1
|
Mu J, Wu C, Xu K, Liu X, Fu Y, Zhang Z, Yu J, Xue C, Wang Z, Chen X, Chen Y, Ou G, Liu Z. Conformational reorganization and phase separation drive hyper-editing of ADR-2-ADBP-1 complex. Nucleic Acids Res 2025; 53:gkaf148. [PMID: 40037706 PMCID: PMC11879458 DOI: 10.1093/nar/gkaf148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 03/06/2025] Open
Abstract
Adenosine deaminase acting on RNA (ADAR) proteins, which mediate adenosine-to-inosine editing of double-stranded ribonucleic acid (dsRNA) substrates, play essential roles in balancing innate immunity. Using cryogenic electron microscopy, we solved the structure of the Caenorhabditis elegans ADR-2-ADBP-1 complex (stoichiometric ratio, 2:2), which is an asymmetric ADR-2 dimer with one editing site blocked by the other ADR-2. Unexpectedly, dsRNA recruitment triggered dissociation of the ADR-2 dimer, exposing more competent dsRNA editing sites. Furthermore, high dsRNA and protein concentrations caused the formation of liquid-liquid phase-separated puncta, in which significantly greater editing activity was observed, indicating that organizational transitions enable the ADR-2-ADBP-1 complex to perform dsRNA hyper-editing. Our findings suggest that the ADAR editing mechanism adapts to different conditions via conformational reorganization.
Collapse
Affiliation(s)
- Jianqiang Mu
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology Shenzhen, 518055 Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
| | - Cang Wu
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology Shenzhen, 518055 Guangdong, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
| | - Kaiming Xu
- Tsinghua‐Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Xingang Liu
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology Shenzhen, 518055 Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
| | - Yajuan Fu
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology Shenzhen, 518055 Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
| | - Zhen Zhang
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology Shenzhen, 518055 Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
| | - Jingwei Yu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
| | - Chenyang Xue
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology Shenzhen, 518055 Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
| | - Zi Wang
- Tsinghua‐Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Xinmeng Chen
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology Shenzhen, 518055 Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
| | - Yanhong Chen
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
| | - Guangshuo Ou
- Tsinghua‐Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Zhongmin Liu
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology Shenzhen, 518055 Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
| |
Collapse
|
2
|
Bass BL. Adenosine deaminases that act on RNA, then and now. RNA (NEW YORK, N.Y.) 2024; 30:521-529. [PMID: 38531651 PMCID: PMC11019741 DOI: 10.1261/rna.079990.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 03/28/2024]
Abstract
In this article, I recount my memories of key experiments that led to my entry into the RNA editing/modification field. I highlight initial observations made by the pioneers in the ADAR field, and how they fit into our current understanding of this family of enzymes. I discuss early mysteries that have now been solved, as well as those that still linger. Finally, I discuss important, outstanding questions and acknowledge my hope for the future of the RNA editing/modification field.
Collapse
Affiliation(s)
- Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
3
|
Keegan LP, Hajji K, O’Connell MA. Adenosine Deaminase Acting on RNA (ADAR) Enzymes: A Journey from Weird to Wondrous. Acc Chem Res 2023; 56:3165-3174. [PMID: 37906879 PMCID: PMC10666284 DOI: 10.1021/acs.accounts.3c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Indexed: 11/02/2023]
Abstract
The adenosine deaminase acting on RNA (ADAR) enzymes that catalyze the conversion of adenosine to inosine in double-stranded (ds)RNA are evolutionarily conserved and are essential for many biological functions including nervous system function, hematopoiesis, and innate immunity. Initially it was assumed that the wide-ranging biological roles of ADARs are due to inosine in mRNA being read as guanosine by the translational machinery, allowing incomplete RNA editing in a target codon to generate two different proteins from the same primary transcript. In humans, there are approximately seventy-six positions that undergo site-specific editing in tissues at greater than 20% efficiency that result in recoding. Many of these transcripts are expressed in the central nervous system (CNS) and edited by ADAR2. Exploiting mouse genetic models revealed that transgenic mice lacking the gene encoding Adar2 die within 3 weeks of birth. Therefore, the role of ADAR2 in generating protein diversity in the nervous system is clear, but why is ADAR RNA editing activity essential in other biological processes, particularly editing mainly involving ADAR1? ADAR1 edits human transcripts having embedded Alu element inverted repeats (AluIRs), but the link from this activity to innate immunity activation was elusive. Mice lacking the gene encoding Adar1 are embryonically lethal, and a major breakthrough was the discovery that the role of Adar1 in innate immunity is due to its ability to edit such repetitive element inverted repeats which have the ability to form dsRNA in transcripts. The presence of inosine prevents activation of the dsRNA sensor melanoma differentiation-associated protein 5 (Mda5). Thus, inosine helps the cell discriminate self from non-self RNA, acting like a barcode on mRNA. As innate immunity is key to many different biological processes, the basis for this widespread biological role of the ADAR1 enzyme became evident.Our group has been studying ADARs from the outset of research on these enzymes. In this Account, we give a historical perspective, moving from the initial purification of ADAR1 and ADAR2 and cloning of their encoding genes up to the current research focus in the field and what questions still remain to be addressed. We discuss the characterizations of the proteins, their localizations, posttranslational modifications, and dimerization, and how all of these affect their biological activities. Another aspect we explore is the use of mouse and Drosophila genetic models to study ADAR functions and how these were crucial in determining the biological functions of the ADAR proteins. Finally, we describe the severe consequences of rare mutations found in the human genes encoding ADAR1 and ADAR2.
Collapse
Affiliation(s)
- Liam P. Keegan
- CEITEC, Masaryk
University, Kamenice 735/5, E35, Brno 62500, Czechia
| | - Khadija Hajji
- CEITEC, Masaryk
University, Kamenice 735/5, E35, Brno 62500, Czechia
| | - Mary A. O’Connell
- CEITEC, Masaryk
University, Kamenice 735/5, E35, Brno 62500, Czechia
| |
Collapse
|
4
|
Liu Z, Quinones-Valdez G, Fu T, Huang E, Choudhury M, Reese F, Mortazavi A, Xiao X. L-GIREMI uncovers RNA editing sites in long-read RNA-seq. Genome Biol 2023; 24:171. [PMID: 37474948 PMCID: PMC10360234 DOI: 10.1186/s13059-023-03012-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
Although long-read RNA-seq is increasingly applied to characterize full-length transcripts it can also enable detection of nucleotide variants, such as genetic mutations or RNA editing sites, which is significantly under-explored. Here, we present an in-depth study to detect and analyze RNA editing sites in long-read RNA-seq. Our new method, L-GIREMI, effectively handles sequencing errors and read biases. Applied to PacBio RNA-seq data, L-GIREMI affords a high accuracy in RNA editing identification. Additionally, our analysis uncovered novel insights about RNA editing occurrences in single molecules and double-stranded RNA structures. L-GIREMI provides a valuable means to study nucleotide variants in long-read RNA-seq.
Collapse
Affiliation(s)
- Zhiheng Liu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Giovanni Quinones-Valdez
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Ting Fu
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Elaine Huang
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Mudra Choudhury
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Fairlie Reese
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA.
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, CA, USA.
