023] Open
Abstract
Coordination between growth and patterning/differentiation is critical if appropriate final organ structure and size is to be achieved. Understanding how these two processes are regulated is therefore a fundamental and as yet incompletely answered question. Here we show through genetic analysis that the phospholipase C-γ (PLC-γ) encoded by small wing (sl) acts as such a link between growth and patterning/differentiation by modulating some MAPK outputs once activated by the insulin pathway; particularly, sl promotes growth and suppresses ectopic differentiation in the developing eye and wing, allowing cells to attain a normal size and differentiate properly. sl mutants have previously been shown to have a combination of both growth and patterning/differentiation phenotypes: small wings, ectopic wing veins, and extra R7 photoreceptor cells. We show here that PLC-γ activated by the insulin pathway participates broadly and positively during cell growth modulating EGF pathway activity, whereas in cell differentiation PLC-γ activated by the insulin receptor negatively regulates the EGF pathway. These roles require different SH2 domains of PLC-γ, and act via classic PLC-γ signaling and EGF ligand processing. By means of PLC-γ, the insulin receptor therefore modulates differentiation as well as growth. Overall, our results provide evidence that PLC-γ acts during development at a time when growth ends and differentiation begins, and is important for proper coordination of these two processes.
Collapse
Affiliation(s)
- Juan M. Murillo-Maldonado
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro, Querétaro, México
| | - Fouad Bou Zeineddine
- Biology Department, Clark University, Worcester, Maine, United States of America
| | - Rachel Stock
- Biology Department, Clark University, Worcester, Maine, United States of America
| | - Justin Thackeray
- Biology Department, Clark University, Worcester, Maine, United States of America
| | - Juan R. Riesgo-Escovar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro, Querétaro, México
- * E-mail:
| |
Collapse
|
4
|
Bertrand S, Campo-Paysaa F, Camasses A, García-Fernàndez J, Escrivà H. Actors of the tyrosine kinase receptor downstream signaling pathways in amphioxus. Evol Dev 2009; 11:13-26. [PMID: 19196330 DOI: 10.1111/j.1525-142x.2008.00299.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
One of the major goals of evo-developmentalists is to understand how the genetic mechanisms controlling embryonic development have evolved to create the current diversity of bodyplans that we encounter in the animal kingdom. Tyrosine kinase receptors (RTKs) are transmembrane receptors present in all metazoans known to control several developmental processes. They act via the activation of various cytoplasmic signaling cascades, including the mitogen-activated protein kinase (MAPK), the PI3K/Akt, and the phospholipase C-gamma (PLCgamma)/protein kinase C (PKC) pathways. In order to address the evolution of these three pathways and their involvement during embryogenesis in chordates, we took advantage of the complete genome sequencing of a key evolutionarily positioned species, the cephalochordate amphioxus, and searched for the complete gene set of the three signaling pathways. We found that the amphioxus genome contains all of the most important modules of the RTK-activated cascades, and looked at the embryonic expression of two genes selected from each cascade. Our data suggest that although the PI3K/Akt pathway may have ubiquitous functions, the MAPK and the PLCgamma/PKC cascades may play specific roles in amphioxus development. Together with data known in vertebrates, the expression pattern of PKC in amphioxus suggests that the PLCgamma/PKC cascade was implicated in neural development in the ancestor of all chordates.
Collapse
Affiliation(s)
- Stéphanie Bertrand
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, edifici annex, planta, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
5
|
Tadros W, Lipshitz HD. Setting the stage for development: mRNA translation and stability during oocyte maturation and egg activation in Drosophila. Dev Dyn 2005; 232:593-608. [PMID: 15704150 DOI: 10.1002/dvdy.20297] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Early animal development is controlled by maternally encoded RNAs and proteins, which are loaded into the egg during oogenesis. Oocyte maturation and egg activation trigger changes in the translational status and the stability of specific maternal mRNAs. Whereas both maturation and activation have been studied in depth in amphibians and echinoderms, only recently have these processes begun to be dissected using the powerful genetic and molecular tools available in Drosophila. This review focuses on the mechanisms and functions of regulated maternal mRNA translation and stability in Drosophila--and compares these mechanisms with those elucidated in other animal models, particularly Xenopus--beginning late in oogenesis and continuing to the mid-blastula transition, when developmental control is transferred to zygotically synthesized transcripts.
