1
|
The Mammary Gland: Basic Structure and Molecular Signaling during Development. Int J Mol Sci 2022; 23:ijms23073883. [PMID: 35409243 PMCID: PMC8998991 DOI: 10.3390/ijms23073883] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
The mammary gland is a compound, branched tubuloalveolar structure and a major characteristic of mammals. The mammary gland has evolved from epidermal apocrine glands, the skin glands as an accessory reproductive organ to support postnatal survival of offspring by producing milk as a source of nutrition. The mammary gland development begins during embryogenesis as a rudimentary structure that grows into an elementary branched ductal tree and is embedded in one end of a larger mammary fat pad at birth. At the onset of ovarian function at puberty, the rudimentary ductal system undergoes dramatic morphogenetic change with ductal elongation and branching. During pregnancy, the alveolar differentiation and tertiary branching are completed, and during lactation, the mature milk-producing glands eventually develop. The early stages of mammary development are hormonal independent, whereas during puberty and pregnancy, mammary gland development is hormonal dependent. We highlight the current understanding of molecular regulators involved during different stages of mammary gland development.
Collapse
|
2
|
The convergent roles of the nuclear factor I transcription factors in development and cancer. Cancer Lett 2017; 410:124-138. [PMID: 28962832 DOI: 10.1016/j.canlet.2017.09.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/11/2017] [Accepted: 09/16/2017] [Indexed: 02/07/2023]
Abstract
The nuclear factor I (NFI) transcription factors play important roles during normal development and have been associated with developmental abnormalities in humans. All four family members, NFIA, NFIB, NFIC and NFIX, have a homologous DNA binding domain and function by regulating cell proliferation and differentiation via the transcriptional control of their target genes. More recently, NFI genes have also been implicated in cancer based on genomic analyses and studies of animal models in a variety of tumours across multiple organ systems. However, the association between their functions in development and in cancer is not well described. In this review, we summarise the evidence suggesting a converging role for the NFI genes in development and cancer. Our review includes all cancer types in which the NFI genes are implicated, focusing predominantly on studies demonstrating their oncogenic or tumour-suppressive potential. We conclude by presenting the challenges impeding our understanding of NFI function in cancer biology, and demonstrate how a developmental perspective may contribute towards overcoming such hurdles.
Collapse
|
3
|
Hierarchy within the mammary STAT5-driven Wap super-enhancer. Nat Genet 2016; 48:904-911. [PMID: 27376239 PMCID: PMC4963296 DOI: 10.1038/ng.3606] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/03/2016] [Indexed: 12/14/2022]
Abstract
Super-enhancers comprise of dense transcription factor platforms highly enriched for active chromatin marks. A paucity of functional data led us to investigate their role in the mammary gland, an organ characterized by exceptional gene regulatory dynamics during pregnancy. ChIP-Seq for the master regulator STAT5, the glucocorticoid receptor, H3K27ac and MED1, identified 440 mammary-specific super-enhancers, half of which were associated with genes activated during pregnancy. We interrogated the Wap super-enhancer, generating mice carrying mutations in STAT5 binding sites within its three constituent enhancers. Individually, only the most distal site displayed significant enhancer activity. However, combinatorial mutations showed that the 1,000-fold gene induction relied on all enhancers. Disabling the binding sites of STAT5, NFIB and ELF5 in the proximal enhancer incapacitated the entire super-enhancer, suggesting an enhancer hierarchy. The identification of mammary-specific super-enhancers and the mechanistic exploration of the Wap locus provide insight into the complexity of cell-specific and hormone-regulated genes.
Collapse
|
4
|
Robinson GW, Kang K, Yoo KH, Tang Y, Zhu BM, Yamaji D, Colditz V, Jang SJ, Gronostajski RM, Hennighausen L. Coregulation of genetic programs by the transcription factors NFIB and STAT5. Mol Endocrinol 2014; 28:758-67. [PMID: 24678731 DOI: 10.1210/me.2012-1387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mammary-specific genetic programs are activated during pregnancy by the common transcription factor signal transducer and activator of transcription (STAT) 5. More than one third of these genes carry nuclear factor I/B (NFIB) binding motifs that coincide with STAT5 in vivo binding, suggesting functional synergy between these two transcription factors. The role of NFIB in this governance was investigated in mice from which Nfib had been inactivated in mammary stem cells or in differentiating alveolar epithelium. Although NFIB was not required for alveolar expansion, the combined absence of NFIB and STAT5 prevented the formation of functional alveoli. NFIB controlled the expression of mammary-specific and STAT5-regulated genes and chromatin immunoprecipitation-sequencing established STAT5 and NFIB binding at composite regulatory elements containing histone H3 lysine dimethylation enhancer marks and progesterone receptor binding. By integrating previously published chromatin immunoprecipitation-sequencing data sets, the presence of NFIB-STAT5 modules in other cell types was investigated. Notably, genomic sites bound by NFIB in hair follicle stem cells were also occupied by STAT5 in mammary epithelium and coincided with enhancer marks. Many of these genes were under NFIB control in both hair follicle stem cells and mammary alveolar epithelium. We propose that NFIB-STAT5 modules, possibly in conjunction with other transcription factors, control cell-specific genetic programs.
