1
|
McCarty KD, Liu L, Tateishi Y, Wapshott-Stehli HL, Guengerich FP. The multistep oxidation of cholesterol to pregnenolone by human cytochrome P450 11A1 is highly processive. J Biol Chem 2024; 300:105495. [PMID: 38006947 PMCID: PMC10716780 DOI: 10.1016/j.jbc.2023.105495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023] Open
Abstract
Cytochrome P450 (P450, CYP) 11A1 is the classical cholesterol side chain cleavage enzyme (P450scc) that removes six carbons of the side chain, the first and rate-limiting step in the synthesis of all mammalian steroids. The reaction is a 3-step, 6-electron oxidation that proceeds via formation of 22R-hydroxy (OH) and 20R,22R-(OH)2 cholesterol, yielding pregnenolone. We expressed human P450 11A1 in bacteria, purified the enzyme in the absence of nonionic detergents, and assayed pregnenolone formation by HPLC-mass spectrometry of the dansyl hydrazone. The reaction was inhibited by the nonionic detergent Tween 20, and several lipids did not enhance enzymatic activity. The 22R-OH and 20R,22R-(OH)2 cholesterol intermediates were bound to P450 11A1 relatively tightly, as judged by steady-state optical titrations and koff rates. The electron donor adrenodoxin had little effect on binding; the substrate cholesterol showed a ∼5-fold stimulatory effect on the binding of adrenodoxin to P450 11A1. Presteady-state single-turnover kinetic analysis was consistent with a highly processive reaction with rates of intermediate oxidation steps far exceeding dissociation rates for products and substrates. The presteady-state kinetic analysis revealed a second di-OH cholesterol product, separable by HPLC, in addition to 20R,22R-(OH)2 cholesterol, which we characterized as a rotamer that was also converted to pregnenolone at a similar rate. The first oxidation step (at C-22) is the slowest, limiting the overall rate of cleavage. d3-Cholesterol showed no kinetic deuterium isotope effect on C-22, indicating that C-H bond cleavage is not rate-limiting in the first hydroxylation step.
Collapse
Affiliation(s)
- Kevin D McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lu Liu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
2
|
Davydov R, Strushkevich N, Smil D, Yantsevich A, Gilep A, Usanov S, Hoffman BM. Evidence That Compound I Is the Active Species in Both the Hydroxylase and Lyase Steps by Which P450scc Converts Cholesterol to Pregnenolone: EPR/ENDOR/Cryoreduction/Annealing Studies. Biochemistry 2015; 54:7089-97. [PMID: 26603348 DOI: 10.1021/acs.biochem.5b00903] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome P450scc (CYP 11A1) catalyzes the conversion of cholesterol (Ch) to pregnenolone, the precursor to steroid hormones. This process proceeds via three sequential monooxygenation reactions: two hydroxylations of Ch first form 22(R)-hydroxycholesterol (HC) and then 20α,22(R)-dihydroxycholesterol (DHC); a lyase reaction then cleaves the C20-C22 bond to form pregnenolone. Recent cryoreduction/annealing studies that employed electron paramagnetic resonance (EPR)/electron nuclear double resonance (ENDOR) spectroscopy [Davydov, R., et al. (2012) J. Am. Chem. Soc. 134, 17149] showed that compound I (Cpd I) is the active intermediate in the first step, hydroxylation of Ch. Herein, we have employed EPR and ENDOR spectroscopy to characterize the intermediates in the second and third steps of the enzymatic process, as conducted by 77 K radiolytic one-electron cryoreduction and subsequent annealing of the ternary oxy-cytochrome P450scc complexes with HC and DHC. This procedure is validated by showing that the cryoreduced ternary complexes of oxy-cytochrome P450scc with HC and DHC are catalytically competent and during annealing generate DHC and pregnenolone, respectively. Cryoreduction of the oxy-P450scc-HC ternary complex trapped at 77K produces the superoxo-ferrous P450scc intermediate along with a minor fraction of ferric hydroperoxo intermediates. The superoxo-ferrous intermediate converts into a ferric-hydroperoxo species after annealing at 145 K. During subsequent annealing at 170-180 K, the ferric-hydroperoxo intermediate converts to the primary product complex with the large solvent kinetic isotope effect that indicates Cpd I is being formed, and (1)H ENDOR measurements of the primary product formed in D2O demonstrate that Cpd I is the active species. They show that the primary product contains Fe(III) coordinated to the 20-O(1)H of DHC with the (1)H derived from substrate, the signature of the Cpd I reaction. Hydroperoxo ferric intermediates are the primary species formed during cryoreduction of the oxy-P450scc-DHC ternary complex, and they decay at 185 K with a strong solvent kinetic isotope effect to form low-spin ferric P450scc. Together, these observations indicated that Cpd I also is the active intermediate in the C20,22 lyase final step. In combination with our previous results, this study thus indicates that Cpd I is the active species in each of the three sequential monooxygenation reactions by which P450scc catalytically converts Ch to pregnenolone.
Collapse
Affiliation(s)
- Roman Davydov
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208-3113, United States
| | - Natallia Strushkevich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus , Kuprevicha Street 5/2, Minsk 220141, Belarus
| | - David Smil
- Structural Genomics Consortium, University of Toronto , 101 College Street, Toronto, ON, Canada M5G 1L7
| | - Aliaksei Yantsevich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus , Kuprevicha Street 5/2, Minsk 220141, Belarus
| | - Andrey Gilep
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus , Kuprevicha Street 5/2, Minsk 220141, Belarus
| | - Sergey Usanov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus , Kuprevicha Street 5/2, Minsk 220141, Belarus
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208-3113, United States
| |
Collapse
|
3
|
Zhang X, Liu Y, Wang Y. The influence of the adjacent hydrogen bond on the hydroxylation processes mediated by cytochrome P450 side-chain cleavage enzyme. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1485-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Davydov R, Gilep AA, Strushkevich NV, Usanov SA, Hoffman BM. Compound I is the reactive intermediate in the first monooxygenation step during conversion of cholesterol to pregnenolone by cytochrome P450scc: EPR/ENDOR/cryoreduction/annealing studies. J Am Chem Soc 2012; 134:17149-56. [PMID: 23039857 DOI: 10.1021/ja3067226] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome P450scc (CYP11A1) catalyzes conversion of cholesterol (CH) to pregnenolone, the precursor to all steroid hormones. This process proceeds via three sequential monooxygenation reactions: two stereospecific hydroxylations with formation first of 22R-hydroxycholesterol (22-HC) and then 20α,22R-dihydroxycholesterol (20,22-DHC), followed by C20-C22 bond cleavage. Herein we have employed EPR and ENDOR spectroscopy to characterize the intermediates in the first hydroxylation step by 77 K radiolytic one-electron cryoreduction and subsequent annealing of the ternary oxy-cytochrome P450scc-cholesterol complex. This approach is fully validated by the demonstration that the cryoreduced ternary complex of oxy-P450scc-CH is catalytically competent and hydroxylates cholesterol to form 22-HC with no detectable formation of 20-HC, just as occurs under physiological conditions. Cryoreduction of the ternary complex trapped at 77 K produces predominantly the hydroperoxy-ferriheme P450scc intermediate, along with a minor fraction of peroxo-ferriheme intermediate that converts into a new hydroperoxo-ferriheme species at 145 K. This behavior reveals that the distal pocket of the parent oxy-P450scc-cholesterol complex exhibits an efficient proton delivery network, with an ordered water molecule H-bonded to the distal oxygen of the dioxygen ligand. During annealing of the hydroperoxy-ferric P450scc intermediates at 185 K, they convert to the primary product complex in which CH has been converted to 22-HC. In this process, the hydroperoxy-ferric intermediate decays with a large solvent kinetic isotope effect, as expected when proton delivery to the terminal O leads to formation of Compound I (Cpd I). (1)H ENDOR measurements of the primary product formed in deuterated solvent show that the heme Fe(III) is coordinated to the 22R-O(1)H of 22-HC, where the (1)H is derived from substrate and exchanges to D after annealing at higher temperatures. These observations establish that Cpd I is the agent that hydroxylates CH, rather than the hydroperoxy-ferric heme.
