1
|
Ran Z, Du Z, Miao G, Zheng M, Luo L, Pang X, Wei L, Li D, Ma W. Identification of a c-type heme oxygenase and its function during acclimation of cyanobacteria to nitrogen fluctuations. Commun Biol 2023; 6:944. [PMID: 37714932 PMCID: PMC10504260 DOI: 10.1038/s42003-023-05315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 09/01/2023] [Indexed: 09/17/2023] Open
Abstract
The mechanisms of acclimating to a nitrogen-fluctuating environment are necessary for the survival of aquatic cyanobacteria in their natural habitats, but our understanding is still far from complete. Here, the synthesis of phycobiliprotein is confirmed to be much earlier than that of photosystem components during recovery from nitrogen chlorosis and an unknown protein Ssr1698 is discovered to be involved in this synthetic process. The unknown protein is further identified as a c-type heme oxygenase (cHO) in tetrapyrrole biosynthetic pathway and catalyzes the opening of heme ring to form biliverdin IXα, which is required for phycobilin production and ensuing phycobiliprotein synthesis. In addition, the cHO-dependent phycobiliprotein is found to be vital for the growth of cyanobacterial cells during chlorosis and regreening through its nitrogen-storage and light-harvesting functions, respectively. Collectively, the cHO expressed preferentially during recovery from nitrogen chlorosis is identified in photosynthetic organisms and the dual function of this enzyme-dependent phycobiliprotein is proposed to be an important mechanism for acclimation of aquatic cyanobacteria to a nitrogen-fluctuating environment.
Collapse
Affiliation(s)
- Zhaoxing Ran
- School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China
- College of Life Sciences, Shanghai Normal University, 200234, Shanghai, China
| | - Zhenyu Du
- College of Life Sciences, Shanghai Normal University, 200234, Shanghai, China
| | - Gengkai Miao
- College of Life Sciences, Shanghai Normal University, 200234, Shanghai, China
| | - Mei Zheng
- College of Life Sciences, Shanghai Normal University, 200234, Shanghai, China
| | - Ligang Luo
- College of Life Sciences, Shanghai Normal University, 200234, Shanghai, China
| | - Xiaoqin Pang
- College of Life Sciences, Shanghai Normal University, 200234, Shanghai, China
| | - Lanzhen Wei
- College of Life Sciences, Shanghai Normal University, 200234, Shanghai, China.
| | - Dezhi Li
- School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China.
- Key Laboratory of Urbanization and Ecological Restoration of Shanghai, 200241, Shanghai, China.
- Institute of Eco-Chongming (IEC), 20 Cuiniao Rd, Chenjia Zhen, Chongming, 202162, Shanghai, China.
- Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, 200062, Shanghai, China.
| | - Weimin Ma
- College of Life Sciences, Shanghai Normal University, 200234, Shanghai, China.
| |
Collapse
|
2
|
Mahawar L, Shekhawat GS. Haem oxygenase: A functionally diverse enzyme of photosynthetic organisms and its role in phytochrome chromophore biosynthesis, cellular signalling and defence mechanisms. PLANT, CELL & ENVIRONMENT 2018; 41:483-500. [PMID: 29220548 DOI: 10.1111/pce.13116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/26/2017] [Accepted: 11/23/2017] [Indexed: 05/08/2023]
Abstract
Haem oxygenase (HO) is a universal enzyme that catalyses stereospecific cleavage of haem to BV IX α and liberates Fe+2 ion and CO as by-product. Beside haem degradation, it has important functions in plants that include cellular defence, stomatal regulation, iron mobilization, phytochrome chromophore synthesis, and lateral root formation. Phytochromes are an extended family of photoreceptors with a molecular mass of 250 kDa and occur as a dimer made up of 2 equivalent subunits of 125 kDa each. Each subunit is made of two components: the chromophore, a light-capturing pigment molecule and the apoprotein. Biosynthesis of phytochrome (phy) chromophore includes the oxidative splitting of haem to biliverdin IX by an enzyme HO, which is the decisive step in the biosynthesis. In photosynthetic organisms, BVα is reduced to 3Z PΦB by a ferredoxin-dependent PΦB synthase that finally isomerised to PΦB. The synthesized PΦB assembles with the phytochrome apoprotein in the cytoplasm to generate holophytochrome. Thus, necessary for photomorphogenesis in plants, which has confirmed from the genetic studies, conducted on Arabidopsis thaliana and pea. Besides the phytochrome chromophore synthesis, the review also emphasises on the current advances conducted in plant HO implying its developmental and defensive role.
