1
|
Tripathy RK, Pande AH. Molecular and functional insight into anti-EGFR nanobody: Theranostic implications for malignancies. Life Sci 2024; 345:122593. [PMID: 38554946 DOI: 10.1016/j.lfs.2024.122593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/27/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Targeted therapy and imaging are the most popular techniques for the intervention and diagnosis of cancer. A potential therapeutic target for the treatment of cancer is the epidermal growth factor receptor (EGFR), primarily for glioblastoma, lung, and breast cancer. Over-production of ligand, transcriptional up-regulation due to autocrine/paracrine signalling, or point mutations at the genomic locus may contribute to the malfunction of EGFR in malignancies. This exploit makes use of EGFR, an established biomarker for cancer diagnostics and treatment. Despite considerable development in the last several decades in making EGFR inhibitors, they are still not free from limitations like toxicity and a short serum half-life. Nanobodies and antibodies share similar binding properties, but nanobodies have the additional advantage that they can bind to antigenic epitopes deep inside the target that conventional antibodies are unable to access. For targeted therapy, anti-EGFR nanobodies can be conjugated to various molecules such as drugs, peptides, toxins and photosensitizers. These nanobodies can be designed as novel immunoconjugates using the universal modular antibody-based platform technology (UniCAR). Furthermore, Anti-EGFR nanobodies can be expressed in neural stem cells and visualised by effective fluorescent and radioisotope labelling.
Collapse
Affiliation(s)
- Rajan K Tripathy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, (Mohali) 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, (Mohali) 160062, Punjab, India.
| |
Collapse
|
2
|
Hornigold K, Baker MJ, Machin PA, Chetwynd SA, Johnsson AK, Pantarelli C, Islam P, Stammers M, Crossland L, Oxley D, Okkenhaug H, Walker S, Walker R, Segonds-Pichon A, Fukui Y, Malliri A, Welch HCE. The Rac-GEF Tiam1 controls integrin-dependent neutrophil responses. Front Immunol 2023; 14:1223653. [PMID: 38077328 PMCID: PMC10703174 DOI: 10.3389/fimmu.2023.1223653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/20/2023] [Indexed: 12/18/2023] Open
Abstract
Rac GTPases are required for neutrophil adhesion and migration, and for the neutrophil effector responses that kill pathogens. These Rac-dependent functions are impaired when neutrophils lack the activators of Rac, Rac-GEFs from the Prex, Vav, and Dock families. In this study, we demonstrate that Tiam1 is also expressed in neutrophils, governing focal complexes, actin cytoskeletal dynamics, polarisation, and migration, in a manner depending on the integrin ligand to which the cells adhere. Tiam1 is dispensable for the generation of reactive oxygen species but mediates degranulation and NETs release in adherent neutrophils, as well as the killing of bacteria. In vivo, Tiam1 is required for neutrophil recruitment during aseptic peritonitis and for the clearance of Streptococcus pneumoniae during pulmonary infection. However, Tiam1 functions differently to other Rac-GEFs. Instead of promoting neutrophil adhesion to ICAM1 and stimulating β2 integrin activity as could be expected, Tiam1 restricts these processes. In accordance with these paradoxical inhibitory roles, Tiam1 limits the fMLP-stimulated activation of Rac1 and Rac2 in adherent neutrophils, rather than activating Rac as expected. Tiam1 promotes the expression of several regulators of small GTPases and cytoskeletal dynamics, including αPix, Psd4, Rasa3, and Tiam2. It also controls the association of Rasa3, and potentially αPix, Git2, Psd4, and 14-3-3ζ/δ, with Rac. We propose these latter roles of Tiam1 underlie its effects on Rac and β2 integrin activity and on cell responses. Hence, Tiam1 is a novel regulator of Rac-dependent neutrophil responses that functions differently to other known neutrophil Rac-GEFs.
Collapse
Affiliation(s)
- Kirsti Hornigold
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | - Martin J. Baker
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
- Cell Signalling Group, Cancer Research UK Manchester Institute, University of Manchester, Macclesfield, United Kingdom
| | - Polly A. Machin
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | | | | | | | - Priota Islam
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | | | | | - David Oxley
- Mass Spectrometry Facility, Babraham Institute, Cambridge, United Kingdom
| | | | - Simon Walker
- Imaging Facility, Babraham Institute, Cambridge, United Kingdom
| | - Rachael Walker
- Flow Cytometry Facility, Babraham Institute, Cambridge, United Kingdom
| | | | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Manchester Institute, University of Manchester, Macclesfield, United Kingdom
| | | |
Collapse
|
3
|
Ruminski K, Celis-Gutierrez J, Jarmuzynski N, Maturin E, Audebert S, Malissen M, Camoin L, Voisinne G, Malissen B, Roncagalli R. Mapping the SLP76 interactome in T cells lacking each of the GRB2-family adaptors reveals molecular plasticity of the TCR signaling pathway. Front Immunol 2023; 14:1139123. [PMID: 37006259 PMCID: PMC10057548 DOI: 10.3389/fimmu.2023.1139123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
The propagation and diversification of signals downstream of the T cell receptor (TCR) involve several adaptor proteins that control the assembly of multimolecular signaling complexes (signalosomes). The global characterization of changes in protein-protein interactions (PPI) following genetic perturbations is critical to understand the resulting phenotypes. Here, by combining genome editing techniques in T cells and interactomics studies based on affinity purification coupled to mass spectrometry (AP-MS) analysis, we determined and quantified the molecular reorganization of the SLP76 interactome resulting from the ablation of each of the three GRB2-family adaptors. Our data showed that the absence of GADS or GRB2 induces a major remodeling of the PPI network associated with SLP76 following TCR engagement. Unexpectedly, this PPI network rewiring minimally affects proximal molecular events of the TCR signaling pathway. Nevertheless, during prolonged TCR stimulation, GRB2- and GADS-deficient cells displayed a reduced level of activation and cytokine secretion capacity. Using the canonical SLP76 signalosome, this analysis highlights the plasticity of PPI networks and their reorganization following specific genetic perturbations.
Collapse
Affiliation(s)
- Kilian Ruminski
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Javier Celis-Gutierrez
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Nicolas Jarmuzynski
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Emilie Maturin
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Stephane Audebert
- Institut Paoli-Calmettes, CRCM, Aix Marseille Université, CNRS, INSERM, Marseille Protóomique, Marseille, France
| | - Marie Malissen
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Luc Camoin
- Institut Paoli-Calmettes, CRCM, Aix Marseille Université, CNRS, INSERM, Marseille Protóomique, Marseille, France
| | - Guillaume Voisinne
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Bernard Malissen
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
- *Correspondence: Romain Roncagalli, ; Bernard Malissen,
| | - Romain Roncagalli
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- *Correspondence: Romain Roncagalli, ; Bernard Malissen,
| |
Collapse
|
4
|
Genomic and Epigenomic Landscape of Juvenile Myelomonocytic Leukemia. Cancers (Basel) 2022; 14:cancers14051335. [PMID: 35267643 PMCID: PMC8909150 DOI: 10.3390/cancers14051335] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Juvenile myelomonocytic leukemia (JMML) is a rare pediatric myelodysplastic/myeloproliferative neoplasm characterized by the constitutive activation of the RAS pathway. In spite of the recent progresses in the molecular characterization of JMML, this disease is still a clinical challenge due to its heterogeneity, difficult diagnosis, poor prognosis, and the lack of curative treatment options other than hematopoietic stem cell transplantation (HSCT). In this review, we will provide a detailed overview of the genetic and epigenetic alterations occurring in JMML, and discuss their clinical relevance in terms of disease prognosis and risk of relapse after HSCT. We will also present the most recent advances on novel preclinical and clinical therapeutic approaches directed against JMML molecular targets. Finally, we will outline future research perspectives to further explore the oncogenic mechanism driving JMML leukemogenesis and progression, with special attention to the application of single-cell next-generation sequencing technologies. Abstract Juvenile myelomonocytic leukemia (JMML) is a rare myelodysplastic/myeloproliferative neoplasm of early childhood. Most of JMML patients experience an aggressive clinical course of the disease and require hematopoietic stem cell transplantation, which is currently the only curative treatment. JMML is characterized by RAS signaling hyperactivation, which is mainly driven by mutations in one of five genes of the RAS pathway, including PTPN11, KRAS, NRAS, NF1, and CBL. These driving mutations define different disease subtypes with specific clinico-biological features. Secondary mutations affecting other genes inside and outside the RAS pathway contribute to JMML pathogenesis and are associated with a poorer prognosis. In addition to these genetic alterations, JMML commonly presents aberrant epigenetic profiles that strongly correlate with the clinical outcome of the patients. This observation led to the recent publication of an international JMML stratification consensus, which defines three JMML clinical groups based on DNA methylation status. Although the characterization of the genomic and epigenomic landscapes in JMML has significantly contributed to better understand the molecular mechanisms driving the disease, our knowledge on JMML origin, cell identity, and intratumor and interpatient heterogeneity is still scarce. The application of new single-cell sequencing technologies will be critical to address these questions in the future.
Collapse
|
5
|
Regulation of the Small GTPase Ras and Its Relevance to Human Disease. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2262:19-43. [PMID: 33977469 DOI: 10.1007/978-1-0716-1190-6_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ras research has experienced a considerable boost in recent years, not least prompted by the Ras initiative launched by the NCI in 2013 ( https://www.cancer.gov/research/key-initiatives/ras ), accompanied and conditioned by a strongly reinvigorated determination within the Ras community to develop therapeutics attacking directly the Ras oncoproteins. As a member of the small G-protein superfamily, function and transforming activity of Ras all revolve about its GDP/GTP loading status. For one thing, the extent of GTP loading will determine the proportion of active Ras in the cell, with implications for intensity and quality of downstream signaling. But also the rate of nucleotide exchange, i.e., the Ras-GDP/GTP cycling rate, can have a major impact on Ras function, as illustrated perhaps most impressively by newly discovered fast-cycling oncogenic mutants of the Ras-related GTPase Rac1. Thus, while the last years have witnessed memorable new findings and technical developments in the Ras field, leading to an improved insight into many aspects of Ras biology, they have not jolted at the basics, but rather deepened our view of the fundamental regulatory principles of Ras activity control. In this brief review, we revisit the role and mechanisms of Ras nucleotide loading and its implications for cancer in the light of recent findings.