Collapse
Affiliation(s)
- Roman Davydov
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
5
|
Heo GY, Liao WL, Turko IV, Pikuleva IA. Features of the retinal environment which affect the activities and product profile of cholesterol-metabolizing cytochromes P450 CYP27A1 and CYP11A1. Arch Biochem Biophys 2011; 518:119-26. [PMID: 22227097 DOI: 10.1016/j.abb.2011.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 11/28/2022]
Abstract
The retina is the sensory organ in the back of the eye which absorbs and converts light to electrochemical impulses transferred to the brain. Herein, we studied how retinal environment affects enzyme-mediated cholesterol removal. We focused on two mitochondrial cytochrome P450 enzymes, CYPs 27A1 and 11A1, which catalyze the first steps in metabolism of cholesterol in the retina and other tissues. Phospholipids (PL) from mitochondria of bovine neural retina, retinal pigment epithelium, liver and adrenal cortex were isolated and compared for the effect on kinetic properties of purified recombinant CYPs in the reconstituted system in vitro. The four studied tissues were also evaluated for the mitochondrial PL and cholesterol content and levels of CYPs 27A1, 11A1 and their redox partners. The data obtained were used for modeling the retinal environment in the in vitro enzyme assays in which we detected the P450 metabolites, 22R-hydroxycholesterol and 5-cholestenoic acid, unexpectedly found by us in the retina in our previous studies. The effect of the by-product of the visual cycle pyridinium bis-retinoid A2E on kinetics of CYP27A1-mediated cholesterol metabolism was also investigated. The results provide insight into the retina's regulation of the enzyme-mediated cholesterol removal.
Collapse
Affiliation(s)
- Gun-Young Heo
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, United States
| | | | | | | |
Collapse
|
6
|
Mast N, Annalora AJ, Lodowski DT, Palczewski K, Stout CD, Pikuleva IA. Structural basis for three-step sequential catalysis by the cholesterol side chain cleavage enzyme CYP11A1. J Biol Chem 2010; 286:5607-13. [PMID: 21159775 DOI: 10.1074/jbc.m110.188433] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial cytochrome P450 11A1 (CYP11A1 or P450 11A1) is the only known enzyme that cleaves the side chain of cholesterol, yielding pregnenolone, the precursor of all steroid hormones. Pregnenolone is formed via three sequential monooxygenation reactions that involve the progressive production of 22R-hydroxycholesterol (22HC) and 20α,22R-dihydroxycholesterol, followed by the cleavage of the C20-C22 bond. Herein, we present the 2.5-Å crystal structure of CYP11A1 in complex with the first reaction intermediate, 22HC. The active site cavity in CYP11A1 represents a long curved tube that extends from the protein surface to the heme group, the site of catalysis. 22HC occupies two-thirds of the cavity with the 22R-hydroxyl group nearest the heme, 2.56 Å from the iron. The space at the entrance to the active site is not taken up by 22HC but filled with ordered water molecules. The network formed by these water molecules allows the "soft" recognition of the 22HC 3β-hydroxyl. Such a mode of 22HC binding suggests shuttling of the sterol intermediates between the active site entrance and the heme group during the three-step reaction. Translational freedom of 22HC and torsional motion of its aliphatic tail are supported by solution studies. The CYP11A1-22HC co-complex also provides insight into the structural basis of the strict substrate specificity and high catalytic efficiency of the enzyme and highlights conserved structural motifs involved in redox partner interactions by mitochondrial P450s.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
7
|
Active transition metal oxo and hydroxo moieties in nature's redox, enzymes and their synthetic models: Structure and reactivity relationships. Coord Chem Rev 2010. [DOI: 10.1016/j.ccr.2010.01.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Headlam MJ, Tuckey RC. The effect of glycerol on cytochrome P450scc (CYP11A1) spin state, activity, and hydration. Arch Biochem Biophys 2002; 407:95-102. [PMID: 12392719 DOI: 10.1016/s0003-9861(02)00463-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We examined the effects of glycerol, a stabilizing agent commonly used in cytochrome P450scc purification and analysis, on the spin state, catalytic activity, and molecular volume of the cytochrome. Glycerol induced a sigmoidal low-spin response. The binding of hydroxycholesterol reaction intermediates, but not cholesterol, increased the concentration of glycerol required for the spin transition to be 50% complete (K(1/2)). Glycerol weakened adrenodoxin binding to P450scc but had no effect on CO or 20alpha,22R-dihydroxycholesterol binding. Cytochrome P450scc activity was inhibited by glycerol with the K(1/2) for inhibition being substrate-dependent. The osmotic stress exerted by glycerol on P450scc resulted in decreases in P450scc molecular volume for both the transition to low spin state and the inhibition of activity. From this we determined that two dissociative water molecules are involved in the inhibition of activity with cholesterol as substrate and five or six dissociative waters are involved in the low-spin transition. The dehydration of P450scc by osmotic stress provides an explanation for the effects of glycerol on P450scc spin transition and activity.
Collapse
Affiliation(s)
- Madeleine J Headlam
- Biochemistry and Molecular Biology, School of Biomedical and Chemical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | | |
Collapse
|
9
|
Miao E, Joardar S, Zuo C, Cloutier NJ, Nagahisa A, Byon C, Wilson SR, Orme-Johnson WH. Cytochrome P-450scc-mediated oxidation of (20S)-22-thiacholesterol: characterization of mechanism-based inhibition. Biochemistry 1995; 34:8415-21. [PMID: 7599132 DOI: 10.1021/bi00026a024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
(20S)-22-thiacholesterol (1) is found to be a potent competitive inhibitor of pregnenolone biosynthesis from cholesterol by purified reconstituted bovine adrenal cytochrome P-450scc. The apparent dissociation constant Kd, determined from difference spectra, is 0.6 microM, close to the value from kinetic studies for the apparent inhibition constant, Ki, of 0.8 microM. Studies of the time course of pregnenolone production indicate that under turnover conditions the competitive inhibitor (1) is converted to a tighter binding inhibitor, shown to be (20S,22R)-22-thiacholesterol S-oxide (4), with high diastereoselectivity and in a time-dependent manner. Both the diastereomeric sulfoxides, (20S,22S)-22-thiacholesterol S-oxide (3) and (20S,22R)-22-thiacholesterol S-oxide (4), exhibit properties consistent with their being competitive versus cholesterol, but the (22R)-sulfoxide (4) binds approximately 10 times more tightly than the (22S) diastereomer (3). The apparent Kd values of sulfoxides 4 and 3 are 0.1 and 1.14 microM, respectively. EPR and absorption spectroscopic studies of enzyme-inhibitor complexes suggest direct coordination of the oxygen atom of the (22R)-sulfoxide (4) with the catalytic heme center. This implies that the inhibitor operates by directly blocking further reaction at the active site heme group, with a substantial lifetime of the enzyme-inhibitor complex.
