1
|
Kashkin K, Kondratyeva L, Kopantzev E, Abramov I, Zhukova L, Chernov I. Deciphering of SOX9 Functions in Pancreatic Cancer Cells. Int J Mol Sci 2025; 26:2652. [PMID: 40141294 PMCID: PMC11941869 DOI: 10.3390/ijms26062652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
SOX9 is widely regarded as a key master regulator of gene transcription, responsible for the development and differentiation programs within tissue and organogenesis, particularly in the pancreas. SOX9 overexpression has been observed in multiple tumor types, including pancreatic cancer, and is discussed as a prognostic marker. In order to gain a more profound understanding of the role of SOX9 in pancreatic cancer, we have performed SOX9 knockdown in the COLO357 and PANC-1 cells using RNA interference, followed by full-transcriptome analysis of the siRNA-transfected cells. The molecular pathway enrichment analysis between SOX9-specific siRNA-transfected cells and control cells reveals the activation of processes associated with cellular signaling, cell differentiation, transcription, and methylation, alongside the suppression of genes involved in various stages of the cell cycle and apoptosis, upon the SOX9 knockdown. Alterations of the expression of transcription factors, epithelial-mesenchymal transition markers, oncogenes, tumor suppressor genes, and drug resistance-related genes upon SOX9 knockdown in comparison of primary and metastatic pancreatic cancer cells are discovered. The expression levels of genes comprising prognostic signatures for pancreatic cancer were also evaluated following SOX9 knockdown. Additional studies are needed to assess the properties and prognostic significance of SOX9 in pancreatic cancer using other biological models.
Collapse
Affiliation(s)
- Kirill Kashkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (E.K.); (I.C.)
| | - Liya Kondratyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (E.K.); (I.C.)
| | - Eugene Kopantzev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (E.K.); (I.C.)
| | - Ivan Abramov
- GBUZ Moscow Clinical Scientific and Practical Center Named After A.S. Loginov MHD (MCSC), 111123 Moscow, Russia; (I.A.); (L.Z.)
| | - Lyudmila Zhukova
- GBUZ Moscow Clinical Scientific and Practical Center Named After A.S. Loginov MHD (MCSC), 111123 Moscow, Russia; (I.A.); (L.Z.)
| | - Igor Chernov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (E.K.); (I.C.)
| |
Collapse
|
2
|
Bhuria V, Franz T, Baldauf C, Böttcher M, Chatain N, Koschmieder S, Brümmendorf TH, Mougiakakos D, Schraven B, Kahlfuß S, Fischer T. Activating mutations in JAK2 and CALR differentially affect intracellular calcium flux in store operated calcium entry. Cell Commun Signal 2024; 22:186. [PMID: 38509561 PMCID: PMC10956330 DOI: 10.1186/s12964-024-01530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Calcium (Ca2+) signaling regulates various vital cellular functions, including integrin activation and cell migration. Store-operated calcium entry (SOCE) via calcium release-activated calcium (CRAC) channels represents a major pathway for Ca2+ influx from the extracellular space in multiple cell types. The impact of JAK2-V617F and CALR mutations which are disease initiating in myeloproliferative neoplasms (MPN) on SOCE, calcium flux from the endoplasmic reticulum (ER) to the cytosol, and related key signaling pathways in the presence or absence of erythropoietin (EPO) or thrombopoietin (TPO) is poorly understood. Thus, this study aimed to elucidate the effects of these mutations on the aforementioned calcium dynamics, in cellular models of MPN. METHODS Intracellular Ca2+ levels were measured over a time frame of 0-1080 s in Fura-2 AM labeled myeloid progenitor 32D cells expressing various mutations (JAK2-WT/EpoR, JAK2-V617F/EpoR; CALR-WT/MPL, CALR-ins5/MPL, and del52/MPL). Basal Ca2+ concentrations were assessed from 0-108 s. Subsequently, cells were stimulated with EPO/TPO in Ca2+-free Ringer solution, measuring Ca2+ levels from 109-594 s (store depletion). Then, 2 mM of Ca2+ buffer resembling physiological concentrations was added to induce SOCE, and Ca2+ levels were measured from 595-1080 s. Fura-2 AM emission ratios (F340/380) were used to quantify the integrated Ca2+ signal. Statistical significance was assessed by unpaired Student's t-test or Mann-Whitney-U-test, one-way or two-way ANOVA followed by Tukey's multiple comparison test. RESULTS Following EPO stimulation, the area under the curve (AUC) representing SOCE significantly increased in 32D-JAK2-V617F cells compared to JAK2-WT cells. In TPO-stimulated CALR cells, we observed elevated Ca2+ levels during store depletion and SOCE in CALR-WT cells compared to CALR-ins5 and del52 cells. Notably, upon stimulation, key components of the Ca2+ signaling pathways, including PLCγ-1 and IP3R, were differentially affected in these cell lines. Hyper-activated PLCγ-1 and IP3R were observed in JAK2-V617F but not in CALR mutated cells. Inhibition of calcium regulatory mechanisms suppressed cellular growth and induced apoptosis in JAK2-V617F cells. CONCLUSIONS This report highlights the impact of JAK2 and CALR mutations on Ca2+ flux (store depletion and SOCE) in response to stimulation with EPO and TPO. The study shows that the JAK2-V617F mutation strongly alters the regulatory mechanism of EpoR/JAK2-dependent intracellular calcium balance, affecting baseline calcium levels, EPO-induced calcium entry, and PLCγ-1 signaling pathways. Our results reveal an important role of calcium flux in the homeostasis of JAK2-V617F positive cells.
Collapse
Affiliation(s)
- Vikas Bhuria
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany.
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany.
| | - Tobias Franz
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Conny Baldauf
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Martin Böttcher
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
- Department of Hematology and Oncology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center of Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center of Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center of Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Dimitrios Mougiakakos
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
- Department of Hematology and Oncology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Burkhart Schraven
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany
| | - Sascha Kahlfuß
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas Fischer
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany.
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
3
|
Zhang Y, Xu Y, Zhang S, Lu Z, Li Y, Zhao B. The regulation roles of Ca 2+ in erythropoiesis: What have we learned? Exp Hematol 2021; 106:19-30. [PMID: 34879257 DOI: 10.1016/j.exphem.2021.12.192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 12/03/2021] [Indexed: 01/09/2023]
Abstract
Calcium (Ca2+) is an important second messenger molecule in the body, regulating cell cycle and fate. There is growing evidence that intracellular Ca2+ levels play functional roles in the total physiological process of erythroid differentiation, including the proliferation and differentiation of erythroid progenitor cells, terminal enucleation, and mature red blood cell aging and clearance. Moreover, recent research on the pathology of erythroid disorders has made great progress in the past decades, indicating that calcium ion hemostasis is closely related to ineffective erythropoiesis and increased sensitivity to stress factors. In this review, we summarized what is known about the functional roles of intracellular Ca2+ in erythropoiesis and erythrocyte-related diseases, with an emphasis on the regulation of the intracellular Ca2+ homeostasis during erythroid differentiation. An understanding of the regulation roles of Ca2+ homeostasis in erythroid differentiation will facilitate further studies and eventually molecular identification of the pathways involved in the pathological process of erythroid disorders, providing new therapeutic opportunities in erythrocyte-related disease.
Collapse
Affiliation(s)
- Yuanzhen Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shujing Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhiyuan Lu
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baobing Zhao
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
4
|
Yu YB, Su KH, Kou YR, Guo BC, Lee KI, Wei J, Lee TS. Role of transient receptor potential vanilloid 1 in regulating erythropoietin-induced activation of endothelial nitric oxide synthase. Acta Physiol (Oxf) 2017; 219:465-477. [PMID: 27232578 DOI: 10.1111/apha.12723] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/25/2016] [Accepted: 05/25/2016] [Indexed: 01/02/2023]
Abstract
AIMS Erythropoietin (EPO), the key hormone involved in erythropoiesis, beneficially affects endothelial cells (ECs), but the detailed mechanisms are yet to be completely understood. In this study, we investigated the role of transient receptor potential vanilloid type 1 (TRPV1), a ligand-gated non-selective calcium (Ca2+ ) channel, in EPO-mediated endothelial nitric oxide synthase (eNOS) activation and angiogenesis. METHODS AND RESULTS In ECs, EPO time dependently increased intracellular levels of calcium; this increase was abrogated by the Ca2+ chelators and pharmacological inhibitors of TRPV1 in bovine aortic ECs (BAECs) and TRPV1-transfected HEK293 cells. In addition, EPO-induced nitrite oxide (NO) production, phosphorylation of eNOS, Akt and AMP-activated protein kinase (AMPK) and the formation of TRPV1-Akt-AMPK-eNOS complex as well as tube formation were diminished by the pharmacological inhibition of TRPV1 in BAECs. Moreover, EPO time dependently induced the phosphorylation of phospholipase C-γ1 (PLC-γ1). Inhibition of PLC-γ1 activity blunted the EPO-induced Ca2+ influx, eNOS phosphorylation, TRPV1-eNOS complex formation and NO production. The phosphorylated level of eNOS increased in the aortas of EPO-treated wild-type (WT) mice or EPO-transgenic (Tg) mice but not in those of EPO-treated TRPV1-deficient (TRPV1-/- ) mice or EPO-Tg/TRPV1-/- mice. Matrigel plug assay showed that EPO-induced angiogenesis was abrogated in TRPV1 antagonist capsazepine-treated WT mice and TRPV1-/- mice. CONCLUSION These findings indicate the EPO-induced Ca2+ influx via the activation of the PLC-γ1 signalling pathway, which leads to TRPV1 activation and consequently increases the association of the TRPV1-Akt-AMPK-eNOS complex, eNOS activation, NO production and angiogenesis.