Collapse
|
6
|
Han CW, Jeong MS, Jang SB. Understand KRAS and the Quest for Anti-Cancer Drugs. Cells 2021; 10:cells10040842. [PMID: 33917906 PMCID: PMC8068306 DOI: 10.3390/cells10040842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/30/2022] Open
Abstract
The KRAS oncogene is mutated in approximately ~30% of human cancers, and the targeting of KRAS has long been highlighted in many studies. Nevertheless, attempts to target KRAS directly have been ineffective. This review provides an overview of the structure of KRAS and its characteristic signaling pathways. Additionally, we examine the problems associated with currently available KRAS inhibitors and discuss promising avenues for drug development.
Collapse
Affiliation(s)
- Chang Woo Han
- Institute of Systems Biology, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Korea;
| | - Mi Suk Jeong
- Institute for Plastic Information and Energy Materials and Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Korea
- Correspondence: (M.S.J.); (S.B.J.); Tel.: +82-51-510-2523 (M.S.J. & S.B.J.)
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Korea
- Correspondence: (M.S.J.); (S.B.J.); Tel.: +82-51-510-2523 (M.S.J. & S.B.J.)
| |
Collapse
|
7
|
Baltanás FC, Zarich N, Rojas-Cabañeros JM, Santos E. SOS GEFs in health and disease. Biochim Biophys Acta Rev Cancer 2020; 1874:188445. [PMID: 33035641 DOI: 10.1016/j.bbcan.2020.188445] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
SOS1 and SOS2 are the most universal and widely expressed family of guanine exchange factors (GEFs) capable or activating RAS or RAC1 proteins in metazoan cells. SOS proteins contain a sequence of modular domains that are responsible for different intramolecular and intermolecular interactions modulating mechanisms of self-inhibition, allosteric activation and intracellular homeostasis. Despite their homology, analyses of SOS1/2-KO mice demonstrate functional prevalence of SOS1 over SOS2 in cellular processes including proliferation, migration, inflammation or maintenance of intracellular redox homeostasis, although some functional redundancy cannot be excluded, particularly at the organismal level. Specific SOS1 gain-of-function mutations have been identified in inherited RASopathies and various sporadic human cancers. SOS1 depletion reduces tumorigenesis mediated by RAS or RAC1 in mouse models and is associated with increased intracellular oxidative stress and mitochondrial dysfunction. Since WT RAS is essential for development of RAS-mutant tumors, the SOS GEFs may be considered as relevant biomarkers or therapy targets in RAS-dependent cancers. Inhibitors blocking SOS expression, intrinsic GEF activity, or productive SOS protein-protein interactions with cellular regulators and/or RAS/RAC targets have been recently developed and shown preclinical and clinical effectiveness blocking aberrant RAS signaling in RAS-driven and RTK-driven tumors.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Natasha Zarich
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Jose M Rojas-Cabañeros
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
8
|
Liao TJ, Jang H, Fushman D, Nussinov R. SOS1 interacts with Grb2 through regions that induce closed nSH3 conformations. J Chem Phys 2020; 153:045106. [PMID: 32752665 PMCID: PMC7390601 DOI: 10.1063/5.0013926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/12/2020] [Indexed: 12/18/2022] Open
Abstract
Grb2 is an adaptor protein connecting the epidermal growth factor receptor and the downstream Son of sevenless 1 (SOS1), a Ras-specific guanine nucleotide exchange factor (RasGEF), which exchanges GDP by GTP. Grb2 contains three SH domains: N-terminal SH3 (nSH3), SH2, and C-terminal SH3 (cSH3). The C-terminal proline-rich (PR) domain of SOS1 regulates nSH3 open/closed conformations. Earlier, several nSH3 binding motifs were identified in the PR domain. More recently, we characterized by nuclear magnetic resonance and replica exchange simulations possible cSH3 binding regions. Among them, we discovered a cSH3-specific binding region. However, how PR binding at these sites regulates the nSH3/cSH3 conformation has been unclear. Here, we explore the nSH3/cSH3 interaction with linked and truncated PR segments using molecular dynamics simulations. Our 248 μs simulations include 620 distinct trajectories, each 400 ns. We construct the effective free energy landscape to validate the nSH3/cSH3 binding sites. The nSH3/cSH3-SOS1 peptide complex models indicate that strong peptide binders attract the flexible nSH3 n-Src loop, inducing a closed conformation of nSH3; by contrast, the cSH3 conformation remains unchanged. Inhibitors that disrupt the Ras-SOS1 interaction have been designed; the conformational details uncovered here may assist in the design of polypeptides inhibiting Grb2-SOS1 interaction, thus SOS1 recruitment to the membrane where Ras resides.
Collapse
Affiliation(s)
| | - Hyunbum Jang
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
9
|
Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp Mol Med 2020; 52:750-761. [PMID: 32439954 PMCID: PMC7272404 DOI: 10.1038/s12276-020-0435-8] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/26/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
T cell activation requires extracellular stimulatory signals that are mainly mediated by T cell receptor (TCR) complexes. The TCR recognizes antigens on major histocompatibility complex molecules with the cooperation of CD4 or CD8 coreceptors. After recognition, TCR-induced signaling cascades that propagate signals via various molecules and second messengers are induced. Consequently, many features of T cell-mediated immune responses are determined by these intracellular signaling cascades. Furthermore, differences in the magnitude of TCR signaling direct T cells toward distinct effector linages. Therefore, stringent regulation of T cell activation is crucial for T cell homeostasis and proper immune responses. Dysregulation of TCR signaling can result in anergy or autoimmunity. In this review, we summarize current knowledge on the pathways that govern how the TCR complex transmits signals into cells and the roles of effector molecules that are involved in these pathways.
Collapse
|
10
|
Childers CL, Tessier SN, Storey KB. The heart of a hibernator: EGFR and MAPK signaling in cardiac muscle during the hibernation of thirteen-lined ground squirrels, Ictidomys tridecemlineatus. PeerJ 2019; 7:e7587. [PMID: 31534849 PMCID: PMC6732209 DOI: 10.7717/peerj.7587] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
Abstract
Background Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) experience dramatic changes in physiological and molecular parameters during winter hibernation. Notably, these animals experience reduced blood circulation during torpor, which can put numerous stresses on their hearts. The present study evaluates the role played by the epidermal growth factor receptor (EGFR) in signal transduction during hibernation at low body temperature to evaluate signaling mechanisms. By investigating the regulation of intracellular mitogen activated protein kinase (MAPK) pathway responses, anti-apoptosis signals, downstream transcription factors, and heat shock proteins in cardiac muscle we aim to determine the correlation between upstream tyrosine phosphorylation events and downstream outcomes. Methods Protein abundance of phosphorylated EGFR, MAPKs and downstream effector proteins were quantified using immunoblotting and Luminex® multiplex assays. Results Monitoring five time points over the torpor/arousal cycle, EGFR phosphorylation on T654, Y1068, Y1086 was found to increase significantly compared with euthermic control values particularly during the arousal process from torpor, whereas phosphorylation at Y1045 was reduced during torpor. Phosphorylation of intracellular MAPK targets (p-ERK 1/2, p-JNK, p-p38) also increased strongly during the early arousal stage with p-p38 levels also rising during prolonged torpor. However, of downstream MAPK effector kinases that were measured, only p-Elk-1 levels changed showing a decrease during interbout arousal (IA). Apoptosis markers revealed a strong reduction of the pro-apoptotic p-BAD protein during entrance into torpor that remained suppressed through torpor and IA. However, active caspase-9 protein rose strongly during IA. Levels of p-AKT were suppressed during the transition phases into and out of torpor. Of four heat shock proteins assessed, only HSP27 protein levels changed significantly (a 40% decrease) during torpor. Conclusion We show evidence of EGFR phosphorylation correlating to activation of MAPK signaling and downstream p-ELK1 suppression during hibernation. We also demonstrate a reduction in p-BAD mediated pro-apoptotic signaling during hibernation with active caspase-9 protein levels increasing only during IA. I. tridecemlineatus has natural mechanisms of tissue protection during hibernation that is largely due to cellular regulation through phosphorylation-mediated signaling cascade. We identify a possible link between EGFR and MAPK signaling via p-ERK, p-p38, and p-JNK in the cardiac muscle of these hibernating mammals that correlates with an apparent reduction in caspase-9 apoptotic signaling. This reveals a piece of the mechanism behind how these mammals are resilient to cardiac stresses during hibernation that would otherwise be damaging.
Collapse
Affiliation(s)
| | - Shannon N Tessier
- BioMEMS Resource Center & Center for Engineering in Medicine, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA, USA
| | - Kenneth B Storey
- Institute of Biochemistry, Department of Biology and Chemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
11
|
Bandaru P, Kondo Y, Kuriyan J. The Interdependent Activation of Son-of-Sevenless and Ras. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a031534. [PMID: 29610148 DOI: 10.1101/cshperspect.a031534] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The guanine-nucleotide exchange factor (GEF) Son-of-Sevenless (SOS) plays a critical role in metazoan signaling by converting Ras•GDP (guanosine diphosphate) to Ras•GTP (guanosine triphosphate) in response to tyrosine kinase activation. Structural studies have shown that SOS differs from other Ras-specific GEFs in that SOS is itself activated by Ras•GTP binding to an allosteric site, distal to the site of nucleotide exchange. The activation of SOS involves membrane recruitment and conformational changes, triggered by lipid binding, that open the allosteric binding site for Ras•GTP. This is in contrast to other Ras-specific GEFs, which are activated by second messengers that more directly affect the active site. Allosteric Ras•GTP binding stabilizes SOS at the membrane, where it can turn over other Ras molecules processively, leading to an ultrasensitive response that is distinct from that of other Ras-specific GEFs.