Collapse
Affiliation(s)
- E Miao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lange R, Anzenbacher P, Müller S, Maurin L, Balny C. Interaction of tryptophan residues of cytochrome P450scc with a highly specific fluorescence quencher, a substrate analogue, compared to acrylamide and iodide. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 226:963-70. [PMID: 7813487 DOI: 10.1111/j.1432-1033.1994.00963.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cytochrome P450scc tryptophan fluorescence was studied by the use of the three quenchers acrylamide, 25-doxyl-27-nor-cholesterol (CNO) and potassium iodide (KI). All the nine tryptophan residues were accessible to acrylamide. Whereas a strong interaction (static quenching) between acrylamide and tryptophan in the active site had been found previously for cytochrome P450c21 [Narasimhulu, S. (1988) Biochemistry 27, 1147-1153], in the case of P450scc the temperature dependence of the slope of the linear Stern-Volmer plots indicated a dynamic quenching mechanism. This mechanism was confirmed by fluorescence lifetime measurements. Of the three observed life-times tau 1 = 3.1 +/- 0.5 ns, tau 2 = 0.7 +/- 0.25 ns and tau 3 = 20 +/- 10 ps, tau 1 decreased noticeably as a function of the acrylamide concentration. CNO, a spin-labeled substrate which is known to bind tightly to the substrate-binding site of P450scc, quenched 15.5% of the total fluorescence. The Lehrer plot of this compound indicated a static quenching process with a reciprocal quenching constant of 1/Ks = 4 microM, a value which is in accord with the dissociation constant. Our data indicate that CNO quenches selectively one or two tryptophan residue(s) in the active site. The fluorescence spectrum of the residue(s) accessible to CNO was characterized by a red-shifted emission maximum (from 332 nm to 336 nm). The same residue(s) appeared to be quenched by potassium iodide, although much less effectively (1/Ks = 0.12 M). The most probable candidate for a complex formation with CNO is Trp417, which is rather close to Cys422 (the fifth heme ligand). Four arginine residues (Arg411, Arg420, Arg425 and Arg426) in the heme peptide may constitute the iodide-binding site.
Collapse
Affiliation(s)
- R Lange
- Institut National de la Santé et de la Recherche Médicale, Unité 128, Montpellier, France
| | | | | | | | | |
Collapse
|
11
|
Hildebrandt P, Heibel G, Anzenbacher P, Lange R, Krüger V, Stier A. Conformational analysis of mitochondrial and microsomal cytochrome P-450 by resonance Raman spectroscopy. Biochemistry 1994; 33:12920-9. [PMID: 7947698 DOI: 10.1021/bi00209a024] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mitochondrial and microsomal cytochromes P-450SCC and P-450LM2 in the ferric substrate-free and substrate-bound states were studied by resonance Raman spectroscopy. In the spectra of cytochrome P-450SCC two conformational states (A and B) were detected, each of them constituting an equilibrium between a six-coordinated low-spin and a high-spin form. Both the conformational and the spin equilibria are pH- and temperature-dependent, which is in line with previously published results [Lange, R., Larroque, C., & Anzenbacher, P. (1992) Eur. J. Biochem. 207, 69-73)]. On the basis of well-resolved resonance Raman spectra, measured at different pH and temperatures, these equilibria were analyzed quantitatively. Both low-spin configurations of A and B exhibit different band patterns in the spin state marker band region, indicating differences in the active-site structures. While in the high-spin configuration of state A the heme iron remains weakly bound by a sixth ligand, the high-spin form of state B is five-coordinated. Binding of cholesterol to cytochrome P-450SCC causes a significant population of the high-spin forms, particularly of state A (62%). On the other hand, binding of 22R-hydroxycholesterol to the substrate-free enzyme leaves the overall spin equilibrium largely unchanged, i.e., six-coordinated low spin (76% A and 24% B). In both substrate-bound complexes, interactions between the substrate and the heme lead to small but distinct differences in the resonance Raman spectra of the low-spin form of state A. In contrast to cytochrome P-450SCC, the resonance Raman spectra of microsomal cytochrome P-450LM2 provide no indications for multiple conformers at 22 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P Hildebrandt
- Max-Planck-Institut für Strahlenchemie, Mülheim, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
12
|
Kominami S, Harada D, Takemori S. Regulation mechanism of the catalytic activity of bovine adrenal cytochrome P-450(11)beta. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1192:234-40. [PMID: 8018704 DOI: 10.1016/0005-2736(94)90123-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In our previous paper (Ikushiro et al. (1992) J. Biol. Chem. 267, 1464), two catalytic states were proposed for bovine adrenocortical P-450(11)beta at 37 degrees C: one in liposome membranes and the other in liposome membranes containing P-450scc. Similar reaction characteristics were observed at 5 degrees C and all the experiments in this study were performed at 5 degrees C. P-450(11)beta-proteoliposomes had relatively low 11 beta-hydroxylase activity and could catalyze aldosterone formation from 11-deoxycorticosterone. Relatively high 11 beta-hydroxylase activity was observed in P450(11)beta-proteoliposomes containing P-450scc and in Tween-20 solubilized P-450(11)beta, in which no aldosterone formation could be detected. Optical titration indicated binding of corticosterone to P-450(11)beta to be much weaker in the Tween-20 solubilized state than in proteoliposomes. Corticosterone competitively inhibited 11 beta-hydroxylation reaction of P-450(11)beta-proteoliposomes, but neither in P-450(11)beta-proteoliposomes containing P-450scc nor in the Tween-20 solubilized system. The binding of corticosterone to P-450(11)beta was concluded quite weak in proteoliposomes in the presence of P-450scc and in the Tween-20 solubilized state. Aldosterone formation thus was not possible in these systems. Inability of the bovine adrenocortical zonae fasciculata and reticularis to produce aldosterone may be due to the weak binding of corticosterone to P-450(11)beta in these zones.