Collapse
Affiliation(s)
- Lovely Mahawar
- Department of Botany, Jai Narain Vyas University, Jodhpur, 342001, India
| | | |
Collapse
|
3
|
Yu P, Wu Y, Wang G, Jia T, Zhang Y. Purification and bioactivities of phycocyanin. Crit Rev Food Sci Nutr 2016; 57:3840-3849. [PMID: 27171656 DOI: 10.1080/10408398.2016.1167668] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, P.R. China
| | - Yunting Wu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, P.R. China
| | - Guangwei Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, P.R. China
| | - Tianmei Jia
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, P.R. China
| | - Yishu Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, P.R. China
| |
Collapse
|
4
|
Bonkovsky HL, Guo J, Hou W, Li T, Narang T, Thapar M. Porphyrin and Heme Metabolism and the Porphyrias. Compr Physiol 2013; 3:365-401. [DOI: 10.1002/cphy.c120006] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Kanesaki Y, Imamura S, Minoda A, Tanaka K. External light conditions and internal cell cycle phases coordinate accumulation of chloroplast and mitochondrial transcripts in the red alga Cyanidioschyzon merolae. DNA Res 2012; 19:289-303. [PMID: 22518007 PMCID: PMC3372377 DOI: 10.1093/dnares/dss013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 03/14/2012] [Indexed: 01/08/2023] Open
Abstract
The mitochondria and chloroplasts in plant cells are originated from bacterial endosymbioses, and they still replicate their own genome and divide in a similar manner as their ancestors did. It is thus likely that the organelle transcription is coordinated with its proliferation cycle. However, this possibility has not extensively been explored to date, because in most plant cells there are many mitochondria and chloroplasts that proliferate asynchronously. It is generally believed that the gene transfer from the organellar to nuclear genome has enabled nuclear control of the organelle functions during the evolution of eukaryotic plant cells. Nevertheless, no significant relationship has been reported between the organelle transcriptome and the host cell cycle even in Chlamydomonas reinhardtii. While the organelle proliferation cycle is not coordinated with the cell cycle in vascular plants, in the unicellular red alga Cyanidioschyzon merolae that contains only one mitochondrion, one chloroplast, and one nucleus per cell, each of the organelles is known to proliferate at a specific phase of the cell cycle. Here, we show that the expression of most of the organelle genes is highly coordinated with the cell cycle phases as well as with light regimes in clustering analyses. In addition, a strong correlation was observed between the gene expression profiles in the mitochondrion and chloroplast, resulting in the identification of a network of functionally related genes that are co-expressed during organelle proliferation.
Collapse
Affiliation(s)
- Yu Kanesaki
- Genome Research Center, Nodai Research Institute, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo156-8502, Japan
- Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Sousuke Imamura
- Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo112-8551, Japan
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Ayumi Minoda
- Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Tokyo192-0392, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan
| | - Kan Tanaka
- Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
| |
Collapse
|
6
|
Shekhawat GS, Verma K. Haem oxygenase (HO): an overlooked enzyme of plant metabolism and defence. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2255-70. [PMID: 20378668 DOI: 10.1093/jxb/erq074] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Haem oxygenase (HO) degrades free haem released from haem proteins with the generation of ferrous iron (Fe2+), biliverdin-IXalpha (BV-IXalpha), and carbon monoxide (CO). The mechanism of haem cleavage has been conserved between plants and other organisms even though the function, subcellular localization, and cofactor requirements of HO differ substantially. The crystal structure of HO1, a monomeric protein, has been extensively reported in mammals, pathogenic bacteria, and cyanobacteria, but no such reports are available for higher plant HOs except a predicted model for pea HO1. Along with haem degradation, HO performs various cellular processes including iron acquisition/mobilization, phytochrome chromophore synthesis, cell protection, and stomatal regulation. To date, four HO genes (HO1, HO2, HO3, and HO4) have been reported in plants. HO1 has been well explored in cell metabolism; however, the divergent roles of the other three HOs is less known. The transcriptional up-regulation of HO1 in plants responds to many agents, such as light, UV, iron deprivation, reactive oxygen species (ROS), abscisic acid (ABA), and haematin. Recently the HO1/CO system has gained more attention due to its physiological cytoprotective role in plants. This review focuses on the recent advances made in plant HO research involving its role in environmental stresses. Moreover, the review emphasizes physiological, biochemical, and molecular aspects of this enzyme in plants.