Collapse
Affiliation(s)
- Pradeep Bandaru
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| | - Yasushi Kondo
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| | - John Kuriyan
- Departments of Molecular and Cell Biology and of Chemistry, California Institute for Quantitative Biosciences, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| |
Collapse
|
12
|
Zhang J, Zhang H, Chen Y, Fu J, Lei Y, Sun J, Tang B. Platelet‑derived growth factor D promotes the angiogenic capacity of endothelial progenitor cells. Mol Med Rep 2018; 19:125-132. [PMID: 30483778 PMCID: PMC6297765 DOI: 10.3892/mmr.2018.9692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 10/09/2018] [Indexed: 01/04/2023] Open
Abstract
Neovascularization and re-endothelialization rely on endothelial progenitor cells (EPCs). However, the recruitment and angiogenic roles of EPCs are subject to regulation through the vascular microenvironment, which remains largely unknown. Platelet-derived growth factor D (PDGF-D) is a new member of the PDGF family that binds the PDGFR-β homodimer. However, it remains unknown whether and how it affects the angiogenic capacity of EPCs and participates in tube-like formation. EPCs were derived from rat bone marrow cells, and the gain-of-function approach was used to study the effects of PDGF-D on the biological activities of EPCs. EPCs that stably express PDGF-D were generated by lentiviral-mediated transduction, and the expression levels were evaluated by western blotting and reverse transcription, followed by real-time quantitative polymerase chain reaction (RT-qPCR). The biological activities of EPCs evaluated in the present study included proliferation, adhesion, migration, tube formation and senescence. Furthermore, the downstream signaling of PDGF-D was explored by western blot analysis. The results revealed that the lentiviral-mediated expression of PDGF-D in the microenvironment promoted the migration, proliferation, adhesion and tube formation of EPCs. In addition, PDGF-D suppressed the senescence of EPCs. Mechanistically, PDGF-D induced the phosphorylation of several signaling molecules, including STAT3, AKT, ERK1/2, mTOR and GSK-3β, suggesting that PDGF-D enhanced the angiogenic function of EPCs through PDGF receptor-dependent and -independent signaling pathways. In conclusion, PDGF-D promotes the angiogenic capacity of EPCs, including proliferation, migration, adhesion and tube formation, and thereby contributes to angiogenesis.
Collapse
Affiliation(s)
- Jianbo Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Haolong Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yikuan Chen
- Department of Vascular Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jian Fu
- Department of Vascular Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yu Lei
- Department of Vascular Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jianming Sun
- Department of Vascular Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Bo Tang
- Department of Vascular Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
13
|
Mechanism of SOS PR-domain autoinhibition revealed by single-molecule assays on native protein from lysate. Nat Commun 2017; 8:15061. [PMID: 28452363 PMCID: PMC5414354 DOI: 10.1038/ncomms15061] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 02/23/2017] [Indexed: 12/16/2022] Open
Abstract
The guanine nucleotide exchange factor (GEF) Son of Sevenless (SOS) plays a critical role in signal transduction by activating Ras. Here we introduce a single-molecule assay in which individual SOS molecules are captured from raw cell lysate using Ras-functionalized supported membrane microarrays. This enables characterization of the full-length SOS protein, which has not previously been studied in reconstitution due to difficulties in purification. Our measurements on the full-length protein reveal a distinct role of the C-terminal proline-rich (PR) domain to obstruct the engagement of allosteric Ras independently of the well-known N-terminal domain autoinhibition. This inhibitory role of the PR domain limits Grb2-independent recruitment of SOS to the membrane through binding of Ras·GTP in the SOS allosteric binding site. More generally, this assay strategy enables characterization of the functional behaviour of GEFs with single-molecule precision but without the need for purification.
Collapse
|
14
|
Danzer C, Koller A, Baier J, Arnold H, Giessler C, Opoka R, Schmidt S, Willers M, Mihai S, Parsch H, Wirtz S, Daniel C, Reinhold A, Engelmann S, Kliche S, Bogdan C, Hoebe K, Mattner J. A mutation within the SH2 domain of slp-76 regulates the tissue distribution and cytokine production of iNKT cells in mice. Eur J Immunol 2016; 46:2121-2136. [PMID: 27349342 DOI: 10.1002/eji.201646331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/18/2016] [Accepted: 06/23/2016] [Indexed: 01/01/2023]
Abstract
TCR ligation is critical for the selection, activation, and integrin expression of T lymphocytes. Here, we explored the role of the TCR adaptor protein slp-76 on iNKT-cell biology. Compared to B6 controls, slp-76(ace/ace) mice carrying a missense mutation (Thr428Ile) within the SH2-domain of slp-76 showed an increase in iNKT cells in the thymus and lymph nodes, but a decrease in iNKT cells in spleens and livers, along with reduced ADAP expression and cytokine response. A comparable reduction in iNKT cells was observed in the livers and spleens of ADAP-deficient mice. Like ADAP(-/-) iNKT cells, slp-76(ace/ace) iNKT cells were characterized by enhanced CD11b expression, correlating with an impaired induction of the TCR immediate-early gene Nur77 and a decreased adhesion to ICAM-1. Furthermore, CD11b-intrinsic effects inhibited cytokine release, concanavalin A-mediated inflammation, and iNKT-cell accumulation in the liver. Unlike B6 and ADAP(-/-) mice, the expression of the transcription factors Id3 and PLZF was reduced, whereas NP-1-expression was enhanced in slp-76(ace/ace) mice. Blockade of NP-1 decreased the recovery of iNKT cells from peripheral lymph nodes, identifying NP-1 as an iNKT-cell-specific adhesion factor. Thus, slp-76 contributes to the regulation of the tissue distribution, PLZF, and cytokine expression of iNKT cells via ADAP-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Claudia Danzer
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Koller
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Baier
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Harald Arnold
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Claudia Giessler
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Opoka
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Stephanie Schmidt
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Maike Willers
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Sidonia Mihai
- Zentrallabor, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Hans Parsch
- Zentrallabor, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Daniel
- Nephropathologische Abteilung, Universitätsklinikum Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Swen Engelmann
- Institute of Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Kasper Hoebe
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, USA.
| |
Collapse
|
15
|
Lee MK, Kim IH, Choi YH, Choi JW, Kim YM, Nam TJ. The proliferative effects of Pyropia yezoensis peptide on IEC-6 cells are mediated through the epidermal growth factor receptor signaling pathway. Int J Mol Med 2015; 35:909-14. [PMID: 25716690 PMCID: PMC4356455 DOI: 10.3892/ijmm.2015.2111] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/16/2015] [Indexed: 12/04/2022] Open
Abstract
For a number of years, seaweed has been used as a functional food in Asian countries, particularly in Korea, Japan and China. Pyropia yezoensis is a marine red alga that has potentially beneficial biological activities. In this study, we examined the mechanisms through which a Pyropia yezoensis peptide [PYP1 (1–20)] induces the proliferation of IEC-6 cells, a rat intestinal epithelial cell line, and the involvement of the epidermal growth factor receptor (EGFR) signaling pathway. First, cell viability assay revealed that PYP1 (1–20) induced cell proliferation in a concentration-dependent manner. Subsequently, we examined the mechanisms responsible for this induction of proliferation induced by PYP1 (1–20). EGFR is widely expressed in mammalian epithelial tissues, and the binding of this ligand affects a variety of cell physiological parameters, such as cell growth and proliferation. PYP1 (1–20) increased the expression of EGFR, Shc, growth factor receptor-bound protein 2 (Grb2) and son of sevenless (SOS). EGFR also induced the activation of the Ras signaling pathway through Raf, MEK and extracellular signal-regulated kinase (ERK) phosphorylation. In addition, cell cycle analysis revealed the expression of cell cycle-related proteins. The results demonstrated an increased number of cells in the G1 phase and an enhanced cell proliferation. In addition, the upregulation of cyclin D, cyclin E, Cdk2, Cdk4 and Cdk6 was observed accompanied by a decreased in p21 and p27 expression. These findings suggest that PYP1 (1–20) stimulates the proliferation of rat IEC-6 cells by activating the EGFR signaling pathway. Therefore, PYP1 (1–20) may be a potential source for the development of bio-functional foods which promotes the proliferation of intestinal epithelial cells.