Collapse
Affiliation(s)
- S Kominami
- Faculty of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima, Japan
| | | | | |
Collapse
|
13
|
Tuckey RC, Cameron KJ. Side-chain specificities of human and bovine cytochromes P-450scc. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 217:209-15. [PMID: 8223556 DOI: 10.1111/j.1432-1033.1993.tb18235.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cytochrome P-450scc catalyses the conversion of cholesterol to pregnenolone by the sequential hydroxylation of the side chain of cholesterol. This occurs at a single active site and produces 22R-hydroxycholesterol and 22R-20 alpha-dihydroxycholesterol as intermediates. To further define the active site of human and bovine cytochromes P-450scc, we have examined the kinetics of the conversion of structural analogues of cholesterol with modified side chains, to pregnenolone. Analysis of the side-chain cleavage of analogues of cholesterol modified at C22 confirmed the high degree of structural specificity for the 22R position by cytochrome P-450scc, the major effect being on the turnover number (kcat) rather than on binding. The analogues of cholesterol that had a polar group at C24, C25 or C26 had much lower Km values and generally lower kcat values than the non-polar analogues which were tested. Km values of the polar analogues were 3-25-times lower than the Km for cholesterol and kcat values were also much lower than the kcat values for cholesterol, particularly for the human enzyme. The data suggest that the tight binding of the analogues with a hydroxyl or ketone group at C24, C25 or C26 places C20 and C22 in a poor orientation relative to the heme group for hydroxylation to occur. Many of the polar analogues which were tested are postulated regulators of cellular cholesterol metabolism. Several of these analogues are good substrates for bovine and human cytochromes P-450scc at low substrate concentration, as determined from their kcat/Km values. This study also indicates that the active site of cytochrome P-450scc is well conserved between bovine and human cytochromes. However, small species differences are evident since lower kcat values relative to the kcat of cholesterol are observed for some polar side-chain analogues of cholesterol with the human enzyme.
Collapse
Affiliation(s)
- R C Tuckey
- Department of Biochemistry, University of Western Australia, Nedlands
| | | |
Collapse
|
14
|
Wada A, Waterman M. Identification by site-directed mutagenesis of two lysine residues in cholesterol side chain cleavage cytochrome P450 that are essential for adrenodoxin binding. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)50028-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
15
|
Electronic and stereochemical characterizations of intermediates in the photolysis of ferric cytochrome P450scc nitrosyl complexes. Effects of cholesterol and its analogues on ligand binding structures. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36972-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Lange R, Larroque C, Anzenbacher P. The cholesterol-side-chain-cleaving cytochrome P450 spin-state equilibrium. 1. Thermodynamic analysis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 207:69-73. [PMID: 1628662 DOI: 10.1111/j.1432-1033.1992.tb17021.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have investigated the spin-state equilibrium of adrenal mitochondrial P450scc (cholesterol-side-chain-cleaving, CYP11A1) by absorption spectroscopy in the Soret band as a function of pH and temperature. The van't Hoff plot of the high-spin/low-spin equilibrium is not linear and is shifted towards high spin by lowering the pH. This non-linearity resolves clearly into two phases when the temperature range is extended from 37 degrees C to -20 degrees C using ethylene glycol as anti-freeze cosolvent. This enabled us to measure the enthalpy and entropy changes which are delta HA = 0.7 kJ.mol-1 and delta SA = 5J.K-1.mol-1 at low temperatures and delta HB = -42 kJ.mol-1 and delta SB = -152 J.K-1.mol-1 at high temperatures. The transition temperature, Tbreak, between both phases decreases as a function of pH. The experimental data can be fitted by a minimal reactional model comprising a temperature dependent conformational transition and two ionisation steps (one for each conformation), the pK of which is 1.5 +/- 0.5 higher in the low-temperature conformation. The deduced conformational equilibrium is affected by physiological effectors: Tbreak depends on the nature of the substrate intermediate and on the presence of the physiological electron donor, adrenodoxin.
Collapse
Affiliation(s)
- R Lange
- Institut National de la Santé et de la Recherche Médicale, Unité 128, Montepellier, France
| | | | | |
Collapse
|
17
|
Coghlan V, Vickery L. Electrostatic interactions stabilizing ferredoxin electron transfer complexes. Disruption by “conservative” mutations. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50369-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
Anzenbacher P, Hudecek J, Vajda S, Fidler V, Larroque C, Lange R. Nanosecond fluorescence of tryptophans in cytochrome P-450scc (CYP11A1): effect of substrate binding. Biochem Biophys Res Commun 1991; 181:1493-9. [PMID: 1764099 DOI: 10.1016/0006-291x(91)92108-v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fluorescence of eight tryptophan residues in cytochrome P-450scc with bound endogenous cholesterol could be fitted with a two component model: a single exponential and a "top-hat" distribution of lifetimes as the second component. The short-lived component (tau 1 about 700 ps) does not change significantly upon binding of substrate (22R-hydroxycholesterol). The parameters of the long-lived component (central lifetime tau m about 3.4 ns) change upon binding of carbon monoxide and substrate. 22R-hydroxycholesterol binding broadens the distribution of the long-lived component; that is the heterogeneity of the Trp environment is increased when this substrate displaces the endogenous cholesterol.
Collapse
Affiliation(s)
- P Anzenbacher
- Institute of Physiology, Czechoslovak Academy of Sciences, Prague
| | | | | | | | | | | |
Collapse
|
19
|
Higuchi A, Kominami S, Takemori S. Kinetic control of steroidogenesis by steroid concentration in guinea pig adrenal microsomes. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1084:240-6. [PMID: 1888770 DOI: 10.1016/0005-2760(91)90064-o] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
For clarification of the effects of steroid concentration on steroidogenesis of adrenal microsomes, the kinetic parameters, Km and kcat, were determined in the steady-state for progesterone and 17 alpha-hydroxyprogesterone metabolism catalyzed by P-450C21 and P-450(17 alpha lyase) in guinea pig adrenal microsomes. At a high concentration of progesterone, it was equally metabolized by P-450C21 and P-450(17 alpha lyase), while at a low concentration, it was hydroxylated at 17 alpha-position with twice higher rate than at 21-position. 17 alpha-Hydroxyprogesterone is apparently metabolized preferentially by P-450C21 at any concentration. Although the productions of deoxycortisol and androstenedione from 17 alpha-hydroxyprogesterone were strongly inhibited by progesterone, androstenedione formation from progesterone was not inhibited by a high concentration of progesterone. The addition of liposomal P-450C21 to the reaction medium containing adrenal microsomes caused a decrease in the concentration of 17 alpha-hydroxyprogesterone released into the medium in the steady state reaction, but this had no effect on the activity of androstenedione formation from high concentrations of progesterone. It thus follows that androstenedione is produced by successive monooxygenase reactions without the release of 17 alpha-hydroxyprogesterone from P-450(17 alpha lyase) at a high concentration of progesterone, which is the condition of the adrenal microsomes in vivo.