Collapse
Affiliation(s)
- Wael Tadros
- Program in Developmental Biology, Research Institute, The Hospital for Sick Children & Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
6
|
Li WX. Functions and mechanisms of receptor tyrosine kinase Torso signaling: lessons from Drosophila embryonic terminal development. Dev Dyn 2005; 232:656-72. [PMID: 15704136 PMCID: PMC3092428 DOI: 10.1002/dvdy.20295] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Torso receptor tyrosine kinase (RTK) is required for cell fate specification in the terminal regions (head and tail) of the early Drosophila embryo. Torso contains a split tyrosine kinase domain and belongs to the type III subgroup of the RTK superfamily that also includes the platelet-derived growth factor receptors, stem cell or steel factor receptor c-Kit proto-oncoprotein, colony-stimulating factor-1 receptor, and vascular endothelial growth factor receptor. The Torso pathway has been a model system for studying RTK signal transduction. Genetic and biochemical studies of Torso signaling have provided valuable insights into the biological functions and mechanisms of RTK signaling during early Drosophila embryogenesis.
Collapse
Affiliation(s)
- Willis X Li
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York 14642, USA.
| |
Collapse
|
7
|
Schlesinger A, Kiger A, Perrimon N, Shilo BZ. Small Wing PLCγ Is Required for ER Retention of Cleaved Spitz during Eye Development in Drosophila. Dev Cell 2004; 7:535-45. [PMID: 15469842 DOI: 10.1016/j.devcel.2004.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Revised: 08/11/2004] [Accepted: 08/12/2004] [Indexed: 11/25/2022]
Abstract
The Drosophila EGF receptor ligand Spitz is cleaved by Rhomboid to generate an active secreted molecule. Surprisingly, when a cleaved variant of Spitz (cSpi) was expressed, it accumulated in the ER, both in embryos and in cell culture. A cell-based RNAi screen for loss-of-function phenotypes that alleviate ER accumulation of cSpi identified several genes, including the small wing (sl) gene encoding a PLCgamma. sl mutants compromised ER accumulation of cSpi in embryos, yet they exhibit EGFR hyperactivation phenotypes predominantly in the eye. Spi processing in the eye is carried out primarily by Rhomboid-3/Roughoid, which cleaves Spi in the ER, en route to the Golgi. The sl mutant phenotype is consistent with decreased cSpi retention in the R8 cells. Retention of cSpi in the ER provides a novel mechanism for restricting active ligand levels and hence the range of EGFR activation in the developing eye.
Collapse
Affiliation(s)
- Ayelet Schlesinger
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
8
|
Mankidy R, Hastings J, Thackeray JR. Distinct phospholipase C-gamma-dependent signaling pathways in the Drosophila eye and wing are revealed by a new small wing allele. Genetics 2003; 164:553-63. [PMID: 12807776 PMCID: PMC1462570 DOI: 10.1093/genetics/164.2.553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Drosophila genome contains a single phospholipase C-gamma (PLC-gamma) homolog, encoded by small wing (sl), that acts as an inhibitor of receptor tyrosine kinase (RTK) signaling during photoreceptor R7 development. Although the existing sl alleles behave genetically as nulls, they may still produce truncated Sl products that could in theory still provide limited PLC-gamma function. Both to identify a true null allele and to probe structure-function relationships in Sl, we carried out an F(1) screen for new sl mutations and identified seven new alleles. Flies homozygous for any of these alleles are viable, with the same short-wing phenotype described previously; however, two of the alleles differ from any of those previously isolated in the severity of the eye phenotype: sl(9) homozygotes have a slightly more extreme extra-R7 phenotype, whereas sl(7) homozygotes have an almost wild-type eye. We determined the mutant defect in all seven alleles, revealing that sl(9) is a molecular null due to a very early stop codon, while sl(7) has a missense mutation in the highly conserved Y catalytic domain. Together with in vitro mutagenesis of the residue affected by the sl(7) mutation, these results confirm the role of Sl in RTK signaling and provide evidence for two genetically separable PLC-gamma-dependent pathways affecting the development of the eye and the wing.