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Vallecillo-Viejo IC, Voss G, Albertin CB, Liscovitch-Brauer N, Eisenberg E, Rosenthal JJC. Squid express conserved ADAR orthologs that possess novel features. Front Genome Ed 2023; 5:1181713. [PMID: 37342458 PMCID: PMC10278661 DOI: 10.3389/fgeed.2023.1181713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
The coleoid cephalopods display unusually extensive mRNA recoding by adenosine deamination, yet the underlying mechanisms are not well understood. Because the adenosine deaminases that act on RNA (ADAR) enzymes catalyze this form of RNA editing, the structure and function of the cephalopod orthologs may provide clues. Recent genome sequencing projects have provided blueprints for the full complement of coleoid cephalopod ADARs. Previous results from our laboratory have shown that squid express an ADAR2 homolog, with two splice variants named sqADAR2a and sqADAR2b and that these messages are extensively edited. Based on octopus and squid genomes, transcriptomes, and cDNA cloning, we discovered that two additional ADAR homologs are expressed in coleoids. The first is orthologous to vertebrate ADAR1. Unlike other ADAR1s, however, it contains a novel N-terminal domain of 641 aa that is predicted to be disordered, contains 67 phosphorylation motifs, and has an amino acid composition that is unusually high in serines and basic amino acids. mRNAs encoding sqADAR1 are themselves extensively edited. A third ADAR-like enzyme, sqADAR/D-like, which is not orthologous to any of the vertebrate isoforms, is also present. Messages encoding sqADAR/D-like are not edited. Studies using recombinant sqADARs suggest that only sqADAR1 and sqADAR2 are active adenosine deaminases, both on perfect duplex dsRNA and on a squid potassium channel mRNA substrate known to be edited in vivo. sqADAR/D-like shows no activity on these substrates. Overall, these results reveal some unique features in sqADARs that may contribute to the high-level RNA recoding observed in cephalopods.
Collapse
Affiliation(s)
| | - Gjendine Voss
- The Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Caroline B. Albertin
- The Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Noa Liscovitch-Brauer
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
6
|
Hajji K, Sedmík J, Cherian A, Amoruso D, Keegan LP, O'Connell MA. ADAR2 enzymes: efficient site-specific RNA editors with gene therapy aspirations. RNA (NEW YORK, N.Y.) 2022; 28:1281-1297. [PMID: 35863867 PMCID: PMC9479739 DOI: 10.1261/rna.079266.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The adenosine deaminase acting on RNA (ADAR) enzymes are essential for neuronal function and innate immune control. ADAR1 RNA editing prevents aberrant activation of antiviral dsRNA sensors through editing of long, double-stranded RNAs (dsRNAs). In this review, we focus on the ADAR2 proteins involved in the efficient, highly site-specific RNA editing to recode open reading frames first discovered in the GRIA2 transcript encoding the key GLUA2 subunit of AMPA receptors; ADAR1 proteins also edit many of these sites. We summarize the history of ADAR2 protein research and give an up-to-date review of ADAR2 structural studies, human ADARBI (ADAR2) mutants causing severe infant seizures, and mouse disease models. Structural studies on ADARs and their RNA substrates facilitate current efforts to develop ADAR RNA editing gene therapy to edit disease-causing single nucleotide polymorphisms (SNPs). Artificial ADAR guide RNAs are being developed to retarget ADAR RNA editing to new target transcripts in order to correct SNP mutations in them at the RNA level. Site-specific RNA editing has been expanded to recode hundreds of sites in CNS transcripts in Drosophila and cephalopods. In Drosophila and C. elegans, ADAR RNA editing also suppresses responses to self dsRNA.
Collapse
Affiliation(s)
- Khadija Hajji
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | - Jiří Sedmík
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | - Anna Cherian
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | | | - Liam P Keegan
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | | |
Collapse
|
7
|
Abstract
The innate immune receptors in higher organisms have evolved to detect molecular signatures associated with pathogenic infection and trigger appropriate immune response. One common class of molecules utilized by the innate immune system for self vs. nonself discrimination is RNA, which is ironically present in all forms of life. To avoid self-RNA recognition, the innate immune sensors have evolved sophisticated discriminatory mechanisms that involve cellular RNA metabolic machineries. Posttranscriptional RNA modification and editing represent one such mechanism that allows cells to chemically tag the host RNAs as "self" and thus tolerate the abundant self-RNA molecules. In this chapter, we discuss recent advances in our understanding of the role of RNA editing/modification in the modulation of immune signaling pathways, and application of RNA editing/modification in RNA-based therapeutics and cancer immunotherapies.
Collapse
|
8
|
Affiliation(s)
- Chun Kim
- Department of Molecular and Life Science, Hanyang University [ERICA Campus], Ansan 15588, Korea
| |
Collapse
|
9
|
Nakahama T, Kawahara Y. Adenosine-to-inosine RNA editing in the immune system: friend or foe? Cell Mol Life Sci 2020; 77:2931-2948. [PMID: 31996954 PMCID: PMC11104962 DOI: 10.1007/s00018-020-03466-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/27/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022]
Abstract
Our body expresses sensors to detect pathogens through the recognition of expressed molecules, including nucleic acids, lipids, and proteins, while immune tolerance prevents an overreaction with self and the development of autoimmune disease. Adenosine (A)-to-inosine (I) RNA editing, catalyzed by adenosine deaminases acting on RNA (ADARs), is a post-transcriptional modification that can potentially occur at over 100 million sites in the human genome, mainly in Alu repetitive elements that preferentially form a double-stranded RNA (dsRNA) structure. A-to-I conversion within dsRNA, which may induce a structural change, is required to escape from the host immune system, given that endogenous dsRNAs transcribed from Alu repetitive elements are potentially recognized by melanoma differentiation-associated protein 5 (MDA5) as non-self. Of note, loss-of-function mutations in the ADAR1 gene cause Aicardi-Goutières syndrome, a congenital autoimmune disease characterized by encephalopathy and a type I interferon (IFN) signature. However, the loss of ADAR1 in cancer cells with an IFN signature induces lethality via the activation of protein kinase R in addition to MDA5. This makes cells more sensitive to immunotherapy, highlighting the opposing immune status of autoimmune diseases (overreaction) and cancer (tolerance). In this review, we provide an overview of insights into two opposing aspects of RNA editing that functions as a modulator of the immune system in autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Taisuke Nakahama
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
10
|
Vallecillo-Viejo IC, Liscovitch-Brauer N, Diaz Quiroz JF, Montiel-Gonzalez MF, Nemes SE, Rangan KJ, Levinson SR, Eisenberg E, Rosenthal JJC. Spatially regulated editing of genetic information within a neuron. Nucleic Acids Res 2020; 48:3999-4012. [PMID: 32201888 PMCID: PMC7192619 DOI: 10.1093/nar/gkaa172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/14/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022] Open
Abstract
In eukaryotic cells, with the exception of the specialized genomes of mitochondria and plastids, all genetic information is sequestered within the nucleus. This arrangement imposes constraints on how the information can be tailored for different cellular regions, particularly in cells with complex morphologies like neurons. Although messenger RNAs (mRNAs), and the proteins that they encode, can be differentially sorted between cellular regions, the information itself does not change. RNA editing by adenosine deamination can alter the genome's blueprint by recoding mRNAs; however, this process too is thought to be restricted to the nucleus. In this work, we show that ADAR2 (adenosine deaminase that acts on RNA), an RNA editing enzyme, is expressed outside of the nucleus in squid neurons. Furthermore, purified axoplasm exhibits adenosine-to-inosine activity and can specifically edit adenosines in a known substrate. Finally, a transcriptome-wide analysis of RNA editing reveals that tens of thousands of editing sites (>70% of all sites) are edited more extensively in the squid giant axon than in its cell bodies. These results indicate that within a neuron RNA editing can recode genetic information in a region-specific manner.
Collapse
Affiliation(s)
| | - Noa Liscovitch-Brauer
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - Juan F Diaz Quiroz
- The Eugene Bell Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02540, USA
| | | | - Sonya E Nemes
- The Eugene Bell Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02540, USA
| | - Kavita J Rangan
- The Eugene Bell Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02540, USA
| | - Simon R Levinson
- Department of Physiology and Biophysics, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - Joshua J C Rosenthal
- The Eugene Bell Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02540, USA
| |
Collapse
|
11
|
Abstract
Long double-stranded RNAs (dsRNAs) are abundantly expressed in animals, in which they frequently occur in introns and 3' untranslated regions of mRNAs. Functions of long, cellular dsRNAs are poorly understood, although deficiencies in adenosine deaminases that act on RNA, or ADARs, promote their recognition as viral dsRNA and an aberrant immune response. Diverse dsRNA-binding proteins bind cellular dsRNAs, hinting at additional roles. Understanding these roles is facilitated by mapping the genomic locations that express dsRNA in various tissues and organisms. ADAR editing provides a signature of dsRNA structure in cellular transcripts. In this review, we detail approaches to map ADAR editing sites and dsRNAs genome-wide, with particular focus on high-throughput sequencing methods and considerations for their successful application to the detection of editing sites and dsRNAs.
