1
|
Biosynthesis of N-Docosahexanoylethanolamine from Unesterified Docosahexaenoic Acid and Docosahexaenoyl-Lysophosphatidylcholine in Neuronal Cells. Int J Mol Sci 2020; 21:ijms21228768. [PMID: 33233525 PMCID: PMC7699583 DOI: 10.3390/ijms21228768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
We investigated the synthesis of N-docosahexaenoylethanolamine (synaptamide) in neuronal cells from unesterified docosahexaenoic acid (DHA) or DHA-lysophosphatidylcholine (DHA-lysoPC), the two major lipid forms that deliver DHA to the brain, in order to understand the formation of this neurotrophic and neuroprotective metabolite of DHA in the brain. Both substrates were taken up in Neuro2A cells and metabolized to N-docosahexaenoylphosphatidylethanolamine (NDoPE) and synaptamide in a time- and concentration-dependent manner, but unesterified DHA was 1.5 to 2.4 times more effective than DHA-lysoPC at equimolar concentrations. The plasmalogen NDoPE (pNDoPE) amounted more than 80% of NDoPE produced from DHA or DHA-lysoPC, with 16-carbon-pNDoPE being the most abundant species. Inhibition of N-acylphosphatidylethanolamine-phospholipase D (NAPE-PLD) by hexachlorophene or bithionol significantly decreased the synaptamide production, indicating that synaptamide synthesis is mediated at least in part via NDoPE hydrolysis. NDoPE formation occurred much more rapidly than synaptamide production, indicating a precursor–product relationship. Although NDoPE is an intermediate for synaptamide biosynthesis, only about 1% of newly synthesized NDoPE was converted to synaptamide, possibly suggesting additional biological function of NDoPE, particularly for pNDoPE, which is the major form of NDoPE produced.
Collapse
|
2
|
Kim HY, Spector AA. N-Docosahexaenoylethanolamine: A neurotrophic and neuroprotective metabolite of docosahexaenoic acid. Mol Aspects Med 2018; 64:34-44. [PMID: 29572109 DOI: 10.1016/j.mam.2018.03.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 12/11/2022]
Abstract
N-Docosahexaenoylethanolamine (synaptamide) is an endocannabinoid-like metabolite endogenously synthesized from docosahexaenoic acid (DHA, 22:6n-3), the major omega-3 polyunsaturated fatty acid present in the brain. Although its biosynthetic mechanism has yet to be established, there is a closely linked relationship between the levels of synaptamide and its precursor DHA in the brain. Synaptamide at nanomolar concentrations promotes neurogenesis, neurite outgrowth and synaptogenesis in developing neurons. Synaptamide also attenuates the lipopolysaccharide-induced neuroinflammatory response and reduces the deleterious effects of ethanol on neurogenic differentiation of neural stem cells (NSCs). These actions are mediated by a specific target receptor of synaptamide GPR110 (ADGRF1), a G-protein coupled receptor that is highly expressed in NSCs and the brain during development. Synaptamide binding to GPR110 induces cAMP production and phosphorylation of protein kinase A (PKA) and the cAMP response element binding protein (CREB). This signaling pathway leads to the expression of neurogenic and synaptogenic genes and suppresses the expression of proinflammatory genes. The GPR110-dependent cellular effects of synaptamide are recapitulated in animal models, suggesting that synaptamide-derived mechanisms may have translational implications. The synaptamide bioactivity transmitted by newly deorphanized GPR110 provides a novel target for neurodevelopmental and neuroprotective control as well as new insight into mechanisms for DHA's beneficial effects on the central nervous system.
Collapse
Affiliation(s)
- Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-9410, United States.
| | - Arthur A Spector
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-9410, United States
| |
Collapse
|
3
|
Esparza E, Hadzich A, Kofer W, Mithöfer A, Cosio EG. Bioactive maca (Lepidium meyenii) alkamides are a result of traditional Andean postharvest drying practices. PHYTOCHEMISTRY 2015; 116:138-148. [PMID: 25817836 DOI: 10.1016/j.phytochem.2015.02.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 02/09/2015] [Accepted: 02/26/2015] [Indexed: 05/23/2023]
Abstract
Maca, Lepidium meyenii Walpers (Brassicaceae), is an annual herbaceous plant native to the high plateaus of the Peruvian central Andes. Its underground storage hypocotyls have been a traditional medicinal agent and dietary staple since pre-Columbian times. Reported properties include energizing and fertility-enhancing effects. Published reports have focused on the benzylalkamides (macamides) present in dry hypocotyls as one of the main bioactive components. Macamides are secondary amides formed by benzylamine and a fatty acid moiety, with varying hydrocarbon chain lengths and degree of unsaturation. Although it has been assumed that they are usually present in fresh undamaged tissues, analyses show them to be essentially absent from them. However, hypocotyls dried by traditional Andean postharvest practices or industrial oven drying contain up to 800μgg(-1) dry wt (2.3μmolg(-1) dry wt) of macamides. In this study, the generation of macamides and their putative precursors were studied during nine-week traditional drying trials at 4200m altitude and in ovens under laboratory conditions. Freeze-thaw cycles in the open field during drying result in tissue maceration and release of free fatty acids from storage and membrane lipids up to levels of 1200μgg(-1) dry wt (4.3μmolg(-1) dry wt). Endogenous metabolism of the isothiocyanates generated from glucosinolate hydrolysis during drying results in maximal benzylamine values of 4300μgg(-1) dry wt (40.2μmolg(-1) dry wt). Pearson correlation coefficients of the accumulation profiles of benzylamine and free fatty acid to that of macamides showed good values of 0.898 and 0.934, respectively, suggesting that both provide sufficient substrate for amide synthesis during the drying process.
Collapse
Affiliation(s)
- Eliana Esparza
- Sección Química, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, San Miguel, Lima 32, Peru
| | - Antonella Hadzich
- Sección Química, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, San Miguel, Lima 32, Peru
| | - Waltraud Kofer
- Sección Química, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, San Miguel, Lima 32, Peru
| | - Axel Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Eric G Cosio
- Sección Química, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, San Miguel, Lima 32, Peru.
| |
Collapse
|
4
|
Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Prog Lipid Res 2014; 53:18-81. [DOI: 10.1016/j.plipres.2013.10.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/20/2013] [Accepted: 10/01/2013] [Indexed: 12/21/2022]
|
5
|
Brown I, Cascio MG, Rotondo D, Pertwee RG, Heys SD, Wahle KW. Cannabinoids and omega-3/6 endocannabinoids as cell death and anticancer modulators. Prog Lipid Res 2013; 52:80-109. [DOI: 10.1016/j.plipres.2012.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 10/05/2012] [Indexed: 01/18/2023]
|
6
|
Kim HY, Spector AA. Synaptamide, endocannabinoid-like derivative of docosahexaenoic acid with cannabinoid-independent function. Prostaglandins Leukot Essent Fatty Acids 2013; 88:121-5. [PMID: 22959887 PMCID: PMC3541447 DOI: 10.1016/j.plefa.2012.08.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 08/02/2012] [Accepted: 08/03/2012] [Indexed: 11/25/2022]
Abstract
Docosahexaenoylethanolamide, the structural analog of the endogenous cannabinoid receptor ligand anandamide, is synthesized from docosahexaenoic acid (DHA) in the brain. Although docosahexaenoylethanolamide binds weakly to cannabinoid receptors, it stimulates neurite growth, synaptogenesis and glutamatergic synaptic activity in developing hippocampal neurons at concentrations of 10-100 nM. We have previously proposed the term synaptamide for docosahexaenoylethanolamide to emphasize its potent synaptogenic activity and structural similarity to anandamide. Synaptamide is subjected to hydrolysis by fatty acid amide hydrolase, and can be oxygenated to bioactive metabolites. The brain synaptamide content is dependent on the dietary DHA intake, suggesting an endogenous mechanism whereby diets containing adequate amounts of omega-3 fatty acids improve synaptogenesis in addition to well-recognized anti-inflammatory effects.
Collapse
Affiliation(s)
- Hee-Yong Kim
- Laboratory of Molecular Signaling, DICBR, NIAAA, NIH, Bethesda, MD 20892-9410, USA.
| | | |
Collapse
|
7
|
Kim HY, Spector AA, Xiong ZM. A synaptogenic amide N-docosahexaenoylethanolamide promotes hippocampal development. Prostaglandins Other Lipid Mediat 2011; 96:114-20. [PMID: 21810478 PMCID: PMC3215906 DOI: 10.1016/j.prostaglandins.2011.07.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/16/2011] [Accepted: 07/07/2011] [Indexed: 01/05/2023]
Abstract
Docosahexaenoic acid (DHA), the n-3 essential fatty acid that is highly enriched in the brain, increases neurite growth and synaptogenesis in cultured mouse fetal hippocampal neurons. These cellular effects may underlie the DHA-induced enhancement of hippocampus-dependent learning and memory functions. We found that N-docsahexaenoylethanolamide (DEA), an ethanolamide derivative of DHA, is a potent mediator for these actions. This is supported by the observation that DHA is converted to DEA by fetal mouse hippocampal neuron cultures and a hippocampal homogenate, and DEA is present endogenously in the mouse hippocampus. Furthermore, DEA stimulates neurite growth and synaptogenesis at substantially lower concentrations than DHA, and it enhances glutamatergic synaptic activities with concomitant increases in synapsin and glutamate receptor subunit expression in the hippocampal neurons. These findings suggest that DEA, an ethanolamide derivative of DHA, is a synaptogenic factor, and therefore we suggest utilizing the term 'synaptamide'. This brief review summarizes the neuronal production and actions of synaptamide and describes other N-docosahexaenoyl amides that are present in the brain.