Collapse
Affiliation(s)
- Rishikesh Mankidy
- Department of Biology, Clark University, Worcester, Massachusetts 01610, USA
| | | | | |
Collapse
|
9
|
Manning CM, Mathews WR, Fico LP, Thackeray JR. Phospholipase C-gamma contains introns shared by src homology 2 domains in many unrelated proteins. Genetics 2003; 164:433-42. [PMID: 12807765 PMCID: PMC1462583 DOI: 10.1093/genetics/164.2.433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many proteins with novel functions were created by exon shuffling around the time of the metazoan radiation. Phospholipase C-gamma (PLC-gamma) is typical of proteins that appeared at this time, containing several different modules that probably originated elsewhere. To gain insight into both PLC-gamma evolution and structure-function relationships within the Drosophila PLC-gamma encoded by small wing (sl), we cloned and sequenced the PLC-gamma homologs from Drosophila pseudoobscura and D. virilis and compared their gene structure and predicted amino acid sequences with PLC-gamma homologs in other animals. PLC-gamma has been well conserved throughout, although structural differences suggest that the role of tyrosine phosphorylation in enzyme activation differs between vertebrates and invertebrates. Comparison of intron positions demonstrates that extensive intron loss has occurred during invertebrate evolution and also reveals the presence of conserved introns in both the N- and C-terminal PLC-gamma SH2 domains that are present in SH2 domains in many other genes. These and other conserved SH2 introns suggest that the SH2 domains in PLC-gamma are derived from an ancestral domain that was shuffled not only into PLC-gamma, but also into many other unrelated genes during animal evolution.
Collapse
Affiliation(s)
- Charlene M Manning
- Biology Department, Clark University, Worcester, Massachusetts 01610, USA
| | | | | | | |
Collapse
|
10
|
Ward PD, Ouyang H, Thakker DR. Role of phospholipase C-beta in the modulation of epithelial tight junction permeability. J Pharmacol Exp Ther 2003; 304:689-98. [PMID: 12538823 DOI: 10.1124/jpet.102.043638] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The results presented in this study establish an association between phospholipase C-beta (PLC-beta) and tight junction permeability across Madin-Darby canine kidney (MDCK) cell monolayers, an in vitro model for epithelial tissue. These results further show that PLC-beta modulates tight junction permeability by affecting actin filament organization. Hexadecylphosphocholine (HPC) inhibited PLC-beta and increased tight junction permeability in MDCK cells. Interestingly, the analogs of HPC, a series of alkylphosphocholines containing various lengths of linear alkyl chains, inhibited PLC-beta and increased tight junction permeability with a wide range of potency. The potency of alkylphosphocholines as enhancers of tight junction permeability significantly correlated (p < 0.05) with their potency as PLC-beta inhibitors. U73122, a steroid derivative that is structurally unrelated to alkylphosphocholines, inhibited PLC-beta and increased tight junction permeability with potencies that fit into the correlation observed for the alkylphosphocholine series. U73122 and HPC induced disorganization of actin filaments in MDCK cell monolayers. The potencies to cause disorganization of actin filaments were consistent with the potencies of these agents as inhibitors of PLC-beta and enhancers of tight junction permeability. Furthermore, ATP, an activator of PLC-beta, attenuated U73122-induced increase in tight junction permeability as well as disorganization of actin filaments. These results provide strong evidence that PLC-beta inhibition leads to increased tight junction permeability across MDCK cell monolayers through disorganization of actin filaments.
Collapse
Affiliation(s)
- Peter D Ward
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
11
|
Rebecchi MJ, Pentyala SN. Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 2000; 80:1291-335. [PMID: 11015615 DOI: 10.1152/physrev.2000.80.4.1291] [Citation(s) in RCA: 733] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phosphoinositide-specific phospholipase C (PLC) subtypes beta, gamma, and delta comprise a related group of multidomain phosphodiesterases that cleave the polar head groups from inositol lipids. Activated by all classes of cell surface receptor, these enzymes generate the ubiquitous second messengers inositol 1,4, 5-trisphosphate and diacylglycerol. The last 5 years have seen remarkable advances in our understanding of the molecular and biological facets of PLCs. New insights into their multidomain arrangement and catalytic mechanism have been gained from crystallographic studies of PLC-delta(1), while new modes of controlling PLC activity have been uncovered in cellular studies. Most notable is the realization that PLC-beta, -gamma, and -delta isoforms act in concert, each contributing to a specific aspect of the cellular response. Clues to their true biological roles were also obtained. Long assumed to function broadly in calcium-regulated processes, genetic studies in yeast, slime molds, plants, flies, and mammals point to specific and conditional roles for each PLC isoform in cell signaling and development. In this review we consider each subtype of PLC in organisms ranging from yeast to mammals and discuss their molecular regulation and biological function.