Collapse
Affiliation(s)
- A Higuchi
- Faculty of Integrated Arts and Sciences, Hiroshima University, Japan
| | | | | |
Collapse
|
20
|
Orme-Johnson NR. Distinctive properties of adrenal cortex mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1020:213-31. [PMID: 2174262 DOI: 10.1016/0005-2728(90)90151-s] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mitochondria in cells that synthesize steroid hormones not only have enzymes not present in mitochondria of non-steroidogenic cells but also have unique mechanisms for regulating the steroid substrate availability for certain of these enzymes. We have considered in detail the cytochrome P-450scc system that is located in the inner mitochondrial membrane and that catalyzes the initial and rate-determining step in the steroid hormone biosynthetic pathway. The flux through this pathway is regulated both by the levels of these catalysts themselves and by the availability of the substrate cholesterol for conversion to pregnenolone. These two levels of regulation occur in different time frames but are both controlled externally by the action of tissue-specific peptide hormone. We have used the adrenal cortex fasciculata cells as our paradigmatic cell type. The overall picture seems closely similar for mitochondria in other such steroidogenic cells when analogous data are available. Thus, in adrenal cortex fasciculata cells ACTH triggers several long-term (trophic) and short-term (acute) effects upon and within mitochondria that influence the initial and rate-determining step in the steroid hormone biosynthetic pathway. The only second messenger for both effects characterized thus far is cAMP. An increase in membrane-associated cAMP rapidly activates cAMP-dependent protein kinase, which in turn phosphorylates several cellular proteins, e.g., cholesterol ester hydrolase (vide supra). The trophic action, i.e., that produced by exposure of the cells to increased levels of ACTH or cAMP for a prolonged period (minutes to hours), increases the amounts of the steroid hormone synthesizing proteins in the mitochondria by increasing the transcription of the relevant nuclear genes. This latter process is not needed for the acute increase in the rate of steroid hormone biosynthesis. Whether induction of steroidogenic enzymes requires activation of a kinase has not been determined. However, the postulated SHIP proteins provide a mechanism by which cAMP levels and protein synthesis itself may regulate this induction. Mitochondria in steroidogenic tissues exert control over this process by their ability to recognize, import and process correctly the nuclear encoded precursors of the steroidogenic enzymes. Whether control at this level is ultimately dictated by nuclear or mitochondrial gene products or by an interplay between them is still unknown.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- N R Orme-Johnson
- Department of Biochemistry, Tufts University Health Sciences Campus, Boston, MA 02108
| |
Collapse
|
21
|
Larroque C, Lange R, Maurin L, Bienvenue A, van Lier JE. On the nature of the cytochrome P450scc "ultimate oxidant": characterization of a productive radical intermediate. Arch Biochem Biophys 1990; 282:198-201. [PMID: 2171430 DOI: 10.1016/0003-9861(90)90104-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The electron paramagnetic (EPR) properties of a transient species detected during a cytochrome P450 (P450)-mediated peroxidative reaction have been compared with those of peroxidases Compound I and model metalloporphyrins. The reaction which was studied with cholesterol-specific P450scc and (20R)-20-hydroperoxycholesterol, occurred without enzyme denaturation. The resulting transient species, which reached its maximum after 50 s reaction, was characterized by a one-line EPR spectrum, g = 2.0035, delta 1/2 = 1.08 mT. The decay of this radical was concomitant with the production of (20R)-20,21-dihydroxycholesterol. The reaction (almost 100% yield) conserved the stereo-specificity of the natural pathway. We suggest this intermediate is a candidate for the in vivo ultimate oxidant in the P450-mediated hydroxylation process. The comparison of the observed EPR spectrum with those of peroxidase Compound I and related synthetic models allows us to propose a FeIV porphyrin II cation radical structure for the intermediate.
Collapse
Affiliation(s)
- C Larroque
- Institut National de la Santé et de la Recherche Médicale, Unité 128, Montpellier, France
| | | | | | | | | |
Collapse
|
22
|
Sugano S, Morishima N, Horie S. Cytochrome P-450scc-catalyzed production of progesterone from 22R-hydroxycholest-4-en-3-one by way of 20,22-dihydroxycholest-4-en-3-one. J Steroid Biochem Mol Biol 1990; 37:47-55. [PMID: 2242352 DOI: 10.1016/0960-0760(90)90371-q] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transient accumulation of a dihydroxylated steroid was found when 22R-hydroxycholest-4-en-3-one was used as the substrate for a reconstituted cholesterol side-chain cleavage system derived from bovine adrenocortical mitochondria. The indications were that the accumulated steroid was an intermediate in the cytochrome P-450scc-catalyzed reaction. The retention time of the accumulated intermediate was identical with that of authentic 20,22-dihydroxycholest-4-en-3-one on HPLC. When 22R-hydroxycholesterol and 22R-hydroxycholest-4-en-3-one were incubated simultaneously, the total amount of reaction products was essentially the same as that observed with 22R-hydroxycholest-4-en-3-one alone. Under the conditions employed, the apparent turnover number of cytochrome P-450scc for 22R-hydroxycholesterol was calculated to be 77 nmol/min/nmol P-450 from the amount of pregnenolone formed, whereas the apparent turnover number for 22R-hydroxycholest-4-en-3-one was 64 nmol/min/nmol P-450 with respect to the intermediate formation and 77 nmol/min/nmol P-450 with respect to the progesterone formation. The apparent turnover number for 20,22-dihydroxycholest-4-en-3-one was about 125 nmol/min/nmol P-450, which was not significantly different from that of 20,22-dihydroxycholesterol. The apparent Km for 22R-hydroxycholesterol was about 20 microM and those for 22R-hydroxycholest-4-en-3-one and 20,22-dihydroxycholest-4-en-3-one were 50 and 40 microM, respectively. Thus, 22R-hydroxycholest-4-en-3-one was efficiently metabolized to progesterone by way of 20,22-dihydroxycholest-4-en-3-one by cytochrome P-450scc.
Collapse
Affiliation(s)
- S Sugano
- Department of Biochemistry, School of Nursing, Kitasato University, Kanagawa, Japan
| | | | | |
Collapse
|
23
|
Olakanmi O, Seybert DW. Modified acetylenic steroids as potent mechanism-based inhibitors of cytochrome P-450SCC. JOURNAL OF STEROID BIOCHEMISTRY 1990; 36:273-80. [PMID: 2391956 DOI: 10.1016/0022-4731(90)90217-g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Synthesized 20-(4-tetrahydropyranyl-1-butynyloxy)-5-pregnen-3 alpha,20 beta- diol [steroid I] and 20-(3-tetrahydropyranyl-1-propargyloxy)-5-pregnen- 3 alpha,20 beta-diol [steroid III] have been found to inactivate purified adrenocortical cytochrome P-450SCC. When incubated with the enzyme under turnover conditions, steroid I inactivated cytochrome P-450SCC by about 85% in 40 min. This is in contrast to the free triol analog, steroid II which inactivated the enzyme by only 45% within the same incubation period. A comparison of steroid III with its free triol analog, steroid IV, also showed that the diol is a more effective inactivator of the enzyme than the triol. The partition ratio was calculated by two different methods. Each of the steroids I-IV bound to the enzyme with spectrophotometric dissociation constant (Ks) in the micromolar range, producing Type II low spin spectra changes during titration of the enzyme. In addition, it was found that the binding of each of the compounds to the enzyme occurred without inactivation of the enzyme and that the inactivation under turnover condition, is not as a result of conversion to the denatured P-420 species. This demonstrated that steroids I and III could correctly be designated as mechanism-based (suicide) inhibitors. The kinetic studies demonstrated that steroids with the tetrahydropyranyl substituent are more potent inhibitors of cytochrome P-450SCC as shown by an initial turnover rate of 0.06 min-1, an inactivation rate constant of 0.05 min-1, and a partition ratio of about 1.0 for steroid I. Based on our finding, possible mechanisms of inactivation of cytochrome P-450SCC by these acetylenic steroids are proposed.