Collapse
Affiliation(s)
- Gertraud W Robinson
- Laboratory of Genetics and Physiology (G.W.R., K.K., K.H.Y., Y.T., D.Y., V.C., S.J.J., L.H.), National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Department of Microbiology (K.K.), Dankook University, Cheonan 330-714, Republic of Korea; Chengdu University of Traditional Chinese Medicine (Y.T.), Chengdu 610072, Republic of China; Key Laboratory of Acupuncture and Medicine (B.-M.Z.), Nanjing University of Traditional Chinese Medicine, Nanjing 210046, Republic of China; and New York State Center of Excellence in Bioinformatics and Life Sciences (R.M.G.), Department of Biochemistry, Developmental Genomics Group, University at Buffalo, Buffalo, New York 14203
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Epigenetic modifications unlock the milk protein gene loci during mouse mammary gland development and differentiation. PLoS One 2013; 8:e53270. [PMID: 23301053 PMCID: PMC3534698 DOI: 10.1371/journal.pone.0053270] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/27/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Unlike other tissues, development and differentiation of the mammary gland occur mostly after birth. The roles of systemic hormones and local growth factors important for this development and functional differentiation are well-studied. In other tissues, it has been shown that chromatin organization plays a key role in transcriptional regulation and underlies epigenetic regulation during development and differentiation. However, the role of chromatin organization in mammary gland development and differentiation is less well-defined. Here, we have studied the changes in chromatin organization at the milk protein gene loci (casein, whey acidic protein, and others) in the mouse mammary gland before and after functional differentiation. METHODOLOGY/PRINCIPAL FINDINGS Distal regulatory elements within the casein gene cluster and whey acidic protein gene region have an open chromatin organization after pubertal development, while proximal promoters only gain open-chromatin marks during pregnancy in conjunction with the major induction of their expression. In contrast, other milk protein genes, such as alpha-lactalbumin, already have an open chromatin organization in the mature virgin gland. Changes in chromatin organization in the casein gene cluster region that are present after puberty persisted after lactation has ceased, while the changes which occurred during pregnancy at the gene promoters were not maintained. In general, mammary gland expressed genes and their regulatory elements exhibit developmental stage- and tissue-specific chromatin organization. CONCLUSIONS/SIGNIFICANCE A progressive gain of epigenetic marks indicative of open/active chromatin on genes marking functional differentiation accompanies the development of the mammary gland. These results support a model in which a chromatin organization is established during pubertal development that is then poised to respond to the systemic hormonal signals of pregnancy and lactation to achieve the full functional capacity of the mammary gland.
Collapse
|
6
|
Park S, Zhao Y, Yoon S, Xu J, Liao L, Lydon J, DeMayo F, O'Malley BW, Katzenellenbogen BS. Repressor of estrogen receptor activity (REA) is essential for mammary gland morphogenesis and functional activities: studies in conditional knockout mice. Endocrinology 2011; 152:4336-49. [PMID: 21862609 PMCID: PMC3199013 DOI: 10.1210/en.2011-1100] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Estrogen receptor (ER) is a key regulator of mammary gland development and is also implicated in breast tumorigenesis. Because ER-mediated activities depend critically on coregulator partner proteins, we have investigated the consequences of reduction or loss of function of the coregulator repressor of ER activity (REA) by conditionally deleting one allele or both alleles of the REA gene at different stages of mammary gland development. Notably, we find that heterozygosity and nullizygosity for REA result in very different mammary phenotypes and that REA has essential roles in the distinct morphogenesis and functions of the mammary gland at different stages of development, pregnancy, and lactation. During puberty, mice homozygous null for REA in the mammary gland (REAf/f PRcre/+) showed severely impaired mammary ductal elongation and morphogenesis, whereas mice heterozygous for REA (REAf/+ PRcre/+) displayed accelerated mammary ductal elongation, increased numbers of terminal end buds, and up-regulation of amphiregulin, the major paracrine mediator of estrogen-induced ductal morphogenesis. During pregnancy and lactation, mice with homozygous REA gene deletion in mammary epithelium (REAf/f whey acidic protein-Cre) showed a loss of lobuloalveolar structures and increased apoptosis of mammary alveolar epithelium, leading to impaired milk production and significant reduction in growth of their offspring, whereas body weights of the offspring nursed by females heterozygous for REA were slightly greater than those of control mice. Our findings reveal that REA is essential for mammary gland development and has a gene dosage-dependent role in the regulation of stage-specific physiological functions of the mammary gland.
Collapse
Affiliation(s)
- Sunghee Park
- Department of Molecular and Integrative Physiology, University of Illinois, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois 61801-3704, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mukhopadhyay SS, Rosen JM. The C-terminal domain of the nuclear factor I-B2 isoform is glycosylated and transactivates the WAP gene in the JEG-3 cells. Biochem Biophys Res Commun 2007; 358:770-6. [PMID: 17511965 PMCID: PMC1942171 DOI: 10.1016/j.bbrc.2007.04.185] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 04/30/2007] [Indexed: 02/06/2023]
Abstract
The transcription factor nuclear factor I (NFI) has been shown previously both in vivo and in vitro to be involved in the cooperative regulation of whey acidic protein (WAP) gene transcription along with the glucocorticoid receptor and STAT5. In addition, one of the specific NFI isoforms, NFI-B2, was demonstrated in transient co-transfection experiments in JEG cells, which lack endogenous NFI, to be preferentially involved in the cooperative regulation of WAP gene expression. A comparison of the DNA-binding specificities of the different NFI isoforms only partially explained their differential ability to activate the WAP gene transcription. Here, we analyzed the transactivation regions of two NFI isoforms by making chimeric proteins between the NFI-A and B isoforms. Though, their DNA-binding specificities were not altered as compared to the corresponding wild-type transcription factors, the C-terminal region of the NFI-B isoform was shown to preferentially activate WAP gene transcription in cooperation with GR and STAT5 in transient co-transfection assays in JEG-3 cells. Furthermore, determination of serine and threonine-specific glycosylation (O-linked N-acetylglucosamine) of the C-terminus of the NFI-B isoform suggested that the secondary modification by O-GlcNAc might play a role in the cooperative regulation of WAP gene transcription by NFI-B2 and STAT5.
Collapse
Affiliation(s)
- Sudit S Mukhopadhyay
- Department of Molecular and Cancer Genetics, M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
8
|
Abstract
Unique developmental features during puberty, pregnancy, lactation and post-lactation make the mammary gland a prime object to explore genetic circuits that control the specification, proliferation, differentiation, survival and death of cells. Steroids and simple peptide hormones initiate and carry out complex developmental programmes, and reverse genetics has been used to define the underlying mechanistic connections.