Collapse
Affiliation(s)
- Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-9410, USA.
| | | | | |
Collapse
|
8
|
Hyperactivation of anandamide synthesis and regulation of cell-cycle progression via cannabinoid type 1 (CB1) receptors in the regenerating liver. Proc Natl Acad Sci U S A 2011; 108:6323-8. [PMID: 21383171 DOI: 10.1073/pnas.1017689108] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The mammalian liver regenerates upon tissue loss, which induces quiescent hepatocytes to enter the cell cycle and undergo limited replication under the control of multiple hormones, growth factors, and cytokines. Endocannabinoids acting via cannabinoid type 1 receptors (CB(1)R) promote neural progenitor cell proliferation, and in the liver they promote lipogenesis. These findings suggest the involvement of CB(1)R in the control of liver regeneration. Here we report that mice lacking CB(1)R globally or in hepatocytes only and wild-type mice treated with a CB(1)R antagonist have a delayed proliferative response to two-thirds partial hepatectomy (PHX). In wild-type mice, PHX leads to increased hepatic expression of CB(1)R and hyperactivation of the biosynthesis of the endocannabinoid anandamide in the liver via an in vivo pathway involving conjugation of arachidonic acid and ethanolamine by fatty-acid amide hydrolase. In wild-type but not CB(1)R(-/-) mice, PHX induces robust up-regulation of key cell-cycle proteins involved in mitotic progression, including cyclin-dependent kinase 1 (Cdk1), cyclin B2, and their transcriptional regulator forkhead box protein M1 (FoxM1), as revealed by ultrahigh-throughput RNA sequencing and pathway analysis and confirmed by real-time PCR and Western blot analyses. Treatment of wild-type mice with anandamide induces similar changes mediated via activation of the PI3K/Akt pathway. We conclude that activation of hepatic CB(1)R by newly synthesized anandamide promotes liver regeneration by controlling the expression of cell-cycle regulators that drive M phase progression.
Collapse
|
9
|
Ueda N, Tsuboi K, Uyama T. Enzymological studies on the biosynthesis of N-acylethanolamines. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:1274-85. [PMID: 20736084 DOI: 10.1016/j.bbalip.2010.08.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 08/10/2010] [Accepted: 08/17/2010] [Indexed: 11/28/2022]
Abstract
Ethanolamides of different long-chain fatty acids constitute a class of endogenous lipid molecules generally called N-acylethanolamines (NAEs). They contain N-arachidonoylethanolamine (anandamide), N-palmitoylethanolamine, and N-oleoylethanolamine, which receive considerable attention because of their actions as an endogenous cannabinoid receptor ligand (endocannabinoid), an anti-inflammatory substance, and an appetite-suppressing substance, respectively. Identification of their biosynthetic routes in animal tissues and molecular characterization of the enzymes involved are essential for better understanding of physiological importance of NAEs as well as development of enzyme inhibitors as possible therapeutic drugs. In the classical "transacylation-phosphodiesterase pathway", NAEs are formed from glycerophospholipids via N-acylphosphatidylethanolamine (NAPE), an unusual derivative of phosphatidylethanolamine with a third acyl chain attached to the amino group, by sequential catalyses by Ca(2+)-dependent N-acyltransferase and NAPE-hydrolyzing phospholipase D. However, recent studies reveal that NAE-generating pathways are more complex than presumed before. In this review article, we will focus on recent findings regarding mammalian enzymes that are involved or might be involved in the biosynthesis of NAEs.
Collapse
Affiliation(s)
- Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan.
| | | | | |
Collapse
|
10
|
Ueda N, Tsuboi K, Uyama T. N-acylethanolamine metabolism with special reference to N-acylethanolamine-hydrolyzing acid amidase (NAAA). Prog Lipid Res 2010; 49:299-315. [PMID: 20152858 DOI: 10.1016/j.plipres.2010.02.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
N-acylethanolamines (NAEs) constitute a class of bioactive lipid molecules present in animal and plant tissues. Among the NAEs, N-arachidonoylethanolamine (anandamide), N-palmitoylethanolamine, and N-oleoylethanolamine attract much attention due to cannabimimetic activity as an endocannabinoid, anti-inflammatory and analgesic activities, and anorexic activity, respectively. In mammalian tissues, NAEs are formed from glycerophospholipids through the phosphodiesterase-transacylation pathway consisting of Ca(2+)-dependent N-acyltransferase and N-acylphosphatidylethanolamine-hydrolyzing phospholipase D. Recent studies revealed the presence of alternative pathways and enzymes responsible for the NAE formation. As for the degradation of NAEs, fatty acid amide hydrolase (FAAH), which hydrolyzes NAEs to fatty acids and ethanolamine, plays a central role. However, a lysosomal enzyme referred to as NAE-hydrolyzing acid amidase (NAAA) also catalyzes the same reaction and may be a new target for the development of therapeutic drugs. In this article we discuss recent progress in the studies on the enzymes involved in the biosynthesis and degradation of NAEs with special reference to NAAA.
Collapse
Affiliation(s)
- Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa, Japan
| | | | | |
Collapse
|
11
|
Malcher-Lopes R, Buzzi M. Glucocorticoid-regulated crosstalk between arachidonic acid and endocannabinoid biochemical pathways coordinates cognitive-, neuroimmune-, and energy homeostasis-related adaptations to stress. VITAMINS AND HORMONES 2009; 81:263-313. [PMID: 19647116 DOI: 10.1016/s0083-6729(09)81011-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Arachidonic acid and its derivatives constitute the major group of signaling molecules involved in the innate immune response and its communication with all cellular and systemic aspects involved on homeostasis maintenance. Glucocorticoids spread throughout the organism their influences over key enzymatic steps of the arachidonic acid biochemical pathways, leading, in the central nervous system, to a shift favoring the synthesis of anti-inflammatory endocannabinoids over proinflammatory metabolites, such as prostaglandins. This shift modifies local immune-inflammatory response and neuronal activity to ultimately coordinate cognitive, behavioral, neuroendocrine, neuroimmune, physiological, and metabolic adjustments to basal and stress conditions. In the hypothalamus, a reciprocal feedback between glucocorticoids and arachidonate-containing molecules provides a mechanism for homeostatic control. This neurochemical switch is susceptible to fine-tuning by neuropeptides, cytokines, and hormones, such as leptin and interleukin-1beta, assuring functional integration between energy homeostasis control and the immune/stress response.
Collapse
Affiliation(s)
- Renato Malcher-Lopes
- Laboratory of Mass Spectrometry, EMBRAPA-Center for Genetic Resources and Biotechnology, Brasília-DF, Brazil
| | | |
Collapse
|
12
|
Malcher-Lopes R, Franco A, Tasker JG. Glucocorticoids shift arachidonic acid metabolism toward endocannabinoid synthesis: a non-genomic anti-inflammatory switch. Eur J Pharmacol 2008; 583:322-39. [PMID: 18295199 PMCID: PMC2367369 DOI: 10.1016/j.ejphar.2007.12.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 12/12/2007] [Accepted: 12/16/2007] [Indexed: 11/24/2022]
Abstract
Glucocorticoids are capable of exerting both genomic and non-genomic actions in target cells of multiple tissues, including the brain, which trigger an array of electrophysiological, metabolic, secretory and inflammatory regulatory responses. Here, we have attempted to show how glucocorticoids may generate a rapid anti-inflammatory response by promoting arachidonic acid-containing endocannabinoids biosynthesis. According to our hypothesized model, non-genomic action of glucocorticoids results in the global shift of membrane lipid metabolism, subverting metabolic pathways toward the synthesis of the anti-inflammatory endocannabinoids, anandamide (AEA) and 2-arachidonoyl-glycerol (2-AG), and away from arachidonic acid production. Post-transcriptional inhibition of cyclooxygenase-2 (COX(2)) synthesis by glucocorticoids assists this mechanism by suppressing the synthesis of pro-inflammatory prostaglandins as well as endocannabinoid-derived prostanoids. In the central nervous system (CNS) this may represent a major neuroprotective system, which may cross-talk with leptin signaling in the hypothalamus allowing for the coordination between energy homeostasis and the inflammatory response.