Collapse
Affiliation(s)
- O Olakanmi
- Department of Chemistry, Duquesne University, Pittsburgh, PA 15282
| | | |
Collapse
|
24
|
Kominami S, Inoue S, Higuchi A, Takemori S. Steroidogenesis in liposomal system containing adrenal microsomal cytochrome P-450 electron transfer components. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 985:293-9. [PMID: 2804111 DOI: 10.1016/0005-2736(89)90415-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Purified adrenal microsomal P-450C21 and/or P-45017 alpha,lyase were incorporated with purified NADPH-cytochrome-P-450 reductase into liposome membranes composed of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine at a molar ratio of 5:3:1. The rate dependences of reduction of liposomal P-450C21 in the fast phase as well as progesterone hydroxylation activities of P-450C21 and P-45017 alpha,lyase on the reductase concentration in the liposome membranes suggested that electrons were delivered through random collisions between the reductase and cytochrome P-450s in the liposome membranes. A rapid exchange of the steroid metabolic intermediate between vesicles was observed in a reaction system consisting of P-450C21-proteoliposomes and P-45017 alpha,lyase-proteoliposomes. Using the combined liposomal system, it was definitely proved that androstenedione was formed from progesterone mainly by a successive hydroxylation reaction without the intermediate 17 alpha-hydroxyprogesterone leaving from P-45017 alpha,lyase. It was also found that 21-hydroxylation of 17 alpha-hydroxyprogesterone into 11-deoxycortisol was inhibited by a physiological concentration of progesterone.
Collapse
Affiliation(s)
- S Kominami
- Faculty of Integrated Arts and Sciences, Hiroshima University, Japan
| | | | | | | |
Collapse
|
25
|
Tsubaki M, Hiwatashi A, Ichikawa Y, Fujimoto Y, Ikekawa N, Hori H. Electron paramagnetic resonance study of ferrous cytochrome P-450scc-nitric oxide complexes: effects of 20(R),22(R)-dihydroxycholesterol and reduced adrenodoxin. Biochemistry 1988; 27:4856-62. [PMID: 2844242 DOI: 10.1021/bi00413a041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Electron paramagnetic resonance (EPR) spectra of ferrous-nitric oxide (14NO and 15NO) cytochrome P-450scc complexed with 20(R),22(R)-dihydroxycholesterol were measured at 77 K with X-band (9.35 GHz) microwave frequency. The EPR spectra clearly showed the spin system to have rhombic symmetry (gx = 2.068, gz = 2.001, gy = 1.961, and Az = 1.89 mT for 14NO) and were distinct from those of 20(S)-hydroxycholesterol complexes. The unique nature of the 20(S)-hydroxycholesterol complexes indicates that 20(S)-hydroxycholesterol is not a proper intermediate in the cholesterol side-chain cleavage reaction. In addition, among various steroid complexes of ferrous-NO species having rhombic symmetry, the EPR spectra of 20(R),22(R)-dihydroxycholesterol complexes were significantly different from those of 22(R)-hydroxycholesterol complexes, suggesting that upon 20S-hydroxylation of 22(R)-hydroxycholesterol the conformation of the active site changes so as to facilitate subsequent cleavage of the C20-C22 bond of the cholesterol side chain. Addition of reduced adrenodoxin to the ferrous-NO cytochrome P-450scc complex in the presence of cholesterol caused a complete shift of the gx = 2.070 signal to gx = 2.075, indicating a reorientation of cholesterol in the substrate-binding site of the enzyme upon adrenodoxin binding. Without reduced adrenodoxin, the process of reorientation of cholesterol in the substrate-binding site was very slow, requiring more than 50 h of incubation at 0 degrees C. The present observations suggest that adrenodoxin may have another positive role in the cholesterol side-chain cleavage reaction, in addition to transferring an electron to the heme of cytochrome P-450scc.
Collapse
Affiliation(s)
- M Tsubaki
- Department of Biochemistry, Kagawa Medical School, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Lange R, Maurin L, Larroque C, Bienvenüe A. Interaction of a spin-labelled cholesterol derivative with the cytochrome P-450scc active site. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 172:189-95. [PMID: 3345759 DOI: 10.1111/j.1432-1033.1988.tb13872.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The cholesterol analogue 25-doxyl-27-nor-cholesterol (CNO), was found to be a substrate for cytochrome P-450scc. Upon incubation with the cytochrome P-450scc electron transfer system, CNO is transformed to pregnenolone (Km = 33 microM, Vmax = 0.32 min-1). The pregnenolone formation from endogenous cholesterol is strongly inhibited by CNO (50% at 5 microM). It binds tightly to cytochrome P-450scc as evidenced by a reversed type I spectral absorbance change (Kd = 5.9 microM) which is paralleled by a greater hyperfine splitting of the room-temperature CNO ESR spectrum due to an enhanced probe immobilization (Kd = 1.9 microM). This finding is in accord with a rotational correlation time of about 10(-7) s, which is close to the tumbling rate of the protein. At 110 K the CNO-bound cytochrome P-450scc displays the ESR g-values gx = 2.404/2.456, gy = 2.245 and gz = 1.916; these are different from those of cholesterol-liganded cytochrome P-450scc and may thus serve as a marker for cytochrome P-450scc. Our data indicate that the stereospecificity of the cytochrome P-450scc side-chain-cleaving activity is not dependent on the nature of the cholesterol side-chain termination (C25 to C27). The substrate binding site is however rather sensitive to a modification of the side chain. The doxyl ring confers a stronger affinity of the substrate to the enzyme. Upon binding it becomes embedded in the protein matrix, and we estimate that its final position is 0.6-1.0 nm from the heme moiety.
Collapse
Affiliation(s)
- R Lange
- INSERM U 128, Montpellier, France
| | | | | | | |
Collapse
|
27
|
Md. Sadeque AJ, Shimizu T, Hatano M. Interaction of fluoroaniline with Cytochrome P−450scc and myoglobin: Temperature and pH dependence studies. Inorganica Chim Acta 1988. [DOI: 10.1016/s0020-1693(00)83483-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Seeley D, Schleyer H, Kashiwagi K, Cooper D, Salhanick HA. Studies of the active site of cytochrome P-450scc with a high-affinity spin-labeled inhibitor. Biochemistry 1987; 26:1270-5. [PMID: 3032247 DOI: 10.1021/bi00379a011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The intramolecular site of P-450scc for conversion of cholesterol to pregnenolone involves a substrate site, an active site, and a site for transmission of electrons. The substrate site was studied with a high-affinity, high-potency nitroxide spin-labeled inhibitor of cholesterol side-chain cleavage. This substance, 17 alpha-hydroxy-11-deoxycorticosterone nitroxide (SL-V), has an affinity comparable to that of the most active substrate inhibitors ever reported and 2-50 times greater than that of the natural substrate cholesterol. Competition experiments with cholesterol and its analogues confirmed that SL-V binds reversibly to the substrate site. Titration experiments showed a single binding site on the P-450 molecule. The substrate site is on the apoprotein and has little or no direct interaction with the heme. Spin-spin interactions between the Fe3+ and side-chain or A-ring spin-labeled groups could not be demonstrated, which is consistent with carbons 22 and 20 being closest to the heme iron. We postulate that substrate disrupts a histidine nitrogen coordination with the heme iron and induces conformational changes in the apoprotein. These changes lead to increased affinity for iron-sulfur protein.