Collapse
Affiliation(s)
- Daniel P Reich
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
12
|
Samuel CE. Adenosine deaminase acting on RNA (ADAR1), a suppressor of double-stranded RNA-triggered innate immune responses. J Biol Chem 2019; 294:1710-1720. [PMID: 30710018 PMCID: PMC6364763 DOI: 10.1074/jbc.tm118.004166] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Herbert "Herb" Tabor, who celebrated his 100th birthday this past year, served the Journal of Biological Chemistry as a member of the Editorial Board beginning in 1961, as an Associate Editor, and as Editor-in-Chief for 40 years, from 1971 until 2010. Among the many discoveries in biological chemistry during this period was the identification of RNA modification by C6 deamination of adenosine (A) to produce inosine (I) in double-stranded (ds) RNA. This posttranscriptional RNA modification by adenosine deamination, known as A-to-I RNA editing, diversifies the transcriptome and modulates the innate immune interferon response. A-to-I editing is catalyzed by a family of enzymes, adenosine deaminases acting on dsRNA (ADARs). The roles of A-to-I editing are varied and include effects on mRNA translation, pre-mRNA splicing, and micro-RNA silencing. Suppression of dsRNA-triggered induction and action of interferon, the cornerstone of innate immunity, has emerged as a key function of ADAR1 editing of self (cellular) and nonself (viral) dsRNAs. A-to-I modification of RNA is essential for the normal regulation of cellular processes. Dysregulation of A-to-I editing by ADAR1 can have profound consequences, ranging from effects on cell growth and development to autoimmune disorders.
Collapse
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106.
| |
Collapse
|
13
|
Špačková N, Réblová K. Role of Inosine⁻Uracil Base Pairs in the Canonical RNA Duplexes. Genes (Basel) 2018; 9:genes9070324. [PMID: 29958383 PMCID: PMC6070904 DOI: 10.3390/genes9070324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/13/2018] [Accepted: 06/26/2018] [Indexed: 01/09/2023] Open
Abstract
Adenosine to inosine (A–I) editing is the most common modification of double-stranded RNA (dsRNA). This change is mediated by adenosine deaminases acting on RNA (ADARs) enzymes with a preference of U>A>C>G for 5′ neighbor and G>C=A>U or G>C>U=A for 3′ neighbor. A–I editing occurs most frequently in the non-coding regions containing repetitive elements such as ALUs. It leads to disruption of RNA duplex structure, which prevents induction of innate immune response. We employed standard and biased molecular dynamics (MD) simulations to analyze the behavior of RNA duplexes with single and tandem inosine–uracil (I–U) base pairs in different sequence context. Our analysis showed that the I–U pairs induce changes in base pair and base pair step parameters and have different dynamics when compared with standard canonical base pairs. In particular, the first I–U pair from tandem I–U/I–U systems exhibited increased dynamics depending on its neighboring 5′ base. We discovered that UII sequence, which is frequently edited, has lower flexibility compared with other sequences (AII, GII, CII), hence it only modestly disrupts dsRNA. This might indicate that the UAA motifs in ALUs do not have to be sufficiently effective in preventing immune signaling.
Collapse
Affiliation(s)
- Naďa Špačková
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Kamila Réblová
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
14
|
RNA Editing, ADAR1, and the Innate Immune Response. Genes (Basel) 2017; 8:genes8010041. [PMID: 28106799 PMCID: PMC5295035 DOI: 10.3390/genes8010041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/03/2017] [Accepted: 01/11/2017] [Indexed: 01/14/2023] Open
Abstract
RNA editing, particularly A-to-I RNA editing, has been shown to play an essential role in mammalian embryonic development and tissue homeostasis, and is implicated in the pathogenesis of many diseases including skin pigmentation disorder, autoimmune and inflammatory tissue injury, neuron degeneration, and various malignancies. A-to-I RNA editing is carried out by a small group of enzymes, the adenosine deaminase acting on RNAs (ADARs). Only three members of this protein family, ADAR1-3, exist in mammalian cells. ADAR3 is a catalytically null enzyme and the most significant function of ADAR2 was found to be in editing on the neuron receptor GluR-B mRNA. ADAR1, however, has been shown to play more significant roles in biological and pathological conditions. Although there remains much that is not known about how ADAR1 regulates cellular function, recent findings point to regulation of the innate immune response as an important function of ADAR1. Without appropriate RNA editing by ADAR1, endogenous RNA transcripts stimulate cytosolic RNA sensing receptors and therefore activate the IFN-inducing signaling pathways. Overactivation of innate immune pathways can lead to tissue injury and dysfunction. However, obvious gaps in our knowledge persist as to how ADAR1 regulates innate immune responses through RNA editing. Here, we review critical findings from ADAR1 mechanistic studies focusing on its regulatory function in innate immune responses and identify some of the important unanswered questions in the field.
Collapse
|
15
|
Meier JC, Kankowski S, Krestel H, Hetsch F. RNA Editing-Systemic Relevance and Clue to Disease Mechanisms? Front Mol Neurosci 2016; 9:124. [PMID: 27932948 PMCID: PMC5120146 DOI: 10.3389/fnmol.2016.00124] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/04/2016] [Indexed: 11/13/2022] Open
Abstract
Recent advances in sequencing technologies led to the identification of a plethora of different genes and several hundreds of amino acid recoding edited positions. Changes in editing rates of some of these positions were associated with diseases such as atherosclerosis, myopathy, epilepsy, major depression disorder, schizophrenia and other mental disorders as well as cancer and brain tumors. This review article summarizes our current knowledge on that front and presents glycine receptor C-to-U RNA editing as a first example of disease-associated increased RNA editing that includes assessment of disease mechanisms of the corresponding gene product in an animal model.
Collapse
Affiliation(s)
- Jochen C Meier
- Cell Physiology, Technische Universität Braunschweig Braunschweig, Germany
| | - Svenja Kankowski
- Cell Physiology, Technische Universität Braunschweig Braunschweig, Germany
| | - Heinz Krestel
- Neurology, Universitätsspital und Universität Bern Bern, Switzerland
| | - Florian Hetsch
- Cell Physiology, Technische Universität Braunschweig Braunschweig, Germany
| |
Collapse
|
16
|
Sun T, Bentolila S, Hanson MR. The Unexpected Diversity of Plant Organelle RNA Editosomes. TRENDS IN PLANT SCIENCE 2016; 21:962-973. [PMID: 27491516 DOI: 10.1016/j.tplants.2016.07.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 05/02/2023]
Abstract
Flowering plants convert many hundreds of organelle cytidines (Cs) to uridines (Us) during post-transcriptional RNA editing. Pentatricopeptide repeat (PPR) proteins dictate specificity by recognizing RNA sequences near C targets. However, the complete mechanism of the editing machinery is not yet understood. Recently, non-PPR editing factors [RNA editing factor interacting proteins (RIPs)/multiple organellar RNA editing factors (MORFs), organelle RNA recognition motif (ORRM) proteins, organelle zinc-finger (OZ) proteins, and protoporphyrinogen oxidase 1 (PPO1)] have been identified as components of the plant RNA editosome, which is a small RNA-protein complex. Surprisingly, plant editosomes are highly diverse not only with regard to the PPR proteins they contain but also in the non-PPR components that are present. Here we review the most recent progress in the field and discuss the implications of the diversity of plant editosomes for the evolution of RNA editing and for possible future applications.