Collapse
Affiliation(s)
- Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
9
|
Lipnik K, Petznek H, Renner-Müller I, Egerbacher M, Url A, Salmons B, Günzburg WH, Hohenadl C. A 470 bp WAP-promoter fragment confers lactation independent, progesterone regulated mammary-specific gene expression in transgenic mice. Transgenic Res 2005; 14:145-58. [PMID: 16022386 DOI: 10.1007/s11248-004-7434-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability of a 470 bp sub-fragment of the murine whey acidic protein (WAP) promoter in the context of a retroviral expression plasmid to direct gene expression to mammary epithelial cells was analysed in a number of independent transgenic mouse lines. In contrast to previous findings with the genuine 2.5 kb promoter fragment, our studies revealed a highly mammary gland-specific expression detectable only in non-lactating animals. This suggested a mainly progesterone-regulated activity of the short fragment. Therefore, transgene expression was examined in the progesterone-determined estrous cycle and during pregnancy. In accordance with in vitro data from stably transfected cell lines, in both situations expression was upregulated at stages associated with high progesterone levels. Taken together these data provide deeper insight into WAP-promoter regulation and stress the usefulness of the shortened fragment for a lactation independent mammary-targeted expression.
Collapse
Affiliation(s)
- Karoline Lipnik
- Research Institute for Virology and Biomedicine, University of Veterinary Medicine, A-1210 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Krepulat F, Löhler J, Heinlein C, Hermannstädter A, Tolstonog GV, Deppert W. Epigenetic mechanisms affect mutant p53 transgene expression in WAP-mutp53 transgenic mice. Oncogene 2005; 24:4645-59. [PMID: 15870706 DOI: 10.1038/sj.onc.1208557] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We describe the construction and phenotypic characterization of 23 whey acidic protein (WAP)-mutp53 transgenic mouse lines. The mutp53-expressing lines showed a mosaic expression pattern for the transgenes, leading to a heterogeneous yet mouse line-specific expression pattern for mutp53 upon induction. Only few lines were obtained, in which the majority of the induced mammary epithelial cells expressed the mutp53 transgene, most of the transgenic lines did not express mutp53, or expressed the transgene in less than 2% of the induced mammary epithelial cells. Hormone requirements for mutp53 transgene expression from the WAP-promoter differed in high and low expressing lines, being low in high expressing lines, and even lower in multiparous mutp53 mice, where persistent expression of the transgene occurred. Repeated induction of mutp53 expression through repeated parturition resulted in the formation of expanding mutp53-expressing foci within the mammary alveolar epithelium. The data suggest that epigenetic mechanisms play a role in modulating the expression of the mutp53 transgene. To support this idea, we crossed a nonexpressing WAP-mutp53 line with a strongly SV40 T-antigen-expressing WAP-T mouse line. In the bitransgenic mice, T-antigen-induced chromatin remodeling led to re-expression of epigenetically silenced mutp53 transgene(s). In these mice, mutp53 expression was much more variable compared to SV40 T-antigen expression, and seemed to depend on the coexpression of SV40 T-antigen. Mutp53 expression in this system thus resembles the situation in many human tumors, where one can observe a heterogeneous expression of mutp53, despite a homogeneous distribution of the p53 mutation in the tumor cells.
Collapse
Affiliation(s)
- Frauke Krepulat
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistrasse 52, D-20251 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Cui Y, Riedlinger G, Miyoshi K, Tang W, Li C, Deng CX, Robinson GW, Hennighausen L. Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol Cell Biol 2004; 24:8037-47. [PMID: 15340066 PMCID: PMC515028 DOI: 10.1128/mcb.24.18.8037-8047.2004] [Citation(s) in RCA: 408] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study explored the functions of the signal transducers and activators of transcription 5a and 5b (referred to as Stat5 here) during different stages of mouse mammary gland development by using conditional gene inactivation. Mammary gland morphogenesis includes cell specification, proliferation and differentiation during pregnancy, cell survival and maintenance of differentiation throughout lactation, and cell death during involution. Stat5 is activated by prolactin, and its presence is mandatory for the proliferation and differentiation of mammary epithelium during pregnancy. To address the question of whether Stat5 is also necessary for the maintenance and survival of the differentiated epithelium, the two genes were deleted at different time points. The 110-kb Stat5 locus in the mouse was bracketed with loxP sites, and its deletion was accomplished by using two Cre-expressing transgenic lines. Loss of Stat5 prior to pregnancy prevented epithelial proliferation and differentiation. Deletion of Stat5 during pregnancy, after mammary epithelium had entered Stat5-mediated differentiation, resulted in premature cell death, indicating that at this stage epithelial cell proliferation, differentiation, and survival require Stat5.
Collapse
Affiliation(s)
- Yongzhi Cui
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0822, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Position effects in animal transgenesis have prevented the reproducible success and limited the initial expectations of this technique in many biotechnological projects. Historically, several strategies have been devised to overcome such position effects, including the progressive addition of regulatory elements belonging to the same or to a heterologous expression domain. An expression domain is thought to contain all regulatory elements that are needed to specifically control the expression of a given gene in time and space. The lack of profound knowledge on the chromatin structure of expression domains of biotechnological interest, such as mammary gland-specific genes, explains why most standard expression vectors have failed to drive high-level, position-independent, and copy-number-dependent expression of transgenes in a reproducible manner. In contrast, the application of artificial chromosome-type constructs to animal transgenesis usually ensures optimal expression levels. YACs, BACs, and PACs have become crucial tools in animal transgenesis, allowing the inclusion of distant key regulatory sequences, previously unknown, that are characteristic for each expression domain. These elements contribute to insulating the artificial chromosome-type constructs from chromosomal position effects and are fundamental in order to guarantee the correct expression of transgenes.