Collapse
Affiliation(s)
- Min-Kyeong Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 608-737, Republic of Korea
| | - In-Hye Kim
- Institute of Fisheries Science, Pukyong National University, Busan 619-911, Republic of Korea
| | - Youn-Hee Choi
- Institute of Fisheries Science, Pukyong National University, Busan 619-911, Republic of Korea
| | - Jeong-Wook Choi
- Department of Food Science and Nutrition, Pukyong National University, Busan 608-737, Republic of Korea
| | - Young-Min Kim
- Institute of Fisheries Science, Pukyong National University, Busan 619-911, Republic of Korea
| | - Taek-Jeong Nam
- Department of Food Science and Nutrition, Pukyong National University, Busan 608-737, Republic of Korea
| |
Collapse
|
16
|
Tsalik EL, Langley RJ, Dinwiddie DL, Miller NA, Yoo B, van Velkinburgh JC, Smith LD, Thiffault I, Jaehne AK, Valente AM, Henao R, Yuan X, Glickman SW, Rice BJ, McClain MT, Carin L, Corey GR, Ginsburg GS, Cairns CB, Otero RM, Fowler VG, Rivers EP, Woods CW, Kingsmore SF. An integrated transcriptome and expressed variant analysis of sepsis survival and death. Genome Med 2014; 6:111. [PMID: 25538794 PMCID: PMC4274761 DOI: 10.1186/s13073-014-0111-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/14/2014] [Indexed: 12/13/2022] Open
Abstract
Background Sepsis, a leading cause of morbidity and mortality, is not a homogeneous disease but rather a syndrome encompassing many heterogeneous pathophysiologies. Patient factors including genetics predispose to poor outcomes, though current clinical characterizations fail to identify those at greatest risk of progression and mortality. Methods The Community Acquired Pneumonia and Sepsis Outcome Diagnostic study enrolled 1,152 subjects with suspected sepsis. We sequenced peripheral blood RNA of 129 representative subjects with systemic inflammatory response syndrome (SIRS) or sepsis (SIRS due to infection), including 78 sepsis survivors and 28 sepsis non-survivors who had previously undergone plasma proteomic and metabolomic profiling. Gene expression differences were identified between sepsis survivors, sepsis non-survivors, and SIRS followed by gene enrichment pathway analysis. Expressed sequence variants were identified followed by testing for association with sepsis outcomes. Results The expression of 338 genes differed between subjects with SIRS and those with sepsis, primarily reflecting immune activation in sepsis. Expression of 1,238 genes differed with sepsis outcome: non-survivors had lower expression of many immune function-related genes. Functional genetic variants associated with sepsis mortality were sought based on a common disease-rare variant hypothesis. VPS9D1, whose expression was increased in sepsis survivors, had a higher burden of missense variants in sepsis survivors. The presence of variants was associated with altered expression of 3,799 genes, primarily reflecting Golgi and endosome biology. Conclusions The activation of immune response-related genes seen in sepsis survivors was muted in sepsis non-survivors. The association of sepsis survival with a robust immune response and the presence of missense variants in VPS9D1 warrants replication and further functional studies. Trial registration ClinicalTrials.gov NCT00258869. Registered on 23 November 2005. Electronic supplementary material The online version of this article (doi:10.1186/s13073-014-0111-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ephraim L Tsalik
- Emergency Medicine Service, Durham Veterans Affairs Medical Center, Durham, North Carolina 27705 USA ; Department of Medicine, Duke University Medical Center, Durham, NC 27710 USA
| | - Raymond J Langley
- National Center for Genome Resources, Santa Fe, NM 87505 USA ; Department of Immunology, Lovelace Respiratory Research Institute, Albuquerque, NM 87108 USA
| | - Darrell L Dinwiddie
- National Center for Genome Resources, Santa Fe, NM 87505 USA ; Department of Pediatrics, Center for Translational Sciences, University of New Mexico, Albuquerque, NM 87131 USA
| | - Neil A Miller
- National Center for Genome Resources, Santa Fe, NM 87505 USA ; Center for Pediatric Genomic Medicine, Children's Mercy Hospitals and Clinic, Kansas City, MO 64108 USA
| | - Byunggil Yoo
- Center for Pediatric Genomic Medicine, Children's Mercy Hospitals and Clinic, Kansas City, MO 64108 USA
| | | | - Laurie D Smith
- Center for Pediatric Genomic Medicine, Children's Mercy Hospitals and Clinic, Kansas City, MO 64108 USA
| | - Isabella Thiffault
- Center for Pediatric Genomic Medicine, Children's Mercy Hospitals and Clinic, Kansas City, MO 64108 USA
| | - Anja K Jaehne
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, Michigan 48202 USA
| | - Ashlee M Valente
- Department of Medicine, Duke University Medical Center, Durham, NC 27710 USA
| | - Ricardo Henao
- Department of Electrical & Computer Engineering, Duke University, Durham, NC 27710 USA
| | - Xin Yuan
- Department of Electrical & Computer Engineering, Duke University, Durham, NC 27710 USA
| | - Seth W Glickman
- Department of Emergency Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599 USA
| | - Brandon J Rice
- National Center for Genome Resources, Santa Fe, NM 87505 USA
| | - Micah T McClain
- Department of Medicine, Duke University Medical Center, Durham, NC 27710 USA ; Medicine Service, Durham Veterans Affairs Medical Center, Durham, NC 27705 USA
| | - Lawrence Carin
- Department of Electrical & Computer Engineering, Duke University, Durham, NC 27710 USA
| | - G Ralph Corey
- Department of Medicine, Duke University Medical Center, Durham, NC 27710 USA ; Medicine Service, Durham Veterans Affairs Medical Center, Durham, NC 27705 USA
| | - Geoffrey S Ginsburg
- Department of Medicine, Duke University Medical Center, Durham, NC 27710 USA
| | - Charles B Cairns
- Department of Emergency Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599 USA
| | - Ronny M Otero
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, Michigan 48202 USA ; Department of Emergency Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Vance G Fowler
- Department of Medicine, Duke University Medical Center, Durham, NC 27710 USA
| | - Emanuel P Rivers
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, Michigan 48202 USA
| | - Christopher W Woods
- Department of Medicine, Duke University Medical Center, Durham, NC 27710 USA ; Medicine Service, Durham Veterans Affairs Medical Center, Durham, NC 27705 USA
| | - Stephen F Kingsmore
- National Center for Genome Resources, Santa Fe, NM 87505 USA ; Department of Pediatrics, Center for Translational Sciences, University of New Mexico, Albuquerque, NM 87131 USA
| |
Collapse
|
17
|
Resolving Early Signaling Events in T-Cell Activation Leading to IL-2 and FOXP3 Transcription. Processes (Basel) 2014. [DOI: 10.3390/pr2040867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
18
|
Tomar N, De RK. A model of an integrated immune system pathway in Homo sapiens and its interaction with superantigen producing expression regulatory pathway in Staphylococcus aureus: comparing behavior of pathogen perturbed and unperturbed pathway. PLoS One 2013; 8:e80918. [PMID: 24324645 PMCID: PMC3855681 DOI: 10.1371/journal.pone.0080918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/17/2013] [Indexed: 11/19/2022] Open
Abstract
Response of an immune system to a pathogen attack depends on the balance between the host immune defense and the virulence of the pathogen. Investigation of molecular interactions between the proteins of a host and a pathogen helps in identifying the pathogenic proteins. It is necessary to understand the dynamics of a normally behaved host system to evaluate the capacity of its immune system upon pathogen attack. In this study, we have compared the behavior of an unperturbed and pathogen perturbed host system. Moreover, we have developed a formalism under Flux Balance Analysis (FBA) for the optimization of conflicting objective functions. We have constructed an integrated pathway system, which includes Staphylococcal Superantigen (SAg) expression regulatory pathway and TCR signaling pathway of Homo sapiens. We have implemented the method on this pathway system and observed the behavior of host signaling molecules upon pathogen attack. The entire study has been divided into six different cases, based on the perturbed/unperturbed conditions. In other words, we have investigated unperturbed and pathogen perturbed human TCR signaling pathway, with different combinations of optimization of concentrations of regulatory and signaling molecules. One of these cases has aimed at finding out whether minimization of the toxin production in a pathogen leads to the change in the concentration levels of the proteins coded by TCR signaling pathway genes in the infected host. Based on the computed results, we have hypothesized that the balance between TCR signaling inhibitory and stimulatory molecules can keep TCR signaling system into resting/stimulating state, depending upon the perturbation. The proposed integrated host-pathogen interaction pathway model has accurately reflected the experimental evidences, which we have used for validation purpose. The significance of this kind of investigation lies in revealing the susceptible interaction points that can take back the Staphylococcal Enterotoxin (SE)-challenged system within the range of normal behavior.
Collapse
Affiliation(s)
- Namrata Tomar
- Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India
| | - Rajat K. De
- Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|
19
|
Gianchecchi E, Palombi M, Fierabracci A. The putative role of the C1858T polymorphism of protein tyrosine phosphatase PTPN22 gene in autoimmunity. Autoimmun Rev 2013; 12:717-725. [PMID: 23261816 DOI: 10.1016/j.autrev.2012.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/05/2012] [Indexed: 12/11/2022]
Abstract
Autoimmune diseases represent a heterogeneous group of conditions whose incidence is increasing worldwide. This has stimulated studies on their etiopathogenesis, derived from a complex interaction between genetic and environmental factors, in order to improve prevention and treatment of these diseases. An increasing amount of epidemiologic investigations has associated the presence of the C1858T polymorphism in the protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene to the onset of several autoimmune diseases including insulin-dependent diabetes mellitus (Type 1 diabetes). PTPN22 encodes for the lymphoid tyrosine phosphatase Lyp. This belongs to non-receptor-type protein tyrosine phosphatases involved in lymphocyte activation and differentiation. In humans, Lyp may have a role in the negative regulation of T cell receptor signaling. The single nucleotide polymorphism C1858T encodes for a more active phosphatase Lyp R620W. This has the ability to induce a higher negative regulation of T cell receptor signaling. Thus, C1858T could play an important role at the level of thymocyte polarization and escape of autoreactive T lymphocytes, through the positive selection of otherwise negatively selected autoimmune T cells. In this review we discuss the physiological role exerted by the PTPN22 gene and its encoded Lyp product in lymphocyte processes. We highlight the pathogenic significance of the C1858T PTPN22 polymorphism in human autoimmunity with special reference to Type 1 diabetes. Recently the genetic variation in PTPN22 was shown to induce altered function of T and B-lymphocytes. In particular BCR signaling defects and alterations in the B cell compartment were reported in T1D patients. We finally speculate on the possible development of novel therapeutic treatments in human autoimmunity aiming to selectively target the variant Lyp protein in autoreactive T and B lymphocytes.
Collapse
Affiliation(s)
- Elena Gianchecchi
- Autoimmunity Laboratory, Immunology Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | | |
Collapse
|
20
|
Pesti S, Balázs A, Udupa R, Szabó B, Fekete A, Bőgel G, Buday L. Complex formation of EphB1/Nck/Caskin1 leads to tyrosine phosphorylation and structural changes of the Caskin1 SH3 domain. Cell Commun Signal 2012. [PMID: 23181695 PMCID: PMC3549760 DOI: 10.1186/1478-811x-10-36] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Scaffold proteins have an important role in the regulation of signal propagation. These proteins do not possess any enzymatic activity but can contribute to the formation of multiprotein complexes. Although scaffold proteins are present in all cell types, the nervous system contains them in the largest amount. Caskin proteins are typically present in neuronal cells, particularly, in the synapses. However, the signaling mechanisms by which Caskin proteins are regulated are largely unknown. Results Here we demonstrate that EphB1 receptor tyrosine kinase can recruit Caskin1 through the adaptor protein Nck. Upon activation of the receptor kinase, the SH2 domain of Nck binds to one of its tyrosine residues, while Nck SH3 domains interact with the proline-rich domain of Caskin1. Complex formation of the receptor, adaptor and scaffold proteins results in the tyrosine phosphorylation of Caskin1 on its SH3 domain. The phosphorylation sites were identified by mass-spectrometry as tyrosines 296 and 336. To reveal the structural consequence of this phosphorylation, CD spectroscopy was performed. This measurement suggests that upon tyrosine phosphorylation the structure of the Caskin1 SH3 domain changes significantly. Conclusion Taken together, we propose that the scaffold protein Caskin1 can form a complex with the EphB1 tyrosine kinase via the Nck protein as a linker. Complex formation results in tyrosine phosphorylation of the Caskin1 SH3 domain. Although we were not able to identify any physiological partner of the SH3 domain so far, we could demonstrate that phosphorylation on conserved tyrosine residues results in marked changes in the structure of the SH3 domain.