Collapse
|
29
|
Affiliation(s)
- P F Hall
- Department of Endocrinology and Metabolism, University of New South Wales, Randwick, Australia
| |
Collapse
|
30
|
Tsubaki M, Tomita S, Tsuneoka Y, Ichikawa Y. Characterization of two cysteine residues in cytochrome P-450scc: chemical identification of the heme-binding cysteine residue. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 870:564-74. [PMID: 3697365 DOI: 10.1016/0167-4838(86)90266-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
It was found that there were only two cysteine residues in highly purified cytochrome P-450scc molecule from bovine adrenocortical mitochondria by titration with 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB) in denatured conditions. Only one cysteine residue at position 303 of cytochrome P-450scc could be specifically modified with DTNB in the native state. The resulting cytochrome P-450scc-5-thio-2-nitrobenzoic acid complex (cytochrome P-450scc-TNB) showed no distinct differences in absorption spectra, cholesterol binding, or electron transferring from adrenodoxin, compared to those of untreated cytochrome P-450scc. These observations indicated that the 303rd cysteine residue does not play a role in heme binding, cholesterol (substrate) binding or adrenodoxin binding. The other cysteine residue at 461 could be modified with DTNB only in a denatured condition. These assignments of cysteine residues were made by the subsequent S-cyanylation with KCN followed by incubation in 6 M guanidine hydrochloride at alkaline pH, which causes enhanced cleavage of peptide bonds adjacent to the cyanylated cysteine residues. Analyses of fragmented polypeptides by SDS-polyacrylamide gel electrophoresis confirmed that there were only two cysteine residues in the molecule and indicated that the cleavage rate of the peptide bond between 460 and 461 becomes high only when both cysteine residues (303 and 461) are cyanylated. These results clearly established that the 461st cysteine residue in cytochrome P-450scc plays a role as the heme fifth ligand on the basis of the general agreement that a thiolated cysteine residue coordinates to the heme iron.
Collapse
|
31
|
Abstract
For a set of 10 para-substituted toluene derivatives, three enzymatic constants were determined describing their interaction with purified rabbit liver microsomal P-450LM2. The three constants were the catalytic rate constant (Kcat) for hydroxylation, the apparent dissociation constant (Kd) for the enzyme-substrate complex, and the interaction energy (delta Gint) between the substrate-binding and spin-state equilibria. The para-substituents of the toluene substrates were: hydrogen, fluoro, bromo, chloro, iodo, nitro, methyl, cyano, isopropyl, and t-butyl. Linear free energy correlations were sought between the enzymatic constants and several physical constants of the individual substrate molecules. These correlations would be useful both for empirical prediction purposes and for insight into active site chemistry and mechanics. Catalytic rates were correlated by a linear combination of the Hansch pi hydrophobic constant and the Hammett sigma value. A deuterium isotope effect (DV) of 2.6 for d8-toluene compared to d0-toluene confirmed that hydrogen abstraction was partially rate-limiting with this series of substrates. Apparent dissociation constants were predicted by a linear combination of the molar volume and pi, while the spin-state interaction energies were best predicted by a linear combination of the Hansch pi hydrophobic constant and the reciprocal of the dielectric constant.
Collapse
|
32
|
Weiner LM. Magnetic resonance study of the structure and functions of cytochrome P450. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1986; 20:139-200. [PMID: 3011356 DOI: 10.3109/10409238609083734] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cytochrome P450 is a membrane-bound enzyme providing oxidation of numerous organic compounds in organisms. The objective of this review is to show the wide possibilities that are provided by Electron Spin Resonance (ESR) and Nuclear Magnetic Resonance (NMR) techniques to the study of the structure and functions of this unique enzyme. High sensitivity of ESR spectra of cytochrome P450 to its functional state and interaction with substrates and inhibitors is illustrated. NMR and proton relaxation make it possible to obtain unique information about the structure of the active center of cytochrome P450 under physiological conditions. ESR and NMR methods allow one to obtain structural data on location of substrates, inhibitors, and their spin-labeled analogs with respect to Fe3+ ions in the enzyme-active center. Of special interest seems to be coupling of ESR with the affinity modification method. For this purpose, the spin-labeled analogs of cytochrome P450 substrates containing alkylating groups were used. As a result, an important datum has been obtained on the structure of active centers of cytochrome P450 in microsomes and in a highly purified state. In conclusion, the problems of the structure and functions of cytochrome P450, which can be most efficiently resolved with the use of magnetic resonance methods, are discussed.
Collapse
|
33
|
Abstract
Cytochrome P-450scc is unusual among members of this class of enzymes in showing a high degree of substrate specificity. Features of the cholesterol structure which are particularly important for binding include the 3 beta-hydroxyl, the delta 5-ring configuration, and the side-chain organization in the 20-22 region. Regarding the ring system, binding appears to require planarity and limited size at the 4-5-6 carbons (the A-B ring juncture). In the region of the 3 beta-hydroxyl, a "cleft" in the binding site extends about 4 A beyond the hydroxyl and can accommodate two additional ether-linked carbons. Evidence indicates that an enzyme residue hydrogen-bonds to the oxygen of the 3 beta hydroxyl, providing much of the energy for the initial enzyme-substrate interaction. The cytochrome shows less specificity for the side-chain structure, except in the region of carbons 20-22 where hydroxylation/side-chain cleavage takes place. The binding cleft for the side-chain is limited to approximately the length of the isocaproic group but can accommodate structural variations beyond the 22-position. Evidence indicates that the region near the 20-22 bond is more limited in size, and that an amino acid residue near the heme iron binds strongly and stereospecifically to the 22R-hydroxyl of the cleavage intermediates, 22R-hydroxycholesterol and 20 alpha, 22R-dihydroxycholesterol. The 22R-hydrogen of cholesterol is very close to the heme iron (approximately 3 A), while the 22S-hydrogen is slightly further (about 4 A). The size and bonding properties of the steroid binding/active site suggest a mechanism which accounts for the stereospecificity and sequence of reactions catalyzed by cytochrome P-450scc.
Collapse
|
34
|
Mitani F, Iizuka T, Shimada H, Ueno R, Ishimura Y. Flash photolysis studies on the CO complexes of ferrous cytochrome P-450scc and cytochrome P-45011 beta. Effects of steroid binding on the photochemical and ligand binding properties. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)38982-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
35
|
Tuckey RC, Stevenson PM. Purification and analysis of phospholipids in the inner mitochondrial membrane fraction of bovine corpus luteum, and properties of cytochrome P-450scc incorporated into vesicles prepared from these phospholipids. EUROPEAN JOURNAL OF BIOCHEMISTRY 1985; 148:379-84. [PMID: 3838724 DOI: 10.1111/j.1432-1033.1985.tb08849.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cytochrome P-450scc, which catalyses the conversion of cholesterol to pregnenolone in steroidogenic tissues, can be incorporated into artificial phospholipid vesicles and cholesterol binding to the cytochrome is affected by the composition of the vesicles. We have purified the phospholipids from the inner mitochondrial membrane fraction of the bovine corpus luteum where the cytochrome is located. The composition in mol % was 49% phosphatidylcholine, 34% phosphatidylethanolamine, 8.7% cardiolipin, 6.4% lysophosphatidylethanolamine and 1.5% phosphatidylinositol. The ratio of cholesterol to phospholipid (mol/mol) in the inner membrane fraction was 0.14 to 1. The Km for cholesterol of purified luteal cytochrome P-450scc incorporated into vesicles prepared from the total inner mitochondrial membrane phospholipids was 0.063 mol of cholesterol per mol of phospholipid. Removal of the cardiolipin component of the inner mitochondrial membrane phospholipids prior to preparation of vesicles caused a four fold increase in the Kd of cytochrome P-450 for cholesterol and a two fold increase in Km. The data suggests that in the inner mitochondrial membrane of the bovine corpus luteum the cholesterol concentration is less than saturating for cytochrome P-450scc.