Collapse
Affiliation(s)
- Y.-B. Yu
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
- Division of Hematology; Department of Medicine; Taipei Veterans General Hospital; Taipei Taiwan
| | - K.-H. Su
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
- The Jackson Laboratory; Bar Harbor ME USA
| | - Y. R. Kou
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
| | - B.-C. Guo
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
| | - K.-I. Lee
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
| | - J. Wei
- Heart Center; Cheng-Hsin General Hospital; Taipei Taiwan
| | - T.-S. Lee
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
- Genome Research Center; National Yang-Ming University; Taipei Taiwan
- Aging and Health Research Center; National Yang-Ming University; Taipei Taiwan
| |
Collapse
|
5
|
Analysis of the Asymmetry of Activated EPO Receptor Enables Designing Small Molecule Agonists. VITAMINS AND HORMONES 2017. [DOI: 10.1016/bs.vh.2017.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Barbosa CMV, Bincoletto C, Barros CC, Ferreira AT, Paredes-Gamero EJ. PLCγ2 and PKC are important to myeloid lineage commitment triggered by M-SCF and G-CSF. J Cell Biochem 2014; 115:42-51. [PMID: 24038146 DOI: 10.1002/jcb.24653] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/14/2013] [Indexed: 11/06/2022]
Abstract
Myeloid differentiation is a complex process whereby mature granulocytes or monocytes/macrophages are derived from a common myeloid progenitor through the coordinated action of hematopoietic cytokines. In this study, we explored the role of the Ca(2+)i signaling transduction pathway in the commitment of hematopoietic stem/progenitor cells to either the monocytic or granulocytic lineage in response to macrophage colony-stimulating factor (M-CSF) and granulocyte colony-stimulating factor (G-CSF). M-CSF and G-CSF induce cell expansion and monocyte or granulocyte differentiation, respectively, without affecting the percentage of hematopoietic progenitor cells. Colony-forming units (CFUs) and flow cytometry demonstrated the involvement of phospholipase Cγ (PLCγ) and protein kinase C (PKC) in monocyte/granulocyte commitment. In addition, using flow cytometry and RNA interference, we identified PLCγ2 as the PLCγ isoform that participates in this cell expansion and differentiation. Differences in signaling elicited by M-CSF and G-CSF were observed. The M-CSF-related effects were associated with the activation of ERK1/2 and nuclear factor of activated T-cells (NFAT); the inhibition of both molecules reduced the number of colonies in a CFU assay. In contrast, using flow cytometry and confocal evaluation, we demonstrated that G-CSF activated Jak-1 and STAT-3. Additionally, the effects induced by G-CSF were also related with the participation of Ca(2+) calmodulin kinase II and the transcription factor PU.1. STAT-3 activation and the increase of PU.1 expression were sensitive to PLC inhibition by U73122. These data show that PLCγ2 and PKC are important upstream signals that regulate myelopoiesis through cytokines, and differences in M-CSF and G-CSF downstream signaling were identified.
Collapse
|
7
|
Lindholm EM, Kristian A, Nalwoga H, Krüger K, Nygård S, Akslen LA, Mælandsmo GM, Engebraaten O. Effect of antiangiogenic therapy on tumor growth, vasculature and kinase activity in basal- and luminal-like breast cancer xenografts. Mol Oncol 2012; 6:418-27. [PMID: 22521242 DOI: 10.1016/j.molonc.2012.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 02/23/2012] [Accepted: 03/22/2012] [Indexed: 01/24/2023] Open
Abstract
Several clinical trials have investigated the efficacy of bevacizumab in breast cancer, and even if growth inhibiting effects have been registered when antiangiogenic treatment is given in combination with chemotherapy no gain in overall survival has been observed. One reason for the lack of overall survival benefit might be that appropriate criteria for selection of patients likely to respond to antiangiogenic therapy in combination with chemotherapy, are not available. To determine factors of importance for antiangiogenic treatment response and/or resistance, two representative human basal- and luminal-like breast cancer xenografts were treated with bevacizumab and doxorubicin alone or in combination. In vivo growth inhibition, microvessel density (MVD) and proliferating tumor vessels (pMVD = proliferative microvessel density) were analysed, while kinase activity was determined using the PamChip Tyrosine kinase microarray system. Results showed that both doxorubicin and bevacizumab inhibited basal-like tumor growth significantly, but with a superior effect when given in combination. In contrast, doxorubicin inhibited luminal-like tumor growth most effectively, and with no additional benefit of adding antiangiogenic therapy. In agreement with the growth inhibition data, vascular characterization verified a more pronounced effect of the antiangiogenic treatment in the basal-like compared to the luminal-like tumors, demonstrating total inhibition of pMVD and a significant reduction in MVD at early time points (three days after treatment) and sustained inhibitory effects until the end of the experiment (day 18). In contrast, luminal-like tumors only showed significant effect on the vasculature at day 10 in the tumors having received both doxorubicin and bevacizumab. Kinase activity profiling in both tumor models demonstrated that the most effective treatment in vivo was accompanied with increased phosphorylation of kinase substrates of growth control and angiogenesis, like EGFR, VEGFR2 and PLCγ1. This may be a result of regulatory feedback mechanisms contributing to treatment resistance, and may suggest response markers of value for the prediction of antiangiogenic treatment efficacy.
Collapse
Affiliation(s)
- Evita M Lindholm
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Pb 4953 Nydalen, 0424 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ingley E. Integrating novel signaling pathways involved in erythropoiesis. IUBMB Life 2012; 64:402-10. [PMID: 22431075 DOI: 10.1002/iub.1024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 02/14/2012] [Indexed: 12/17/2022]
Abstract
Many extrinsic and intrinsic factors control the development of red blood cells from committed progenitors, with the Erythropoietin-receptor (Epo-R) signaling network being the primary controlling molecular hub. Although much is understood about erythroid signaling pathways, new and intriguing factors that influence different aspects of erythroid cell development are still being uncovered. New extrinsic effectors include hypoxia and polymeric IgA1 (pIgA1), and new Epo-R signaling pathway components include Lyn/Cbp and Lyn/Liar. Hypoxia directly activates committed erythroid progenitors to expand, whereas pIgA1 activates the Akt and MAP-Kinase (MAPK) pathways through transferrin receptors on more mature erythroid cells. The Lyn/Cbp pathway controls the activity and protein levels of Lyn through recruitment of Csk and SOCS1, as well as feeding into the control of other pathways mediated by recruitment of ras-GAP, PI3-kinase, PLCγ, Fes, and EBP50. Nuclear/cytoplasmic shuttling of Lyn and other signaling molecules is influenced by Liar and results in regulation of their intersecting signaling pathways. The challenge of future research is to flesh out the details of these new signaling regulators/networks and integrate their influences during the different stages of erythropoiesis.
Collapse
Affiliation(s)
- Evan Ingley
- Cell Signalling Group, Western Australian Institute for Medical Research, Centre for Medical Research and The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
9
|
Leon CMMP, Barbosa CMV, Justo GZ, Borelli P, Resende JD, de Oliveira JSR, Ferreira AT, Paredes-Gamero EJ. Requirement for PLCγ2 in IL-3 and GM-CSF-stimulated MEK/ERK phosphorylation in murine and human hematopoietic stem/progenitor cells. J Cell Physiol 2011; 226:1780-92. [PMID: 21506110 DOI: 10.1002/jcp.22507] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Even though the involvement of intracellular Ca(2+) Ca(i)(2+) in hematopoiesis has been previously demonstrated, the relationship between Ca(i)(2+) signaling and cytokine-induced intracellular pathways remains poorly understood. Herein, the molecular mechanisms integrating Ca(2+) signaling with the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in primary murine and human hematopoietic stem/progenitor cells stimulated by IL-3 and GM-CSF were studied. Our results demonstrated that IL-3 and GM-CSF stimulation induced increased inositol 1,4,5-trisphosphate (IP(3) ) levels and Ca(i)(2+) release in murine and human hematopoietic stem/progenitor cells. In addition, Ca(i)(2+) signaling inhibitors, such as inositol 1,4,5-trisphosphate receptor antagonist (2-APB), PKC inhibitor (GF109203), and CaMKII inhibitor (KN-62), blocked phosphorylation of MEK activated by IL-3 and GM-CSF, suggesting the participation of Ca(2+) -dependent kinases in MEK activation. In addition, we identify phospholipase Cγ2 (PLCγ2) as a PLCγ responsible for the induction of Ca(2+) release by IL-3 and GM-CSF in hematopoietic stem/progenitor cells. Furthermore, the PLCγ inhibitor U73122 significantly reduced the numbers of granulocyte-macrophage colony-forming units after cytokine stimulation. Similar results were obtained in both murine and human hematopoietic stem/progenitor cells. Taken together, these data indicate a role for PLCγ2 and Ca(2+) signaling through the modulation of MEK in both murine and human hematopoietic stem/progenitor cells.
Collapse
Affiliation(s)
- Carlos M M P Leon
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kang JK, Chang CH, Nam HJ, Kim SK, Ahn KJ, Seok H, Park SJ, Kang YJ, Jo YS, Shong M, Kim H. Downregulation of erythropoietin receptor by overexpression of phospholipase C-gamma 1 is critical for decrease on focal adhesion in transformed cells. Cell Oncol (Dordr) 2011; 34:11-21. [DOI: 10.1007/s13402-010-0001-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2010] [Indexed: 10/18/2022] Open
|
11
|
Smit LS, Meyer DJ, Argetsinger LS, Schwartz J, Carter‐Su C. Molecular Events in Growth Hormone–Receptor Interaction and Signaling. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Hakak Y, Lehmann-Bruinsma K, Phillips S, Le T, Liaw C, Connolly DT, Behan DP. The role of the GPR91 ligand succinate in hematopoiesis. J Leukoc Biol 2009; 85:837-43. [PMID: 19204147 DOI: 10.1189/jlb.1008618] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Regulation of cellular metabolism by the citric acid cycle occurs in the mitochondria. However, the citric acid cycle intermediate succinate was shown recently to be a ligand for the G-protein-coupled receptor GPR91. Here, we describe a role for succinate and its receptor in the stimulation of hematopoietic progenitor cell (HPC) growth. GPR91 mRNA and protein expression were detected in human bone marrow CD34+ progenitor cells, as well as in erythroid and megakaryocyte cultures and the erythroleukemic cell line TF-1. Treatment of these cell cultures with succinate resulted in increased proliferation rates. The proliferation response of TF-1 cells was pertussis toxin (PTX)-sensitive, suggesting a role for Gi signaling. Proliferation was also blocked when TF-1 cells were transfected with small interfering RNA specific for GPR91. Succinate stimulated activation of the Erk MAPK pathway and inositol phosphate accumulation in a PTX-sensitive manner. Pretreatment of TF-1 cells with the Erk1/2 kinase (MEK) inhibitor PD98059 blocked the proliferation response. Succinate treatment additionally protected TF-1 cells from cell death induced by serum deprivation. Finally, in vivo administration of succinate was found to elevate the levels of hemoglobin, platelets, and neutrophils in a mouse model of chemotherapy-induced myelosuppression. These results suggest that succinate-GPR91 signaling is capable of promoting HPC development.