Collapse
Affiliation(s)
- Lluís Montoliu
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Molecular and Cellular Biology, Madrid, Spain.
| |
Collapse
|
13
|
Kane R, Murtagh J, Finlay D, Marti A, Jaggi R, Blatchford D, Wilde C, Martin F. Transcription factor NFIC undergoes N-glycosylation during early mammary gland involution. J Biol Chem 2002; 277:25893-903. [PMID: 11991954 DOI: 10.1074/jbc.m202469200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of a 74-kDa nuclear factor I (NFI) protein is triggered in early involution in the mouse mammary gland, and its expression correlates with enhanced occupation of a twin (NFI) binding element in the clusterin promoter, a gene whose transcription is induced at this time (Furlong, E. E., Keon, N. K., Thornton, F. D., Rein, T., and Martin, F. (1996) J. Biol. Chem. 271, 29688-29697). We now identify this 74-kDa NFI as an NFIC isoform based on its interaction in Western analysis with two NFIC-specific antibodies. A transition from the expression of a 49-kDa NFIC in lactation to the expression of the 74-kDa NFIC in early involution is demonstrated. We show that the 74-kDa NFIC binds specifically to concanavalin A (ConA) and that this binding can be reversed by the specific ConA ligands, methyl alpha-D-mannopyranoside and methyl alpha-D-glucopyranoside. In addition, its apparent molecular size was reduced to approximately 63 kDa by treatment with the peptide N-glycosidase. The 49-kDa lactation-associated NFIC did not bind ConA nor was it affected by peptide N-glycosidase. Tunicamycin, a specific inhibitor of N-glycosylation, blocked formation of the 74-kDa NFI in involuting mouse mammary gland in vivo when delivered from implanted Elvax depot pellets. Finally, the production of the ConA binding activity could be reiterated in "mammospheres" formed from primary mouse mammary epithelial cells associated with a laminin-rich extracellular matrix. Synthesis of the 74-kDa NFIC was also inhibited in this setting by tunicamycin. Thus, involution triggers the production of an NFIC isoform that is post-translationally modified by N-glycosylation. We further show, by using quantitative competitive reverse transcriptase-PCR, that there is increased expression of the major mouse mammary NFIC mRNA transcript, mNFIC2, in early involution, suggesting that the involution-associated change in NFIC expression also has a transcriptional contribution.
Collapse
Affiliation(s)
- Rosemary Kane
- Conway Institute of Biomolecular and Biomedical Research and Department of Pharmacology, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Oztürk-Winder F, Renner M, Klein D, Müller M, Salmons B, Günzburg WH. The murine whey acidic protein promoter directs expression to human mammary tumors after retroviral transduction. Cancer Gene Ther 2002; 9:421-31. [PMID: 11961665 DOI: 10.1038/sj.cgt.7700456] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2002] [Indexed: 11/09/2022]
Abstract
The whey acidic protein (WAP) promoter is known to be active in pregnant and lactating mammary epithelial cells as well as mammary tumors of mice. Here we show that a proximal fragment of the murine WAP promoter, including most elements postulated as being responsible for mammary-specific regulation, confers mammary-specific expression upon a marker gene in transgenic mice even though the distal promoter region, known to be important for rat WAP promoter activity, is lacking. The relatively small size of this fragment allows its insertion into a murine leukemia virus-based retroviral vector in place of the viral promoter. Infection of a number of established human mammary and nonmammary cell lines with such a retroviral vector revealed that the WAP promoter was limited in its activity to mammary tumor cell lines. Expression in tumorigenic mammary cells was even more pronounced when these cells were introduced into the mammary fat pads of mice. This is the first demonstration that the WAP promoter is active in human mammary cells and mammary tumor cells in general, and suggests that the extended proximal WAP promoter may be useful for directing therapeutic gene expression to human mammary tumors.
Collapse
Affiliation(s)
- Feride Oztürk-Winder
- Institute of Virology, University of Veterinary Sciences, A-1210 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
15
|
Mukhopadhyay SS, Wyszomierski SL, Gronostajski RM, Rosen JM. Differential interactions of specific nuclear factor I isoforms with the glucocorticoid receptor and STAT5 in the cooperative regulation of WAP gene transcription. Mol Cell Biol 2001; 21:6859-69. [PMID: 11564870 PMCID: PMC99863 DOI: 10.1128/mcb.21.20.6859-6869.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distal region (-830 to -720 bp) of the rat whey acidic protein (WAP) gene contains a composite response element (CoRE), which has been demonstrated previously to confer mammary gland-specific and hormonally regulated WAP gene expression. Point mutations in the binding sites for specific transcription factors present within this CoRE have demonstrated the importance of both nuclear factor I (NFI) and STAT5 as well as cooperative interactions with the glucocorticoid receptor (GR) in the regulation of WAP gene expression in the mammary gland of transgenic mice. This study reports the characterization of NFI gene expression during mammary gland development and the identification and cloning of specific NFI isoforms (NFI-A4, NFI-B2, and NFI-X1) from the mouse mammary gland during lactation. Some but not all of these NFI isoforms synergistically activate WAP gene transcription in cooperation with GR and STAT5, as determined using transient cotransfection assays in JEG-3 cells. On both the WAP CoRE and the mouse mammary tumor virus long terminal repeat promoter, the NFI-B isoform preferentially activated gene transcription in cooperation with STAT5A and GR. In contrast, the NFI-A isoform suppressed GR and STAT cooperativity at the WAP CoRE. Finally, unlike their interaction with the NFI consensus binding site in the adenovirus promoter, the DNA-binding specificities of the three NFI isoforms to the palindromic NFI site in the WAP CoRE were not identical, which may partially explain the failure of the NFI-A isoform to cooperate with GR and STAT5A.