Collapse
Affiliation(s)
- Tao Sun
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Stephane Bentolila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
17
|
Abstract
All true metazoans modify their RNAs by converting specific adenosine residues to inosine. Because inosine binds to cytosine, it is a biological mimic for guanosine. This subtle change, termed RNA editing, can have diverse effects on various RNA-mediated cellular pathways, including RNA interference, innate immunity, retrotransposon defense and messenger RNA recoding. Because RNA editing can be regulated, it is an ideal tool for increasing genetic diversity, adaptation and environmental acclimation. This review will cover the following themes related to RNA editing: (1) how it is used to modify different cellular RNAs, (2) how frequently it is used by different organisms to recode mRNA, (3) how specific recoding events regulate protein function, (4) how it is used in adaptation and (5) emerging evidence that it can be used for acclimation. Organismal biologists with an interest in adaptation and acclimation, but with little knowledge of RNA editing, are the intended audience.
Collapse
Affiliation(s)
- Joshua J C Rosenthal
- Universidad de Puerto Rico, Recinto de Ciencias Medicas, Instituto de Neurobiologia, 201 Blvd. del Valle, San Juan, PR 00901, USA
| |
Collapse
|
18
|
Abstract
Our knowledge of the variety and abundances of RNA base modifications is rapidly increasing. Modified bases have critical roles in tRNAs, rRNAs, translation, splicing, RNA interference, and other RNA processes, and are now increasingly detected in all types of transcripts. Can new biological principles associated with this diversity of RNA modifications, particularly in mRNAs and long non-coding RNAs, be identified? This review will explore this question by focusing primarily on adenosine to inosine (A-to-I) RNA editing by the adenine deaminase acting on RNA (ADAR) enzymes that have been intensively studied for the past 20 years and have a wide range of effects. Over 100 million adenosine to inosine editing sites have been identified in the human transcriptome, mostly in embedded Alu sequences that form potentially innate immune-stimulating dsRNA hairpins in transcripts. Recent research has demonstrated that inosine in the epitranscriptome and ADAR1 protein establish innate immune tolerance for host dsRNA formed by endogenous sequences. Innate immune sensors that detect viral nucleic acids are among the readers of epitranscriptome RNA modifications, though this does preclude a wide range of other modification effects.
Collapse
Affiliation(s)
- Mary A. O’Connell
- CEITEC Masaryk University, Brno, Czech Republic
- * E-mail: (MAO); (LPK)
| | - Niamh M. Mannion
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Liam P. Keegan
- CEITEC Masaryk University, Brno, Czech Republic
- * E-mail: (MAO); (LPK)
| |
Collapse
|
19
|
Daniel C, Behm M, Öhman M. The role of Alu elements in the cis-regulation of RNA processing. Cell Mol Life Sci 2015; 72:4063-76. [PMID: 26223268 PMCID: PMC11113721 DOI: 10.1007/s00018-015-1990-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 07/06/2015] [Accepted: 07/09/2015] [Indexed: 01/18/2023]
Abstract
The human genome is under constant invasion by retrotransposable elements. The most successful of these are the Alu elements; with a copy number of over a million, they occupy about 10 % of the entire genome. Interestingly, the vast majority of these Alu insertions are located in gene-rich regions, and one-third of all human genes contains an Alu insertion. Alu sequences are often embedded in gene sequence encoding pre-mRNAs and mature mRNAs, usually as part of their intron or UTRs. Once transcribed, they can regulate gene expression as well as increase the number of RNA isoforms expressed in a tissue or a species. They also regulate the function of other RNAs, like microRNAs, circular RNAs, and potentially long non-coding RNAs. Mechanistically, Alu elements exert their effects by influencing diverse processes, such as RNA editing, exonization, and RNA processing. In so doing, they have undoubtedly had a profound effect on human evolution.
Collapse
Affiliation(s)
- Chammiran Daniel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Mikaela Behm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Marie Öhman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden.
| |
Collapse
|
20
|
Mannion N, Arieti F, Gallo A, Keegan LP, O'Connell MA. New Insights into the Biological Role of Mammalian ADARs; the RNA Editing Proteins. Biomolecules 2015; 5:2338-62. [PMID: 26437436 PMCID: PMC4693238 DOI: 10.3390/biom5042338] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022] Open
Abstract
The ADAR proteins deaminate adenosine to inosine in double-stranded RNA which is one of the most abundant modifications present in mammalian RNA. Inosine can have a profound effect on the RNAs that are edited, not only changing the base-pairing properties, but can also result in recoding, as inosine behaves as if it were guanosine. In mammals there are three ADAR proteins and two ADAR-related proteins (ADAD) expressed. All have a very similar modular structure; however, both their expression and biological function differ significantly. Only two of the ADAR proteins have enzymatic activity. However, both ADAR and ADAD proteins possess the ability to bind double-strand RNA. Mutations in ADARs have been associated with many diseases ranging from cancer, innate immunity to neurological disorders. Here, we will discuss in detail the domain structure of mammalian ADARs, the effects of RNA editing, and the role of ADARs in human diseases.
Collapse
Affiliation(s)
- Niamh Mannion
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, 21 Shelley Road, Glasgow G12 0ZD, UK.
| | - Fabiana Arieti
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.
| | - Angela Gallo
- Oncohaematoogy Department, Ospedale Pediatrico Bambino Gesù (IRCCS) Viale di San Paolo, Roma 15-00146, Italy.
| | - Liam P Keegan
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.
| | - Mary A O'Connell
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.
| |
Collapse
|
21
|
RNA rewriting, recoding, and rewiring in human disease. Trends Mol Med 2015; 21:549-59. [DOI: 10.1016/j.molmed.2015.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/18/2015] [Accepted: 07/07/2015] [Indexed: 11/15/2022]
|
22
|
Effect of mismatch on binding of ADAR2/GluR-2 pre-mRNA complex. J Mol Model 2015; 21:222. [PMID: 26252972 DOI: 10.1007/s00894-015-2760-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 07/13/2015] [Indexed: 10/23/2022]
Abstract
RNA editing plays an important role in realizing the full potential of a given genome. Different from RNA splicing, RNA editing fine-tunes the sequence of RNA by changing only one or two nucleotides. A-I editing [deamination of adenosine (A) to create inosine (I)] is best characterized in mammals and occurs in the regions of double-stranded RNA (dsRNA). Adenosine deaminases acting on RNA (ADARs) are members of a family of enzymes involved in A-I deamination editing in numerous mRNA and pre-mRNA transcripts. Experimental study shows that ADAR2 selectively edits the R/G site, while ADAR1 edits more promiscuously at several other adenosines. How ADAR2 selects specific sites for deamination is poorly understood. Mismatches have been suggested to be important factors that allow the ADAR2 to achieve specific deamination. Using molecular dynamic simulation, we studied the effect of mismatch on binding stability of the dsRNA/ADAR2 complex. By comparison of two binding domains of ADAR2, we found that ADAR2 dsRBM2 (second binding domain of ADAR2) does not bind well with mismatch reversed GluR-2 RNA. When mismatch is reversed, dsRBM2 of ADAR2 slides along the RNA duplex in the simulation. Detailed structural analysis indicates that the minor groove width of dsRNA and global shape of RNA may play an important role in the specific reading mechanism of ADAR2.
Collapse
|
23
|
Daniel C, Lagergren J, Öhman M. RNA editing of non-coding RNA and its role in gene regulation. Biochimie 2015; 117:22-7. [PMID: 26051678 DOI: 10.1016/j.biochi.2015.05.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/27/2015] [Indexed: 12/28/2022]
Abstract
It has for a long time been known that repetitive elements, particularly Alu sequences in human, are edited by the adenosine deaminases acting on RNA, ADAR, family. The functional interpretation of these events has been even more difficult than that of editing events in coding sequences, but today there is an emerging understanding of their downstream effects. A surprisingly large fraction of the human transcriptome contains inverted Alu repeats, often forming long double stranded structures in RNA transcripts, typically occurring in introns and UTRs of protein coding genes. Alu repeats are also common in other primates, and similar inverted repeats can frequently be found in non-primates, although the latter are less prone to duplex formation. In human, as many as 700,000 Alu elements have been identified as substrates for RNA editing, of which many are edited at several sites. In fact, recent advancements in transcriptome sequencing techniques and bioinformatics have revealed that the human editome comprises at least a hundred million adenosine to inosine (A-to-I) editing sites in Alu sequences. Although substantial additional efforts are required in order to map the editome, already present knowledge provides an excellent starting point for studying cis-regulation of editing. In this review, we will focus on editing of long stem loop structures in the human transcriptome and how it can effect gene expression.