Collapse
Affiliation(s)
- Szabolcs Pesti
- From the Department of Medical Chemistry, Semmelweis University Medical School, Budapest, 1094, Hungary.
| | | | | | | | | | | | | |
Collapse
|
21
|
TCR-mediated Erk activation does not depend on Sos and Grb2 in peripheral human T cells. EMBO Rep 2012; 13:386-91. [PMID: 22344067 DOI: 10.1038/embor.2012.17] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 02/07/2023] Open
Abstract
Sos proteins are ubiquitously expressed activators of Ras. Lymphoid cells also express RasGRP1, another Ras activator. Sos and RasGRP1 are thought to cooperatively control full Ras activation upon T-cell receptor triggering. Using RNA interference, we evaluated whether this mechanism operates in primary human T cells. We found that T-cell antigen receptor (TCR)-mediated Erk activation requires RasGRP1, but not Grb2/Sos. Conversely, Grb2/Sos—but not RasGRP1—are required for IL2-mediated Erk activation. Thus, RasGRP1 and Grb2/Sos are insulators of signals that lead to Ras activation induced by different stimuli, rather than cooperating downstream of the TCR.
Collapse
|
22
|
Rapoport MJ, Bloch O, Amit-Vasina M, Yona E, Molad Y. Constitutive abnormal expression of RasGRP-1 isoforms and low expression of PARP-1 in patients with systemic lupus erythematosus. Lupus 2011; 20:1501-9. [PMID: 21976405 DOI: 10.1177/0961203311418790] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Defective expression of Ras guanil releasing protein-1 (RasGRP-1) and increased apoptosis have been reported in lymphocytes from SLE patients. Whether these aberrations are correlated and linked to disease activity has not been elucidated. METHODS Expression of normal 90 kDa RasGRP-1, its most prevalent 86 kDa isoform and full PARP-1 116 kDa and its cleavage fragment 84 kDa were determined in whole protein lysates of peripheral blood mononuclear cells (PBMC) in correlation with mitogen activated protein kinase (MAPK) activity and SLE clinical status in a large group of SLE patients during 1 year follow-up. RESULTS Expression of normal 90 kDa RasGRP-1 was comparable in patients and controls. However, SLE patients demonstrated a constitutively increased 86 kDa/90 kDA ratio (p < 0.01) and decreased full poly (ADP-ribose) polymerase protein-1 (PARP-1) expression (p < 0.002) compared with controls who were disease-independent. A remission in disease activity was associated with decreased RasGRP-1 expression. Expression of 84 kDa PARP-1 cleavage fragment was found in 15% of patients but in none of the controls. In addition, expression of PARP-1 correlated positively with normal 90 kDa RasGRP-1 expression and negatively with the RasGRP-1 86 kDa/90 kDA ratio. CONCLUSIONS These data suggest that constitutive aberrant expression of PARP-1 and RasGRP-1 ratio may act in concert to impair survival of lymphocytes in SLE patients.
Collapse
|
23
|
Hayashi K, Kamikawa Y. HSP90 is crucial for regulation of LAT expression in activated T cells. Mol Immunol 2011; 48:941-6. [PMID: 21251717 DOI: 10.1016/j.molimm.2010.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 12/20/2010] [Accepted: 12/30/2010] [Indexed: 11/18/2022]
Abstract
T cell response initiated by engagement of T cell receptor (TCR) is dependent on signal transduction events composed of protein kinases and adaptor proteins. However, the molecular mechanism for gene expression of these proteins is not entirely understood. Here we identified Heat Shock Protein 90 (HSP90) as an essential regulator for gene expression of Linker for activation of T cells (LAT) in primarily activated human T cells. Primarily activated T cells continuously synthesized LAT protein and treatment of cells with 17-AAG, a pharmacological inhibitor of HSP90, decreased LAT protein level following reduction of LAT mRNA. Furthermore, promoter activity of LAT gene was dramatically inhibited by 17-AAG. These results reveal a novel role of HSP90 as a positive regulator for expression of LAT gene in activated T cells.
Collapse
Affiliation(s)
- Keitaro Hayashi
- Department of Pharmacology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan.
| | | |
Collapse
|
24
|
Jang IK, Zhang J, Gu H. Grb2, a simple adapter with complex roles in lymphocyte development, function, and signaling. Immunol Rev 2010; 232:150-9. [PMID: 19909362 DOI: 10.1111/j.1600-065x.2009.00842.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lymphocyte development, activation, and tolerance depend on antigen receptor signaling transduced via multiple intracellular signalosomes. These signalosomes are assembled by different adapters. Given that signaling molecules can be either positive or negative regulators for a biochemical target, the complex of a target with different regulator may dictate the final signaling outcome. Grb2 is a simple adapter known to be involved in a variety of growth factor receptor signaling. However, its role in antigen receptor signaling as well as lymphocyte development and function has emerged only recently. Despite its simple molecular structure, recent experiments show that Grb2 may play a complex role in T and B-cell antigen receptor signaling. In this article, we review recent findings about the physiological role of Grb2 in T and B-cell development and activation and summarize the current mechanistic understanding of how Grb2 exerts its function following T and B-cell antigen receptor stimulation.
Collapse
Affiliation(s)
- Ihn Kyung Jang
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
25
|
Fuller DM, Zhang W. Regulation of lymphocyte development and activation by the LAT family of adapter proteins. Immunol Rev 2010; 232:72-83. [PMID: 19909357 DOI: 10.1111/j.1600-065x.2009.00828.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Transmembrane adapter proteins (TRAPs) are critical components of signaling pathways in lymphocytes, linking antigen receptor engagement to downstream cellular processes. While these proteins lack intrinsic enzymatic activity, their phosphorylation following receptor ligation allows them to function as scaffolds for the assembly of multi-molecular signaling complexes. Many TRAPs have recently been discovered, and numerous studies demonstrate their roles in the positive and negative regulation of lymphocyte maturation, activation, and differentiation. One such example is the linker for activation of T cells (LAT) family of adapter proteins. While LAT has been shown to play an indispensable role in T-cell and mast cell function, the other family members, linker for activation of B cells (LAB) and linker for activation of X cells (LAX), are necessary to fine-tune immune responses. In addition to its well-established role in the positive regulation of lymphocyte activation, LAT exerts an inhibitory effect on T-cell receptor-mediated signaling. Furthermore, LAT, along with LAB and LAX, plays a crucial role in establishing and maintaining tolerance. Here, we review recent data concerning the regulation of lymphocyte development and activation by the LAT family of proteins.
Collapse
Affiliation(s)
- Deirdre M Fuller
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
26
|
Chuck MI, Zhu M, Shen S, Zhang W. The role of the LAT-PLC-gamma1 interaction in T regulatory cell function. THE JOURNAL OF IMMUNOLOGY 2010; 184:2476-86. [PMID: 20130215 DOI: 10.4049/jimmunol.0902876] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between the linker for activation of T cells (LAT) with PLC-gamma1 is important for TCR-mediated Ca(2+) signaling and MAPK activation. Knock-in mice harboring a mutation at the PLC-gamma1 binding site (Y136) of LAT develop a severe lymphoproliferative syndrome. These mice have defective thymic development and selection and lack natural regulatory T cells, implicating a breakdown of both central and peripheral tolerance. To bypass this developmental defect, we developed a conditional knock-in line in which only LATY136F is expressed in mature T cells after deletion of the wild type LAT allele. Analysis of LATY136F T cells indicated that the interaction between LAT and PLC-gamma1 plays an important role in TCR-mediated signaling, proliferation, and IL-2 production. Furthermore, the deletion of LAT induced development of the lymphoproliferative syndrome in these mice. Although Foxp3(+) natural Treg cells were present in these mice after deletion, they were unable to suppress the proliferation of conventional T cells. Our data indicate that the binding of LAT to PLC-gamma1 is essential for the suppressive function of CD4(+)CD25(+) regulatory T cells.
Collapse
Affiliation(s)
- Mariana I Chuck
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
27
|
Shen S, Zhu M, Lau J, Chuck M, Zhang W. The essential role of LAT in thymocyte development during transition from the double-positive to single-positive stage. THE JOURNAL OF IMMUNOLOGY 2009; 182:5596-604. [PMID: 19380807 DOI: 10.4049/jimmunol.0803170] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The linker for activation of T cells (LAT) is an adaptor protein that couples TCR engagement to downstream signaling cascades. LAT is important in early thymocyte development as LAT-deficient mice have a complete block at the double-negative (DN) 3 stage. To study the role of LAT beyond the DN3 stage, we generated mice in which the lat gene could be deleted by the Cre recombinase. Analysis of these mice showed that deletion of LAT after the DN3 stage allowed thymocytes to develop past the DN3 to DN4 checkpoint and to generate double-positive thymocytes. However, LAT-deficient DP thymocytes were severely defective in responding to stimulation via the TCR and failed to differentiate into single-positive thymocytes efficiently. Consequently, few LAT-deficient mature T cells could be found in the periphery. These T cells had undergone extensive homeostatic proliferation and expressed low levels of the TCR on their surface. Collectively, our data indicate that in addition to its role in pre-TCR signaling, LAT also plays an essential role in thymocyte development during transition from the double-positive to single-positive stage.