Collapse
MESH Headings
- Adenoviridae/genetics
- Alternative Splicing
- Animals
- Binding Sites
- Binding, Competitive
- Blotting, Western
- Breast/metabolism
- CCAAT-Enhancer-Binding Proteins/chemistry
- CCAAT-Enhancer-Binding Proteins/metabolism
- Cells, Cultured
- Cloning, Molecular
- DNA/metabolism
- DNA-Binding Proteins/metabolism
- Female
- Gene Expression Regulation
- Lactation
- Luciferases/metabolism
- Mice
- Milk Proteins/genetics
- Milk Proteins/metabolism
- Models, Genetic
- NFI Transcription Factors
- Nuclear Proteins
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Protein Isoforms
- Protein Structure, Tertiary
- RNA/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Response Elements
- Reverse Transcriptase Polymerase Chain Reaction
- Ribonucleases/metabolism
- STAT5 Transcription Factor
- Time Factors
- Trans-Activators/metabolism
- Transcription Factors
- Transcription, Genetic
- Transfection
- Y-Box-Binding Protein 1
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- S S Mukhopadhyay
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
16
|
Inuzuka H, Yamanouchi K, Tachi C, Tojo H. A transgenic mouse model for investigating the response of the upstream region of whey acidic protein (WAP) gene to various steroid hormones. Exp Anim 2001; 50:1-7. [PMID: 11326419 DOI: 10.1538/expanim.50.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The limitations of studies of clarification of response elements of whey acidic protein (WAP) gene to hormones using mammary cell lines has been shown. We studied the response of the upstream region (2.6 kb) of WAP to various steroid hormones using gonadectomized mWAP/hGH transgenic mice. Ovariectomy or castration for transgenic mice was performed at 10 days or 30 days post partum. Various steroid hormones were administered daily for 10 days to the gonadectomized transgenic mice after they reached 2 months of age. Prior to the hormonal administration and 24 hr after the final administration, blood was collected and the hGH levels in the plasma was measured by RIA. Daily doses of estradiol-17 beta were significantly more effective at increasing hGH levels in transgenic females ovariectomized at 10 days post partum than progesterone of an equal dose. A combined dose of progesterone and of estradiol-17 beta significantly amplified the increase of hGH levels accompanied by the great development of mammary glands, compared to a dose of progesterone alone. Corticosterone induced only a slight increase of hGH, while testosterone had no effect. The doses of gonadal steroid hormones did not induce an increase in hGH levels and development of mammary glands in the castrated transgenic males. The results showed that the response of 5' region of WAP requires at least some extended development of the mammary gland and that the 2.6 kb upstream region of the exogenous WAP gene contained the element responsive to ovarian hormones.
Collapse
Affiliation(s)
- H Inuzuka
- Laboratory of Applied Genetics, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
17
|
Abstract
Studies using both transgenic mice and transfected mammary epithelial cells have established that composite response elements containing multiple binding sites for several transcription factors mediate the hormonal and developmental regulation of milk protein gene expression. Activation of signal transduction pathways by lactogenic hormones and cell-substratum interactions activate transcription factors and change chromatin structure and milk protein gene expression. The casein promoters have binding sites for signal transducers and activators of transcription 5, Yin Yang 1, CCAAT/enhancer binding protein, and the glucocorticoid receptor. The whey protein gene promoters have binding sites for nuclear factor I, as well as the glucocorticoid receptor and the signal transducers and activators of transcription 5. The functional importance of some of these factors in mammary gland development and milk protein gene expression has been elucidated by studying mice in which some of these factors have been deleted.
Collapse
Affiliation(s)
- J M Rosen
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030-3498, USA.
| | | | | |
Collapse
|
18
|
Lubon H. Transgenic animal bioreactors in biotechnology and production of blood proteins. BIOTECHNOLOGY ANNUAL REVIEW 1999; 4:1-54. [PMID: 9890137 DOI: 10.1016/s1387-2656(08)70066-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The regulatory elements of genes used to target the tissue-specific expression of heterologous human proteins have been studied in vitro and in transgenic mice. Hybrid genes exhibiting the desired performance have been introduced into large animals. Complex proteins like protein C, factor IX, factor VIII, fibrinogen and hemoglobin, in addition to simpler proteins like alpha 1-antitrypsin, antithrombin III, albumin and tissue plasminogen activator have been produced in transgenic livestock. The amount of functional protein secreted when the transgene is expressed at high levels may be limited by the required posttranslational modifications in host tissues. This can be overcome by engineering the transgenic bioreactor to express the appropriate modifying enzymes. Genetically engineered livestock are thus rapidly becoming a choice for the production of recombinant human blood proteins.
Collapse
Affiliation(s)
- H Lubon
- Plasma Derivatives Department, American Red Cross, Rockville, Maryland, USA.
| |
Collapse
|
19
|
Qin W, Golovkina TV, Peng T, Nepomnaschy I, Buggiano V, Piazzon I, Ross SR. Mammary gland expression of mouse mammary tumor virus is regulated by a novel element in the long terminal repeat. J Virol 1999; 73:368-76. [PMID: 9847341 PMCID: PMC103842 DOI: 10.1128/jvi.73.1.368-376.1999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mouse mammary tumor virus (MMTV) infects both lymphoid tissue and lactating mammary gland during its infectious cycle, but some endogenous MMTVs are transcribed only in lymphoid cells. We found a lymphoid cell-specific endogenous MMTV that was converted to a milk-borne, infectious virus through recombination with an exogenously transmitted MMTV. The changed expression pattern correlated with the alteration of a single base pair in the long terminal repeat of the lymphoid cell-specific virus. Transgenic mice with the element from either the milk-borne or lymphoid cell-specific virus upstream of the chloramphenicol acetyltransferase reporter gene showed the same pattern of expression as the virus from which the regulatory sequences were derived. Electrophoretic mobility shift assays with mammary cell extracts showed that the site from the milk-borne virus was preferentially bound by a prolactin-inducible factor that poorly bound the altered site from the lymphoid cell-specific virus. The complex that formed on the milk-borne virus-specific oligonucleotide supershifted with anti-Stat5b antibody. Mice lacking either Stat5a or Stat5b had dramatically reduced levels of MMTV transcripts in mammary gland but not in lymphoid tissue. Thus, a member of the STAT family of transcription factors is involved in the tissue-specific expression of mouse mammary tumor virus in vivo. This is the first example of the involvement of a member of the STAT family of transcription factors in the control of tissue-specific expression.