Collapse
Affiliation(s)
- Yaron Hakak
- Arena Pharmaceuticals, Inc., 6166 Nancy Ridge Drive, San Diego, CA 92121, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Tong Q, Hirschler-Laszkiewicz I, Zhang W, Conrad K, Neagley DW, Barber DL, Cheung JY, Miller BA. TRPC3 is the erythropoietin-regulated calcium channel in human erythroid cells. J Biol Chem 2008; 283:10385-95. [PMID: 18276585 DOI: 10.1074/jbc.m710231200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin (Epo) stimulates a significant increase in the intracellular calcium concentration ([Ca(2+)](i)) through activation of the murine transient receptor potential channel TRPC2, but TRPC2 is a pseudogene in humans. TRPC3 expression increases on normal human erythroid progenitors during differentiation. Here, we determined that erythropoietin regulates calcium influx through TRPC3. Epo stimulation of HEK 293T cells transfected with Epo receptor and TRPC3 resulted in a dose-dependent increase in [Ca(2+)](i), which required extracellular calcium influx. Treatment with the phospholipase C (PLC) inhibitor U-73122 or down-regulation of PLCgamma1 by RNA interference inhibited the Epo-stimulated increase in [Ca(2+)](i) in TRPC3-transfected HEK 293T cells and in primary human erythroid precursors, demonstrating a requirement for PLC. TRPC3 associated with PLCgamma, and substitution of predicted PLCgamma Src homology 2 binding sites (Y226F, Y555F, Y648F, and Y674F) on TRPC3 reduced the interaction of TRPC3 with PLCgamma and inhibited the rise in [Ca(2+)](i). Substitution of Tyr(226) alone with phenylalanine significantly reduced the Epo-stimulated increase in [Ca(2+)](i) but not the association of PLCgamma with TRPC3. PLC activation results in production of inositol 1,4,5-trisphosphate (IP(3)). To determine whether IP(3) is involved in Epo activation of TRPC3, TRPC3 mutants were prepared with substitution or deletion of COOH-terminal IP(3) receptor (IP(3)R) binding domains. In cells expressing TRPC3 with mutant IP(3)R binding sites and Epo receptor, interaction of IP(3)R with TRPC3 was abolished, and Epo-modulated increase in [Ca(2+)](i) was reduced. Our data demonstrate that Epo modulates TRPC3 activation through a PLCgamma-mediated process that requires interaction of PLCgamma and IP(3)R with TRPC3. They also show that TRPC3 Tyr(226) is critical in Epo-dependent activation of TRPC3. These data demonstrate a redundancy of TRPC channel activation mechanisms by widely different agonists.
Collapse
Affiliation(s)
- Qin Tong
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Um M, Lodish HF. Antiapoptotic effects of erythropoietin in differentiated neuroblastoma SH-SY5Y cells require activation of both the STAT5 and AKT signaling pathways. J Biol Chem 2006; 281:5648-56. [PMID: 16407271 DOI: 10.1074/jbc.m510943200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hematopoietic cytokine erythropoietin (Epo) prevents neuronal death during ischemic events in the brain and in neurodegenerative diseases, presumably through its antiapoptotic effects. To explore the role of different signaling pathways in Epo-mediated antiapoptotic effects in differentiated human neuroblastoma SH-SY5Y cells, we employed a prolactin receptor (PrlR)/erythropoietin receptor (EpoR) chimera system, in which binding of prolactin (Prl) to the extracellular domain activates EpoR signaling in the cytosol. On induction of apoptosis by staurosporine, Prl supports survival of the SH-SY5Y cells expressing the wild-type PrlR/EpoR chimera. In these cells Prl treatment strongly activates the STAT5, AKT, and MAPK signaling pathways and induces weak activation of the p65 NF-kappaB factor. Selective mutation of the eight tyrosine residues of the EpoR cytoplasmic domain results in impaired or absent activation of either STAT5 (mutation of Tyr(343)) or AKT (mutation of Tyr(479)) or both (mutation of all eight tyrosine residues). Most interestingly, Prl treatment does not prevent apoptosis in cells expressing mutant PrlR/EpoR chimeras in which either the STAT5 or the AKT signaling pathways are not activated. In contrast, ERK 1/2 is fully activated by all mutant PrlR/EpoR chimeras, comparable with the level seen with the wild-type PrlR/EpoR chimera, implying that activation of the MAPK signaling pathway per se is not sufficient for antiapoptotic activity. Therefore, the antiapoptotic effects of Epo in neuronal cells require the combinatorial activation of multiple signaling pathways, including STAT5, AKT, and potentially MAPK as well, in a manner similar to that observed in hematopoietic cells.
Collapse
Affiliation(s)
- Moonkyoung Um
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
15
|
Büchse T, Prietzsch H, Sasse T, Körbel S, Stigge G, Bogdanow S, Brock J, Bittorf T. Profiling of early gene expression induced by erythropoietin receptor structural variants. J Biol Chem 2005; 281:7697-707. [PMID: 16380376 DOI: 10.1074/jbc.m508481200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development of erythroid progenitor cells is triggered via the expression of the erythropoietin receptor (EPOR) and its activation by erythropoietin. The function of the resulting receptor complex depends critically on the presence of activated JAK2, and the complex contains a large number of signaling molecules recruited to eight phosphorylated tyrosine residues. Studies using mutant receptor forms have demonstrated that truncated receptors lacking all tyrosines are able to support red blood cell development with low efficiency, whereas add-back mutants containing either Tyr343 or Tyr479 reconstitute EPOR signaling and erythropoiesis in vivo. To study the contribution of tyrosines to receptor function, we analyzed the activation of essential signaling pathways and early gene induction promoted by different receptor structural variants using human epidermal growth factor receptor/murine EPOR hybrids. In our experiments, receptors lacking all tyrosine residues or the JAK2-binding site did not induce mitogenic and anti-apoptotic signaling, whereas add-back mutant receptors containing single tyrosine residues (Try343 and Tyr479) supported the activation of these functions efficiently. Profiling of early gene expression using cDNA array hybridization revealed that (i) the high redundancy in the activation of signaling pathways is continued at the level of transcription; (ii) the expression of many genes targeted by the wild-type receptor is not supported by add-back mutants; and (iii) a small set of genes are exclusively induced by add-back receptors. We report the identification of several early genes that have not been implicated in the EPOR-dependent response so far.
Collapse
Affiliation(s)
- Tom Büchse
- Institute of Medical Biochemistry and Molecular Biology, Medical Faculty, University of Rostock, 18057 Rostock, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Montoye T, Lemmens I, Catteeuw D, Eyckerman S, Tavernier J. A systematic scan of interactions with tyrosine motifs in the erythropoietin receptor using a mammalian 2-hybrid approach. Blood 2005; 105:4264-71. [PMID: 15644415 DOI: 10.1182/blood-2004-07-2733] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractSignaling via the erythropoietin receptor (EpoR) depends on the interaction of several proteins with phosphorylated tyrosine-containing motifs in its cytosolic domain. Detailed mapping of these interactions is required for an accurate insight into Epo signaling. We recently developed a mammalian protein-protein interaction trap (MAPPIT), a cytokine receptor-based 2-hybrid method that operates in intact Hek293-T mammalian cells. As baits, we used intracellular segments of the EpoR containing 1 or 2 tyrosines. Several known signaling molecules, including cytokine-inducible SH2-containing protein (CIS), suppressor of cytokine signaling-2 (SOCS2), phosphatidylinositol 3′-kinase (PI3-K), phospholipase C-γ (PLC-γ), and signal transducer and activator of transcription 5 (STAT5) were used as prey. We also extended the MAPPIT method to enable interaction analysis with wild-type EpoR. In this relay MAPPIT approach, instead of using isolated EpoR fragments as bait, we used the full-length EpoR itself as a “receptor bait.” Finally, we introduced MAPPIT in the erythroleukemic TF-1 cell line, which is a more natural setting of the EpoR. With these strategies several known interactions with the EpoR were analyzed and evidence for new interactions was obtained.
Collapse
Affiliation(s)
- Tony Montoye
- Flanders Interiniversity Institute for Biotechnology, Department of Medical Protein Research, Faculty of Medicine and Health Sciences, Ghent University, Belgium
| | | | | | | | | |
Collapse
|
17
|
Tong Q, Chu X, Cheung JY, Conrad K, Stahl R, Barber DL, Mignery G, Miller BA. Erythropoietin-modulated calcium influx through TRPC2 is mediated by phospholipase Cgamma and IP3R. Am J Physiol Cell Physiol 2004; 287:C1667-78. [PMID: 15329338 DOI: 10.1152/ajpcell.00265.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we examined the mechanisms through which erythropoietin (Epo) activates the calcium-permeable transient receptor potential protein channel (TRPC)2. Erythroblasts were isolated from the spleens of phenylhydrazine-treated mice, and Epo stimulation resulted in a significant and dose-dependent increase in intracellular calcium concentration ([Ca(2+)](i)). This increase in [Ca(2+)](i) was inhibited by pretreatment with the phospholipase C (PLC) inhibitor U-73122 but not by the inactive analog U-73343, demonstrating the requirement for PLC activity in Epo-modulated Ca(2+) influx in primary erythroid cells. To determine whether PLC is involved in the activation of TRPC2 by Epo, cell models were used to examine this interaction. Single CHO-S cells that expressed transfected Epo receptor (Epo-R) and TRPC2 were identified, and [Ca(2+)](i) was quantitated. Epo-induced Ca(2+) influx through TRPC2 was inhibited by pretreatment with U-73122 or by downregulation of PLCgamma1 by RNA interference. PLC activation results in the production of inositol 1,4,5-trisphosphate (IP(3)), and TRPC2 has IP(3) receptor (IP(3)R) binding sites. To determine whether IP(3)R is involved in Epo-R signaling, TRPC2 mutants were prepared with partial or complete deletions of the COOH-terminal IP(3)R binding domains. In cells expressing TRPC2 IP(3)R binding mutants and Epo-R, no significant increase in [Ca(2+)](i) was observed after Epo stimulation. TRPC2 coassociated with Epo-R, PLCgamma, and IP(3)R, and the association between TRPC2 and IP(3)R was disrupted in these mutants. Our data demonstrate that Epo-R modulates TRPC2 activation through PLCgamma; that interaction of IP(3)R with TRPC2 is required; and that Epo-R, TRPC2, PLCgamma, and IP(3)R interact to form a signaling complex.
Collapse
Affiliation(s)
- Qin Tong
- Department of Pediatrics, Milton S. Hershey Medical Center, PO Box 850, Hershey, PA 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Van Maerken T, Hunninck K, Callewaert L, Benoit Y, Laureys G, Verlooy J. Familial and congenital polycythemias: a diagnostic approach. J Pediatr Hematol Oncol 2004; 26:407-16. [PMID: 15218413 DOI: 10.1097/00043426-200407000-00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The rare absolute polycythemias with an innate and hereditary character can be grouped together under the heading "familial and congenital polycythemias" (FCPs). Primary forms, due to an intrinsic defect in the erythroid progenitor cells, and secondary forms, resulting from extrinsic factors such as an elevated erythropoietin level, have both been reported. Despite the widely divergent characteristics of the different FCPs, the range of possible diagnoses is much more restricted and the distribution of disorders markedly different compared with polycythemias in general. Therefore, in FCP, one can argue against following the algorithm of the Polycythemia Vera Study Group for the evaluation of an elevated hematocrit level, following instead a more specific algorithm. In this article the authors describe a child with primary FCP, review the different FCPs, and propose an adapted work-up scheme.