Collapse
Affiliation(s)
- Shudan Shen
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
28
|
Cytoskeletal protein 4.1R negatively regulates T-cell activation by inhibiting the phosphorylation of LAT. Blood 2009; 113:6128-37. [PMID: 19190245 DOI: 10.1182/blood-2008-10-182329] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protein 4.1R (4.1R) was first identified in red cells where it plays an important role in maintaining mechanical stability of red cell membrane. 4.1R has also been shown to be expressed in T cells, but its function has been unclear. In the present study, we use 4.1R-deficient mice to explore the role of 4.1R in T cells. We show that 4.1R is recruited to the immunologic synapse after T cell-antigen receptor (TCR) stimulation. We show further that CD4+ T cells of 4.1R-/- mice are hyperactivated and that they displayed hyperproliferation and increased production of interleukin-2 (IL-2) and interferon gamma (IFNgamma). The hyperactivation results from enhanced phosphorylation of LAT and its downstream signaling molecule ERK. The 4.1R exerts its effect by binding directly to LAT, and thereby inhibiting its phosphorylation by ZAP-70. Moreover, mice deficient in 4.1R display an elevated humoral response to immunization with T cell-dependent antigen. Thus, we have defined a hitherto unrecognized role for 4.1R in negatively regulating T-cell activation by modulating intracellular signal transduction.
Collapse
|
29
|
Many faces of Ras activation. Biochim Biophys Acta Rev Cancer 2008; 1786:178-87. [PMID: 18541156 DOI: 10.1016/j.bbcan.2008.05.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 05/13/2008] [Accepted: 05/13/2008] [Indexed: 11/23/2022]
Abstract
Ras proteins were originally identified as the products of oncogenes capable of inducing cell transformation. Over the last twenty-five years they have been studied in great detail because mutant Ras proteins are associated with many types of human cancer. Wild type Ras proteins play a central role in the regulation of proliferation and differentiation of various cell types. They alternate between an active GTP-bound state and an inactive GDP-bound state. Their activation is catalysed by a specialized group of enzymes known as guanine nucleotide exchange factors (GEFs). To date, four subfamilies of GEF molecules have been identified. Although all of them are able to activate Ras, their structure, tissue expression and regulation are significantly diverse. In this review we will summarize the various mechanisms by which these exchange factors activate Ras.
Collapse
|
30
|
Yasuda S, Stevens RL, Terada T, Takeda M, Hashimoto T, Fukae J, Horita T, Kataoka H, Atsumi T, Koike T. Defective expression of Ras guanyl nucleotide-releasing protein 1 in a subset of patients with systemic lupus erythematosus. THE JOURNAL OF IMMUNOLOGY 2007; 179:4890-900. [PMID: 17878389 DOI: 10.4049/jimmunol.179.7.4890] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dysregulation of Ras guanyl nucleotide-releasing protein 1 (RasGRP1) in mice results in a systemic lupus erythematosus (SLE)-like disorder. We therefore looked for defective isoforms and/or diminished levels of human RasGRP1 in a cohort of SLE patients. PBMCs were collected from twenty healthy individuals and thirty-two patients with SLE. mRNA was isolated and five RasGRP1 cDNAs from each subject were sequenced. T cell lysates from healthy controls and SLE patients also were evaluated for their levels of RasGRP1 protein. The accumulated data led to the identification of 13 new splice variants of the human RasGRP1 gene. Not only did our SLE patients have increased levels and types of these defective transcripts relative to normal individuals, two SLE patients were identified whose PBMCs and T cells contained very little, if any, functional RasGRP1 mRNA and protein. The presence of aberrantly spliced RasGRP1 transcripts also was correlated with lower levels of RasGRP1 protein in the patients' T cells. The lack of the normal isoform of RasGRP1 in some SLE patients and the increased prevalence of defective isoforms of RasGRP1 in others raise the possibility that dysregulation of this signaling protein contributes to the development of autoimmunity in a subset of SLE patients.
Collapse
Affiliation(s)
- Shinsuke Yasuda
- Department of Medicine II, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The Ras superfamily consists of over 50 low-molecular-weight proteins that cycle between an inactive guanosine diphosphate-bound state and an active guanosine triphosphate (GTP)-bound state. They are involved in a variety of signal transduction pathways that regulate cell growth, intracellular trafficking, cell migration, and apoptosis. Several methods have been devised to measure the activation state of Ras proteins, defined as the percent of Ras molecules in the active GTP-bound state. We have previously developed a quantitative biochemical method that can be applied to animal and human tissues and have used it to measure the activation state of Ras, Rap1, Rheb, and Rho proteins in cultured cells and in animal and human tumors. Ras, Rac, and Rho all play roles in regulating the functions of T and B lymphocytes and dendritic cells, and these proteins are clearly important in maintaining normal immune system function.
Collapse
Affiliation(s)
- Juergen S Scheele
- Co-ordinating Center for Clinical Trials, Martin Luther University, Halle, Germany
| | | | | |
Collapse
|
32
|
Jiang Y, Cheng H. Evidence of LAT as a dual substrate for Lck and Syk in T lymphocytes. Leuk Res 2007; 31:541-5. [PMID: 16938345 DOI: 10.1016/j.leukres.2006.07.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 06/08/2006] [Accepted: 07/01/2006] [Indexed: 11/29/2022]
Abstract
LAT is a linker protein essential for activation of T lymphocytes. Its rapid tyrosine-phosphorylation upon T cell receptor (TCR) stimulation recruits downstream signaling molecules for membrane targeting and activation. LAT is physically concentrated in cholesterol-enriched membrane microdomains and is known a substrate for Syk/Zap70 kinase. In this study, we demonstrate that LAT serves as a dual substrate for both Lck and Syk kinases. LAT phosphorylation is absent in Lck-deficient J.CaM1.6 cells and Lck is co-precipitated with LAT in pervanadate-activated Jurkat cells. Further, the in vitro kinase assay using purified Lck and LAT shows that Lck directly phosphorylates LAT. Both Lck and Syk, phosphorylate the ITAM-like motifs on LAT at Y171Y191, which is essential for induction of the interaction of LAT with downstream signaling molecules such as Grb2, PLC-gamma1 and c-Cbl, and for activation of MAPK-ERK. Collectively, our data indicate that LAT is an immediate substrate for Lck in one of the earliest events of T cell activation.
Collapse
Affiliation(s)
- Yixing Jiang
- Department of Medicine and Pennstate Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033, United States
| | | |
Collapse
|
33
|
Wu SL, Kim J, Bandle RW, Liotta L, Petricoin E, Karger BL. Dynamic Profiling of the Post-translational Modifications and Interaction Partners of Epidermal Growth Factor Receptor Signaling after Stimulation by Epidermal Growth Factor Using Extended Range Proteomic Analysis (ERPA). Mol Cell Proteomics 2006; 5:1610-27. [PMID: 16799092 DOI: 10.1074/mcp.m600105-mcp200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a recent report, we introduced Extended Range Proteomic Analysis (ERPA), an intermediate approach between top-down and bottom-up proteomics, for the comprehensive characterization at the trace level (fmol level) of large and complex proteins. In this study, we extended ERPA to determine quantitatively the temporal changes that occur in the tyrosine kinase receptor, epidermal growth factor receptor (EGFR), upon stimulation. Specifically A 431 cells were stimulated with epidermal growth factor after which EGFR was immunoprecipitated at stimulation times of 0, 0.5, 2, and 10 min as well as 4 h. High sequence coverage was obtained (96%), and methods were developed for label-free quantitation of phosphorylation and glycosylation. A total of 13 phosphorylation sites were identified, and the estimated stoichiometry was determined over the stimulation time points, including Thr(P) and Ser(P) sites in addition to Tyr(P) sites. A total of 10 extracellular domain N-glycan sites were also identified, and major glycoforms at each site were quantitated. No change in the extent of glycosylation with stimulation was observed as expected. Finally potential binding partners to EGFR were identified based on changes in the amount of protein pulled down with EGFR as a function of time of stimulation. Many of the 19 proteins identified are known binding partners of EGFR. This work demonstrates that comprehensive characterization provides a powerful tool to aid in the study of important therapeutic targets. The detailed molecular information will prove useful in future studies in tissue.
Collapse
Affiliation(s)
- Shiaw-Lin Wu
- Barnett Institute, Northeastern University, Boston, Massachusetts 01225, USA
| | | | | | | | | | | |
Collapse
|
34
|
Watanabe R, Harada Y, Takeda K, Takahashi J, Ohnuki K, Ogawa S, Ohgai D, Kaibara N, Koiwai O, Tanabe K, Toma H, Sugamura K, Abe R. Grb2 and Gads exhibit different interactions with CD28 and play distinct roles in CD28-mediated costimulation. THE JOURNAL OF IMMUNOLOGY 2006; 177:1085-91. [PMID: 16818765 DOI: 10.4049/jimmunol.177.2.1085] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although both CD28 and ICOS bind PI3K and provide stimulatory signal for T cell activation, unlike CD28, ICOS does not costimulate IL-2 secretion. CD28 binds both PI3K and Grb2, whereas ICOS binds only PI3K. We have generated an ICOS mutant, which can bind Grb2 by replacement of its PI3K binding motif YMFM with the CD28 YMNM motif, and shown that it induces significant activation of the IL-2 promoter. However, this mutant ICOS was insufficient to activate the NF-kappaB pathway. In this study, we show that Gads, but not Grb2, is essential for CD28-mediated NF-kappaB activation, and its binding to CD28 requires the whole CD28 cytoplasmic domain in addition to the YMNM motif. Mutagenesis experiments have indicated that mutations in the N-terminal and/or C-terminal PXXP motif(s) of CD28 significantly reduce their association with Gads, whereas their associations with Grb2 are maintained. They induced strong activity of the NFAT/AP-1 reporter comparable with the CD28 wild type, but weak activity of the NF-kappaB reporter. Grb2- and Gads-dominant-negative mutants had a strong effect on NFAT/AP-1 reporter, but only Gads-dominant-negative significantly inhibited NF-kappaB reporter. Our data suggest that, in addition to the PI3K binding motif, the PXXP motif in the CD28 cytoplasmic domain may also define a functional difference between the CD28- and ICOS-mediated costimulatory signals by binding to Gads.