Collapse
Affiliation(s)
- M J Rebecchi
- Departments of Anesthesiology and Physiology and Biophysics, School of Medicine, State University of New York, Stony Brook, New York 11794, USA.
| | | |
Collapse
|
12
|
Powe AC, Strathdee D, Cutforth T, D'Souza-Correia T, Gaines P, Thackeray J, Carlson J, Gaul U. In vivo functional analysis of Drosophila Gap1: involvement of Ca2+ and IP4 regulation. Mech Dev 1999; 81:89-101. [PMID: 10330487 DOI: 10.1016/s0925-4773(98)00230-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Control of Ras activity is crucial for normal cellular behavior such as fate determination during development. Although several GTPase activating proteins (GAPs) have been shown to act as negative regulators of Ras, the mechanisms involved in regulating their activity in vivo are poorly understood. Here we report the structural requirements for Gap1 activity in cone cell fate decisions during Drosophila eye development. The Gap1 catalytic domain alone is not sufficient for in vivo activity, indicating a requirement for the additional domains. An inositol-1,3,4, 5-tetrakisphosphate (IP4)-sensitive extended PH domain is essential for Gap1 activity, while Ca2+-sensitive C2 domains and a glutamine-rich region contribute equally to full activity in vivo. Furthermore, we find a strong positive genetic interaction between Gap1 and phospholipase Cgamma (PLCgamma), an enzyme which generates inositol-1,4,5-trisphosphate, a precursor for IP4 and a second messenger for intracellular Ca2+ release. These results suggest that Gap1 activity in vivo is stimulated under conditions of elevated intracellular Ca2+ and IP4. Since receptor tyrosine kinases (RTKs) trigger an increase in intracellular Ca2+ and IP4 concentration through stimulation of PLCgamma, RTKs may stimulate not only activation of Ras but also its deactivation by Gap1, thereby moderating the strength and duration of the Ras signal.
Collapse
Affiliation(s)
- A C Powe
- Laboratory of Developmental Neurogenetics, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Thackeray JR, Gaines PC, Ebert P, Carlson JR. small wing encodes a phospholipase C-(gamma) that acts as a negative regulator of R7 development in Drosophila. Development 1998; 125:5033-42. [PMID: 9811587 DOI: 10.1242/dev.125.24.5033] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phospholipase C-(gamma) (PLC-(gamma)) is activated in many cell types following growth factor stimulation. Our understanding of the role of PLC-(gamma) in cell growth and differentiation has been severely limited by the dearth of mutations in any organism. In this study, we show that the Drosophila gene small wing (sl), identified by Bridges in 1915, encodes a PLC-(gamma). Mutations of sl result in extra R7 photoreceptors in the compound eye, consistent with overactivation of the receptor tyrosine kinase pathways that control R7 development. The data presented here provide the first genetic evidence that PLC-(gamma) is involved in Ras-mediated signaling and indicate that PLC-(gamma) acts as a negative regulator in such pathways in Drosophila.
Collapse
Affiliation(s)
- J R Thackeray
- Department of Biology, Yale University, PO Box 208103, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
14
|
Weinkove D, Leevers SJ, MacDougall LK, Waterfield MD. p60 is an adaptor for the Drosophila phosphoinositide 3-kinase, Dp110. J Biol Chem 1997; 272:14606-10. [PMID: 9169420 DOI: 10.1074/jbc.272.23.14606] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mammalian phosphoinositide 3-kinases (PI3Ks) p110alpha, beta, and delta form heterodimers with Src homology 2 (SH2) domain-containing adaptors such as p85alpha or p55(PIK). The two SH2 domains of these adaptors bind to phosphotyrosine residues (pY) found within the consensus sequence pYXXM. Here we show that a heterodimer of the Drosophila PI3K, Dp110, with an adaptor, p60, can be purified from S2 cells with a pYXXM phosphopeptide affinity matrix. Using amino acid sequence from the gel-purified protein, the gene encoding p60 was cloned and mapped to the genomic region 21B8-C1, and the exon/intron structure was determined. p60 contains two SH2 domains and an inter-SH2 domain but lacks the SH3 and breakpoint cluster region homology (BH) domains found in mammalian p85alpha and beta. Analysis of the sequence of p60 shows that the amino acids responsible for the SH2 domain binding specificity in mammalian p85alpha are conserved and predicts that the inter-SH2 domain has a coiled-coil structure. The Dp110.p60 complex was immunoprecipitated with p60-specific antisera and shown to possess both lipid and protein kinase activity. The complex was found in larvae, pupae, and adults, consistent with p60 functioning as the adaptor for Dp110 throughout the Drosophila life cycle.