Collapse
Affiliation(s)
- Tom Van Maerken
- Department of Pediatric Hematology-Oncology, University Hospital Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
19
|
di Giacomo V, Matteucci A, Stellacci E, Battistini A, Di Baldassarre A, Capitani S, Alfani E, Migliaccio AR, Cocco L, Migliaccio G. Expression of signal transduction proteins during the differentiation of primary human erythroblasts. J Cell Physiol 2004; 202:831-8. [PMID: 15389562 DOI: 10.1002/jcp.20179] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The high number (>10(8-10)) of primary human pro-erythroblasts (CD36high/CD235alow) obtainable in HEMA culture (Migliaccio et al., 2002) is exploited here to analyse the expression of proteins implicated in erythropoietin (EPO)-signalling (STATs, PI-3K, and PLCs) during the process of erythroid maturation. Human pro-erythroblasts progressed in 4 days of culture with EPO into basophilic- (CD36high/CD235amedium, 24 h), polychromatic-(CD36high/CD235ahigh, 48 h), and, finally, orthochromatic-(CD36low/CD235ahigh, 72-96 h) erythroblasts. During this maturation, STAT-1 was expressed up to the orthochromatic stage, expression of STAT-5, as well as of its target proteins BclxL and IRF1, remained constant up to 48 h (polychromatic-erythroblasts) but decreased by 96 h (orthochromatic-erythroblasts), while that of STAT-3 decreased constantly from 24 h on and became undetectable by 96 h. Expression of PI-3K rapidly decreased with differentiation since only 50% of original protein levels were detected by 48 h. On the other hand, among the members of PLC families investigated, PLC beta4 was not expressed, PLC beta2, delta1, and gamma2 were expressed at constant levels throughout the maturation process, while expression of PLC beta3 and of PLC gamma1 decreased, as PI-3K, by 24 h and that of PLC beta1 was induced by 6 h and became undetectable by 24 h. In conclusion, these data depict the dynamic signalling scenario associated with the maturation of erythroid cells and provide the first indication that members of PLC families (PLC beta1, beta3, and gamma1) might be involved in the control of erythroid differentiation in humans.
Collapse
Affiliation(s)
- Viviana di Giacomo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Muthusamy N, Park DJ, Rho HW, Rhee SG, Subbarao B. Impaired antigen receptor induced calcium mobilization in a phospholipase C-gamma1 deficient B cell line. Immunol Lett 2003; 90:203-7. [PMID: 14687726 DOI: 10.1016/j.imlet.2003.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
B lymphocytes express phospholipase C-gamma(1) (PLC-gamma(1)) and phospholipase C-gamma(2) (PLC-gamma(2)) isozymes. However, the relative importance of these two isozymes in B cell signaling is not known. We report here the identification and analysis of a B cell line deficient in PLC-gamma(1). Mature splenic B lymphocytes and a panel of cell lines representing pre-B, immature and mature B cell stages expressed phospholipase C-gamma (PLC-gamma), but not the beta or delta isoforms of phospholipase C (PLC). While all the tested B cell lines and primary splenic B cells expressed PLC-gamma(1) and PLC-gamma(2) isozymes, the L1.2 B cell line exclusively expressed PLC-gamma(2), but not PLC-gamma(1) isozyme. The PLC-gamma(1) deficient L1.2 B cells expressed levels of surface IgM comparable to that of PLC-gamma(1) positive 70Z/3 B cell line. However, stimulation through the antigen receptor induced Ca(++) response in 70Z/3, but not L1.2 B cells, suggesting a requirement for PLC-gamma(1) in antigen receptor induced Ca(++) signaling in these cells. The possible use for L1.2 cells in testing the regulation of PLC-gamma(1) and PLC-gamma(2) dependent calcium mobilization in B lymphocytes is discussed.
Collapse
Affiliation(s)
- Natarajan Muthusamy
- Center for Molecular and Human Genetics, The Department of Pediatrics, Columbus Children's Research Institute, The Ohio State University Columbus, OH 43205, USA.
| | | | | | | | | |
Collapse
|
21
|
Weiss MJ. New Insights Into Erythropoietin and Epoetin Alfa: Mechanisms of Action, Target Tissues, and Clinical Applications. Oncologist 2003; 8 Suppl 3:18-29. [PMID: 14671225 DOI: 10.1634/theoncologist.8-suppl_3-18] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recombinant human erythropoietin (epoetin alfa) has proven beneficial for the treatment of various anemias. The mechanism of action of endogenous erythropoietin and the therapeutic use of epoetin alfa to stimulate red blood cell production and improve the quality of life in cancer patients are reviewed here. Epoetin alfa may also attenuate the cognitive dysfunction associated with cancer therapy. Interestingly, functional endogenous erythropoietin receptor signaling pathways have been demonstrated in numerous nonerythropoietic tissues. Of particular importance, epoetin alfa confers neurotrophic and neuroprotective effects in cultured neurons and in several animal models for neurologic disease. In one clinical trial, epoetin alfa appeared to limit functional and histologic damage in patients with stroke. Therefore, in cancer patients receiving chemotherapy, the beneficial effects of epoetin alfa could be mediated not only through enhanced erythrocyte production but also via direct effects on the nervous system. Further investigation into the nonerythropoietic effects of epoetin alfa could broaden its clinical utility for patients with cancer and also provide new therapies for various neurologic disorders.
Collapse
Affiliation(s)
- Mitchell J Weiss
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
22
|
Luís Villar J, Puigbò P, Riera-Codina M. Analysis of highly phosphorylated inositols in avian and crocodilian erythrocytes. Comp Biochem Physiol B Biochem Mol Biol 2003; 135:169-75. [PMID: 12781983 DOI: 10.1016/s1096-4959(03)00077-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both morphological and paleontological characteristics support the hypothesis of a monophyletic origin of crocodilian and avian groups. However, while the erythrocytes of all birds studied to date are reported to contain high levels of inositol pentakisphosphate (InsP(5)), which acts as an allosteric effector of hemoglobin, this molecule has not been reported in crocodilian erythrocytes. In this study we compare the highly phosphorylated inositols in crocodilian and avian erythrocytes using a particularly sensitive analytical procedure. Our aim was to obtain new data which might provide further evidence for the monophyletic origin, or otherwise, of crocodiles and birds. We studied three avian and three crocodilian species. The erythrocytes of the three bird species contained low levels of inositol-3,4,5,6-tetrakisphosphate and inositol-1,3,4,6-tetrakisphosphate, thought to be precursors of Ins(1,3,4,5,6)P(5). The crocodilian erythrocytes studied contained Ins(1,3,4,5,6)P(5) and InsP(6) in higher concentrations than those found in mammal erythrocytes and in other more active cells such as macrophages. Our data provide further evidence of the similarity between crocodilian and avian groups and agree with the hypothesis that both groups evolved from a common ancestor. The process by which the function of inositol phosphates changed from that of intracellular signaling to hemoglobin allosteric effector is discussed.
Collapse
Affiliation(s)
- José Luís Villar
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Avgda. Diagonal, 645, 08028 Barcelona, Spain
| | | | | |
Collapse
|
23
|
Sterin-Borda L, Barceló AC, Bozzini CE. Erythropoietin improves cardiac contractility in post-hypoxic mice. Br J Haematol 2003; 121:180-6. [PMID: 12670351 DOI: 10.1046/j.1365-2141.2003.04239.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mice myocardia, in which plasma erythropoietin (EPO) concentrations were modified in response to different experimental conditions, were studied to evaluate contractility (dF/dt). CF1 mice were randomly separated into four main groups: group I, normocythaemic normoxic; group II-a, normocythaemic intermittently exposed to hypobaria for 72 h; group II-b, normocythaemic intermittently exposed to hypobaria for 3 weeks; group III, hypertransfused polycythaemic exposed to 72 h hypobaria; and group IV, hypertransfused polycythaemic maintained in normobaric air. Plasma EPO, contractile studies and binding assays were performed. The dF/dt was significantly higher in group II-a than in group I and group II-b; but in groups III and IV, the dF/dt was reduced. The toxic action of ouabain was reduced and delayed in its onset, accompanied by increased numbers of 3H-ouabain binding sites in group II-a. Contractility was positively correlated with plasma EPO (pEPO) in the different groups. Treating group I with recombinant human (rHu)-EPO enhanced contractility while treating group II-a with a monoclonal anti-EPO decreased the dF/dt. The inhibition of enzymatic pathway(s) known to participate in the cytokines signal transduction, decreased the basal dF/dt values on atria from group II-a and on group I atria treated with rHu-EPO. The results demonstrated: (1) a cardiac non-haematopoietic effect of EPO; (2) that mice in which the pEPO concentration increased showed improvement in contractility and in the therapeutic action of ouabain; and (3) it is possible that EPO may act as a cardioprotective agent by modulating the cardiac Na+-K+ pump.
Collapse
Affiliation(s)
- Leonor Sterin-Borda
- Pharmacology Unit, zSchool of Dentistry, University of Buenos Aires, Marcelo T. de Alvear 2142-4o"B", 1122AAH, Buenos Aires, Argentina
| | | | | |
Collapse
|
24
|
Boudot C, Dassé E, Lambert E, Kadri Z, Mayeux P, Chrétien S, Haye B, Billat C, Petitfrère E. Involvement of the Src kinase Lyn in phospholipase C-gamma 2 phosphorylation and phosphatidylinositol 3-kinase activation in Epo signalling. Biochem Biophys Res Commun 2003; 300:437-42. [PMID: 12504103 DOI: 10.1016/s0006-291x(02)02866-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We examined the role of the Src kinase Lyn in phospholipase C-gamma 2 (PLC-gamma 2) and phosphatidylinositol (PI) 3-kinase activation in erythropoietin (Epo)-stimulated FDC-P1 cells transfected with a wild type (WT) Epo-receptor (Epo-R). We showed that two inhibitors of Src kinases, PP1 and PP2, abolish both PLC-gamma 2 tyrosine phosphorylation and PI 3-kinase activity in WT Epo-R FDC-P1 cells. We also demonstrated that Epo-phosphorylated Lyn is associated with tyrosine phosphorylated PLC-gamma 2 and PI 3-kinase in WT Epo-R FDC-P1-stimulated cells. Moreover Epo-activated Lyn phosphorylates in vitro PLC-gamma 2 immunoprecipitated from unstimulated cells. Our results suggest that the Src kinase Lyn is involved in PLC-gamma 2 phosphorylation and PI 3-kinase activation induced by Epo.
Collapse
Affiliation(s)
- Cédric Boudot
- Laboratoire de Biochimie, CNRS FRE 2534, IFR 53 Biomolécules, UFR Sciences Exactes et Naturelles, BP 1039, Université de Reims Champagne-Ardenne, 51687 Reims Cedex 2, France
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Haq R, Halupa A, Beattie BK, Mason JM, Zanke BW, Barber DL. Regulation of erythropoietin-induced STAT serine phosphorylation by distinct mitogen-activated protein kinases. J Biol Chem 2002; 277:17359-66. [PMID: 11875080 DOI: 10.1074/jbc.m201842200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The STAT proteins are a family of latent transcription factors that are activated by a wide variety of cytokines. Upon receptor engagement, STATs become tyrosine phosphorylated, translocate to the nucleus, and induce expression of target genes. In addition to tyrosine phosphorylation, maximal activation of some STAT proteins requires serine phosphorylation within the transactivation domain. Here we focus on STAT phosphorylation after engagement of the erythropoietin receptor (EPO-R). In Ba/F3-EPO-R cells, EPO induces tyrosine and serine phosphorylation of STAT1, STAT3, STAT5A, and STAT5B. Identical regions of the EPO-R couple to both tyrosine and serine phosphorylation of each cognate STAT protein. A proximal region of the EPO-R lacking cytoplasmic tyrosines couples to STAT1 and STAT3 phosphorylation as well as ERK and p38(HOG) activation, but not JNK/SAPK. STAT1 serine phosphorylation was perturbed by inhibition of ERK and p38 pathways, whereas only inhibition of ERK activation blocked STAT3 serine phosphorylation in response to EPO. STAT5A/B phosphorylation is downstream of EPO-R Tyr(343), however, STAT5A/B serine phosphorylation is unaffected by either ERK or p38 inhibition. Physiological responses induced by EPO may depend on regulation of serine phosphorylation of the STAT molecules by p38(HOG) and the ERK family of kinases as well as additional serine/threonine kinases.