Collapse
Affiliation(s)
- Ryosuke Watanabe
- Research Institute for Biological Sciences, Faculty of Science and Technology, Tokyo University of Science, 1669 Yamazaki, Noda, Chiba 278-0022, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Dynamic protein-protein interactions are involved in most physiological processes and, in particular, for the formation of multiprotein signaling complexes at transmembrane receptors, adapter proteins and effector molecules. Because the unregulated induction of signaling complexes has substantial clinical relevance, the investigation of these complexes is an active area of research. These studies strive to answer questions about the composition and function of multiprotein signaling complexes, along with the molecular mechanisms of their formation. In this review, the adapter protein, linker for activation of T cells (LAT), will be employed as a model to exemplify how signaling complexes are characterized using a range of techniques. The intensive investigation of LAT highlights how the systematic use of complementary techniques leads to an integrated understanding of the formation, composition and function of multiprotein signaling complexes that occur at receptors, adapter proteins and effector molecules.
Collapse
Affiliation(s)
- Jon C D Houtman
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
36
|
Ludanyi K, Gogolak P, Rethi B, Magocsi M, Detre C, Matko J, Rajnavolgyi E. Fine-tuning of helper T cell activation and apoptosis by antigen-presenting cells. Cell Signal 2005; 16:939-50. [PMID: 15157673 DOI: 10.1016/j.cellsig.2004.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Accepted: 01/09/2004] [Indexed: 10/26/2022]
Abstract
The role of antigen-presenting cells (APC) in regulating helper T cell responses and activation-induced cell death (AICD) was investigated in vitro. T cell activation was monitored by measuring the early rise of intracellular free calcium [Ca+]ic, mRNA and cell surface expression of activation and apoptotic molecules, the production of cytokines and the activation of transcription factors. Our results demonstrate that the unique characteristics of a given APC can modify the threshold, kinetics and magnitude of the T cell response. The rapid and sustained rise of intracellular free calcium correlated well with the extent of cytokine production and the expression of activation molecules. Fas-dependent AICD could be induced by the most potent antigen-presenting cell (2PK3) only. Our results demonstrate that the response and fate of effector/memory CD4+ helper T lymphocytes is highly dependent on the individual properties of the APC they encounter.
Collapse
Affiliation(s)
- Katalin Ludanyi
- Institute of Immunology, Medical and Health Science Center, University of Debrecen, 98 Nagyerdei Boulevard, Debrecen H-4012, Hungary
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Memory T cells exhibit low activation thresholds and mediate rapid effector responses when recalled by antigen; contrasting the higher activation threshold, slower responses and predominant IL-2 production by naive T cells. While the sequence of intracellular events coupling the T cell-receptor (TCR) to naive T cell activation is well characterized, biochemical control of memory T cell differentiation and function remains undefined. In this review, we will discuss recent developments in T cell-receptor signal transduction as they pertain to memory T cells, and will discuss how signal dampening may drive memory generation, and more efficient spatial organization of signaling molecules may promote rapid recall responses.
Collapse
Affiliation(s)
- Meena R Chandok
- Division of Transplantation, Department of Surgery, University of Maryland School of Medicine, MSTF Building, Room 400, 685 W. Baltimore St., Baltimore, MD 21201, USA
| | | |
Collapse
|
38
|
|
39
|
Singer AL, Bunnell SC, Obstfeld AE, Jordan MS, Wu JN, Myung PS, Samelson LE, Koretzky GA. Roles of the Proline-rich Domain in SLP-76 Subcellular Localization and T Cell Function. J Biol Chem 2004; 279:15481-90. [PMID: 14722089 DOI: 10.1074/jbc.m313339200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adaptor protein Src homology (SH)2 domain-containing and leukocyte-specific phosphoprotein of 76 kDa (SLP-76) is critical for signal transduction in multiple hematopoietic lineages. It links proximal and distal T cell receptor signaling events through its function as a molecular scaffold in the assembly of multimolecular signaling complexes. Here we studied the functional roles of sub-domains within the SLP-76 proline-rich region, specifically the Gads binding domain and the recently defined P1 domain. To gain a further understanding of the functions mediated by this region, we used three complementary approaches as follows: reconstitution of SLP-76-deficient cells with functional domain deletion mutants, blocking molecular associations through the expression of a dominant negative protein fragment, and directed localization of SLP-76 to assess the role of the domains in SLP-76 recruitment. We find the Gads binding domain and the P1 domain are both necessary for optimal SLP-76 function, and in the absence of these two regions, SLP-76 is functionally inert. Furthermore, we provide direct evidence that SLP-76 localization and, in turn, function are dependent upon association with Gads.
Collapse
Affiliation(s)
- Andrew L Singer
- Signal Transduction Program, Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Reynolds LF, de Bettignies C, Norton T, Beeser A, Chernoff J, Tybulewicz VLJ. Vav1 transduces T cell receptor signals to the activation of the Ras/ERK pathway via LAT, Sos, and RasGRP1. J Biol Chem 2004; 279:18239-46. [PMID: 14764585 DOI: 10.1074/jbc.m400257200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vav1 is a signaling protein required for both positive and negative selection of CD4(+)CD8(+) double positive thymocytes. Activation of the ERK MAPK pathway is also required for positive selection. Previous work has shown that Vav1 transduces T cell receptor (TCR) signals leading to an intracellular calcium flux. We now show that in double positive thymocytes Vav1 is required for TCR-induced activation of the ERK1 and ERK2 kinases via a pathway involving the Ras GTPase, and B-Raf, MEK1, and MEK2 kinases. Furthermore, we show that Vav1 transduces TCR signals to Ras by controlling the membrane recruitment of two guanine nucleotide exchange factors. First, Vav1 transduces signals via phospholipase Cgamma1 leading to the membrane recruitment of RasGRP1. Second, Vav1 is required for recruitment of Sos1 and -2 to the transmembrane adapter protein LAT. Finally, we show that Vav1 is required for TCR-induced LAT phosphorylation, a key event for the activation of both phospholipase Cgamma1 and Sos1/2. We propose that reduced LAT phosphorylation is the key reason for defective TCR-induced calcium flux and ERK activation in Vav1-deficient cells.
Collapse
Affiliation(s)
- Lucinda F Reynolds
- Division of Immune Cell Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | | | |
Collapse
|
41
|
Bonvini E, DeBell KE, Verí MC, Graham L, Stoica B, Laborda J, Aman MJ, DiBaldassarre A, Miscia S, Rellahan BL. On the mechanism coupling phospholipase Cgamma1 to the B- and T-cell antigen receptors. ADVANCES IN ENZYME REGULATION 2004; 43:245-69. [PMID: 12791395 DOI: 10.1016/s0065-2571(02)00033-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ezio Bonvini
- Division of Monoclonal Antibodies, Center for Biologics Evaluation & Research, US-FDA, HFM-564, NIH Campus, Bldg.29B/Rm.3NN10, 8800 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kang MA, Yun SY, Won J. Rosmarinic acid inhibits Ca2+-dependent pathways of T-cell antigen receptor-mediated signaling by inhibiting the PLC-gamma 1 and Itk activity. Blood 2003; 101:3534-42. [PMID: 12511421 DOI: 10.1182/blood-2002-07-1992] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rosmarinic acid (RosA) is a hydroxylated compound frequently found in herbal plants and is mostly responsible for anti-inflammatory and antioxidative activity. Previously, we observed that RosA inhibited T-cell antigen receptor (TCR)- induced interleukin 2 (IL-2) expression and subsequent T-cell proliferation in vitro. In this study, we investigated in detail inhibitory mechanism of RosA on TCR signaling, which ultimately activates IL-2 promoter by activating transcription factors, such as nuclear factor of activated T cells (NF-AT) and activating protein-1 (AP-1). Interestingly, RosA inhibited NF-AT activation but not AP-1, suggesting that RosA inhibits Ca(2+)-dependent signaling pathways only. Signaling events upstream of NF-AT activation, such as the generation of inositol 1,4,5-triphosphate and Ca(2+) mobilization, and tyrosine phosphorylation of phospholipase C-gamma 1 (PLC-gamma 1) were strongly inhibited by RosA. Tyrosine phosphorylation of PLC-gamma 1 is largely dependent on 3 kinds of protein tyrosine kinases (PTKs), ie, Lck, ZAP-70, and Itk. We found that RosA efficiently inhibited TCR-induced tyrosine phosphorylation and subsequent activation of Itk but did not inhibit Lck or ZAP-70. ZAP-70-dependent signaling pathways such as the tyrosine phosphorylation of LAT and SLP-76 and serine/threonine phosphorylation of mitogen-activated protein kinases (MAPKs) were intact in the presence of RosA, confirming that RosA suppresses TCR signaling in a ZAP-70-independent manner. Therefore, we conclude that RosA inhibits TCR signaling leading to Ca(2+) mobilization and NF-AT activation by blocking membrane-proximal events, specifically, the tyrosine phosphorylation of inducible T cells kinase (Itk) and PLC-gamma 1.
Collapse
Affiliation(s)
- Mi-Ae Kang
- Signal Transduction Laboratory, Mogam Biotechnology Research Institute, Gyunggido, Korea
| | | | | |
Collapse
|
43
|
Clements JL. Known and potential functions for the SLP-76 adapter protein in regulating T-cell activation and development. Immunol Rev 2003; 191:211-9. [PMID: 12614362 DOI: 10.1034/j.1600-065x.2003.00002.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The hematopoietic adapter protein SLP-76 is a critical component of multiple biochemical signaling 'circuits' in T cells that integrate proximal signaling events initiated by ligation of the T-cell receptor (TCR) into more distal pathways. Given the important role ascribed to TCR signaling in directing the outcome of thymocyte selection, it seems likely that SLP-76 may also function in signaling pathways that ultimately impact the establishment of the peripheral T-cell repertoire. It is generally accepted that the peripheral T-cell repertoire is selected in large part during T-cell development in the thymus. Molecular interactions between the TCR and self-peptide/major histocompatibility complexes expressed on thymic stromal elements dictate the fate of developing thymocytes. Thymocyte survival and further maturation (positive selection) require an active signal delivered to the cell as a consequence of TCR ligation. This raises the intriguing question of how a thymocyte can, for a narrow window of developmental time, obtain responsiveness to self while maintaining tolerance to these same determinants upon export to the periphery. This article reviews the current literature describing SLP-76-dependent signaling pathways in mature T cells and developing thymocytes. A potential role for this critical signaling intermediate in integrating signals leading to positive and negative selection of the peripheral T-cell repertoire is also discussed.