Collapse
|
13
|
Shevchenko VP, Nagaev IY, Myasoedov NF. Methods for the synthesis of tritium-labelled fatty acids and their derivatives, oxylipins and steroids. RUSSIAN CHEMICAL REVIEWS 2007. [DOI: 10.1070/rc1999v068n10abeh000528] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Vinod KY, Hungund BL. Cannabinoid-1 receptor: a novel target for the treatment of neuropsychiatric disorders. Expert Opin Ther Targets 2006; 10:203-10. [PMID: 16548770 DOI: 10.1517/14728222.10.2.203] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
G-protein-coupled receptor (GPCR)-mediated signalling is the most widely used signalling mechanism in cells, and its regulation is important for various physiological functions. The cannabinoid-1 (CB(1)) receptor, a GPCR, has been shown to play a critical role in neural circuitries mediating motivation, mood and emotional behaviours. Several recent studies have indicated that impairment of CB(1) receptor-mediated signalling may play a critical role in the pathophysiology of various neuropsychiatric disorders. In this article, the authors briefly review literature relating to the role played by the endocannabinoid system in various neuropsychiatric disorders, and the CB(1) receptor as a potential therapeutic target for the treatment of alcoholism, depression, anxiety and schizophrenia.
Collapse
Affiliation(s)
- K Yaragudri Vinod
- New York State Psychiatric Institute, Division of Analytical Psychopharmacology, New York, USA
| | | |
Collapse
|
15
|
Gross RW, Jenkins CM, Yang J, Mancuso DJ, Han X. Functional lipidomics: the roles of specialized lipids and lipid–protein interactions in modulating neuronal function. Prostaglandins Other Lipid Mediat 2005; 77:52-64. [PMID: 16099391 DOI: 10.1016/j.prostaglandins.2004.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 09/14/2004] [Indexed: 11/18/2022]
Abstract
Lipids fulfill multiple specialized roles in neuronal function. In brain, the conduction of electrical impulses, synaptic function, and complex signaling pathways depend on the temporally and spatially coordinated interactions of specialized lipids (e.g., arachidonic acid and plasmalogens), proteins (e.g., ion channels, phospholipases and cyclooxygenases) and integrative lipid-protein interactions. Recent technical advances in mass spectrometry have allowed unparalled insight into the roles of lipids in neuronal function. Through shotgun lipidomics and multidimensional mass spectrometry, in conjunction with the identification of new classes of phospholipases (e.g., calcium dependent and calcium independent intracellular phospholipases), new roles for lipids in cerebral function have been accrued. This review summarizes the advances in our understanding of the types of lipids and phospholipases in the brain and the role of functional lipidomics in increasing our chemical understanding of complex neuronal processes.
Collapse
Affiliation(s)
- Richard W Gross
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8020, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
16
|
Tumlinson JH, Lait CG. Biosynthesis of fatty acid amide elicitors of plant volatiles by insect herbivores. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2005; 58:54-68. [PMID: 15660361 DOI: 10.1002/arch.20036] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Larvae of several species of Lepidoptera produce fatty acid amide elicitors that induce the plants on which they feed to synthesize and release volatile organic compounds. The volatiles released by the plants act as cues that aid in host location by natural enemies of the herbivorous larvae. The elicitors are synthesized in the larvae by enzymes embedded in the membranes of the crop and anterior midgut tissues. The fatty acid precursors of the elicitors are obtained from the plants on which the caterpillars feed, while the amino acid moieties appear to be obtained from pools within the insects. The fatty acid amide elicitors are rapidly hydrolyzed in the midgut and hindgut by enzymes in the gut lumen. The role of these fatty acid amides in caterpillar metabolism is not yet understood.
Collapse
Affiliation(s)
- James H Tumlinson
- Department of Entomology, The Pennsylvania State University, University Park 16802, USA.
| | | |
Collapse
|
17
|
Abstract
Research of cannabinoid actions was boosted in the 1990s by remarkable discoveries including identification of endogenous compounds with cannabimimetic activity (endocannabinoids) and the cloning of their molecular targets, the CB1 and CB2 receptors. Although the existence of an endogenous cannabinoid signaling system has been established for a decade, its physiological roles have just begun to unfold. In addition, the behavioral effects of exogenous cannabinoids such as delta-9-tetrahydrocannabinol, the major active compound of hashish and marijuana, await explanation at the cellular and network levels. Recent physiological, pharmacological, and high-resolution anatomical studies provided evidence that the major physiological effect of cannabinoids is the regulation of neurotransmitter release via activation of presynaptic CB1 receptors located on distinct types of axon terminals throughout the brain. Subsequent discoveries shed light on the functional consequences of this localization by demonstrating the involvement of endocannabinoids in retrograde signaling at GABAergic and glutamatergic synapses. In this review, we aim to synthesize recent progress in our understanding of the physiological roles of endocannabinoids in the brain. First, the synthetic pathways of endocannabinoids are discussed, along with the putative mechanisms of their release, uptake, and degradation. The fine-grain anatomical distribution of the neuronal cannabinoid receptor CB1 is described in most brain areas, emphasizing its general presynaptic localization and role in controlling neurotransmitter release. Finally, the possible functions of endocannabinoids as retrograde synaptic signal molecules are discussed in relation to synaptic plasticity and network activity patterns.
Collapse
Affiliation(s)
- Tamas F Freund
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest 8, Szigony u.43, H-1083 Hungary.
| | | | | |
Collapse
|
18
|
Lait CG, Alborn HT, Teal PEA, Tumlinson JH. Rapid biosynthesis of N-linolenoyl-L-glutamine, an elicitor of plant volatiles, by membrane-associated enzyme(s) in Manduca sexta. Proc Natl Acad Sci U S A 2003; 100:7027-32. [PMID: 12773625 PMCID: PMC165824 DOI: 10.1073/pnas.1232474100] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In response to elicitors in the oral secretions of caterpillars, plants produce and release volatile chemicals that attract predators and parasitoids of the caterpillar while it feeds. The most prevalent elicitors are fatty acid amides consisting of 18-carbon polyunsaturated fatty acids coupled with l-glutamine. We demonstrate rapid CoA- and ATP-independent in vitro biosynthesis of the fatty acid amide elicitor, N-linolenoyl-l-glutamine, by microsomal fractions of several alimentary tissues in Manduca sexta. N-linolenoyl-l-glutamine is a structural analog of several other elicitors including volicitin, the first fatty acid amide elicitor identified in caterpillars. The enzyme(s) that catalyzed biosynthesis of N-linolenoyl-l-glutamine was localized within the integral membrane protein fraction extracted from microsomes by Triton X-114 detergent phase partitioning and had maximum activity at alkaline pH. We found no evidence suggesting microbial or tissue-independent biosynthesis of N-linolenoyl-l-glutamine in M. sexta. The in vitro biosynthesis of N-linolenoyl-l-glutamine by membrane-associated enzyme(s) in M. sexta represents direct evidence of fatty acid amide synthesis by caterpillar tissues.
Collapse
Affiliation(s)
- Cameron G Lait
- United States Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, 1700 SW 23rd Drive, Gainesville, FL 32608, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Endocannabinoids are a new class of lipid mediators, which includes amides and esters of long-chain polyunsaturated fatty acids. Anandamide (I) and 2-arachidonoylglycerol (II) are the main endogenous agonists of cannabinoid receptors, able to mimic several pharmacological effects of delta 9-tetrahydrocannabinol (III), the active principle of Cannabis sativa preparations such as hashish and marijuana. The pathways leading to the synthesis and release of anandamide and 2-arachidonoylglycerol from neuronal and nonneuronal cells are rather uncertain. Instead, evidence has accumulated showing that the activity of these compounds at their specific receptors is limited by cellular uptake through a specific membrane transporter, followed by intracellular degradation by a fatty acid amide hydrolase. Here, the endocannabinoids and the endocannabinoid-like compounds most relevant for human physiology will be discussed, along with the synthetic and degradative pathways of anandamide and 2-arachidonoylglycerol and their molecular targets on the cell surface. The main actions of the endocannabinoids in human cells and tissues will also be reviewed, focusing on the activities most recently discovered in the central nervous system and in the periphery.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, I-00133 Rome, Italy
| | | |
Collapse
|
20
|
Abstract
Endocannabinoids (endogenous ligands of cannabinoid receptors) such as anandamide (N-arachidonoylethanolamine) and 2-arachidonoylglycerol (2-AG) are inactivated upon enzymatic hydrolysis. Recent progress in the enzymological and molecular biological studies on the 'endocannabinoid hydrolases' is reviewed in this article. Anandamide is hydrolyzed to arachidonic acid and ethanolamine by a membrane-bound amidase generally referred to as fatty acid amide hydrolase (FAAH). This enzyme has a broad substrate specificity, hydrolyzing oleamide (an endogenous sleep-inducing factor) and 2-AG as well as anandamide. cDNA cloning revealed that FAAH is composed of 579 amino acids and belongs to the amidase signature family. A serine residue functioning as a catalytic nucleophile and several other catalytically important residues were identified in its primary structure. Furthermore, recent generation and analysis of the FAAH gene-deficient mice demonstrated the central role of this enzyme in the metabolism of anandamide. Alternatively, an amidase, which is distinct from FAAH but also hydrolyzing anandamide and other N-acylethanolamines at acidic pH, was identified in human megakaryoblastic cells and rat organs such as lung and spleen. As for the 2-AG hydrolysis, in addition to the known monoacylglycerol lipase, other esterases and FAAH may be involved.