Collapse
Affiliation(s)
- G S Shekhawat
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali-304022, Rajasthan, India.
| | | |
Collapse
|
7
|
Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 2008; 80:1-14. [DOI: 10.1007/s00253-008-1542-y] [Citation(s) in RCA: 321] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/13/2008] [Accepted: 05/14/2008] [Indexed: 01/12/2023]
|
8
|
Graverholt OS, Eriksen NT. Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin. Appl Microbiol Biotechnol 2007; 77:69-75. [PMID: 17786429 DOI: 10.1007/s00253-007-1150-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 08/06/2007] [Accepted: 08/06/2007] [Indexed: 10/22/2022]
Abstract
Production of biomass and phycocyanin (PC) were investigated in highly pigmented variants of the unicellular rhodophyte Galdieria sulphuraria, which maintained high specific pigment concentrations when grown heterotrophically in darkness. The parental culture, G. sulphuraria 074G was grown on solidified growth media, and intensely coloured colonies were isolated and grown in high-cell-density fed-batch and continuous-flow cultures. These cultures contained 80-110 g L(-1) biomass and 1.4-2.9 g L(-1) PC. The volumetric PC production rates were 0.5-0.9 g L(-1) day(-1). The PC production rates were 11-21 times higher than previously reported for heterotrophic G. sulphuraria 074G grown on glucose and 20-287 times higher than found in phototrophic cultures of Spirulina platensis, the organism presently used for commercial production of PC.
Collapse
Affiliation(s)
- Olav Sune Graverholt
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, Aalborg, Denmark
| | | |
Collapse
|
9
|
Yannarelli GG, Noriega GO, Batlle A, Tomaro ML. Heme oxygenase up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species. PLANTA 2006; 224:1154-62. [PMID: 16703357 DOI: 10.1007/s00425-006-0297-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Accepted: 04/17/2006] [Indexed: 05/04/2023]
Abstract
Ultraviolet-B (UV-B) radiation has a negative impact on plant cells, and leads to the generation of reactive oxygen species (ROS). Heme oxygenase (HO, EC 1.14.99.3) plays a protective role against oxidative stress in mammals, but little is known about this issue in plants. Here, we report for the first time the response of HO in leaves of soybean (Glycine max L.) plants subjected to UV-B radiation. Under 7.5 and 15 kJ m(-2 )UV-B doses, HO, catalase (CAT, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.11) activities were increased and the production of thiobarbituric acid reactive substances (TBARS) regain control values after 4 h of plant recuperation. Treatment with 30 kJ m(-2) UV-B provoked a decrease in these antioxidant enzyme activities. Immunoblot analysis showed a 4.3 and 3.7-fold increase in HO-1 protein expression after irradiation with 7.5 and 15 kJ m(-2), respectively. HO-1 transcript levels were enhanced (up to 77%) at these doses, as assessed by semi-quantitative RT-PCR. These data demonstrated that increased HO activity was associated with augmented protein expression and transcript levels. Plants pre-treated with the antioxidant ascorbic acid did not show the UV-B-induced up-regulation of HO-1 mRNA, but hydrogen peroxide treatment could mimic this reaction. Our results indicate that HO is up-regulated in a dose-depending manner as a mechanism of cell protection against oxidative damage and that such response occurred as a consequence of HO-1 mRNA enhancement involving ROS.
Collapse
Affiliation(s)
- Gustavo G Yannarelli
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, 1113, Argentina.