Collapse
Affiliation(s)
- Rizwan Haq
- Institute of Medical Science, Department of Medical Biophysics, University of Toronto, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Shirane M, Sawa H, Kobayashi Y, Nakano T, Kitajima K, Shinkai Y, Nagashima K, Negishi I. Deficiency of phospholipase C-γ1 impairs renal development and hematopoiesis. Development 2001; 128:5173-80. [PMID: 11748152 DOI: 10.1242/dev.128.24.5173] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phospholipase C-γ1 (PLC-γ1) is involved in a variety of intracellular signaling via many growth factor receptors and T-cell receptor. To explore the role of PLC-γ1 in vivo, we generated the PLC-γ1-deficient (plc-γ1–/–) mice, which died of growth retardation at embryonic day 8.5-9.5 in utero. Therefore, we examined plc-γ1–/– chimeric mice generated with plc-γ1–/– embryonic stem (ES) cells for further study. Pathologically, plc-γ1–/– chimeras showed multicystic kidney due to severe renal dysplasia and renal tube dilation. Flow cytometric analysis and glucose phosphate isomerase assay revealed very few hematopoietic cells derived from the plc-γ1–/– ES cells in the mutant chimeras. However, differentiation of plc-γ1–/– ES cells into erythrocytes and monocytes/macrophages in vitro was observed to a lesser extent compared with control wild-type ES cells. These data suggest that PLC-γ1 plays an essential role in the renal development and hematopoiesis in vivo.
Collapse
Affiliation(s)
- M Shirane
- Department of Product Research and. Department of Molecular Oncology, Nippon Roche Research Center, Kajiwara 200, Kamakura, Kanagawa 247-8530, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Arai A, Nosaka Y, Kanda E, Yamamoto K, Miyasaka N, Miura O. Rap1 is activated by erythropoietin or interleukin-3 and is involved in regulation of beta1 integrin-mediated hematopoietic cell adhesion. J Biol Chem 2001; 276:10453-62. [PMID: 11124936 DOI: 10.1074/jbc.m004627200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The CrkL adaptor protein is involved in signaling from the receptor for erythropoietin (Epo) as well as interleukin (IL)-3 and activates beta(1) integrin-mediated hematopoietic cell adhesion through its interaction with C3G, a guanine nucleotide exchange factor for Rap1. We demonstrate here that Epo as well as IL-3 activates Rap1 in an IL-3-dependent hematopoietic cell line, 32D, expressing the Epo receptor. The cytokine-induced activation of Rap1 was augmented in cells that inducibly overexpress CrkL or C3G. The CrkL-mediated enhancement of cell adhesion was inhibited by expression of a dominant negative mutant of Rap1, Rap1A-17N, whereas an activated mutant of Rap1, Rap1A-63E, activated beta(1) integrin-dependent adhesion of hematopoietic cells. In 32D cells, Rap1 was also activated by phorbol 12-myristate 13-acetate and ionomycin, which also enhanced cell adhesion to fibronectin, whereas, an inhibitor of phospholipase C, inhibited both cytokine-induced activation of Rap1 and cell adhesion. It was also demonstrated that Rap1 as well as CrkL is involved in signaling from the EpoR endogenously expressed in a human leukemic cell line, UT-7. These results suggest that Epo and IL-3 activate Rap1 at least partly through the CrkL-C3G complex as well as through additional pathways most likely involving phospholipase Cgamma and strongly implicate Rap1 in regulation of beta(1) integrin-mediated hematopoietic cell adhesion.
Collapse
Affiliation(s)
- A Arai
- Department of Hematology and Oncology and the Department of Bioregulatory Medicine and Rheumatology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Akimoto T, Kusano E, Ito C, Yanagiba S, Inoue M, Amemiya M, Ando Y, Asano Y. Involvement of erythropoietin-induced cytosolic free calcium mobilization in activation of mitogen-activated protein kinase and DNA synthesis in vascular smooth muscle cells. J Hypertens 2001; 19:193-202. [PMID: 11212961 DOI: 10.1097/00004872-200102000-00005] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND/OBJECTIVE Human recombinant erythropoietin (rHuEPO) induces cytosolic free calcium ([Ca2+]i) mobilization, an activation of mitogen-activated protein (MAP) kinase and DNA synthesis in several tissues. We explored the mechanism of rHuEPO-induced [Ca2+]i mobilization and its role in the activation of MAP kinase and DNA synthesis in vascular smooth muscle cells (VSMC). METHODS [Ca2+]i concentrations were measured by fura-2. MAP kinase activation was analyzed using an immunocomplex kinase assay and Western blotting. DNA synthesis was measured as an incorporation of 5-bromo-2'-deoxyuridine. RESULTS Although addition of rHuEPO significantly increased [Ca2+]i, either in the presence or absence of extracellular Ca2+, the peak level and sustained elevation of [Ca2+]i were significantly reduced in the absence of extracellular Ca2+. Pretreatment with genistein completely blocked the elevation of [Ca2+]i in both conditions. Calphostin C and staurosporine did not completely block the elevation of [Ca2+]i. Staurosporine reduced its peak level in a dose-dependent manner, whereas calphostin C reduced its peak level at concentrations over 1 nmol/l in the presence of extracellular Ca2+. Similar results to those with staurosporine were observed with nifedipine. In the absence of extracellular Ca2+, their dose-dependent effects disappeared even though rHuEPO increased [Ca2+]i. rHuEPO activated MAP kinase and DNA synthesis, both of which were significantly suppressed by the chelation of intracellular Ca2+. CONCLUSION These findings suggest that rHuEPO increases [Ca2+]i by both Ca2+ influx and Ca2+ release from intracellular stores. Tyrosine phosphorylation is critical in the regulation of [Ca2+]i, but protein kinase C activation is important only in the regulation of Ca2+ influx. Dihydropyridine-sensitive L-type Ca2+ channels seem to be involved in rHuEPO-induced Ca2+ influx. In addition, increase of [Ca2+]i by rHuEPO stimulates MAP kinase activation and DNA synthesis in VSMC.
Collapse
Affiliation(s)
- T Akimoto
- Department of Nephrology, Jichi Medical School, Minamikawachi, Tochigi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Guillard C, Chrétien S, Jockers R, Fichelson S, Mayeux P, Duprez V. Coupling of heterotrimeric Gi proteins to the erythropoietin receptor. J Biol Chem 2001; 276:2007-14. [PMID: 11053408 DOI: 10.1074/jbc.m003527200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify new proteins involved in erythropoietin (Epo) signal transduction, we purified the entire set of proteins reactive with anti-phosphotyrosine antibodies from Epo-stimulated UT7 cells. Antisera generated against these proteins were used to screen a lambdaEXlox expression library. One of the isolated cDNAs encodes Gbeta2, the beta2 subunit of heterotrimeric GTP-binding proteins. Gbeta and Galpha(i) coprecipitated with the Epo receptor (EpoR) in extracts from human and murine cell lines and from normal human erythroid progenitor cells. In addition, in vitro Gbeta associated with a fusion protein containing the intracellular domain of the EpoR. Using EpoR mutants, we found that the distal part of the EpoR (between amino acids 459-479) was required for Gi binding. Epo activation of these cells induced the release of the Gi protein from the EpoR. Moreover in isolated cell membranes, Epo treatment inhibited ADP-ribosylation of Gi and increased the binding of GTP. Our results show that heterotrimeric Gi proteins associate with the C-terminal end of the EpoR. Receptor activation leads to the activation and dissociation of Gi from the receptor, suggesting a functional role of Gi protein in Epo signal transduction.
Collapse
Affiliation(s)
- C Guillard
- INSERM, U 363 and CNRS-UPR 0415, Institut Cochin de Génétique Moléculaire, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
30
|
Chi H, Yang X, Kingsley PD, O'Keefe RJ, Puzas JE, Rosier RN, Shears SB, Reynolds PR. Targeted deletion of Minpp1 provides new insight into the activity of multiple inositol polyphosphate phosphatase in vivo. Mol Cell Biol 2000; 20:6496-507. [PMID: 10938126 PMCID: PMC86124 DOI: 10.1128/mcb.20.17.6496-6507.2000] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple inositol polyphosphate phosphatase (Minpp1) metabolizes inositol 1,3,4,5,6-pentakisphosphate (InsP(5)) and inositol hexakisphosphate (InsP(6)) with high affinity in vitro. However, Minpp1 is compartmentalized in the endoplasmic reticulum (ER) lumen, where access of enzyme to these predominantly cytosolic substrates in vivo has not previously been demonstrated. To gain insight into the physiological activity of Minpp1, Minpp1-deficient mice were generated by homologous recombination. Tissue extracts from Minpp1-deficient mice lacked detectable Minpp1 mRNA expression and Minpp1 enzyme activity. Unexpectedly, Minpp1-deficient mice were viable, fertile, and without obvious defects. Although Minpp1 expression is upregulated during chondrocyte hypertrophy, normal chondrocyte differentiation and bone development were observed in Minpp1-deficient mice. Biochemical analyses demonstrate that InsP(5) and InsP(6) are in vivo substrates for ER-based Minpp1, as levels of these polyphosphates in Minpp1-deficient embryonic fibroblasts were 30 to 45% higher than in wild-type cells. This increase was reversed by reintroducing exogenous Minpp1 into the ER. Thus, ER-based Minpp1 plays a significant role in the maintenance of steady-state levels of InsP(5) and InsP(6). These polyphosphates could be reduced below their natural levels by aberrant expression in the cytosol of a truncated Minpp1 lacking its ER-targeting N terminus. This was accompanied by slowed cellular proliferation, indicating that maintenance of cellular InsP(5) and InsP(6) is essential to normal cell growth. Yet, depletion of cellular inositol polyphosphates during erythropoiesis emerges as an additional physiological activity of Minpp1; loss of this enzyme activity in erythrocytes from Minpp1-deficient mice was accompanied by upregulation of a novel, substitutive inositol polyphosphate phosphatase.