Collapse
Affiliation(s)
- W Qin
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6142, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Bell AW, Jiang JG, Chen Q, Liu Y, Zarnegar R. The upstream regulatory regions of the hepatocyte growth factor gene promoter are essential for its expression in transgenic mice. J Biol Chem 1998; 273:6900-6908. [PMID: 9506994 DOI: 10.1074/jbc.273.12.6900] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the molecular mechanisms of hepatocyte growth factor (HGF) gene transcription in vivo, we report the generation and characterization of transgenic mice harboring various lengths of the mouse HGF promoter linked to the chloramphenicol acetyltransferase reporter gene. Analysis of different tissues of the transgenic mouse lines having the 2.7-kilobase (kb) promoter construct revealed a pattern of reporter gene expression in embryonic and adult tissues that paralleled that of endogenous HGF gene expression. A similar expression pattern was observed in the 0.7-kb transgenic lines. However, in contrast to in vitro data, no promoter activity was detected in four independent transgenic lines harboring the 0.1-kb construct. Akin to the activity of the endogenous HGF gene, which is induced in the liver, lung, and spleen in response to 70% partial hepatectomy, the reporter gene driven by the 2.7-kb promoter construct was strongly induced, whereas that driven by the 0.7-kb promoter construct was modestly induced in these organs after partial hepatectomy. Together, these data suggest that the region between -0.1 and -0.7 kb of the HGF gene promoter is essential to drive its expression in vivo and that additional upstream sequences located between -0.7 and -2.7 kb are also necessary for its maximum inducibility in response to cues that stimulate tissue growth and regeneration.
Collapse
Affiliation(s)
- A W Bell
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
21
|
Lechner J, Welte T, Doppler W. Mechanism of interaction between the glucocorticoid receptor and Stat5: role of DNA-binding. Immunobiology 1997; 198:112-23. [PMID: 9442383 DOI: 10.1016/s0171-2985(97)80032-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The functional interaction between the glucocorticoid receptor (GR) and the signal transducer and activator of transcription-5 (Stat5) was investigated by studying the synergistic activation of beta-cascin gene transcription by prolactin and glucocorticoids. The synergism was shown to be mediated by a complex hormone response region with multiple binding sites for Stat5, the glucocorticoid receptor, and CCAAT/enhancer binding proteins (C/EBP). HC11 mammary epithelial cells, which contain physiological levels of GR and Stat5, and COS-7 cells overexpressing GR and Stat5 were employed. In both cell types intact binding sites for Stat5 and the GR were a prerequisite for the synergism, whereas C/EBP sites were only required in HC11 cells. Interestingly, the GR sites employed for the synergism were nonclassical, half palindromic sites, which did not function in the absence of activated Stat5 to mediate the action of the GR on transcription. The interaction of GR and Stat5 triggered by the unusual configuration of binding sites appears to represent a novel mechanism by which these two distinct types of transcription factors cooperate. The mode of interaction provides an efficient means to restrict gene expression to conditions where both Stat5 and the GR are activated.
Collapse
Affiliation(s)
- J Lechner
- Institute of Medical Chemistry and Biochemistry, University of Innsbruck, Austria
| | | | | |
Collapse
|
22
|
Hennighausen L, Robinson GW, Wagner KU, Liu W. Prolactin signaling in mammary gland development. J Biol Chem 1997; 272:7567-9. [PMID: 9119818 DOI: 10.1074/jbc.272.12.7567] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- L Hennighausen
- Laboratory of Biochemistry and Metabolism, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1812, USA.
| | | | | | | |
Collapse
|
23
|
Furlong EE, Keon NK, Thornton FD, Rein T, Martin F. Expression of a 74-kDa nuclear factor 1 (NF1) protein is induced in mouse mammary gland involution. Involution-enhanced occupation of a twin NF1 binding element in the testosterone-repressed prostate message-2/clusterin promoter. J Biol Chem 1996; 271:29688-97. [PMID: 8939902 DOI: 10.1074/jbc.271.47.29688] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Testosterone repressed prostate message-2 (TRPM-2)/clusterin gene expression is rapidly induced in early involution of the mouse mammary gland, after weaning, and in the rat ventral prostate, after castration. A search for involution-enhanced DNaseI footprints in the proximal mouse TRPM-2/clusterin gene promoter led to the identification and characterization (by DNase I footprinting and EMSA) of a twin nuclear factor 1 (NF1) binding element at -356/-309, relative to the proposed transcription start site; nuclear extracts from 2-day involuting mouse mammary gland showed an enhanced footprint over the proximal NF1 element; extracts from involuting prostate showed enhanced occupancy of both NF1 binding elements. Subsequent EMSA and Western analysis led to the detection of a 74-kDa NF1 protein whose expression is triggered in early involution in the mouse mammary gland; such an induced protein is not found in the involuting rat ventral prostate. This protein was not found in lactation where three other NF1 proteins of 114, 68, and 46 kDa were detected. Reiteration of the epithelial cell apoptosis associated with early mammary gland involution, in vitro, in a primary cell culture system, triggered the appearance of the 74-kDa NF1. Overlaying the cells with laminin-rich extracellular matrix suppressed the apoptosis and the expression of the 74-kDa NF1 and, in the presence of lactogenic hormones, initiated milk protein gene expression and the expression of two of the lactation-associated NF1 proteins (68 and 46 kDa). This study, thus, identifies for the first time the occurrence of a switch in expression of different members of the family of NF1 transcription factors as mammary epithelial cells move from the differentiated to the involution/apoptotic state, and it is likely that the involution-specific 74-kDa NF1 accounts for the enhanced NF1 footprint detected on the TRPM-2/clusterin promoter with extracts of mouse mammary gland.