Collapse
Affiliation(s)
- James L Clements
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
44
|
Jordan MS, Singer AL, Koretzky GA. Adaptors as central mediators of signal transduction in immune cells. Nat Immunol 2003; 4:110-6. [PMID: 12555096 DOI: 10.1038/ni0203-110] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adaptors are molecular scaffolds that recruit effectors, which are critical for immune cell activation. Recent work has underscored the requirement for adaptors in propagating stimulatory signals as well as their ability to inhibit immune cell function. The mechanisms by which adaptors function rely not only on the intermolecular interactions they mediate, but also on where they are localized within the cell. The use of sophisticated genetic, biochemical, cellular and imaging approaches has provided important new insights into the biology of adaptor protein function. Here we focus on T lymphocytes as a model to illustrate the critical roles adaptors play as regulators of cellular activation.
Collapse
Affiliation(s)
- Martha S Jordan
- Signal Transduction Program, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
45
|
Perez-Villar JJ, Whitney GS, Sitnick MT, Dunn RJ, Venkatesan S, O'Day K, Schieven GL, Lin TA, Kanner SB. Phosphorylation of the linker for activation of T-cells by Itk promotes recruitment of Vav. Biochemistry 2002; 41:10732-40. [PMID: 12186560 DOI: 10.1021/bi025554o] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The linker for activation of T-cells (LAT) is a palmitoylated integral membrane adaptor protein that resides in lipid membrane rafts and contains nine consensus putative tyrosine phosphorylation sites, several of which have been shown to serve as SH2 binding sites. Upon T-cell antigen receptor (TCR/CD3) engagement, LAT is phosphorylated by protein tyrosine kinases (PTK) and binds to the adaptors Gads and Grb2, as well as to phospholipase Cgamma1 (PLCgamma1), thereby facilitating the recruitment of key signal transduction components to drive T-cell activation. The LAT tyrosine residues Y(132), Y(171), Y(191), and Y(226) have been shown previously to be critical for binding to Gads, Grb2, and PLCgamma1. In this report, we show by generation of LAT truncation mutants that the Syk-family kinase ZAP-70 and the Tec-family kinase Itk favor phosphorylation of carboxy-terminal tyrosines in LAT. By direct binding studies using purified recombinant proteins or phosphopeptides and by mutagenesis of individual tyrosines in LAT to phenylalanine residues, we demonstrate that Y(171) and potentially Y(226) are docking sites for the Vav guanine nucleotide exchange factor. Further, overexpression of a kinase-deficient mutant of Itk in T-cells reduced both the tyrosine phosphorylation of endogenous LAT and the recruitment of Vav to LAT complexes. These data indicate that kinases from distinct PTK families are likely responsible for LAT phosphorylation following T-cell activation and that Itk kinase activity promotes recruitment of Vav to LAT.
Collapse
Affiliation(s)
- Juan J Perez-Villar
- Department of Immunology, Inflammation, and Pulmonology Discovery, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ 08543, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Engagement of the T cell antigen receptor (TCR) leads to a complex series of molecular changes at the plasma membrane, in the cytoplasm, and at the nucleus that lead ultimately to T cell effector function. Activation at the TCR of a set of protein tyrosine kinases (PTKs) is an early event in this process. This chapter reviews some of the critical substrates of these PTKs, the adapter proteins that, following phosphorylation on tyrosine residues, serve as binding sites for many of the critical effector enzymes and other adapter proteins required for T cell activation. The role of these adapters in binding various proteins, the interaction of adapters with plasma membrane microdomains, and the function of adapter proteins in control of the cytoskeleton are discussed.
Collapse
Affiliation(s)
- Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 1E24, Bethesda, Maryland, 20892-4255, USA.
| |
Collapse
|
47
|
Yablonski D, Weiss A. Mechanisms of signaling by the hematopoietic-specific adaptor proteins, SLP-76 and LAT and their B cell counterpart, BLNK/SLP-65. Adv Immunol 2002; 79:93-128. [PMID: 11680012 DOI: 10.1016/s0065-2776(01)79003-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Adaptor proteins lack catalytic activity and contain only protein-protein interaction domains. They have been shown to interact with an ever-growing number of signaling proteins and to play essential roles in many signaling pathways. SLP-76 and LAT are cell-type-specific adaptor proteins expressed in T cells, NK cells, platelets, and mast cells. In these cell types, SLP-76 and LAT are required for signaling by immunoreceptor tyrosine-based activation motif(ITAM)-containing receptors, including the T cell receptor (TCR), the pre-TCR, the high-affinity Fc epsilon receptor, and the platelet GPVI collagen receptor. In B cells, an analogous adaptor, BLNK/SLP-65, is required for signaling by the ITAM-containing B cell receptor. This review summarizes recent research on SLP-76, LAT, and BLNK. A major challenge in understanding adaptor protein function has been to sort out the many interactions mediated by adaptor proteins and to define the mechanisms by which adaptors mediate critical signaling events. In the case of LAT, SLP-76, and BLNK, the availability of tractable genetic systems, deficient in expression of each of these adaptor proteins, has facilitated in-depth investigation of their signaling functions and mechanisms of action. The picture that has emerged is one in which multiple adaptor proteins cooperate to bring about the formation of a large signaling complex, localized to specialized lipid microdomains within the cell membrane and known as GEMs. Adaptors not only recruit signaling proteins, but also play an active role in regulating the conformation and activation of many of the proteins recruited to the complex. In particular, recent research has shed light on the mechanisms by which multiple adaptor proteins cooperate to bring about the recruitment and activation of phospholipase C gamma in response to the activation of ITAM-containing receptors.
Collapse
Affiliation(s)
- D Yablonski
- Department of Pharmacology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Bat Galim, Haifa 31096, Israel
| | | |
Collapse
|
48
|
Iwashima M, Takamatsu M, Yamagishi H, Hatanaka Y, Huang YY, McGinty C, Yamasaki S, Koike T. Genetic evidence for Shc requirement in TCR-induced c-Rel nuclear translocation and IL-2 expression. Proc Natl Acad Sci U S A 2002; 99:4544-9. [PMID: 11917142 PMCID: PMC123684 DOI: 10.1073/pnas.082647499] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2001] [Indexed: 01/20/2023] Open
Abstract
Shc, a prototypic adapter molecule, has been implicated in T cell receptor (TCR) signal transduction, but its role has not been identified clearly. Here we report that Shc is essential for TCR-induced IL-2 production but is dispensable for CD69 or CD25 expression. Engagement of TCR in mutant Jurkat T cells lacking Shc fails to produce IL-2 because of impaired mitogen-activated protein kinase activation. Activation of c-Rel, a transcription factor essential for IL-2 expression, was impaired also. In contrast, activation of nuclear factor of activated T cell and expression of CD69/CD25 were comparable between the mutant and wild-type Jurkat cells. These defects were rescued by expression of exogenous Shc. Activation of c-Rel using the estrogen receptor fusion protein restored the activation of the IL-2 promoter in an estrogen-dependent manner. These results show that Shc plays an essential role in the TCR-induced activation of c-Rel and the IL-2 promoter.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Antigens, CD/genetics
- Antigens, Differentiation, T-Lymphocyte/genetics
- Biological Transport
- Cell Nucleus/metabolism
- DNA-Binding Proteins/metabolism
- Humans
- Interleukin-2/biosynthesis
- Interleukin-2/genetics
- Jurkat Cells
- Lectins, C-Type
- Mitogen-Activated Protein Kinases/physiology
- NF-kappa B/metabolism
- NFATC Transcription Factors
- Nuclear Proteins
- Promoter Regions, Genetic
- Proteins/physiology
- Proto-Oncogene Proteins c-rel/metabolism
- Receptors, Antigen, T-Cell/physiology
- Receptors, Interleukin-2/genetics
- Shc Signaling Adaptor Proteins
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Transcription Factor AP-1/metabolism
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Makio Iwashima
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912-2600, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Hussain SF, Anderson CF, Farber DL. Differential SLP-76 expression and TCR-mediated signaling in effector and memory CD4 T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1557-65. [PMID: 11823482 DOI: 10.4049/jimmunol.168.4.1557] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We present in this study novel findings on TCR-mediated signaling in naive, effector, and memory CD4 T cells that identify critical biochemical markers to distinguish these subsets. We demonstrate that relative to naive CD4 T cells, memory CD4 T cells exhibit a profound decrease in expression of the linker/adapter molecule SLP-76, while effector T cells express normal to elevated levels of SLP-76. The reduced level of SLP-76 is memory CD4 T cells is coincident with reduced phosphorylation overall, yet the residual SLP-76 couples to a subset of TCR-associated linker molecules, leading to downstream mitogen-activated protein (MAP) kinase activation. By contrast, effector CD4 T cells strongly phosphorylate SLP-76, linker for activation of T cells, and additional Grb2-coupled proteins, exhibit increased associations of SLP-76 to phosphorylated linkers, and hyperphosphorylate downstream Erk1/2 MAP kinases. Our results suggest distinct coupling of signaling intermediates to the TCR in naive, effector, and memory CD4 T cells. Whereas effector CD4 T cells amplify existing TCR signaling events accounting for rapid effector responses, memory T cells engage fewer signaling intermediates to efficiently link TCR triggering directly to downstream MAP kinase activation.
Collapse
Affiliation(s)
- S Farzana Hussain
- Department of Surgery, University of Maryland, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
50
|
Affiliation(s)
- Liping Geng
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|