Collapse
Affiliation(s)
- Natsuo Ueda
- Department of Biochemistry, Kagawa Medical University, Miki, Japan.
| |
Collapse
|
21
|
Sugiura T, Kobayashi Y, Oka S, Waku K. Biosynthesis and degradation of anandamide and 2-arachidonoylglycerol and their possible physiological significance. Prostaglandins Leukot Essent Fatty Acids 2002; 66:173-92. [PMID: 12052034 DOI: 10.1054/plef.2001.0356] [Citation(s) in RCA: 246] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
N -arachidonoylethanolamine (anandamide) was the first endogenous cannabinoid receptor ligand to be discovered. Dual synthetic pathways for anandamide have been proposed. One is the formation from free arachidonic acid and ethanolamine, and the other is the formation from N -arachidonoyl phosphatidylethanolamine (PE) through the action of a phosphodiesterase. These pathways, however, do not appear to be able to generate a large amount of anandamide, at least under physiological conditions. The generation of anandamide from free arachidonic acid and ethanolamine is catalyzed by a degrading enzyme anandamide amidohydrolase/fatty acid amide hydrolase operating in reverse and requires large amounts of substrates. As for the second pathway, arachidonic acids esterified at the 1-position of glycerophospholipids, which are mostly esterified at the 2-position, are utilized for the formation of N -arachidonoyl PE, a stored precursor form of anandamide. In fact, the actual levels of anandamide in various tissues are generally low except in a few cases. 2-Arachidonoylglycerol (2-AG) was the second endogenous cannabinoid receptor ligand to be discovered. 2-AG is a degradation product of arachidonic acid-containing glycerophospholipids such as inositol phospholipids. Several investigators have demonstrated that 2-AG is produced in a variety of tissues and cells upon stimulation. 2-AG acts as a full agonist at the cannabinoid receptors (CB1 and CB2). Evidence is gradually accumulating and indicates that 2-AG is the most efficacious endogenous natural ligand for the cannabinoid receptors. In this review, we summarize the tissue levels, biosynthesis, degradation and possible physiological significance of two endogenous cannabimimetic molecules, anandamide and 2-AG.
Collapse
Affiliation(s)
- T Sugiura
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Tsukui-gun, Kanagawa 199-0195, Japan.
| | | | | | | |
Collapse
|
22
|
Abstract
The fatty acid amide hydrolase (FAAH), is the enzyme responsible for the hydrolysis of anandamide, an endocannabinoid. The FAAH knockout, the assays for FAAH, the activity of its substrates, its reversibility and its cloning from rat, mouse, human, and pig are covered in this review. The conserved regions of FAAH are described in terms of sequence and function, including the domains that contains the serine catalytic nucleophile, the hydrophobic domain important for self-association, the proline rich domain region which may be important for subcellular localization and the fatty acid chain binding domain. The FAAH mouse promoter region was characterized in terms of its transcription start site and its activity in different cell types. The distribution of FAAH in the major organs in the body is described as well as regional distribution in the brain and its correlation with cannabinoid receptors. Since FAAH is recognized as a drug target, a large number of inhibitors have been synthesized and tested since 1994 and these are reviewed in terms of reversibility, potency, and specificity for FAAH.
Collapse
Affiliation(s)
- D G Deutsch
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, NY 11794-5215, USA.
| | | | | |
Collapse
|
23
|
Metzler DE, Metzler CM, Sauke DJ. Chemical Communication Between Cells. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Chapman KD. Emerging physiological roles for N-acylphosphatidylethanolamine metabolism in plants: signal transduction and membrane protection. Chem Phys Lipids 2000; 108:221-9. [PMID: 11106793 DOI: 10.1016/s0009-3084(00)00198-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The activation of N-acylphosphatidylethanolamine (NAPE) metabolism in plants appears to be associated mostly with cellular stresses. In response to pathogen elicitors, NAPE is hydrolzyed by phospholipase-D (PLD), and corresponding medium-chain, saturated N-acylethanolamines (NAEs) are released by plant cells where they act as lipid mediators to modulate ion flux and activate defense gene expression. In desiccated seeds of higher plants, long-chain, saturated and unsaturated NAEs are prevalent, but are rapidly metabolized during the first few hours of imbibition, a period of substantial osmotic stress. NAPE synthesis is increased in seeds during this same period of rapid rehydration. A membrane-bound enzyme designated NAPE synthase has been purified from imbibed cottonseeds and its unusual biochemical properties suggest that it may scavenge free fatty acids in vivo. This feature of NAPE metabolism may be unique to higher plants a may be a mechanism for the rapid recycling of fatty acids back into membrane-associated NAPE. Altogether, increasing evidence indicates that NAPE metabolism in plants shares functional similarities with NAPE metabolism in animal systems, including signal transduction and cellular protection. In particular, the emerging role of released NAEs as lipid mediators in plant defense signaling represents an intriguing parallel to 'endocannabinoid signaling' in several mammalian cell types.
Collapse
Affiliation(s)
- K D Chapman
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX 76203-5220, USA.
| |
Collapse
|
25
|
Abstract
2-Arachidonoylglycerol (2-AG) is a unique molecular species of monoacylglycerol isolated from rat brain and canine gut as an endogenous cannabinoid receptor ligand (Sugiura, T., Kondo, S., Sukagawa, A., Nakane, S., Shinoda, A., Itoh, K., Yamashita, A., Waku, K., 1995. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215, 89-97; Mechoulam, R., Ben-Shabat, S., Hanus, L., Ligumsky, M., Kaminski, N. E., Schatz, A.R., Gopher, A., Almog, S., Martin, B.R., Compton, D.R., Pertwee, R.G., Giffin, G., Bayewitch, M., Brag, J., Vogel, Z., 1995. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50, 83-90). 2-AG binds to the cannabinoid receptors (CB1 and CB2) and exhibits a variety of cannabimimetic activities in vitro and in vivo. Recently, we found that 2-AG induces Ca(2+) transients in NG108-15 cells, which express the CB1 receptor, and in HL-60 cells, which express the CB2 receptor, through a cannabinoid receptor- and Gi/Go-dependent mechanism. Based on the results of structure-activity relationship experiments, we concluded that 2-AG but not anandamide is the natural ligand for both the CB1 and the CB2 receptors and both receptors are primarily 2-AG receptors. Evidences are gradually accumulating that 2-AG is a physiologically essential molecule, although further detailed studies appear to be necessary to determine relative importance of 2-AG and anandamide in various animal tissues. In this review, we described mainly our previous and current experimental results, as well as those of others, concerning the tissue levels, bioactions and metabolism of 2-AG.
Collapse
Affiliation(s)
- T Sugiura
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Tsukui-gun, 199-0195, Kanagawa, Japan.
| | | |
Collapse
|
26
|
Abstract
The topic of this review is fatty acid amide hydrolase (FAAH), one of the best-characterized enzymes involved in the hydrolysis of bioactive lipids such as anandamide, 2-arachidonoylglycerol (2-AG), and oleamide. Herein, we discuss the nomenclature, the various assays that have been developed, the relative activity of the various substrates and the reversibility of the enzyme reactions catalyzed by FAAH. We also describe the cloning of the enzyme from rat and subsequent cDNA isolation from mouse, human, and pig. The proteins and the mRNAs from different species are compared. Cloning the enzyme permitted the purification and characterization of recombinant FAAH. The conserved regions of FAAH are described in terms of sequence and function, including the amidase domain which contains the serine catalytic nucleophile, the hydrophobic domain important for self association, and the proline rich domain region, which may be important for subcellular localization. The distribution of FAAH in the major organs of the body is described as well as regional distribution in the brain and its correlation with cannabinoid receptors. Since FAAH is recognized as a drug target, a large number of inhibitors have been synthesized and tested since 1994 and these are reviewed in terms of reversibility, potency, and specificity for FAAH and cannabinoid receptors.