Collapse
Affiliation(s)
- Chammiran Daniel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91 Stockholm, Sweden
| | - Jens Lagergren
- School of Computer Science and Communication, Science for Life Laboratory (SciLifeLab), Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Marie Öhman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91 Stockholm, Sweden.
| |
Collapse
|
24
|
Suzuki T, Ueda H, Okada S, Sakurai M. Transcriptome-wide identification of adenosine-to-inosine editing using the ICE-seq method. Nat Protoc 2015; 10:715-32. [PMID: 25855956 DOI: 10.1038/nprot.2015.037] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Inosine (I), a modified base found in the double-stranded regions of RNA in metazoans, has various roles in biological processes by modulating gene expression. Inosine is generated from adenosine (A) catalyzed by ADAR (adenosine deaminase acting on RNA) enzymes in a process called A-to-I RNA editing. As inosine is converted to guanosine (G) by reverse transcription, the editing sites can be identified by simply comparing cDNA sequences with the corresponding genomic sequence. One approach to screening I sites is by deep sequencing based on A-to-G conversion from genomic sequence to cDNA; however, this approach produces a high rate of false positives because it cannot efficiently eliminate G signals arising from inevitable mapping errors. To address this issue, we developed a biochemical method to identify inosines called inosine chemical erasing (ICE), which is based on cyanoethylation combined with reverse transcription. ICE was subsequently combined with deep sequencing (ICE-seq) for the reliable identification of transcriptome-wide A-to-I editing sites. Here we describe a protocol for the practical application of ICE-seq, which can be completed within 22 d, and which allows the accurate identification of transcriptome-wide A-to-I RNA editing sites.
Collapse
Affiliation(s)
- Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Hiroki Ueda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Shunpei Okada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Masayuki Sakurai
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
Behrendt R, Roers A. Mouse models for Aicardi-Goutières syndrome provide clues to the molecular pathogenesis of systemic autoimmunity. Clin Exp Immunol 2014; 175:9-16. [PMID: 23713592 DOI: 10.1111/cei.12147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2013] [Indexed: 12/31/2022] Open
Abstract
Aicardi-Goutières syndrome (AGS) is a hereditary autoimmune disease which overlaps clinically and pathogenetically with systemic lupus erythematosus (SLE), and can be regarded as a monogenic variant of SLE. Both conditions are characterized by chronic activation of anti-viral type I interferon (IFN) responses. AGS can be caused by mutations in one of several genes encoding intracellular enzymes all involved in nucleic acid metabolism. Mouse models of AGS-associated defects yielded distinct phenotypes and reproduced important features of the disease. Analysis of these mutant mouse lines stimulated a new concept of autoimmunity caused by intracellular accumulations of nucleic acids, which trigger a chronic cell-intrinsic antiviral type I IFN response and thereby autoimmunity. This model is of major relevance for our understanding of SLE pathogenesis. Findings in gene-targeted mice deficient for AGS associated enzymes are summarized in this review.
Collapse
Affiliation(s)
- R Behrendt
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology Dresden, Dresden, Germany
| | | |
Collapse
|
26
|
A method to identify RNA A-to-I editing targets using I-specific cleavage and exon array analysis. Mol Cell Probes 2012; 27:38-45. [PMID: 22960667 DOI: 10.1016/j.mcp.2012.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 08/17/2012] [Accepted: 08/20/2012] [Indexed: 11/21/2022]
Abstract
RNA A-to-I editing is the most common single-base editing in the animal kingdom. Dysregulations of RNA A-to-I editing are associated with developmental defects in mouse and human diseases. Mouse knockout models deficient in ADAR activities show lethal phenotypes associated with defects in nervous system, failure of hematopoiesis and reduced tolerance to stress. While several methods of identifying RNA A-to-I editing sites are currently available, most of the critical editing targets responsible for the important biological functions of ADARs remain unknown. Here we report a method to systematically analyze RNA A-to-I editing targets by combining I-specific cleavage and exon array analysis. Our results show that I-specific cleavage on editing sites causes more than twofold signal reductions in edited exons of known targets such as Gria2, Htr2c, Gabra3 and Cyfip2 in mice. This method provides an experimental approach for genome-wide analysis of RNA A-to-I editing targets with exon-level resolution. We believe this method will help expedite inquiry into the roles of RNA A-to-I editing in various biological processes and diseases.
Collapse
|
27
|
Yamashita T, Tadami C, Nishimoto Y, Hideyama T, Kimura D, Suzuki T, Kwak S. RNA editing of the Q/R site of GluA2 in different cultured cell lines that constitutively express different levels of RNA editing enzyme ADAR2. Neurosci Res 2012; 73:42-8. [PMID: 22366356 DOI: 10.1016/j.neures.2012.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/02/2012] [Accepted: 02/03/2012] [Indexed: 10/28/2022]
Abstract
Adenosine deaminase acting on RNA 2 (ADAR2) catalyzes RNA editing at the glutamine/arginine (Q/R) site of GluA2, and an ADAR2 deficiency may play a role in the death of motor neurons in ALS patients. The expression level of ADAR2 mRNA is a determinant of the editing activity at the GluA2 Q/R site in human brain but not in cultured cells. Therefore, we investigated the extent of Q/R site-editing in the GluA2 mRNA and pre-mRNA as well as the ADAR2 mRNA and GluA2 mRNA and pre-mRNA levels in various cultured cell lines. The extent of the GluA2 mRNA editing was 100% except in SH-SY5Y cells, which have a much lower level of ADAR2 than the other cell lines examined. The ADAR2 activity at the GluA2 pre-mRNA Q/R site correlated with the ADAR2 mRNA level relative to the GluA2 pre-mRNA. SH-SY5Y cells expressed higher level of the GluA2 mRNA in the cytoplasm compared with other cell lines. These results suggest that the ADAR2 expression level reflects editing activity at the GluA2 Q/R site and that although the edited GluA2 pre-mRNA is readily spliced, the unedited GluA2 pre-mRNA is also spliced and transported to the cytoplasm when ADAR2 expression is low.
Collapse
Affiliation(s)
- Takenari Yamashita
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Wang Q. RNA editing catalyzed by ADAR1 and its function in mammalian cells. BIOCHEMISTRY (MOSCOW) 2012; 76:900-11. [PMID: 22022963 DOI: 10.1134/s0006297911080050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In mammalian cells two active enzymes, ADAR1 and ADAR2, carry out A-to-I RNA editing. These two editases share many common features in their protein structures, catalytic activities, and substrate requirements. However, the phenotypes of the knockout animals are remarkably different, which indicate the distinct functions they play. The most striking effect of ADAR1 knockout is cell death and interruption of embryonic development that are not observed in ADAR2 knockout. Evidences have shown that ADAR1 plays critical roles in the differentiating cells in embryo and adult tissues to support the cell's survival and permit their further differentiation and maturation. However, our knowledge in understanding of the mechanism by which ADAR1 exerts its unique effects is very limited. Many efforts had been made trying to understand why ADAR1 is so important that it is indispensible for animal survival, including studies that identify the RNA editing substrates and studies on non-editing mechanisms. The interest of this review is focused on the question why ADAR1 and not ADAR2 is required for cell survival. Therefore, only the data, published and unpublished, potentially connecting ADAR1 to its cell death effect is selectively cited and discussed here. The features of cell death caused by ADAR1 deletion are summarized. Potential involvement of interferon and protein kinase RNA-activated (PKR) pathways is proposed, but obviously more experimental evaluations are needed.