Collapse
Affiliation(s)
- D Weinkove
- Ludwig Institute for Cancer Research, 91 Riding House Street, London W1P 8BT, United Kingdom
| | | | | | | |
Collapse
|
15
|
Singer WD, Brown HA, Sternweis PC. Regulation of eukaryotic phosphatidylinositol-specific phospholipase C and phospholipase D. Annu Rev Biochem 1997; 66:475-509. [PMID: 9242915 DOI: 10.1146/annurev.biochem.66.1.475] [Citation(s) in RCA: 335] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review focuses on two phospholipase activities involved in eukaryotic signal transduction. The action of the phosphatidylinositol-specific phospholipase C enzymes produces two well-characterized second messengers, inositol 1,4,5-trisphosphate and diacylglycerol. This discussion emphasizes recent advances in elucidation of the mechanisms of regulation and catalysis of the various isoforms of these enzymes. These are especially related to structural information now available for a phospholipase C delta isozyme. Phospholipase D hydrolyzes phospholipids to produce phosphatidic acid and the respective head group. A perspective of selected past studies is related to emerging molecular characterization of purified and cloned phospholipases D. Evidence for various stimulatory agents (two small G protein families, protein kinase C, and phosphoinositides) suggests complex regulatory mechanisms, and some studies suggest a role for this enzyme activity in intracellular membrane traffic.
Collapse
Affiliation(s)
- W D Singer
- Department of Pharmacology, University of Texas-Southwestern Medical Center, DaHas 75235-9041, USA
| | | | | |
Collapse
|
16
|
Cleghon V, Gayko U, Copeland TD, Perkins LA, Perrimon N, Morrison DK. Drosophila terminal structure development is regulated by the compensatory activities of positive and negative phosphotyrosine signaling sites on the Torso RTK. Genes Dev 1996; 10:566-77. [PMID: 8598287 DOI: 10.1101/gad.10.5.566] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Specification of cell fates in the nonsegmented terminal regions of developing Drosophila embryos is under the control of a signal transduction pathway mediated by the receptor tyrosine kinase Torso (Tor). Here, we identify tyrosines (Y) 630 and 918 as the major sites of Tor autophosphorylation. We demonstrate that mutation of Y630, a site required for association with and tyrosine phosphorylation of the tyrosine phosphatase Corkscrew, decreases the efficiency of Tor signaling. In contrast, mutation of Y918, a site capable of binding mammalian rasGAP and PLC-gammal, increases Tor signaling. Interestingly, when receptors contain mutations in both the Y630 and Y918 sites, Tor signaling is restored to wild-type levels. These results identify a novel mechanism whereby Tor function is regulated using compensatory signals generated from distinct autophosphorylation sites and reveal an underlying signaling pathway for terminal development.
Collapse
Affiliation(s)
- V Cleghon
- National Cancer Institute, Frederick Cancer Research and Development Center, Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|
17
|
Shortridge RD, McKay RR. Invertebrate phosphatidylinositol-specific phospholipases C and their role in cell signaling. INVERTEBRATE NEUROSCIENCE : IN 1995; 1:199-206. [PMID: 9372143 DOI: 10.1007/bf02211021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phosphatidylinositol-specific phospholipase C (PLC) is a family of enzymes that occupy a pivotal role in one of the largest classes of cellular signaling pathways known. Mammalian PLC enzymes have been divided into four major classes and a variety of subclasses based on their structural characteristics and immunological differences. There have been five invertebrate PLC-encoding genes cloned thus far and these fall within three of the four major classes used in categorizing mammalian PLC. Four of these invertebrate genes have been cloned from Drosophila melanogaster and one is from Artemia, a brine shrimp. Structural characteristics of the invertebrate enzymes include the presence of highly conserved Box X and Box Y domains found in major types of mammalian PLC as well as novel features. Two of the invertebrate PLC genes encode multiple splice-variant subtypes which is a newly emerging level of diversity observed in mammalian enzymes. Studies of the invertebrate PLCs have contributed to the identification of the physiological functions of individual isozymes. These identified roles include cellular processes such as phototransduction, olfaction, cell growth and differentiation.
Collapse
Affiliation(s)
- R D Shortridge
- Department of Biological Sciences, State University of New York, Buffalo 14260, USA
| | | |
Collapse
|