Collapse
Affiliation(s)
- H Chi
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
A member of Forkhead family transcription factor, FKHRL1, is one of the downstream molecules of phosphatidylinositol 3-kinase-Akt activation pathway in erythropoietin signal transduction. Blood 2000. [DOI: 10.1182/blood.v96.3.941] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe phosphatidylinositol 3-kinase (PI3K) signaling pathway is important for the regulation of a number of cellular responses. Serine/threonine kinase Akt (protein kinase B; PKB) is downstream of PI3K and activated by growth factors. This study found that erythropoietin (EPO) induced tyrosine phosphorylation of Akt in a time- and dose-dependent manner in EPO-dependent human leukemia cell line UT-7/EPO. In vitro kinase assay using histone H2B and glucose synthase kinase as substrates demonstrated that Akt was actually activated by EPO. EPO-induced phosphorylation of Akt was completely blocked by a PI3K-specific inhibitor, LY294002, at 10 μmol/L, indicating that activation of Akt by EPO is dependent on PI3K activity. In addition, overexpression of the constitutively active form of Akt on UT-7/EPO cells partially blocked apoptosis induced by withdrawal of EPO from the culture medium. This finding suggested that the PI3K-Akt activation pathway plays some role in the antiapoptotic effect of EPO. EPO induced phosphorylation of a member of the trancription factor Forkhead family, FKHRL1, at threonine 32 and serine 253 in a dose- and time-dependent manner in UT-7/EPO cells. Moreover, results showed that Akt kinase activated by EPO directly phosphorylated FKHRL1 protein and that FKHRL1 phosphorylation was completely dependent on PI3K activity as is the case for Akt. In conjunction with the evidence that FKHRL1 is expressed in normal human erythroid progenitor cells and erythroblasts, the results suggest that FKHRL1 plays an important role in erythropoiesis as one of the downstream target molecules of PI3K-Akt.
Collapse
|
32
|
A member of Forkhead family transcription factor, FKHRL1, is one of the downstream molecules of phosphatidylinositol 3-kinase-Akt activation pathway in erythropoietin signal transduction. Blood 2000. [DOI: 10.1182/blood.v96.3.941.015k14_941_949] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is important for the regulation of a number of cellular responses. Serine/threonine kinase Akt (protein kinase B; PKB) is downstream of PI3K and activated by growth factors. This study found that erythropoietin (EPO) induced tyrosine phosphorylation of Akt in a time- and dose-dependent manner in EPO-dependent human leukemia cell line UT-7/EPO. In vitro kinase assay using histone H2B and glucose synthase kinase as substrates demonstrated that Akt was actually activated by EPO. EPO-induced phosphorylation of Akt was completely blocked by a PI3K-specific inhibitor, LY294002, at 10 μmol/L, indicating that activation of Akt by EPO is dependent on PI3K activity. In addition, overexpression of the constitutively active form of Akt on UT-7/EPO cells partially blocked apoptosis induced by withdrawal of EPO from the culture medium. This finding suggested that the PI3K-Akt activation pathway plays some role in the antiapoptotic effect of EPO. EPO induced phosphorylation of a member of the trancription factor Forkhead family, FKHRL1, at threonine 32 and serine 253 in a dose- and time-dependent manner in UT-7/EPO cells. Moreover, results showed that Akt kinase activated by EPO directly phosphorylated FKHRL1 protein and that FKHRL1 phosphorylation was completely dependent on PI3K activity as is the case for Akt. In conjunction with the evidence that FKHRL1 is expressed in normal human erythroid progenitor cells and erythroblasts, the results suggest that FKHRL1 plays an important role in erythropoiesis as one of the downstream target molecules of PI3K-Akt.
Collapse
|
33
|
Gregory RC, Lord KA, Panek LB, Gaines P, Dillon SB, Wojchowski DM. Subtraction cloning and initial characterization of novel epo-immediate response genes. Cytokine 2000; 12:845-57. [PMID: 10880228 DOI: 10.1006/cyto.2000.0686] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies of erythropoietin (Epo) receptor signalling suggest that signals for mitogenesis, survival and differentiation are relayed efficiently by receptor forms lacking at least seven of eight cytoplasmic (phospho)tyrosine [(P)Y] sites for effector recruitment. While such receptor forms are known to activate Jak2 and a limited set of known immediate response genes (IRGs), the complex activities they exert predict the existence of additional target genes. To identify such targets, a minimal Epo receptor chimera was expressed in Epo-responsive erythroid SKT6 cells, and genes whose transcription is induced via this active receptor form were cloned by subtractive hybridization. Several known genes not previously linked to Epo signalling were discovered to be Epo IRGs including two which may further propagate Epo signals [Prl1 tyrosine phosphatase and receptor activator of of NFkappaB (Rank)], and three regulators of protein synthesis (EF1alpha, eIF3-p66 and Nat1). Several Epo IRGs were novel murine clones including FM2 and FM6 which proved to represent broadly expressed IRGs, and FM3 and FL10 which were induced primarily in haematopoietic cells. Interestingly, FL10 proved to correspond to a recently discovered regulator of yeast mating-type switching, and was induced by Epo in vivo. Thus, several new Epo signalling targets are described, which may modulate haematopoietic cell development.
Collapse
Affiliation(s)
- R C Gregory
- Departments of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park 16802, USA
| | | | | | | | | | | |
Collapse
|
34
|
Akimoto T, Kusano E, Inaba T, Iimura O, Takahashi H, Ikeda H, Ito C, Ando Y, Ozawa K, Asano Y. Erythropoietin regulates vascular smooth muscle cell apoptosis by a phosphatidylinositol 3 kinase-dependent pathway. Kidney Int 2000; 58:269-82. [PMID: 10886572 DOI: 10.1046/j.1523-1755.2000.00162.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Recent studies have shown that several cytokines could induce apoptosis in vascular smooth muscle cells (VSMCs) via the induction of nitric oxide (NO). In the present study, we explored whether human recombinant erythropoietin (rHuEPO) has a modulatory effect of apoptosis on interleukin-1beta (IL-1beta) or NO donor sodium nitroprusside (SNP)-induced apoptosis in rat cultured VSMCs. METHODS The quantitation of apoptosis among VSMCs was assessed by nuclear morphological analysis with fluorescent DNA-binding dye Hoechst 33258. Apoptotic changes were also confirmed by the detection of DNA fragmentation. The expression of EPO receptor (EpoR), cellular protein tyrosine phosphorylation, including EpoR and Janus kinase (JAK) 2, and the association of p85 subunit of phosphatidylinositol 3 kinase (PI3-kinase) to tyrosine-phosphorylated proteins, including EpoR, were explored by using Western blotting analysis combined in part with immunoprecipitation. RESULTS rHuEPO inhibited the apoptosis induced by IL-1beta or SNP in a dose- and time-dependent manner. The anti-apoptotic effects of rHuEPO were diminished in the presence of a tyrosine kinase (TK) inhibitor genistein or anti-EpoR antibody. After stimulation with rHuEPO, EpoR and JAK 2 were tyrosine phosphorylated, and p85 subunits were associated with EpoR. Also, rHuEPO induced phosphorylation of Akt through a PI3-kinase-dependent pathway. The phosphorylation of Akt and the anti-apoptotic effects of rHuEPO were diminished in the presence of a PI3-kinase inhibitor, wortmannin. CONCLUSION Our present study demonstrates that rHuEPO inhibites IL-1beta or SNP-induced VSMC apoptosis. The TK-dependent pathway, particularly the PI3-kinase-dependent pathway, seems to be critical to the countervailing effect of rHuEPO on IL-1beta and SNP-induced VSMC apoptosis.
Collapse
Affiliation(s)
- T Akimoto
- Departments of Nephrology and Molecular Biology, Jichi Medical School, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Boudot C, Petitfrère E, Kadri Z, Chretien S, Mayeux P, Haye B, Billat C. Erythropoietin induces glycosylphosphatidylinositol hydrolysis. Possible involvement of phospholipase c-gamma(2). J Biol Chem 1999; 274:33966-72. [PMID: 10567359 DOI: 10.1074/jbc.274.48.33966] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We showed that erythropoietin induced rapid glycosylphosphatidylinositol (GPI) hydrolysis and tyrosine phosphorylation of phospholipase C (PLC)-gamma(2) in FDC-P1 cells transfected with the wild-type erythropoietin-receptor. Erythropoietin-induced tyrosine phosphorylation of PLC-gamma(2) was time- and dose-dependent. By using FDC-P1 cells transfected with an erythropoietin receptor devoid of tyrosine residues, we showed that both effects required the tyrosine residues of intracellular domain on the erythropoietin receptor. Erythropoietin-activated PLC-gamma(2) hydrolyzed purified [(3)H]GPI indicating that GPI hydrolysis and PLC-gamma(2) activation under erythropoietin stimulation were correlated. Results obtained on FDC-P1 cells transfected with erythropoietin receptor mutated on tyrosine residues suggest that tyrosines 343, 401, 464, and/or 479 are involved in erythropoietin-induced GPI hydrolysis and tyrosine phosphorylation of PLC-gamma(2), whereas tyrosines 429 and/or 431 seem to be involved in an inhibition of both effects. Thus, our results suggest that erythropoietin regulates GPI hydrolysis via tyrosine phosphorylation of its receptor and PLC-gamma(2) activation.
Collapse
Affiliation(s)
- C Boudot
- Laboratoire de Biochimie, CNRS UPRES-A 6021, IFR 53 Biomolécules, UFR Sciences Exactes et Naturelles, BP 1039, Université de Reims Champagne-Ardenne, F 51687 Reims Cedex 2, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Wojchowski DM, Gregory RC, Miller CP, Pandit AK, Pircher TJ. Signal transduction in the erythropoietin receptor system. Exp Cell Res 1999; 253:143-56. [PMID: 10579919 DOI: 10.1006/excr.1999.4673] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Events relayed via the single transmembrane receptor for erythropoietin (Epo) are essential for the development of committed erythroid progenitor cells beyond the colony-forming unit-erythroid stage, and this clearly involves Epo's inhibition of programmed cell death (PCD). Less well resolved, however, are issues regarding the precise nature of Epo-dependent antiapoptotic mechanisms, the extent to which Epo might also promote mitogenesis and/or terminal erythroid differentiation, and the essential vs modulatory nature of certain Epo receptor cytoplasmic subdomains, signal transducing factors, and downstream pathways. Accordingly, this review focuses on the following aspects of Epo signal transduction: (1) Epo receptor/Jak2 activation mechanisms; (2) the critical vs dispensable nature of (P)Y sites and SH2 domain-encoding effectors in survival, growth, and differentiation responses; (3) primary mechanisms by which Epo inhibits PCD; (4) the integration of signals relayed by coexpressed and possibly directly interacting cytokine receptors; and (5) predictions regarding effector function which are provided by the association of certain primary and familial polycythemias with mutated human Epo receptor forms.