Collapse
|
36
|
Hsu DK, Huang YY, Kimura T. Liposomal cholesterol binding to steroid-free cytochrome P450scc: effects of fatty acyl and head groups in phospholipids. Endocr Res 1985; 11:45-58. [PMID: 4043005 DOI: 10.3109/07435808509035424] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effects of fatty acyl substituents and head groups of phospholipids on the liposomal cholesterol transfer to steroid-free cytochrome P450scc were examined as a model system for ACTH-enhanced availability of cholesterol to the cytochrome in the inner membrane of adrenal cortex mitochondria. It was implicated that using a variety of saturated and unsaturated phospholipids fatty acyl groups play an important role in the transfer reaction.
Collapse
|
37
|
Nagahisa A, Foo T, Gut M, Orme-Johnson WH. Competitive inhibition of cytochrome P-450scc by (22R)- and (22S)-22-aminocholesterol. Side-chain stereochemical requirements for C-22 amine coordination to the active-site heme. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(20)71176-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Hall PF. Role of cytochromes P-450 in the biosynthesis of steroid hormones. VITAMINS AND HORMONES 1985; 42:315-68. [PMID: 3913122 DOI: 10.1016/s0083-6729(08)60065-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Chashchin VL, Vasilevsky VI, Shkumatov VM, Akhrem AA. The domain structure of the cholesterol side-chain cleavage cytochrome P-450 from bovine adrenocortical mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 787:27-38. [PMID: 6722173 DOI: 10.1016/0167-4838(84)90104-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A homogeneous cytochrome P-450scc preparation with a specific enzyme content of 18 nmol/1 mg protein has been obtained using affinity chromatography on adrenodoxin-Sepharose under optimal conditions of the protein adsorption onto and desorption from the affinity sorbent. The data on the N-terminal amino acid sequence of the enzyme, along with the results of electrophoretic and spectrophotometric analyses favoured the multistage cholesterol transformation to pregnenolone to be catalyzed by single species of cytochrome P-450scc consisting of one polypeptide chain. Limited proteolysis of cytochrome P-450scc with trypsin resulted, at the initial stages, in the formation (in an equimolar ratio) of two large polypeptide fragments, I and II, with Mr 27000 and 22000, respectively. Prolonged action of trypsin led to the digestion of fragment II and the formation of a stoichiometric amount of fragment III, Mr of about 14000. Cytochrome P-450scc converted by trypsin into equimolar mixtures of fragments I and II or I and III retained the major spectral and functional properties of the native protein. The aspartyl-prolyl linkages, sulphhydryl groups, and surface tyrosine residues are distributed nonuniformly among fragments I and II. These data, as well as a different resistance of the fragments to the action of trypsin, suggest that cytochrome P-450scc consists of two independently folded domains linked with a short loop of the polypeptide chain, the domains being rigidly associated under neutral conditions.
Collapse
|
40
|
Stevens VL, Aw TY, Jones DP, Lambeth JD. Oxygen dependence of adrenal cortex cholesterol side chain cleavage. Implications in the rate-limiting steps in steroidogenesis. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43584-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Kowluru RA, George R, Jefcoate CR. Polyphosphoinositide activation of cholesterol side chain cleavage with purified cytochrome P-450scc. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(20)82026-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Acetylenic mechanism-based inhibitors of cholesterol side chain cleavage by cytochrome P-450scc. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32278-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
43
|
Larroque C, van Lier JE. Spectroscopic evidence for the formation of a transient species during cytochrome P-450scc induced hydroperoxysterol-glycol conversions. Biochem Biophys Res Commun 1983; 112:655-62. [PMID: 6847670 DOI: 10.1016/0006-291x(83)91513-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Spectroscopic analysis of the interaction of the epimeric 20-hydroperoxy derivatives of cholesterol with bovine adrenocortical cytochrome P-450scc preparations suggested the formation of a transient species. The intermediate was detected at 4 degrees C and characterized by a minimum at 412 nm in the difference spectrum.
Collapse
|
44
|
Kinetics of O2 and CO Binding to adrenal cytochrome P-450scc. Effect of cholesterol, intermediates, and phosphatidylcholine vesicles. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32611-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
45
|
Inhibition of adrenocortical cytochrome P-450scc by (20R)-20-phenyl-5-pregnene-3 beta,20-diol. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32741-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
46
|
Cytochrome P-450scc-phospholipid interactions. Evidence for a cardiolipin binding site and thermodynamics of enzyme interactions with cardiolipin, cholesterol, and adrenodoxin. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32849-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
47
|
Sheets JJ, Vickery LE. C-22-substituted steroid derivatives as substrate analogues and inhibitors of cytochrome P-450scc. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)33045-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
19 P-450 Oxygenases in Lipid Transformation. ACTA ACUST UNITED AC 1983. [DOI: 10.1016/s1874-6047(08)60317-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
49
|
Tuckey RC, Kamin H. The oxyferro complex of adrenal cytochrome P-450scc. Effect of cholesterol and intermediates on its stability and optical characteristics. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)34070-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
50
|
Lambeth JD, Seybert DW, Lancaster JR, Salerno JC, Kamin H. Steroidogenic electron transport in adrenal cortex mitochondria. Mol Cell Biochem 1982; 45:13-31. [PMID: 7050653 DOI: 10.1007/bf01283159] [Citation(s) in RCA: 149] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The flavoprotein NADPH-adrenodoxin reductase and the iron sulfur protein adrenodoxin function as a short electron transport chain which donates electrons one-at-a-time to adrenal cortex mitochondrial cytochromes P-450. The soluble adrenodoxin acts as a mobile one-electron shuttle, forming a complex first with NADPH-reduced adrenodoxin reductase from which it accepts an electron, then dissociating, and finally reassociating with and donating an electron to the membrane-bound cytochrome P-450 (Fig. 9). Dissociation and reassociation with flavoprotein then allows a second cycle of electron transfers. A complex set of factors govern the sequential protein-protein interactions which comprise this adrenodoxin shuttle mechanism; among these factors, reduction of the iron sulfur center by the flavin weakens the adrenodoxin-adrenodoxin reductase interaction, thus promoting dissociation of this complex to yield free reduced adrenodoxin. Substrate (cholesterol) binding to cytochrome P-450scc both promotes the binding of the free adrenodoxin to the cytochrome, and alters the oxidation-reduction potential of the heme so as to favor reduction by adrenodoxin. The cholesterol binding site on cytochrome P-450scc appears to be in direct communication with the hydrophobic phospholipid milieu in which this substrate is dissolved. Specific effects of both phospholipid headgroups and fatty acyl side-chains regulate the interaction of cholesterol with its binding side. Cardiolipin is an extremely potent positive effector for cholesterol binding, and evidence supports the existence of a specific effector lipid binding site on cytochrome P.450scc to which this phospholipid binds.
Collapse
|