Collapse
Affiliation(s)
- E E Furlong
- Department of Pharmacology and Biotechnology Center, University College Dublin, Dublin 4, Ireland.
| | | | | | | | | |
Collapse
|
24
|
Tsay W, Lee YM, Lee SC, Shen MC, Chen PJ. Characterization of human protein C gene promoter: insights from natural human mutants. DNA Cell Biol 1996; 15:907-19. [PMID: 8945631 DOI: 10.1089/dna.1996.15.907] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human protein C is a liver-produced plasma anticoagulant. Four heterozygous point mutations located in the promoter region have been identified in families with type I protein C deficiency and recurrent venous thrombosis. However, detailed analysis of regulatory elements and their interacting factors remains to be undertaken. This report presents results of biochemical and functional characterizations of several cis-elements located in the 5'-upstream regulatory region and the trans-acting factors that interact with them. A cloned DNA fragment from nucleotides (nt) -418 to +45 could confer tissue specificity, whereas nt -88 to +45 was sufficient for basal promoter activity of protein C gene. Five cis-elements corresponding to HNF-1, HNF-3, and NF-I/CTF binding sites have been identified. Four heterozygous mutations have been shown to disrupt HNF-3 [mutants of A(-32)G and T(-27)A] and HNF-1 [T(-14)C and C(-10)T] binding. Mutation in the NF-I-binding site also significantly impairs the promoter activity. Viewed as a whole, these results indicate that HNF-1, HNF-3, and NF-I/CTF play critical roles in transcriptional regulation of the protein C gene.
Collapse
Affiliation(s)
- W Tsay
- Department of Internal Medicine, National Taiwan University, College of Medicine, Taipei
| | | | | | | | | |
Collapse
|
25
|
Jolivet G, L'Hotte C, Pierre S, Tourkine N, Houdebine LM. A MGF/STAT5 binding site is necessary in the distal enhancer for high prolactin induction of transfected rabbit alpha s1-casein-CAT gene transcription. FEBS Lett 1996; 389:257-62. [PMID: 8766711 DOI: 10.1016/0014-5793(96)00598-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The rabbit alphas1-casein gene contains a distal prolactin-dependent enhancer 3442-3285 bp 5' to the site of initiation of transcription. We have reported previously that four DNA/protein-binding sites (F1-F4) are located within this distal enhancer. We now show that one of this binding site (the F4 site) binds in vitro a MGF/STAT5-like factor. The functional importance of the F4 site was estimated by cotransfection of CHO cells with a chimeric gene containing or not the F4 sequence linked to the (-391/+1774)CAT gene and a plasmid encoding the rabbit mammary prolactin receptor. The F4 site is necessary for maximal response, of the enhancer to prolactin. However, this site has to be associated to the Fl-F3 fragment. It can be replaced by a genuine MGF/STAT5-binding site. A mutational analysis indicates that F4 and F1 sites are simultaneously involved to confer a high prolactin sensitivity.
Collapse
Affiliation(s)
- G Jolivet
- Unité de Différenciation Cellulaire, Laboratoire de Biologie Cellulaire et Moléculaire, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
26
|
McKnight RA, Spencer M, Wall RJ, Hennighausen L. Severe position effects imposed on a 1 kb mouse whey acidic protein gene promoter are overcome by heterologous matrix attachment regions. Mol Reprod Dev 1996; 44:179-84. [PMID: 9115715 DOI: 10.1002/(sici)1098-2795(199606)44:2<179::aid-mrd6>3.0.co;2-k] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Matrix attachment regions (MARs) have been shown to participate in the insulation of transcription elements from surrounding chromatin in tissue culture cells and transgenic mice. A whey acidic protein (WAP) transgene containing 1 kb promoter sequence was active in mammary tissue from 1 out of 17 lines of mice, demonstrating that the transcription elements were highly susceptible to position effects. To test whether MARs could insulate this WAP gene promoter and thereby restore transcription, we ligated MARs from the chicken lysozyme gene to the WAP transgene. Seven of the nine lines generated exhibited WAP transgene activity, expression was confined to mammary tissue, and correct regulation was observed in three of the four lines analyzed. This study provides strong additional evidence that the MAR fragments from the chicken lysozyme gene have the capacity to insulate transgenes from severe position effects.
Collapse
Affiliation(s)
- R A McKnight
- Laboratory of Biochemistry and Metabolism, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
27
|
Rajput B, Shaper NL, Shaper JH. Transcriptional regulation of murine beta1,4-galactosyltransferase in somatic cells. Analysis of a gene that serves both a housekeeping and a mammary gland-specific function. J Biol Chem 1996; 271:5131-42. [PMID: 8617793 DOI: 10.1074/jbc.271.9.5131] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
beta1,4-Galactosyltransferase (beta4-GT) is a constitutively expressed enzyme that synthesizes the beta4-N-acetyllactosamine structure in glycoconjugates. In mammals, beta4-GT has been recruited for a second biosynthetic function, the production of lactose which occurs exclusively in the lactating mammary gland. In somatic tissues, the murine beta4-GT gene specifies two mRNAs of 4. 1 and 3.9 kilobases (kb), as a consequence of initiation at two different start sites approximately 200 base pairs apart. We have proposed that the region upstream of the 4.1-kb start site functions as a housekeeping promoter, while the region adjacent to the 3.9-kb start site functions primarily as a mammary gland-specific promoter (Harduin-Lepers, A., Shaper, J. H., and Shaper, N. L. (1993) J. Biol. Chem. 268, 14348-14359). Using DNase I footprinting and electrophoretic mobility shift assays, we show that the region immediately upstream of the 4.1-kb start site is occupied mainly by the ubiquitous factor Sp1. In contrast, the region adjacent to the 3.9-kb start site is bound by multiple proteins which include the tissue-restricted factor AP2, a mammary gland-specific form of CTF/NF1, Sp1, as well as a candidate negative regulatory factor that represses transcription from the 3.9-kb start site. These data experimentally support our conclusion that the 3.9-kb start site has been introduced into the mammalian beta4-GT gene to accommodate the recruited role of beta4-GT in lactose biosynthesis.