Collapse
Affiliation(s)
- D M Wojchowski
- Program in Cell & Developmental Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA.
| | | | | | | | | |
Collapse
|
37
|
A Minimal Cytoplasmic Subdomain of the Erythropoietin Receptor Mediates Erythroid and Megakaryocytic Cell Development. Blood 1999. [DOI: 10.1182/blood.v94.10.3381.422k25_3381_3387] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signals provided by the erythropoietin (Epo) receptor are essential for the development of red blood cells, and at least 15 distinct signaling factors are now known to assemble within activated Epo receptor complexes. Despite this intriguing complexity, recent investigations in cell lines and retrovirally transduced murine fetal liver cells suggest that most of these factors and signals may be functionally nonessential. To test this hypothesis in erythroid progenitor cells derived from adult tissues, a truncated Epo receptor chimera (EE372) was expressed in transgenic mice using a GATA-1 gene-derived vector, and its capacity to support colony-forming unit-erythroid proliferation and development was analyzed. Expression at physiological levels was confirmed in erythroid progenitor cells expanded ex vivo, and this EE372 chimera was observed to support mitogenesis and red blood cell development at wild-type efficiencies both independently and in synergy with c-Kit. In addition, the activity of this minimal chimera in supporting megakaryocyte development was tested and, remarkably, was observed to approximate that of the endogenous receptor for thrombopoietin. Thus, the box 1 and 2 cytoplasmic subdomains of the Epo receptor, together with a tyrosine 343 site (each retained within EE372), appear to provide all of the signals necessary for the development of committed progenitor cells within both the erythroid and megakaryocytic lineages.
Collapse
|
38
|
Akimoto T, Kusano E, Muto S, Fujita N, Okada K, Saito T, Komatsu N, Ono S, Ebata S, Ando Y, Homma S, Asano Y. The effect of erythropoietin on interleukin-1beta mediated increase in nitric oxide synthesis in vascular smooth muscle cells. J Hypertens 1999; 17:1249-56. [PMID: 10489101 DOI: 10.1097/00004872-199917090-00003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Recently, we observed that recombinant human erythropoietin (rHuEPO) inhibits the interleukin (IL)-1beta induced nitric oxide (NO) production and inducible NO synthase (iNOS) expression in cultured rat vascular smooth muscle cells (VSMC). The mechanisms of these inhibitory effects of rHuEPO were evaluated. METHODS Reverse transcription-polymerase chain reaction (RT-PCR) was performed to identify a specific erythropoietin receptor (EpoR). Tyrosine phosphorylation of phospholipase C (PLC) was analyzed by combination of immunoprecipitation and Western blotting. Protein kinase C (PKC) activities were analyzed by phosphorylation assay of myelin basic protein (MBP4-14). VSMC were incubated with test agents for 24 h and nitrite as a stable NO metabolite was measured. iNOS mRNA and protein expression was analyzed by Northern and Western blotting, respectively. RESULTS RT-PCR analysis revealed that EpoR m-RNA was expressed; furthermore, it might be alternatively spliced in VSMC. rHuEPO induced tyrosine phosphorylation of PLC-gamma1 and activation of PKC. rHuEPO inhibited not only IL-1beta induced nitrite production, but also the expression of iNOS mRNA and protein. These inhibitory effects of rHuEPO were reversed in the presence of PKC inhibitors, calphostin C (1 pmol/l) or staurosporine (10 nmol/l). PKC activation by phorbol myristate acetate inhibited nitrite production. The inhibitory effect of rHuEPO on IL-1beta induced nitrite production was also eliminated in PKC depleted cells or in the existence of anti-EpoR antibody. CONCLUSION rHuEPO inhibits IL-1beta induced NO production by suppressing iNOS mRNA and protein expressions through EpoR, and the PLC-gamma1 and PKC pathway may be involved.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Cells, Cultured
- Enzyme Activation/drug effects
- Erythropoietin/pharmacology
- Humans
- Interleukin-1/antagonists & inhibitors
- Interleukin-1/pharmacology
- Isoenzymes/metabolism
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Nitric Oxide/biosynthesis
- Nitric Oxide Synthase/biosynthesis
- Nitric Oxide Synthase Type II
- Phospholipase C gamma
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- RNA, Messenger/biosynthesis
- Rats
- Receptors, Erythropoietin/biosynthesis
- Receptors, Erythropoietin/immunology
- Receptors, Erythropoietin/metabolism
- Recombinant Proteins
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- T Akimoto
- Department of Nephrology, Jichi Medical School, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Miller BA, Barber DL, Bell LL, Beattie BK, Zhang MY, Neel BG, Yoakim M, Rothblum LI, Cheung JY. Identification of the erythropoietin receptor domain required for calcium channel activation. J Biol Chem 1999; 274:20465-72. [PMID: 10400674 DOI: 10.1074/jbc.274.29.20465] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin (Epo) activates a voltage-independent Ca2+ channel that is dependent on tyrosine phosphorylation. To identify the domain(s) of the Epo receptor (Epo-R) required for Epo-induced Ca2+ influx, Chinese hamster ovary (CHO) cells were transfected with wild-type or mutant Epo receptors subcloned into pTracer-cytomegalovirus vector. This vector contains an SV40 early promoter, which drives expression of the green fluorescent protein (GFP) gene, and a cytomegalovirus immediate-early promoter driving expression of the Epo-R. Successful transfection was verified in single cells by detection of GFP, and intracellular Ca2+ ([Ca]i) changes were simultaneously monitored with rhod-2. Transfection of CHO cells with pTracer encoding wild-type Epo-R, but not pTracer alone, resulted in an Epo-induced [Ca]i increase that was abolished in cells transfected with Epo-R F8 (all eight cytoplasmic tyrosines substituted). Transfection with carboxyl-terminal deletion mutants indicated that removal of the terminal four tyrosine phosphorylation sites, but not the tyrosine at position 479, abolished Epo-induced [Ca]i increase, suggesting that tyrosines at positions 443, 460, and/or 464 are important. In CHO cells transfected with mutant Epo-R in which phenylalanine was substituted for individual tyrosines, a significant increase in [Ca]i was observed with mutants Epo-R Y443F and Epo-R Y464F. The rise in [Ca]i was abolished in cells transfected with Epo-R Y460F. Results were confirmed with CHO cells transfected with plasmids expressing Epo-R mutants in which individual tyrosines were added back to Epo-R F8 and in stably transfected Ba/F3 cells. These results demonstrate a critical role for the Epo-R cytoplasmic tyrosine 460 in Epo-stimulated Ca2+ influx.
Collapse
Affiliation(s)
- B A Miller
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
This review will discuss evidence for the role of the erythropoietin (Epo) receptor in the development of erythrocytosis and other hematological disorders. The possible causative role of mutations of other genes in the pathogenesis of idiopathic erythrocytosis will be considered. Polycythemia vera (PV) is a myeloproliferative disorder that is caused by an undefined stem cell abnormality, characterized by a significant erythrocytosis, leukocytosis, and thrombocytosis. However, erythrocytosis may arise from apparent (or relative) polycythemia in which the hematocrit is raised due to a low plasma volume. In such cases the red cell mass is normal. A group of disorders with increased red cell mass caused by stimulation of erythrocyte production is known as secondary polycythemia. Investigation of such patients may reveal a congenital abnormality such as high affinity hemoglobin or an acquired abnormality caused, for example, by smoking, renal vascular impairment, or an Epo-producing tumor. Even after thorough examination there remains a cohort of patients for whom no definite cause for the erythrocytosis can be established. A careful clinical history may reveal whether this idiopathic erythrocytosis is likely to be congenital and/or familial, in which case the term "primary familial and congenital polycythemia" is sometimes applied. Access to a range of laboratory investigations may define the molecular pathophysiology. We will now discuss how this process can be investigated.
Collapse
Affiliation(s)
- M F McMullin
- Department of Haematology, The Queen's University of Belfast, The Royal Victoria Hospital, Northern Ireland.
| | | |
Collapse
|
41
|
Affiliation(s)
- P A Tilbrook
- Department of Biochemistry, University of Western Australia, Australia
| | | |
Collapse
|
42
|
Ihle JN, Thierfelder W, Teglund S, Stravopodis D, Stravapodis D, Wang D, Feng J, Parganas E. Signaling by the cytokine receptor superfamily. Ann N Y Acad Sci 1998; 865:1-9. [PMID: 9927991 DOI: 10.1111/j.1749-6632.1998.tb11157.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A variety of cytokines that regulate functions of multiple lineages share the utilization of receptors that are structurally and functionally related and are referred to as the cytokine receptor superfamily. These receptors associate with one or more of the four mammalian Janus kinases (Jaks) and ligand-induced receptor aggregation results in their activation. Critical roles for Jak3 and Jak2 are demonstrated by the phenotypes of mice that lack each gene. Among the substrates of the Jaks are one or more of the seven members of the signal transducers and activators of transcription (Stats). Each Stat family member plays a critical role in the biological functions of specific cytokines as demonstrated by the phenotype of mice lacking one or more of these genes.
Collapse
Affiliation(s)
- J N Ihle
- Howard Hughes Medical Institute, Department of Biochemistry, Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Bovolenta C, Testolin L, Benussi L, Lievens PM, Liboi E. Positive selection of apoptosis-resistant cells correlates with activation of dominant-negative STAT5. J Biol Chem 1998; 273:20779-84. [PMID: 9694822 DOI: 10.1074/jbc.273.33.20779] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The STAT5 activation has important roles in cell differentiation, cell cycle control, and development. However, the potential implications of STAT5 in the control of apoptosis remain unexplored. To evaluate any possible link between the erythropoietin receptor (EpoR) JAK2/STAT5 transduction pathway and apoptosis, we have investigated apoptosis-resistant cells (ApoR) that arose from positive selection of the erythroid-committed Ba/F3EpoR cells triggered to apoptosis by ectopic expression of the HOX-B8 homeotic gene. We show that JAK2 is normally activated by Epo in both Ba/F3EpoR and ApoR cells. In contrast, both STAT5a and STAT5b isoforms are uniquely activated in a C-truncated form (86 kDa) only in ApoR cells. Analysis of ApoR and Ba/F3EpoR subclones confirmed that the switch to the truncated STAT5 isoform coincides with apoptosis survival and that ApoR do not derive from preexisting cells with a shortened STAT5. In addition, ApoR cells die in the absence of Epo. This indicates that resistance to apoptosis is not because of a general defect in the apoptotic pathway of ApoR cells. Furthermore, we show that the 86-kDa STAT5 protein presents a dominant-negative (DN) character. We hypothesize that the switch to a DN STAT5 may be part of a mechanism that allows ApoR cells to be selectively advantaged during apoptosis. In conclusion, we provide evidence for a functional correlation between a naturally occurring DN STAT5 and a biological response.