Collapse
Affiliation(s)
- Qingde Wang
- University of Pittsburgh, Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh Cancer Institute, PA 15232, USA.
| |
Collapse
|
29
|
Posttranscriptional recoding by RNA editing. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 86:193-224. [PMID: 22243585 DOI: 10.1016/b978-0-12-386497-0.00006-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The posttranscriptional recoding of nuclear RNA transcripts has emerged as an important regulatory mechanism during eukaryotic gene expression. In particular the deamination of adenosine to inosine (interpreted by the translational machinery as a guanosine) is a frequent event that can recode the meaning of amino acid codons in translated exons, lead to structural changes in the RNA fold, or may affect splice consensus or regulatory sequence sites in noncoding exons or introns and modulate the biogenesis of small RNAs. The molecular mechanism of how the RNA editing machinery and its substrates recognize and interact with each other is not understood well enough to allow for the ab initio delineation of bona fide RNA editing sites. However, progress in the identification of various physiological modification sites and their characterization has given important insights regarding molecular features and events critical for productive RNA editing reactions. In addition, structural studies using components of the RNA editing machinery and together with editing competent substrate molecules have provided information on the chemical mechanism of adenosine deamination within the context of RNA molecules. Here, I give an overview of the process of adenosine deamination RNA editing and describe its relationship to other RNA processing events and its currently established roles in gene regulation.
Collapse
|
30
|
Biswas N, Wang T, Ding M, Tumne A, Chen Y, Wang Q, Gupta P. ADAR1 is a novel multi targeted anti-HIV-1 cellular protein. Virology 2011; 422:265-77. [PMID: 22104209 DOI: 10.1016/j.virol.2011.10.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/29/2011] [Accepted: 10/16/2011] [Indexed: 11/29/2022]
Abstract
We examined the antiviral activity of ADAR1 against HIV-1. Our results indicated that ADAR1 in a transfection system inhibited production of viral proteins and infectious HIV-1 in various cell lines including 293T, HeLa, Jurkat T and primary CD4+ T cells, and was active against a number of X4 and R5 HIV-1 of different clades. Further analysis showed that ADAR1 inhibited viral protein synthesis without any effect on viral RNA synthesis. Mutational analysis showed that ADAR1 introduced most of the A-to-G mutations in the rev RNA, in the region of RNA encoding for Rev Response Element (RRE) binding domain and in env RNA. These mutations inhibited the binding of rev to the RRE and inhibited transport of primary transcripts like gag, pol and env from nucleus to cytoplasm resulting in inhibition of viral protein synthesis without any effect on viral RNA synthesis. Furthermore, ADAR1 induced mutations in the env gene inhibited viral infectivity.
Collapse
Affiliation(s)
- Nabanita Biswas
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Orlandi C, Barbon A, Barlati S. Activity Regulation of Adenosine Deaminases Acting on RNA (ADARs). Mol Neurobiol 2011; 45:61-75. [DOI: 10.1007/s12035-011-8220-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/09/2011] [Indexed: 01/01/2023]
|
32
|
Gallo A, Locatelli F. ADARs: allies or enemies? The importance of A-to-I RNA editing in human disease: from cancer to HIV-1. Biol Rev Camb Philos Soc 2011; 87:95-110. [PMID: 21682836 DOI: 10.1111/j.1469-185x.2011.00186.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adenosine deaminases acting on RNA (ADARs) are enzymes that convert adenosine (A) to inosine (I) in nuclear-encoded RNAs and viral RNAs. The activity of ADARs has been demonstrated to be essential in mammals and serves to fine-tune different proteins and modulate many molecular pathways. Recent findings have shown that ADAR activity is altered in many pathological tissues. Moreover, it has been shown that modulation of RNA editing is important for cell proliferation and migration, and has a protective effect on ischaemic insults. This review summarises available recent knowledge on A-to-I RNA editing and ADAR enzymes, with particular attention given to the emerging role played by these enzymes in cancer, some infectious diseases and immune-mediated disorders.
Collapse
Affiliation(s)
- Angela Gallo
- RNA Editing Laboratory, Oncohaematology Department, IRCCS, Ospedale Pediatrico "Bambino Gesù", Rome, Italy.
| | | |
Collapse
|
33
|
Samuel CE. Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral. Virology 2011; 411:180-93. [PMID: 21211811 DOI: 10.1016/j.virol.2010.12.004] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 12/04/2010] [Indexed: 12/18/2022]
Abstract
A-to-I RNA editing, the deamination of adenosine (A) to inosine (I) that occurs in regions of RNA with double-stranded character, is catalyzed by a family of Adenosine Deaminases Acting on RNA (ADARs). In mammals there are three ADAR genes. Two encode proteins that possess demonstrated deaminase activity: ADAR1, which is interferon-inducible, and ADAR2 which is constitutively expressed. ADAR3, by contrast, has not yet been shown to be an active enzyme. The specificity of the ADAR1 and ADAR2 deaminases ranges from highly site-selective to non-selective, dependent on the duplex structure of the substrate RNA. A-to-I editing is a form of nucleotide substitution editing, because I is decoded as guanosine (G) instead of A by ribosomes during translation and by polymerases during RNA-dependent RNA replication. Additionally, A-to-I editing can alter RNA structure stability as I:U mismatches are less stable than A:U base pairs. Both viral and cellular RNAs are edited by ADARs. A-to-I editing is of broad physiologic significance. Among the outcomes of A-to-I editing are biochemical changes that affect how viruses interact with their hosts, changes that can lead to either enhanced or reduced virus growth and persistence depending upon the specific virus.
Collapse
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
34
|
Abstract
The main type of RNA editing in mammals is the conversion of adenosine to inosine which is translated as if it were guanosine. The enzymes that catalyze this reaction are ADARs (adenosine deaminases that act on RNA), of which there are four in mammals, two of which are catalytically inactive. ADARs edit transcripts that encode proteins expressed mainly in the CNS and editing is crucial to maintain a correctly functioning nervous system. However, the majority of editing has been found in transcripts encoding Alu repeat elements and the biological role of this editing remains a mystery. This chapter describes in detail the different ADAR enzymes and the phenotype of animals that are deficient in their activity. Besides being enzymes, ADARs are also double-stranded RNA-binding proteins, so by binding alone they can interfere with other processes such as RNA interference. Lack of editing by ADARs has been implicated in disorders such as forebrain ischemia and Amyotrophic Lateral Sclerosis (ALS) and this will also be discussed.
Collapse
Affiliation(s)
- Marion Hogg
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | | | | | | |
Collapse
|
35
|
|
36
|
George CX, Gan Z, Liu Y, Samuel CE. Adenosine deaminases acting on RNA, RNA editing, and interferon action. J Interferon Cytokine Res 2010; 31:99-117. [PMID: 21182352 DOI: 10.1089/jir.2010.0097] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) catalyze adenosine (A) to inosine (I) editing of RNA that possesses double-stranded (ds) structure. A-to-I RNA editing results in nucleotide substitution, because I is recognized as G instead of A both by ribosomes and by RNA polymerases. A-to-I substitution can also cause dsRNA destabilization, as I:U mismatch base pairs are less stable than A:U base pairs. Three mammalian ADAR genes are known, of which two encode active deaminases (ADAR1 and ADAR2). Alternative promoters together with alternative splicing give rise to two protein size forms of ADAR1: an interferon-inducible ADAR1-p150 deaminase that binds dsRNA and Z-DNA, and a constitutively expressed ADAR1-p110 deaminase. ADAR2, like ADAR1-p110, is constitutively expressed and binds dsRNA. A-to-I editing occurs with both viral and cellular RNAs, and affects a broad range of biological processes. These include virus growth and persistence, apoptosis and embryogenesis, neurotransmitter receptor and ion channel function, pancreatic cell function, and post-transcriptional gene regulation by microRNAs. Biochemical processes that provide a framework for understanding the physiologic changes following ADAR-catalyzed A-to-I ( = G) editing events include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA-structure-dependent activities such as microRNA production or targeting or protein-RNA interactions.