Collapse
Affiliation(s)
- N Ueda
- Department of Biochemistry, School of Medicine, University of Tokushima, Kuramoto-cho, 770-8503, Tokushima, Japan
| | | | | | | |
Collapse
|
27
|
Paria BC, Dey SK. Ligand-receptor signaling with endocannabinoids in preimplantation embryo development and implantation. Chem Phys Lipids 2000; 108:211-20. [PMID: 11106792 DOI: 10.1016/s0009-3084(00)00197-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although adverse effects of cannabinoids on pregnancy have been indicated for many years, the mechanisms by which they exert their actions were not clearly understood. Only recently, molecular and biochemical approaches have led to the identification of two types of cannabinoid receptors, brain-type receptors (CB1-R) and spleen-type receptors (CB2-R), which mediate cannabinoid effects. These findings were followed by the discovery of endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG). The natural cannabinoids and endocannabinoids exert their effects via cannabinoid receptors and share similar pharmacological and physiological properties. Recent demonstration of expression of functional CB1-R in the preimplantation embryo and synthesis of anandamide in the pregnant uterus of mice suggests that cannabinoid ligand-receptor signaling is operative in the regulation of preimplantation embryo development and implantation. This review describes recent observations and their significance in embryo-uterine interactions during implantation and future research directions in this emerging area of interest.
Collapse
Affiliation(s)
- B C Paria
- Department of Pediatrics, Ralph L. Smith Research Center, University of Kansas Medical Center, Kansas City, KS 66160-7338, USA
| | | |
Collapse
|
28
|
Schmid HH. Pathways and mechanisms of N-acylethanolamine biosynthesis: can anandamide be generated selectively? Chem Phys Lipids 2000; 108:71-87. [PMID: 11106783 DOI: 10.1016/s0009-3084(00)00188-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Long-chain N-acylethanolamines (NAEs) and their precursors, N-acylethanolamine phospholipids, are ubiquitous trace constituents of animal and human cells, tissues and body fluids. Their cellular levels appear to be tightly regulated and they accumulate as the result of injury. Saturated and monounsaturated congeners which represent the vast majority of cellular NAEs can have cytoprotective effects while polyunsaturated NAEs, especially 20:4n-6 NAE (anandamide), elicit physiological effects by binding to and activating cannabinoid receptors. It is the purpose of this article to review published data on the pathways and mechanisms of NAE biosynthesis in mammals and to evaluate this information for its physiological significance. The generation and turnover of NAE via N-acyl PE through the transacylation-phosphodiesterase pathway may represent a novel cannabinoid receptor-independent signalling system, analogous to and possibly related to ceramide-mediated cell signalling.
Collapse
Affiliation(s)
- H H Schmid
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912, USA.
| |
Collapse
|
29
|
Abstract
Anandamide (N-arachidonoylethanolamine) loses its cannabimimetic activity when it is hydrolyzed to arachidonic acid and ethanolamine by the catalysis of an enzyme referred to as anandamide amidohydrolase or fatty acid amide hydrolase. Cravatt's group and our group cloned cDNA of the enzyme from rat, human, mouse and pig, and the primary structures revealed that the enzymes belong to an amidase family characterized by the amidase signature sequence. The recombinant enzyme acted not only as an amidase for anandamide and oleamide, but also as an esterase for 2-arachidonoylglycerol. The reversibility of the enzymatic anandamide hydrolysis and synthesis was also confirmed with a purified recombinant enzyme. Several fatty acid derivatives like methyl arachidonyl fluorophosphonate potently inhibited the enzyme. The enzyme was distributed widely in mammalian organs such as liver, small intestine and brain. However, the anandamide hydrolyzing enzyme found in human megakaryoblastic cells was catalytically distinct from the previously known enzyme.
Collapse
Affiliation(s)
- N Ueda
- Department of Biochemistry, Tokushima University School of Medicine, 3-18-15, Kuramoto-cho, Tokushima, Japan.
| | | |
Collapse
|
30
|
Hillard CJ. Biochemistry and pharmacology of the endocannabinoids arachidonylethanolamide and 2-arachidonylglycerol. Prostaglandins Other Lipid Mediat 2000; 61:3-18. [PMID: 10785538 DOI: 10.1016/s0090-6980(00)00051-4] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The purpose of this review is to discuss the cellular synthesis and inactivation of two putative endogenous ligands of the cannabinoid receptor, N-arachidonylethanolamine (AEA) and 2-arachidonylglycerol (2-AG). Both ligands are synthesized by neurons and brain tissue in response to increased intracellular calcium concentrations. Both ligands are substrates for fatty acid amide hydrolase (FAAH). Both AEA and 2-AG bind to the neuronal form of the cannabinoid receptor (CB1). AEA binds the receptor with moderate affinity and has the characteristics of a partial agonist, whereas, 2-AG binds with low affinity but exhibits full efficacy. Two possible physiological roles of the endocannabinoids and the CB1 receptor are discussed: the regulation of gestation and the regulation of gastrointestinal motility.
Collapse
Affiliation(s)
- C J Hillard
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA.
| |
Collapse
|
31
|
Kuwae T, Shiota Y, Schmid PC, Krebsbach R, Schmid HH. Biosynthesis and turnover of anandamide and other N-acylethanolamines in peritoneal macrophages. FEBS Lett 1999; 459:123-7. [PMID: 10508930 DOI: 10.1016/s0014-5793(99)01226-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Polyunsaturated N-acylethanolamines (NAEs), including anandamide (20:4n-6 NAE), elicit a variety of biological effects through cannabinoid receptors, whereas saturated and monounsaturated NAEs are inactive. Arachidonic acid mobilization induced by treatment of intact mouse peritoneal macrophages with Ca2+ ionophore A23187 had no effect on the production of NAE or its precursor N-acylphosphatidylethanolamine (N-acyl PE). Addition of exogenous ethanolamine resulted in enhanced NAE synthesis by its N-acylation with endogenous fatty acids, but this pathway was not selective for arachidonic acid. Incorporation of (18)O from H2 (18)O-containing media into the amide carbonyls of both NAE and N-acyl PE demonstrated a rapid, constitutive turnover of both lipids.
Collapse
Affiliation(s)
- T Kuwae
- Faculty of Pharmaceutical Sciences, Josai University, Keyakiday, Sakado, Saitama, Japan
| | | | | | | | | |
Collapse
|
32
|
Katayama K, Ueda N, Katoh I, Yamamoto S. Equilibrium in the hydrolysis and synthesis of cannabimimetic anandamide demonstrated by a purified enzyme. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1440:205-14. [PMID: 10521704 DOI: 10.1016/s1388-1981(99)00124-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Anandamide, an endogenous ligand for cannabinoid receptors, loses its biological activities when it is hydrolyzed to arachidonic acid and ethanolamine by anandamide amidohydrolase. We overexpressed a recombinant rat enzyme with a hexahistidine tag in a baculovirus-insect cell expression system, and purified the enzyme with the aid of a Ni-charged resin to a specific activity as high as 5.7 micromol/min/mg protein. The purified recombinant enzyme catalyzed not only the hydrolysis of anandamide and palmitoylethanolamide, but also their reverse synthetic reactions. In order to attain an equilibrium of the anandamide hydrolysis and its reverse reaction within 10 min, we utilized a large amount of the purified enzyme. The equilibrium constant ([arachidonic acid][ethanolamine])/([anandamide][water]) was calculated as 4x10(-3) (37 degrees C, pH 9.0). These experimental results with a purified enzyme preparation quantitatively confirmed the reversibility of the enzyme reaction previously observed with crude enzyme preparations.
Collapse
Affiliation(s)
- K Katayama
- Department of Cardiovascular Surgery, Tokushima University, School of Medicine, Kuramoto-cho, Tokushima 770-8503, Japan
| | | | | | | |
Collapse
|
33
|
Abstract
The characterization of cannabinoid receptors and signal transduction mechanisms provided the impetus for the searching for endogenous ligands for this system. The result was a family of fatty acid derivatives that interact with cannabinoid receptors to varying degrees. The two ligands that have received the most attention are anandamide (AN) and 2-arachidonolyl-glycerol (Ara-Gl). They are both present in central as well as peripheral tissues. Mechanisms for the synthesis and metabolism of AN have been described. Presently, the physiological stimuli for production and release of AN are unknown. As a result, elucidation of its physiological role remains elusive. However, it seems reasonable to conclude that both AN and 2-Ara-Gl interact with cannabinoid receptors in both peripheral and central tissue to produce a wide range of effects. Administration of these ligands to laboratory animals produce effects that are quite similar to those elicited by delta9-tetrahydrocannabinol (THC), the psychoactive constituent in marijuana. Nevertheless, there are some pharmacological differences between the plant-derived THC and the endogenous cannabinoids that could be due to either pharmadynamic or pharmacokinetics dissimilarities. Extensive structure-activity relationship studies have provided some vital insights into the actions of the endogenous ligands. First and foremost, systematic structural alterations in AN have additional support that it is acting at the cannabinoid receptors in a fashion similar to that of THC. Development of metabolically stable analogs of AN, as well as those with greater receptor affinity, have helped substantiate AN and THC similarities. Nevertheless, pharmacological differences remain between the endogenous and exogenous ligands. Whether these differences are due to the nature of their interaction with the cannabinoid receptors, activation of unique signaling pathways, interactions with non-cannabinoid receptors, or pharmacokinetic considerations remain to be resolved.