Collapse
Affiliation(s)
- B Rajput
- Cell Structure and Function Laboratory, Oncology Center Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21287-8937, USA
| | | | | |
Collapse
|
28
|
Abstract
Mammary epithelial cells grow and develop with the onset of sexual maturity. In addition, lobular alveolar structures are formed during pregnancy, and quiescent differentiated cells secrete high levels of milk proteins after parturition. These events are governed by multiple hormones and growth factors and involve the sequential and synergistic action of functionally distinct signal transduction pathways. Milk protein genes have been analyzed and composite response elements have been identified in the promoter sequences. Transcription factors, which relay the hormonal signals, bind to these sequences. The factor that confers prolactin simulation to milk protein gene transcription has recently been identified. MGF/Stat5 is a latent transcription factor that becomes activated by a tyrosine-specific protein kinase, Jak2, associated with the prolactin receptor. Tyrosine phosphorylation converts the latent factor into one with DNA-binding and transcriptional activation potential. The regulation of MGF/Stat5 in vitro and in vivo indicates that it is a central component of the lactogenic hormone signaling pathway. Involvement of MGF/Stat5 in the signaling by other cytokines indicates that the same factor might be involved in regulation of growth-promoting genes, primarily in hematopoietic cells.
Collapse
Affiliation(s)
- B Groner
- Tumor Biology Center, Freiburg, Germany
| | | |
Collapse
|
29
|
Doppler W, Welte T, Philipp S. CCAAT/enhancer-binding protein isoforms beta and delta are expressed in mammary epithelial cells and bind to multiple sites in the beta-casein gene promoter. J Biol Chem 1995; 270:17962-9. [PMID: 7629103 DOI: 10.1074/jbc.270.30.17962] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Lactogenic hormone-dependent expression of the rat beta-casein gene in mammary epithelial cells is controlled via a complex regulatory region in the promoter. The sequence between -176 and -82 is the minimal region to confer the response to glucocorticoid hormone and prolactin on a heterologous promoter. The response is further enhanced by the region between -282 and -176. DNase I footprinting experiments and electromobility shift assays revealed the presence of four binding sites for CCAAT/enhancer-binding protein (C/EBP) isoforms in the hormone response region between -220 and -132. In nuclear extracts from mammary epithelial cells, the prevalent C/EBP isoform binding to these sites is beta (C/EBP-beta). C/EBP-delta is also present in mammary epithelial cells, whereas C/EBP-alpha is not detectable. The C/EBP sites are located in close proximity to the previously characterized binding sites for the prolactin-inducible mammary gland factor/signal transducer and activator of transcription-5, the nuclear factor YY1, and the glucocorticoid receptor. The importance of the two proximal C/EBP binding sites at the 5' border of the minimal region was tested by mutational analysis. Mutations of each site were found to inhibit strongly both the basal and the lactogenic hormone-induced transcription of a beta-casein gene promoter chloramphenicol acetyltransferase construct. The results implicate C/EBPs as important regulators of beta-casein gene expression in the mammary epithelium.
Collapse
Affiliation(s)
- W Doppler
- Institut für Medizinische Chemie und Biochemie, Universität Innsbruck, Austria
| | | | | |
Collapse
|
30
|
Krnacik MJ, Li S, Liao J, Rosen JM. Position-independent expression of whey acidic protein transgenes. J Biol Chem 1995; 270:11119-29. [PMID: 7744742 DOI: 10.1074/jbc.270.19.11119] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The expression of a 3-kilobase genomic rat whey acidic protein (WAP) clone (-949/+2020) in transgenic mice has been demonstrated previously to be copy number-dependent and independent of the site of integration (Dale, T., Krnacik, M. J., Schmidhauser, C., Yang, C. Q.-L., Bissell, M. J., and Rosen, J. M. (1992) Mol. Cell. Biol. 12, 905-914). The present study demonstrated that position-independent expression of the rat WAP -949/+2020 transgene was dependent on transgene spacing. Position-independent expression also was inhibited by an internal replacement of 49 base pair within the conserved GC-rich 3'-untranslated region (3'-UTR) with an identically sized nonspecific DNA sequence. Using electrophoretic mobility shift assays, nuclear factors isolated from mouse and human cells were shown to associate specifically with the rWAP 3'-UTR DNA, but not with the 3'-UTR containing the internal replacement or specific point mutations. Since a single copy of the 3'-UTR inserted 5' of the promoter could not rescue the 3'-UTR deletion, the 3'-UTR element does not appear to be functioning as either a classic enhancer or insulator element. However, the level of expression of rWAP transgenes was correlated with transgene association with the chromosomal scaffold in vivo.
Collapse
Affiliation(s)
- M J Krnacik
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
31
|
Collet C, Joseph R. Exon organization and sequence of the genes encoding alpha-lactalbumin and beta-lactoglobulin from the tammar wallaby (Macropodidae, Marsupialia). Biochem Genet 1995; 33:61-72. [PMID: 7794241 DOI: 10.1007/bf00554559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Clones encompassing the genes encoding alpha-lactalbumin and beta-lactoglobulin were isolated from a tammar wallaby genomic library, the exons localized using end-labeled oligonucleotides and the DNA sequences determined. The tammar beta-lactoglobulin gene has the same 7 exon-6 intron structure as the sheep homologue. Potential binding sites for mammary gland-specific transcription factors were identified, on the basis of similarity to sites in the sheep gene, in the promoter region of the tammar beta-lactoglobulin gene. The tammar gene encoding alpha-lactalbumin appears to contain four introns rather than three as are present in the eutherian homologues, or the evolutionarily related lysozyme gene. The additional intron appears to occur within the 5' noncoding region of the tammar gene.
Collapse
Affiliation(s)
- C Collet
- C.S.I.R.O., Division of Wildlife and Ecology, Canberra, Australia
| | | |
Collapse
|