Collapse
Affiliation(s)
- Cyril X George
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
37
|
Abstract
One type of RNA editing converts adenosines to inosines (A-->I editing) in double-stranded RNA (dsRNA) substrates. A-->I RNA editing is mediated by adenosine deaminase acting on RNA (ADAR) enzymes. A-->I RNA editing of protein-coding sequences of a limited number of mammalian genes results in recoding and subsequent alterations of their functions. However, A-->I RNA editing most frequently targets repetitive RNA sequences located within introns and 5' and 3' untranslated regions (UTRs). Although the biological significance of noncoding RNA editing remains largely unknown, several possibilities, including its role in the control of endogenous short interfering RNAs (esiRNAs), have been proposed. Furthermore, recent studies have revealed that the biogenesis and functions of certain microRNAs (miRNAs) are regulated by the editing of their precursors. Here, I review the recent findings that indicate new functions for A-->I editing in the regulation of noncoding RNAs and for interactions between RNA editing and RNA interference mechanisms.
Collapse
Affiliation(s)
- Kazuko Nishikura
- Department of Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania 19104-4268, USA.
| |
Collapse
|
38
|
Jepson JEC, Reenan RA. RNA editing in regulating gene expression in the brain. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2007; 1779:459-70. [PMID: 18086576 DOI: 10.1016/j.bbagrm.2007.11.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 11/13/2007] [Indexed: 01/26/2023]
Abstract
Adenosine to inosine RNA editing, catalyzed by Adenosine Deaminases Acting on RNA (ADARs), represents an evolutionary conserved post-transcriptional mechanism which harnesses RNA structures to produce proteins that are not literally encoded in the genome. The species-specific alteration of functionally important residues in a multitude of neuronal ion channels and pre-synaptic proteins through RNA editing has been shown to have profound importance for normal nervous system function in a wide range of invertebrate and vertebrate model organisms. ADARs have also been shown to regulate neuronal gene expression through a remarkable variety of disparate processes, including modulation of the RNAi pathway, the creation of alternative splice sites, and the abolition of stop codons. In addition, ADARs have recently been revealed to have a novel role in the primate lineage: the widespread editing of Alu elements, which comprise approximately 10% of the human genome. Thus, as well as enabling the cell-specific regulation of RNAi and selfish genetic elements, the unshackling of the proteome from the constraints of the genome through RNA editing may have been fundamental to the evolution of complex behavior.
Collapse
Affiliation(s)
- James E C Jepson
- Department of Molecular Biology, Cell Biology and Biochemistry, SFH Life Sciences Building, Brown University, 185 Meeting Street, Providence, RI 02912, USA.
| | | |
Collapse
|
39
|
Gandy SZ, Linnstaedt SD, Muralidhar S, Cashman KA, Rosenthal LJ, Casey JL. RNA editing of the human herpesvirus 8 kaposin transcript eliminates its transforming activity and is induced during lytic replication. J Virol 2007; 81:13544-51. [PMID: 17913828 PMCID: PMC2168827 DOI: 10.1128/jvi.01521-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human herpesvirus 8 is the etiologic agent associated with Kaposi's sarcoma and primary effusion lymphoma (PEL). The K12 RNA, which produces as many as three variants of the kaposin protein, as well as a microRNA, is the most abundant transcript expressed in latent Kaposi's sarcoma-associated herpesvirus infection, and yet it is also induced during lytic replication. The portion of the transcript that includes the microRNA and the kaposin A sequence has been shown to have tumorigenic potential. Genome coordinate 117990, which is within this transcript, has been found to be heterogeneous, primarily in RNAs but also among viral DNA sequences. This sequence heterogeneity affects an amino acid in kaposins A and C and the microRNA. The functional effects of this sequence heterogeneity have not been studied, and its origin has not been definitively settled; both RNA editing and heterogeneity at the level of the viral genome have been proposed. Here, we show that transcripts containing A at position 117990 are tumorigenic, while those with G at this position are not. Using a highly sensitive quantitative assay, we observed that, in PEL cells under conditions where more than 60% of cDNAs derived from K12 RNA transcripts have G at coordinate 117990, there is no detectable G in the viral DNA sequence at this position, only A. This result is consistent with RNA editing by one of the host RNA adenosine deaminases (ADARs). Indeed, we observed that purified human ADAR1 efficiently edits K12 RNA in vitro. Remarkably, the amount of editing correlated with the replicative state of the virus; editing levels were nearly 10-fold higher in cells treated to induce lytic viral replication. These results suggest that RNA editing controls the function of one segment of the kaposin transcript, such that it has transforming activity during latent replication and possibly another, as-yet-undetermined, function during lytic replication.
Collapse
Affiliation(s)
- Sharon Z Gandy
- Department of Microbiology and Immunology, Georgetown University Medical Center, 3900 Reservoir Rd., NW, Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Olena Maydanovych
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, USA
| | | |
Collapse
|
41
|
Toth AM, Zhang P, Das S, George CX, Samuel CE. Interferon action and the double-stranded RNA-dependent enzymes ADAR1 adenosine deaminase and PKR protein kinase. ACTA ACUST UNITED AC 2007; 81:369-434. [PMID: 16891177 DOI: 10.1016/s0079-6603(06)81010-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ann M Toth
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
The conversion of adenosine to inosine (A-to-I) by RNA editing is a widespread RNA processing event by which genomically encoded sequences are altered through site-specific deamination of adenosine residue(s) in RNA transcripts through the actions of a family of double-stranded RNA-specific adenosine deaminases (ADARs). While significant advances have been made regarding the functional consequences of A-to-I editing using heterologous expression systems, the physiological relevance of such RNA modifications in mammals has been addressed effectively using gene-targeting strategies in mice via homologous recombination in embryonic stem (ES) cells. These gene-targeting approaches have allowed the generation of mutant mouse strains in which site-specific editing events can be fixed in the fully edited or nonedited state for individual ADAR targets, expression of ADAR proteins can be selectively ablated, or a combination of ADAR elimination and ADAR target modification can be used for a more in-depth understanding of the biological consequences of A-to-I editing dysregulation.
Collapse
Affiliation(s)
- Elizabeth Y Rula
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | |
Collapse
|
43
|
Kawahara Y, Kwak S. Excitotoxicity and ALS: what is unique about the AMPA receptors expressed on spinal motor neurons? ACTA ACUST UNITED AC 2006; 6:131-44. [PMID: 16183555 DOI: 10.1080/14660820510037872] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It has been repeatedly reported that spinal motor neurons are selectively vulnerable to AMPA receptor-mediated excitotoxicity. Therefore, identifying the uniqueness of AMPA receptors that are expressed on motor neurons, especially in individuals affected with sporadic amyotrophic lateral sclerosis (ALS) is essential for elucidating the etiology of this disorder. The mechanism that initiates motor neuronal death appears to be an exaggerated influx of Ca(2+) through AMPA receptors. The determinants that affect this Ca(2+) influx are Ca(2+) permeability, which is regulated by the presence of the GluR2 subunit and by RNA editing at the Q/R site of GluR2; channel desensitization, which is regulated by alternative splicing at the flip/flop site and by RNA editing at the R/G site of GluR subunits; and receptor density on the cell surface, which is controlled by many factors including regulatory proteins, direct phosphorylation and RNA editing at the Q/R site. This review focuses on recent progress on the molecular dynamics of AMPA receptors and discusses the pathophysiology of selective motor neuron death mediated by AMPA receptors in individuals affected with sporadic ALS.