Collapse
Affiliation(s)
- B R Martin
- Virginia Commonwealth University, Richmond 23298-0613, USA
| | | | | |
Collapse
|
34
|
Di Marzo V. Biosynthesis and inactivation of endocannabinoids: relevance to their proposed role as neuromodulators. Life Sci 1999; 65:645-55. [PMID: 10462065 DOI: 10.1016/s0024-3205(99)00287-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The two putative endogenous ligands of cannabinoid receptors, anandamide and 2-arachidonoylglycerol, are synthesized by and released from neurons in a Ca2+-dependent fashion, and re-uptaken and catabolized by both neurons and astrocytes. These biochemical features of the endocannabinoids, as well as some of their pharmacological effects in both central and peripheral nervous systems, suggest a role as neuromodulators for these metabolites. This neuromodulatory role is supported by the brain regional distribution of anandamide, its biosynthetic precursor and its major inactivating enzyme, and by the existence of possible regulatory mechanisms for the biosynthesis and inactivation of endocannabinoids, which are reviewed in this article.
Collapse
Affiliation(s)
- V Di Marzo
- Istituto per la Chimica di Molecole di Interesse Biologico, C.N.R., Napoli, Italy.
| |
Collapse
|
35
|
Abstract
Cannabinoids have a long history of consumption for recreational and medical reasons. The primary active constituent of the hemp plant Cannabis sativa is delta9-tetrahydrocannabinol (delta9-THC). In humans, psychoactive cannabinoids produce euphoria, enhancement of sensory perception, tachycardia, antinociception, difficulties in concentration and impairment of memory. The cognitive deficiencies seem to persist after withdrawal. The toxicity of marijuana has been underestimated for a long time, since recent findings revealed delta9-THC-induced cell death with shrinkage of neurons and DNA fragmentation in the hippocampus. The acute effects of cannabinoids as well as the development of tolerance are mediated by G protein-coupled cannabinoid receptors. The CB1 receptor and its splice variant CB1A, are found predominantly in the brain with highest densities in the hippocampus, cerebellum and striatum. The CB2 receptor is found predominantly in the spleen and in haemopoietic cells and has only 44% overall nucleotide sequence identity with the CB1 receptor. The existence of this receptor provided the molecular basis for the immunosuppressive actions of marijuana. The CB1 receptor mediates inhibition of adenylate cyclase, inhibition of N- and P/Q-type calcium channels, stimulation of potassium channels, and activation of mitogen-activated protein kinase. The CB2 receptor mediates inhibition of adenylate cyclase and activation of mitogen-activated protein kinase. The discovery of endogenous cannabinoid receptor ligands, anandamide (N-arachidonylethanolamine) and 2-arachidonylglycerol made the notion of a central cannabinoid neuromodulatory system plausible. Anandamide is released from neurons upon depolarization through a mechanism that requires calcium-dependent cleavage from a phospholipid precursor in neuronal membranes. The release of anandamide is followed by rapid uptake into the plasma and hydrolysis by fatty-acid amidohydrolase. The psychoactive cannabinoids increase the activity of dopaminergic neurons in the ventral tegmental area-mesolimbic pathway. Since these dopaminergic circuits are known to play a pivotal role in mediating the reinforcing (rewarding) effects of the most drugs of abuse, the enhanced dopaminergic drive elicited by the cannabinoids is thought to underlie the reinforcing and abuse properties of marijuana. Thus, cannabinoids share a final common neuronal action with other major drugs of abuse such as morphine, ethanol and nicotine in producing facilitation of the mesolimbic dopamine system.
Collapse
Affiliation(s)
- A Ameri
- Department of Pharmacy and Pharmacology of Natural Compounds, University of Ulm, Germany
| |
Collapse
|
36
|
Yang HY, Karoum F, Felder C, Badger H, Wang TC, Markey SP. GC/MS analysis of anandamide and quantification of N-arachidonoylphosphatidylethanolamides in various brain regions, spinal cord, testis, and spleen of the rat. J Neurochem 1999; 72:1959-68. [PMID: 10217273 DOI: 10.1046/j.1471-4159.1999.0721959.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anandamide [N-arachidonoylethanolamide (NAE)] was initially isolated from porcine brain and proposed as an endogenous ligand for cannabinoid receptors in 1992. Accumulating evidence has now suggested that, in the tissue, NAE is generated from N-arachidonoylphosphatidylethanolamides (N-ArPEs) by phosphodiesterase. In this study a sensitive and specific procedure was developed to quantify NAE and N-ArPE, including organic solvent extraction, reverse-phase C-18 cartridge separation, derivatization, and gas chromatography/mass spectrometry (GC/MS) analysis. NAE is converted by a two-step derivatization procedure to a pentafluorobenzoyl ester followed by pentafluoropropionyl acylation. Quantification was performed by isotope dilution GC/MS using deuterium-labeled NAE (NAE-2H8) as an internal standard. The same chemical derivatization was applicable to N-ArPE quantification. The separated N-ArPE fractions were converted by a two-step cleavage/derivatization procedure into the pentafluorobenzoyl ester of NAE and then to its pentafluoropropionyl amide. The derivative was quantified by GC/MS using deuterium-labeled 1,2-[2H8]dioleoyl-sn-glycero-3-phospho(arachidonoyl)ethanolamid e as an internal standard. Using these methods, we have found that endogenous NAE levels in rat brain, spleen, testis, liver, lung, and heart were below the level of quantification achievable (0.1 pmol/mg of protein) but that N-ArPE is readily quantifiable and is widely distributed in the rat CNS with the highest level in the spinal cord. The striatum, hippocampus, and accumbens contain intermediate concentrations of N-ArPE, whereas the value is lowest in the cerebellum.
Collapse
Affiliation(s)
- H Y Yang
- National Institute of Mental Health, Neuroscience Center at St. Elizabeths, Washington, DC
| | | | | | | | | | | |
Collapse
|
37
|
Maccarrone M, Bari M, Menichelli A, Del Principe D, Agrò AF. Anandamide activates human platelets through a pathway independent of the arachidonate cascade. FEBS Lett 1999; 447:277-82. [PMID: 10214961 DOI: 10.1016/s0014-5793(99)00308-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Anandamide (arachidonoylethanolamide, AnNH) is shown to activate human platelets, a process which was not inhibited by acetylsalicylic acid (aspirin). Unlike AnNH, hydroperoxides generated thereof by lipoxygenase activity, and the congener (13-hydroxy)linoleoylethanolamide, were unable to activate platelets, though they counteracted AnNH-mediated stimulation. On the other hand, palmitoylethanolamide neither activated human platelets nor blocked the AnNH effects. AnNH inactivation by human platelets was afforded by a high-affinity transporter, which was activated by nitric oxide-donors up to 225% of the control. The internalized AnNH could thus be hydrolyzed by a fatty acid amide hydrolase (FAAH), characterized here for the first time.
Collapse
Affiliation(s)
- M Maccarrone
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Italy
| | | | | | | | | |
Collapse
|
38
|
Basavarajappa BS, Hungund BL. Chronic ethanol increases the cannabinoid receptor agonist anandamide and its precursor N-arachidonoylphosphatidylethanolamine in SK-N-SH cells. J Neurochem 1999; 72:522-8. [PMID: 9930723 DOI: 10.1046/j.1471-4159.1999.0720522.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In an earlier study, we demonstrated that chronic ethanol (EtOH) exposure down-regulated the cannabinoid receptors (CB1) in mouse brain synaptic plasma membrane. In the present study, we investigated the effect of chronic EtOH on the formation of anandamide (AnNH), an endogenous cannabimimetic compound, and its precursor N-arachidonoylphosphatidylethanolamine (N-ArPE) in SK-N-SH cells that were prelabeled with [3H]arachidonic acid. The results indicate that exposure of SK-N-SH cells to EtOH (100 mM) for 72 h significantly increased levels of [3H]AnNH and [3H]N-ArPE (p < 0.05) (1.43-fold for [3H]AnNH and 1.65-fold for [3H]N-ArPE). Exposure of SK-N-SH cells to EtOH (100 mM, 24 h) inhibited initially the formation of [3H]AnNH at 24 h, followed by a progressive increase, reaching a statistical significance level at 72 h (p < 0.05). [3H]N-ArPE increased gradually to a statistically significant level after 48 and 72 h (p < 0.05). Incubation with exogenous ethanolamine (7 mM) and EtOH (100 mM, 72 h) did not result in an additive increase in the formation of [3H]AnNH. The formation of [3H]AnNH and [3H]N-ArPE by EtOH was enhanced by the Ca2+ ionophore A23187 or by the depolarizing agent veratridine and the K+ channel blocker 4-aminopyridine. Further, the EtOH-induced formation of [3H]AnNH and [3H]N-ArPE was inhibited by exogenous AnNH, whereas only [3H]AnNH formation was inhibited by the CB1 receptor antagonist SR141716A and pertussis toxin, suggesting that the CB1 receptor and G(i/o) protein mediated the regulation of AnNH levels. The observed increase in the levels of these lipids in SK-N-SH cells may be a mechanism for neuronal adaptation and may serve as a compensatory mechanism to counteract the continuous presence of EtOH. The present observation taken together with our previous results indicate the involvement of the endocannabinoid system in mediating some of the pharmacological actions of EtOH and may constitute part of a common brain pathway mediating reinforcement of drugs of abuse including EtOH.