| | | | | | | |
Collapse
|
10
|
Accumulation of phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.05.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
|
12
|
Cornejo J, Willows RD, Beale SI. Phytobilin biosynthesis: cloning and expression of a gene encoding soluble ferredoxin-dependent heme oxygenase from Synechocystis sp. PCC 6803. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 15:99-107. [PMID: 9744099 DOI: 10.1046/j.1365-313x.1998.00186.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The phytobilin chromophores of phycobiliproteins and phytochromes are biosynthesized from heme in a pathway that begins with the opening of the tetrapyrrole macrocycle of protoheme to form biliverdin IX alpha, in a reaction catalyzed by heme oxygenase. A gene containing an open reading frame with a predicted polypeptide that has a sequence similar to that of a conserved region of animal microsomal heme oxygenases was identified in the published genomic sequence of Synechocystis sp. PCC 6803. This gene, named ho1, was cloned and expressed in Escherichia coli under the control of the lacZ promoter. Cells expressing the gene became green colored due to the accumulation of biliverdin IX alpha. The size of the expressed protein was equal to the predicted size of the Synechocystis gene product, named HO1. Heme oxygenase activity was assayed in incubations containing extract of transformed E. coli cells. Incubations containing extract of induced cells, but not those containing extract of uninduced cells, had ferredoxin-dependent heme oxygenase activity. With mesoheme as the substrate, the reaction product was identified as mesobiliverdin IX alpha by spectrophotometry and reverse-phase HPLC. Heme oxygenase activity was not sedimented by centrifugation at 100, 000 g. Expression of HO1 increased several-fold during incubation of the cells for 72 h in iron-deficient medium.
Collapse
Affiliation(s)
- J Cornejo
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
13
|
Richaud C, Zabulon G. The heme oxygenase gene (pbsA) in the red alga Rhodella violacea is discontinuous and transcriptionally activated during iron limitation. Proc Natl Acad Sci U S A 1997; 94:11736-41. [PMID: 9326680 PMCID: PMC23621 DOI: 10.1073/pnas.94.21.11736] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/1997] [Indexed: 02/05/2023] Open
Abstract
Heme oxygenase (HO) catalyzes the opening of the heme ring with the release of iron in both plants and animals. In cyanobacteria, red algae, and cryptophyceae, HO is a key enzyme in the synthesis of the chromophoric part of the photosynthetic antennae. In an attempt to study the regulation of this key metabolic step, we cloned and sequenced the pbsA gene encoding this enzyme from the red alga Rhodella violacea. The gene is located on the chloroplast genome, split into three distant exons, and is presumably expressed by a trans-splicing mechanism. The deduced polypeptide sequence is homologous to other reported HOs from organisms containing phycobilisomes (Porphyra purpurea and Synechocystis sp. strain PCC 6803) and, to a lesser extent, to vertebrate enzymes. The expression is transcriptionally activated under iron deprivation, a stress condition frequently encountered by algae, suggesting a second role for HO as an iron-mobilizing agent in photosynthetic organisms.
Collapse
Affiliation(s)
- C Richaud
- Laboratoire de Photorégulation et Dynamique des Membranes Végétales, Centre National de la Recherche Scientifique, Unité de Recherche Associée 1810, GDR 1002, Ecole normale supérieure, 46 rue d'Ulm, 75230 Paris, France.
| | | |
Collapse
|
14
|
Turner L, Houghton JD, Brown SB. Purification and identification of apophycocyanin alpha and beta subunits from soluble protein extracts of the red alga Cyanidium caldarium. Light exposure is not a prerequisite for biosynthesis of the protein moiety of this photosynthetic accessory pigment. PLANTA 1997; 201:78-83. [PMID: 9004549 DOI: 10.1007/bf01258683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Much controversy exists as to the level at which light exerts control over the biosynthesis of the photosynthetic apparatus in higher plants and other organisms. The eukaryotic red alga Cyanidium caldarium, like higher plants, undergoes light induction of chlorophyll synthesis. In addition to chlorophyll a the alga also synthesises the linear tetrapyrrole phycocyanobilin, which is combined with alpha or beta apobiliproteins to form phycocyanin, the major light-harvesting pigment in this organism. We have previously shown that the tetrapyrrole precursor 5-aminolaevulinic acid (ALA) can substitute for light in inducing the biosynthesis of the phycocyanobilin moiety of this protein. We have also described the appearance of a protein of similar isoelectric point and molecular weight to phycocyanin in ALA-fed cells (Turner et al., 1992, Plant Physiol Biochem 30: 309-314). We now report on the protein's immunological and sequence identity with phycocyanin alpha and beta subunits, and provide further evidence that bilin-apoprotein ligation is light dependent.
Collapse
Affiliation(s)
- L Turner
- Department of Biochemistry and Molecular Biology, University of Leeds, UK.
| | | | | |
Collapse
|