Collapse
Affiliation(s)
- C Bovolenta
- Institutes of Biological Chemistry, University of Verona, Verona 37134, Milano, Italy
| | | | | | | | | |
Collapse
|
44
|
A Novel Function of Stat1α and Stat3 Proteins in Erythropoietin-Induced Erythroid Differentiation of a Human Leukemia Cell Line. Blood 1998. [DOI: 10.1182/blood.v92.2.462] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractWe recently determined that erythropoietin (EPO) activates 3 members of the signal transducer and activator of transcription (STAT) family, Stat1α, Stat3, and Stat5, in the human EPO-dependent cell lines, UT-7 and UT-7/EPO (Kirito et al, J Biol Chem 272:16507, 1997). In addition, we have shown that Stat1α, but not Stat3, is involved in EPO-induced cellular proliferation. In this study, we examined the roles of Stat1α and Stat3 in EPO-induced erythroid differentiation. UT-7/GM was used as a model system, because this cell line can differentiate into erythroid-lineage cells with EPO treatment (Komatsu et al, Blood 89:4021, 1997). We found that EPO did not activate Stat1α or Stat3 in UT-7/GM cells. Transfection experiments showed that both Stat1α and Stat3 inhibited the induction by EPO of γ-globin and erythroid-specific 5-aminolevulinate synthetase transcripts, resulting in a reduction of the percentage of hemoglobin-positive cells. Dominant negative forms of Stat1α or Stat3 promoted the EPO-induced erythroid differentiation of UT-7/GM cells, even in the presence of granulocyte-macrophage colony-stimulating factor, although this cytokine never induced erythroid differentiation of the parent UT-7/GM cells with or without EPO. A cell cycle analysis showed that the constitutive activation of Stat1α, but not Stat3, shortened the period of G0/G1 prolongation caused by EPO stimulation. Taken together, our data suggest that Stat1α and Stat3 act as negative regulators in EPO-induced erythroid differentiation. Specifically, Stat1α may activate a cell cycle-associated gene(s), leading to the entry of cells into the cell cycle.
Collapse
|
45
|
A Novel Function of Stat1α and Stat3 Proteins in Erythropoietin-Induced Erythroid Differentiation of a Human Leukemia Cell Line. Blood 1998. [DOI: 10.1182/blood.v92.2.462.414k15_462_471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently determined that erythropoietin (EPO) activates 3 members of the signal transducer and activator of transcription (STAT) family, Stat1α, Stat3, and Stat5, in the human EPO-dependent cell lines, UT-7 and UT-7/EPO (Kirito et al, J Biol Chem 272:16507, 1997). In addition, we have shown that Stat1α, but not Stat3, is involved in EPO-induced cellular proliferation. In this study, we examined the roles of Stat1α and Stat3 in EPO-induced erythroid differentiation. UT-7/GM was used as a model system, because this cell line can differentiate into erythroid-lineage cells with EPO treatment (Komatsu et al, Blood 89:4021, 1997). We found that EPO did not activate Stat1α or Stat3 in UT-7/GM cells. Transfection experiments showed that both Stat1α and Stat3 inhibited the induction by EPO of γ-globin and erythroid-specific 5-aminolevulinate synthetase transcripts, resulting in a reduction of the percentage of hemoglobin-positive cells. Dominant negative forms of Stat1α or Stat3 promoted the EPO-induced erythroid differentiation of UT-7/GM cells, even in the presence of granulocyte-macrophage colony-stimulating factor, although this cytokine never induced erythroid differentiation of the parent UT-7/GM cells with or without EPO. A cell cycle analysis showed that the constitutive activation of Stat1α, but not Stat3, shortened the period of G0/G1 prolongation caused by EPO stimulation. Taken together, our data suggest that Stat1α and Stat3 act as negative regulators in EPO-induced erythroid differentiation. Specifically, Stat1α may activate a cell cycle-associated gene(s), leading to the entry of cells into the cell cycle.
Collapse
|
46
|
The Hyperresponsiveness of Cells Expressing Truncated Erythropoietin Receptors Is Contingent on Insulin-Like Growth Factor-1 in Fetal Calf Serum. Blood 1998. [DOI: 10.1182/blood.v92.2.425] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractWe demonstrate herein that the well documented hyperresponsiveness to erythropoietin (Epo) of Ba/F3 cells expressing C-terminal truncated erythropoietin receptors (EpoRs) is contingent on these cells being in fetal calf serum (FCS). In the absence of FCS, their Epo-induced proliferation is far poorer than Ba/F3 cells expressing wild-type (WT) EpoRs. This hyporesponsiveness in the absence of serum is also seen in DA-3 cells expressing these truncated EpoRs. In fact, long-term proliferation studies performed in the absence of serum show that even at saturating concentrations of Epo, Ba/F3 cells expressing these truncated receptors die via apoptosis, while cells bearing WT EpoRs do not, and this programmed cell death correlates with an inability of Epo-stimulated Ba/F3 cells expressing truncated EpoRs to induce the tyrosine phosphorylation of MAPK and the activation of p70S6K. Using neutralizing antibodies to insulin-like growth factor (IGF)-1, we show that a major non-Epo factor in FCS that contributes to the hyperresponsive phenotype of Ba/F3 cells expressing truncated EpoRs is IGF-1. Our results suggest that the Epo-hypersensitivity of truncated EpoR expressing Ba/F3 cells is due to the combined effects of these EpoRs not possessing a binding site for the negative regulator, SHP-1, and the triggering of proliferation-inducing/apoptosis-inhibiting cascades, lost through EpoR truncation, by IGF-1.
Collapse
|
47
|
The Hyperresponsiveness of Cells Expressing Truncated Erythropoietin Receptors Is Contingent on Insulin-Like Growth Factor-1 in Fetal Calf Serum. Blood 1998. [DOI: 10.1182/blood.v92.2.425.414k08_425_433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We demonstrate herein that the well documented hyperresponsiveness to erythropoietin (Epo) of Ba/F3 cells expressing C-terminal truncated erythropoietin receptors (EpoRs) is contingent on these cells being in fetal calf serum (FCS). In the absence of FCS, their Epo-induced proliferation is far poorer than Ba/F3 cells expressing wild-type (WT) EpoRs. This hyporesponsiveness in the absence of serum is also seen in DA-3 cells expressing these truncated EpoRs. In fact, long-term proliferation studies performed in the absence of serum show that even at saturating concentrations of Epo, Ba/F3 cells expressing these truncated receptors die via apoptosis, while cells bearing WT EpoRs do not, and this programmed cell death correlates with an inability of Epo-stimulated Ba/F3 cells expressing truncated EpoRs to induce the tyrosine phosphorylation of MAPK and the activation of p70S6K. Using neutralizing antibodies to insulin-like growth factor (IGF)-1, we show that a major non-Epo factor in FCS that contributes to the hyperresponsive phenotype of Ba/F3 cells expressing truncated EpoRs is IGF-1. Our results suggest that the Epo-hypersensitivity of truncated EpoR expressing Ba/F3 cells is due to the combined effects of these EpoRs not possessing a binding site for the negative regulator, SHP-1, and the triggering of proliferation-inducing/apoptosis-inhibiting cascades, lost through EpoR truncation, by IGF-1.
Collapse
|
48
|
Migliaccio AR, Migliaccio G. The making of an erythroid cell. Molecular control of hematopoiesis. BIOTHERAPY (DORDRECHT, NETHERLANDS) 1998; 10:251-68. [PMID: 9592014 DOI: 10.1007/bf02678546] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The number of circulating red cells is regulated by the daily balance between two processes: the destruction of the old red cells in the liver and the generation of new cells in the bone marrow. The process during which hematopoietic stem cells generate new red cells is called erythropoiesis. This manuscript will describe the molecular mechanisms involved in the process of erythroid differentiation as we understand them today. In particular it will review how erythroid specific growth factor-receptor interactions activate specific transcription factors to turn on the expression of the genes responsible for the establishment of the erythroid phenotype.
Collapse
Affiliation(s)
- A R Migliaccio
- Laboratorio di Biologia Cellulare, Istituto Superiore di Sanitá, Rome, Italy
| | | |
Collapse
|
49
|
Novel Evidence of Expression and Activity of Ecto-Phospholipase C γ1 in Human T Lymphocytes. Blood 1998. [DOI: 10.1182/blood.v91.10.3833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractAlthough much is known about the intracellular phospholipase C (PLC) specific for inositol phospholipids, few data are available about the presence of a less common PLC at the external side of the membrane bilayer of some cell types. This ectoenzyme seems to play particular roles in cellular function by hydrolyzing inositol lipids located on the outer leaflet of the plasma membrane. Here, we provide the first evidence that peripheral T lymphocytes express a discrete level of a PLCγ1 at the outer leaflet of the plasma membrane. Flow cytometry showed that the PLCγ1-positive (PLCγ1+) cells (∼37%) were CD8+ and CD45RA+. Biochemical evidence indicated that (1) this ectoenzyme displays a mass similar to the cytoplasmic form, (2) it is phosphorylated on tyrosine residues, and (3) its activity is Ca2+-dependent. In addition, this enzyme appeared to be correlated with the proliferative state of the cell, since stimulation with phytohemagglutinin (PHA) downregulated both its expression and activity, which were restored by treatment with an antiproliferative agent like natural interferon beta. Moreover, the different kinetics of formation of its hydrolytic products, inositol 1 phosphate and inositol 1:2 cyclic phosphate (Ins(1)P and Ins(1:2 cycl)P), formed upon incubation of the lymphocytes with [3H]-lyso-phosphatidylinositol (PI), allow the hypothesis of a selective involvement of the two inositol phosphates in the mechanisms regulating the metabolism of particular T-lymphocyte subsets.
Collapse
|
50
|
Novel Evidence of Expression and Activity of Ecto-Phospholipase C γ1 in Human T Lymphocytes. Blood 1998. [DOI: 10.1182/blood.v91.10.3833.3833_3833_3840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although much is known about the intracellular phospholipase C (PLC) specific for inositol phospholipids, few data are available about the presence of a less common PLC at the external side of the membrane bilayer of some cell types. This ectoenzyme seems to play particular roles in cellular function by hydrolyzing inositol lipids located on the outer leaflet of the plasma membrane. Here, we provide the first evidence that peripheral T lymphocytes express a discrete level of a PLCγ1 at the outer leaflet of the plasma membrane. Flow cytometry showed that the PLCγ1-positive (PLCγ1+) cells (∼37%) were CD8+ and CD45RA+. Biochemical evidence indicated that (1) this ectoenzyme displays a mass similar to the cytoplasmic form, (2) it is phosphorylated on tyrosine residues, and (3) its activity is Ca2+-dependent. In addition, this enzyme appeared to be correlated with the proliferative state of the cell, since stimulation with phytohemagglutinin (PHA) downregulated both its expression and activity, which were restored by treatment with an antiproliferative agent like natural interferon beta. Moreover, the different kinetics of formation of its hydrolytic products, inositol 1 phosphate and inositol 1:2 cyclic phosphate (Ins(1)P and Ins(1:2 cycl)P), formed upon incubation of the lymphocytes with [3H]-lyso-phosphatidylinositol (PI), allow the hypothesis of a selective involvement of the two inositol phosphates in the mechanisms regulating the metabolism of particular T-lymphocyte subsets.
Collapse
|