Collapse
Affiliation(s)
- B S Basavarajappa
- Division of Analytical Psychopharmacology, New York State Psychiatric Institute at Nathan S. Kline Institute for Psychiatric Research, Orangeburg 10962, USA
| | | |
Collapse
|
39
|
Sugiura T, Kodaka T, Nakane S, Miyashita T, Kondo S, Suhara Y, Takayama H, Waku K, Seki C, Baba N, Ishima Y. Evidence that the cannabinoid CB1 receptor is a 2-arachidonoylglycerol receptor. Structure-activity relationship of 2-arachidonoylglycerol, ether-linked analogues, and related compounds. J Biol Chem 1999; 274:2794-801. [PMID: 9915812 DOI: 10.1074/jbc.274.5.2794] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An endogenous cannabimimetic molecule, 2-arachidonoylglycerol, induces a rapid, transient increase in intracellular free Ca2+ concentrations in NG108-15 cells through a cannabinoid CB1 receptor-dependent mechanism. We examined the activities of 24 relevant compounds (2-arachidonoylglycerol, its structural analogues, and several synthetic cannabinoids). We found that 2-arachidonoylglycerol is the most potent compound examined so far: its activity was detectable from as low as 0.3 nM, and the maximal response induced by 2-arachidonoylglycerol exceeded the responses induced by others. Activities of HU-210 and CP55940, potent cannabinoid receptor agonists, were also detectable from as low as 0.3 nM, whereas the maximal responses induced by these compounds were low compared with 2-arachidonoylglycerol. Anandamide was also found to act as a partial agonist in this assay system. We confirmed that free arachidonic acid failed to elicit a response. Furthermore, we found that a metabolically stable ether-linked analogue of 2-arachidonoylglycerol possesses appreciable agonistic activity, although its activity was apparently lower than that of 2-arachidonoylglycerol. We also confirmed that pretreating cells with various cannabinoid receptor agonists nullified the response induced by 2-arachidonoylglycerol, whereas pretreating cells with other neurotransmitters or neuromodulators did not affect the response. These results strongly suggested that the cannabinoid CB1 receptor is originally a 2-arachidonoylglycerol receptor, and 2-arachidonoylglycerol is the intrinsic physiological ligand for the cannabinoid CB1 receptor.
Collapse
Affiliation(s)
- T Sugiura
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-0195, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
In 1992 the discovery of the first endogenous ligand of cannabinoid receptors, anandamide, provided conclusive support to the hypothesis that an "endogenous cannabinoid regulatory system" exists in mammalian nervous tissue. Anandamide (N-arachidonoyl-ethanolamine) was the first of a series of long-chain fatty acid derivatives, including two other polyunsaturated N-acylethanolamines and 2-arachidonoyl-glycerol, found to exert cannabimimetic properties in either central or peripheral tissues. Here we review the current knowledge on the biochemical bases of the formation and inactivation of endogenous cannabinoid ligands as well as of their interaction with cannabinoid receptor subtypes.
Collapse
Affiliation(s)
- V Di Marzo
- Istituto per la Chimica di Molecole di Interesse Biologico, CNR, Naples, Italy
| | | |
Collapse
|
41
|
Pan X, Ikeda SR, Lewis DL. SR 141716A acts as an inverse agonist to increase neuronal voltage-dependent Ca2+ currents by reversal of tonic CB1 cannabinoid receptor activity. Mol Pharmacol 1998; 54:1064-72. [PMID: 9855635 DOI: 10.1124/mol.54.6.1064] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The CB1 cannabinoid receptor antagonist SR 141716A abolished the inhibition of Ca2+ currents by the agonist WIN 55,212-2. However, SR 141716A alone increased Ca2+ currents, with an EC50 of 32 nM, in neurons that had been microinjected with CB1 cRNA. For an antagonist to elicit an effect, some receptors must be tonically active. Evidence for tonically active CB1 receptors was seen as enhanced tonic inhibition of Ca2+ currents. Preincubation with anandamide failed to enhance the effect of SR 141716A, indicating that anandamide did not cause receptor activity. Under Ca2+-free conditions designed to block the Ca2+-dependent formation of anandamide and sn-2-arachidonylglycerol, SR 141716A again increased the Ca2+ current. The Ca2+ current was tonically inhibited in neurons expressing the mutant K192A receptor, which has no affinity for anandamide, demonstrating that this receptor is also tonically active. SR 141716A had no effect on the Ca2+ current in these neurons, but SR 141716A could still antagonize the effect of WIN 55, 212-2. Thus, the K192 site is critical for the inverse agonist activity of SR 141716A. SR 141716A appeared to become a neutral antagonist at the K192A mutant receptor. Native cannabinoid receptors were studied in male rat major pelvic ganglion neurons, where it was found that WIN 55,212-2 inhibited and SR 141716A increased Ca2+ currents. Taken together, our results demonstrate that a population of native and cloned CB1 cannabinoid receptors can exist in a tonically active state that can be reversed by SR 141716A, which acts as an inverse agonist.
Collapse
Affiliation(s)
- X Pan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia 30912-2300, USA
| | | | | |
Collapse
|
42
|
Affiliation(s)
- D Piomelli
- Neurosciences Institute, San Diego, California 92121, USA
| | | | | | | |
Collapse
|
43
|
Pestonjamasp VK, Burstein SH. Anandamide synthesis is induced by arachidonate mobilizing agonists in cells of the immune system. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1394:249-60. [PMID: 9795237 DOI: 10.1016/s0005-2760(98)00110-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The hypothesis that the capability of agents to mobilize arachidonic acid (AA) could predict increased anandamide (ANA) synthesis in a macrophage cell line has been examined. Lipopolysaccharide (LPS), platelet-activating factor (PAF) and cannabinoids such as Delta9-tetrahydrocannabinol (THC) and anandamide were all found to be agonists for the release of AA and led to increased ANA synthesis in RAW264.7 mouse macrophage cells. Nitric oxide, in contrast, stimulated AA release without raising ANA levels. ANA stimulation of its own synthesis indicates the existence of a positive feedback mechanism. The possible involvement of the CB2 receptor in THC-mediated AA release and ANA synthesis is addressed using the antagonist SR144528. ANA synthesis is also increased by the combination of calcium ionophore and indomethacin, suggesting that ANA is metabolized by a cyclooxygenase in this system. The data imply that ANA could play a role in the response of the immune system to cannabinoids and bacterial endotoxins and that AA mobilization is a predictor for increased ANA synthesis.
Collapse
Affiliation(s)
- V K Pestonjamasp
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
44
|
Tsou K, Nogueron MI, Muthian S, Sañudo-Pena MC, Hillard CJ, Deutsch DG, Walker JM. Fatty acid amide hydrolase is located preferentially in large neurons in the rat central nervous system as revealed by immunohistochemistry. Neurosci Lett 1998; 254:137-40. [PMID: 10214976 DOI: 10.1016/s0304-3940(98)00700-9] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The distribution in the rat brain of fatty acid amide hydrolase (FAAH) an enzyme that catalyzes the hydrolysis of the endogenous cannabinoid anandamide was studied by immunohistochemistry. An immunopurified, polyclonal antibody to the C terminal region of FAAH was used in these studies. The large principal neurons, such as pyramidal cells in the cerebral cortex, the pyramidal cells the hippocampus, Purkinje cells in the cerebellar cortex and the mitral cells in the olfactory bulb, showed the strongest FAAH immunoreactivity. These FAAH-containing principal neurons except the mitral cells in the olfactory bulb are in close proximity with cannabinoid CB1 receptors as revealed by our previous immunohistochemical study. Moderately or lightly stained FAAH-containing neurons were also found in the amygdala, the basal ganglia, the deep cerebellar nuclei, the ventral posterior nuclei of the thalamus, the optic layer and the intermediate white layer of the superior colliculus and the red nucleus in the midbrain, and motor neurons of the spinal cord. These data demonstrate that FAAH is heterogeneously distributed and this distribution exhibits considerable, although not complete, overlap with the distribution of cannabinoid CB1 receptors in rat brain.