Collapse
|
44
|
Kawahara Y, Ito K, Ito M, Tsuji S, Kwak S. Novel splice variants of human ADAR2 mRNA: skipping of the exon encoding the dsRNA-binding domains, and multiple C-terminal splice sites. Gene 2005; 363:193-201. [PMID: 16297572 DOI: 10.1016/j.gene.2005.07.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 07/08/2005] [Accepted: 07/25/2005] [Indexed: 11/26/2022]
Abstract
We report here two previously unknown alternative splice sites in the mRNA of human adenosine deaminase acting on RNA type 2 (ADAR2), an RNA editing enzyme. One splices out the whole of exon 2, which encodes two double-stranded RNA-binding domains (dsRBDs), resulting in a frameshift that introduces a stop codon in the downstream exon. This variant accounts for between 13% and 20% of the total ADAR2 mRNA in each developmental stage and brain region examined, even though its translated product is not expressed at levels that are detectable by Western blot analysis. The other new splice site is located in exon 9, 83 nucleotides downstream of the stop codon for the long C-terminus, resulting in a new 3' untranslated region (UTR) that is about 80 bp longer than the previously reported short C-terminus. The variant produced by this splice site has a stop codon at the same site as that in ADAR2 mRNA containing canonical exons 9 and 10, and is predicted to be translated as an enzymatically active ADAR2 protein. With these two additional splice sites, a total of 48 mRNA variants are theoretically possible, because each splicing event occurs independently. Among them, variants containing the long C-terminus are translated in human brains in situ, implying that alternative splicing in the 3' UTR of ADAR2 might regulate translational efficiency and mRNA stability in vivo.
Collapse
Affiliation(s)
- Yukio Kawahara
- Department of Neurology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Peter A Beal
- University of Utah, Department of Chemistry, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
46
|
|
47
|
Yang W, Wang Q, Howell KL, Lee JT, Cho DSC, Murray JM, Nishikura K. ADAR1 RNA deaminase limits short interfering RNA efficacy in mammalian cells. J Biol Chem 2004; 280:3946-53. [PMID: 15556947 PMCID: PMC2947832 DOI: 10.1074/jbc.m407876200] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Double-stranded RNA induces the homology-dependent degradation of cognate mRNA in the cytoplasm via RNA interference (RNAi) but also is a target for adenosine-to-inosine (A-to-I) RNA editing by adenosine deaminases acting on RNA (ADARs). An interaction between the RNAi and the RNA editing pathways in Caenorhabditis elegans has been suggested recently, but the precise mode of interaction remains to be established. In addition, it is unclear whether this interaction is possible in mammalian cells with their somewhat different RNAi pathways. Here we show that ADAR1 and ADAR2, but not ADAR3, avidly bind short interfering RNA (siRNA) without RNA editing. In particular, the cytoplasmic full-length isoform of ADAR1 has the highest affinity among known ADARs, with a subnanomolar dissociation constant. Gene silencing by siRNA is significantly more effective in mouse fibroblasts homozygous for an ADAR1 null mutation than in wild-type cells. In addition, suppression of RNAi effects are detected in fibroblast cells overexpressing functional ADAR1 but not when overexpressing mutant ADAR1 lacking double-stranded RNA-binding domains. These results identify ADAR1 as a cellular factor that limits the efficacy of siRNA in mammalian cells.
Collapse
Affiliation(s)
- Weidong Yang
- The Wistar Institute, Philadelphia, Pennsylvania 19104
| | - Qingde Wang
- The Wistar Institute, Philadelphia, Pennsylvania 19104
| | | | - Joshua T. Lee
- The Wistar Institute, Philadelphia, Pennsylvania 19104
| | | | - John M. Murray
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kazuko Nishikura
- The Wistar Institute, Philadelphia, Pennsylvania 19104
- To whom correspondence should be addressed: The Wistar Institute, 3601 Spruce St., Philadelphia, PA 19104. Tel.: 215-898-3828; Fax: 215-898-3911;
| |
Collapse
|
48
|
Sansam CL, Wells KS, Emeson RB. Modulation of RNA editing by functional nucleolar sequestration of ADAR2. Proc Natl Acad Sci U S A 2003; 100:14018-23. [PMID: 14612560 PMCID: PMC283538 DOI: 10.1073/pnas.2336131100] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Indexed: 01/12/2023] Open
Abstract
The adenosine deaminases that act on RNA (ADARs) catalyze the site-specific conversion of adenosine to inosine (A to I) in primary mRNA transcripts, thereby affecting the splicing pattern or coding potential of mature mRNAs. Although the subnuclear localization of A-to-I editing has not been precisely defined, ADARs have been shown to act before splicing, suggesting that they function near nucleoplasmic sites of transcription. Here we demonstrate that ADAR2, a member of the vertebrate ADAR family, is concentrated in the nucleolus, a subnuclear domain disparate from the sites of mRNA transcription. Selective inhibition of ribosomal RNA synthesis or the introduction of mutations in the double-stranded RNA-binding domains within ADAR2 results in translocation of the protein to the nucleoplasm, suggesting that nucleolar association of ADAR2 depends on its ability to bind to ribosomal RNA. Fluorescence recovery after photobleaching reveals that ADAR2 can shuttle rapidly between subnuclear compartments. Enhanced translocation of endogenous ADAR2 from the nucleolus to the nucleoplasm results in increased editing of endogenous ADAR2 substrates. These observations indicate that the nucleolar localization of ADAR2 represents an important mechanism by which RNA editing can be modulated by the sequestration of enzymatic activity from potential RNA substrates in the nucleoplasm.
Collapse
|
49
|
Kawahara Y, Ito K, Sun H, Kanazawa I, Kwak S. Low editing efficiency of GluR2 mRNA is associated with a low relative abundance of ADAR2 mRNA in white matter of normal human brain. Eur J Neurosci 2003; 18:23-33. [PMID: 12859334 DOI: 10.1046/j.1460-9568.2003.02718.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ionotropic glutamate receptor (GluR) subunits GluR2, GluR5 and GluR6 are subject to RNA editing at their Q/R sites, resulting in significant alterations in the channel properties of the receptors. RNA editing at the Q/R site of GluRs is both developmentally and regionally regulated. Here we provide the first quantitative measurements of both mRNAs of the GluR subunits and mRNAs of the RNA editing enzymes ADAR1-ADAR3 in a comparison of the efficiency of editing at the Q/R site with the expression levels of ADAR mRNA in human brain. We demonstrate that the Q/R site of GluRs in white matter is edited significantly less than in grey matter. In addition, by means of quantitative reverse transcription-polymerase chain reaction methods, we demonstrate that the relative abundance of ADAR2 mRNA to GluR2 mRNA is significantly lower in white matter than in grey matter and that the GluR2 Q/R site editing decreased only when the ratio of ADAR2 mRNA (not that of ADAR1 mRNA) to GluR2 mRNA dropped below a threshold (20 x 10(-3)). These results suggest that Q/R site of GluRs editing is regulated in a regional, and hence presumably cell-specific, manner and that the GluR2 Q/R site editing is critically regulated by ADAR2 in human brain.
Collapse
Affiliation(s)
- Yukio Kawahara
- Department of Neurology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | |
Collapse
|
50
|
Cho DSC, Yang W, Lee JT, Shiekhattar R, Murray JM, Nishikura K. Requirement of dimerization for RNA editing activity of adenosine deaminases acting on RNA. J Biol Chem 2003; 278:17093-102. [PMID: 12618436 DOI: 10.1074/jbc.m213127200] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenosine deaminases acting on RNA (ADAR) convert adenosine residues into inosines in double-stranded RNA. Three vertebrate ADAR gene family members, ADAR1, ADAR2, and ADAR3, have been identified. The catalytic domain of all three ADAR gene family members is very similar to that of Escherichia coli cytidine deaminase and APOBEC-1. Homodimerization is essential for the enzyme activity of those cytidine deaminases. In this study, we investigated the formation of complexes between differentially epitope-tagged ADAR monomers by sequential affinity chromatography and size exclusion column chromatography. Both ADAR1 and ADAR2 form a stable enzymatically active homodimer complex, whereas ADAR3 remains as a monomeric, enzymatically inactive form. No heterodimer complex formation among different ADAR gene family members was detected. Analysis of HeLa and mouse brain nuclear extracts suggested that endogenous ADAR1 and ADAR2 both form a homodimer complex. Interestingly, endogenous ADAR3 also appears to form a homodimer complex, indicating the presence of a brain-specific mechanism for ADAR3 dimerization. Homodimer formation may be necessary for ADAR to act as active deaminases. Analysis of dimer complexes consisting of one wild-type and one mutant monomer suggests functional interactions between the two subunits during site-selective RNA editing.
Collapse
|