Collapse
Affiliation(s)
- K Tsou
- Department of Psychology, Brown University, Providence, RI 02912, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Di Marzo V. 'Endocannabinoids' and other fatty acid derivatives with cannabimimetic properties: biochemistry and possible physiopathological relevance. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1392:153-75. [PMID: 9630590 DOI: 10.1016/s0005-2760(98)00042-3] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The only endogenous substances isolated and characterised so far that are capable of mimicking the pharmacological actions of the active principle of marijuana, (-)-Delta9-tetrahydrocannabinol, are amides and esters of fatty acids. Some of these compounds, like anandamide (N-arachidonoylethanolamine) and 2-arachidonoylglycerol, act as true 'endogenous cannabinoids' by binding and functionally activating one or both cannabinoid receptor subtypes present on nervous and peripheral cell membranes. The metabolic pathways and molecular mode of actions of these metabolites, as well as their possible implication in physiopathological responses, are reviewed here.
Collapse
Affiliation(s)
- V Di Marzo
- Istituto per la Chimica di Molecole di Interesse Biologico1, C.N.R., Via Toiano 6, 80072 Arco Felice, Naples, Italy.
| |
Collapse
|
46
|
Abstract
Marijuana has been in use for over 4000 years as a therapeutic and as a recreational drug. Within the past decade, two cannabinoid receptor types have been identified, their signal transduction characterized, and an endogenous lipid agonist isolated from mammalian tissues. The CB1 cannabinoid receptor is widely distributed in mammalian tissues, with the highest concentrations found in brain neurons. CB1 receptors are coupled to modulation of adenylate cyclase and ion channels. The CB2 receptor is found in cells of the immune system and is coupled to inhibition of adenylate cyclase. Both receptor types selectively bind delta 9-THC, the active principle in marijuana, and anandamide (arachidonylethanolamide), an endogenous cannabimimetic eicosanoid. Progress is being made in the development of novel agonists and antagonists with receptor subtype selectivity, mice with genetic deletion of the cannabinoid receptors, and receptor-specific antibodies, which should help in providing a better understanding of the physiological role of the cannabinoid receptors.
Collapse
Affiliation(s)
- C C Felder
- Neuroscience Discovery, Eli Lilly Research Laboratory, Indianapolis, Indiana 46285, USA.
| | | |
Collapse
|
47
|
Smith FL, Fujimori K, Lowe J, Welch SP. Characterization of delta9-tetrahydrocannabinol and anandamide antinociception in nonarthritic and arthritic rats. Pharmacol Biochem Behav 1998; 60:183-91. [PMID: 9610941 DOI: 10.1016/s0091-3057(97)00583-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Little is known about the effectiveness of delta9-tetrahydrocannabinol (THC) and anandamide in blocking mechanical nociception. Even less is known about their antinociceptive efficacy in chronic inflammatory arthritis induced by Freund's complete adjuvant. The hypothesis was tested that THC and anandamide elicit antinociception in the paw pressure test, and that arthritic rats would exhibit a different response. In nonarthritic rats, THC- and anandamide-induced antinociception lasted 90 min and 15 min, respectively, while antinociception lasted 90 min and 30 min, respectively, in arthritic rats. Area under the curve calculations revealed no effect of arthritis on THC- and anandamide-induced antinociception. Another hypothesis was that paw pressure thresholds in arthritic rats reflect chronic cannabinoid receptor stimulation due to elevations in free anandamide levels. Yet, the CB1 receptor antagonist SR141716A failed to alter paw pressure thresholds in either nonarthritic or arthritic rats. Further investigation revealed that SR141716A significantly blocked THC antinociception, with no effect on anandamide. Thus, anandamide's effects did not result from CB1 receptor stimulation, and any potential contribution of endogenous anandamide in arthritis was not revealed. Finally, THC and anandamide appear to release an as yet unknown endogenous opioid, because naloxone significantly blocked their effects. This study indicates that anandamide and THC may act at different receptor sites to modulate endogenous opioid levels in mechanical nociception.
Collapse
Affiliation(s)
- F L Smith
- Department of Pharmacology and Toxicology, Medical College of Virginia, Richmond 23298-0613, USA
| | | | | | | |
Collapse
|
48
|
Schmid PC, Schwindenhammer D, Krebsbach RJ, Schmid HH. Alternative pathways of anandamide biosynthesis in rat testes. Chem Phys Lipids 1998; 92:27-35. [PMID: 9631536 DOI: 10.1016/s0009-3084(97)00109-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have investigated the biosynthesis of long-chain N-acylethanolamines (NAEs) from endogenous substrates in rat testes membranes with special emphasis on anandamide (20:4n-6 NAE), a cannabinoid receptor agonist. Incubation of various membrane preparations with 5 mM Ca2+ produced both N-acyl phosphatidylethanolamine (N-acyl PE) and NAE with primarily (approximately 85%) N-palmitoyl groups (16:0 NAE) and less than 2% 20:4n-6 NAE. In contrast, incubation of these membranes with 5 mM EGTA and 10 mM ethanolamine had little effect on N-acyl PE composition but yielded NAEs whose major constituent (32-37%) was anandamide. Incubations with [1,1,2,2,-2H4]ethanolamine in media containing 40% H2(18)O showed that the Ca(2+)-independent NAE synthesis occurred by direct condensation of ethanolamine with free fatty acids present in the membrane preparation. This biosynthetic activity occurred at ethanolamine concentrations as low as 50 microM and exhibited substrate selectivity for arachidonate which increased with increasing ethanolamine concentrations. The results of inhibitor experiments suggest that the Ca(2+)-independent NAE synthesis was catalyzed by the NAE amidohydrolase acting in reverse. This condensation reaction could be important in agonist-induced anandamide synthesis for cell signalling through cannabinoid receptors.
Collapse
Affiliation(s)
- P C Schmid
- Hormel Institute, University of Minnesota, Austin 55912, USA
| | | | | | | |
Collapse
|
49
|
McAndrew RS, Chapman KD. Enzymology of cottonseed microsomal N-acylphosphatidylethanolamine synthase: kinetic properties and mechanism-based inactivation. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1390:21-36. [PMID: 9487138 DOI: 10.1016/s0005-2760(97)00166-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An ATP-, Ca2+-, and CoA-independent acyltransferase activity, designated "N-acylphosphatidylethanolamine (NAPE) synthase", was reported to catalyze the direct acylation of phosphatidylethanolamine (PE) with free fatty acids (FFAs) in cottonseed microsomes [K.D. Chapman, T.S. Moore, Jr., Plant Physiol. 102 (3) (1993) 761-769]. Here, NAPE synthase was purified 138, 176-fold from crude cottonseed homogenates to a specific activity of 5.98 mumol min-1 mg-1 protein by immobilized artificial membrane chromatography. Enzyme purity was confirmed by the presence of a 64 kDa polypeptide in fractions analyzed by tricine-SDS-PAGE. Initial velocity measurements with various free fatty acids ([14C]-linoleic, -palmitic, -oleic, -stearic and -myristic acids) and saturating concentrations of dioleoyl-PE revealed non-Michaelis-Menten, biphasic kinetics with high and low affinity sites demonstrating positive cooperativity specific for each [14C]-FFA. In contrast to FFA substrates, no kinetic differences were observed for two different molecular species of PE, (18:1,18:1)-PE and (16:0,18:2)-PE, and biphasic curves were not pronounced. Neither [14C]-dipalmitoylphosphatidylcholine nor [14C]-palmitoyl-CoA served as acyl donors for the synthesis of NAPE, indicating a preference for FFAs as the acyl donor. Also, neither ethanolamine nor sphingosine functioned as acyl acceptor molecule to form N-acylethanolamine or ceramide, respectively, indicating specificity for the phospholipid PE. NAPE synthase was inactivated in a time- and concentration-dependent manner by diisopropylfluorophosphate (DFP) through the apparent modification of one serine residue. Palmitic acid protected the enzyme from DFP-inactivation and [14C]-DFP incorporation, suggesting that a serine residue probably binds FFAs in the enzyme's active site forming an acyl-enzyme intermediate. Collectively, these results provide new information on the kinetic behavior of a purified, integral membrane enzyme which synthesizes a bilayer-stabilizing product from two lipid-soluble substrates. The biochemical properties of cottonseed NAPE synthase are consistent with a possible free fatty acid scavenging role in vivo. (c) 1998 Elsevier Science B.V.
Collapse
Affiliation(s)
- R S McAndrew
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, TX 76203-5220, USA
| | | |
Collapse
|
50
|
Hillard CJ, Campbell WB. Biochemistry and pharmacology of arachidonylethanolamide, a putative endogenous cannabinoid. J Lipid Res 1997. [DOI: 10.1016/s0022-2275(20)30024-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|