1
|
Saha A, Mousa R, Alalouf Y, Sadhu P, Hasan M, Mandal S, Mann G, Brik A. Suspension Bead Loading (SBL): An Economical Protein Delivery Platform to Study URM1's Behavior in Live Cells. Angew Chem Int Ed Engl 2024; 63:e202410135. [PMID: 39246272 DOI: 10.1002/anie.202410135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
Uniquely modified synthetic proteins are difficult to produce in large quantities, which could limit their use in various in vitro settings and in cellular studies. In this study, we developed a method named "suspension bead loading" (SBL), to deliver protein molecules into suspended living cells using glass beads, which significantly reduces the amount of protein required for effective delivery. We investigated the delivery efficiency of functionally different proteins and evaluated the cytotoxic effect of our method and the chemical and functional integrity of the delivered protein. We utilized SBL to address questions related to ubiquitin-related modifier 1 (URM1). Employing minimal protein quantities, SBL has enabled us to study its behavior within live cells under different redox conditions, including subcellular localization and conjugation patterns. We demonstrate that oxidative stress alters both the localization and conjugation pattern of URM1 in cells, highlighting its possible role in cellular response to such extreme conditions.
Collapse
Affiliation(s)
- Abhishek Saha
- Birla Instandte of Technology and Science, Pilani, Hyderabad Campus, Jawaharnagar Kapra Mandal, Medchal District, 500078, Hyderabad, Telangana, India
| | - Reem Mousa
- Schulich Faculty of Chemistry, Technion-Israel, Institute of Technology, 3200008, Haifa, Israel
| | - Yam Alalouf
- Schulich Faculty of Chemistry, Technion-Israel, Institute of Technology, 3200008, Haifa, Israel
| | - Pradeep Sadhu
- Schulich Faculty of Chemistry, Technion-Israel, Institute of Technology, 3200008, Haifa, Israel
| | - Mahdi Hasan
- Schulich Faculty of Chemistry, Technion-Israel, Institute of Technology, 3200008, Haifa, Israel
| | - Shaswati Mandal
- Schulich Faculty of Chemistry, Technion-Israel, Institute of Technology, 3200008, Haifa, Israel
| | - Guy Mann
- Schulich Faculty of Chemistry, Technion-Israel, Institute of Technology, 3200008, Haifa, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel, Institute of Technology, 3200008, Haifa, Israel
| |
Collapse
|
2
|
Nuga O, Richardson K, Patel NC, Wang X, Pagala V, Stephan A, Peng J, Demontis F, Todi SV. Linear poly-ubiquitin remodels the proteome and influences hundreds of regulators in Drosophila. G3 (BETHESDA, MD.) 2024; 14:jkae209. [PMID: 39325835 PMCID: PMC11540324 DOI: 10.1093/g3journal/jkae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024]
Abstract
Ubiquitin controls many cellular processes via its posttranslational conjugation onto substrates. Its use is highly variable due to its ability to form poly-ubiquitin chains with various topologies. Among them, linear chains have emerged as important regulators of immune responses and protein degradation. Previous studies in Drosophila melanogaster found that expression of linear poly-ubiquitin that cannot be dismantled into single moieties leads to their ubiquitination and degradation or, alternatively, to their conjugation onto proteins. However, it remains largely unknown which proteins are sensitive to linear poly-ubiquitin. To address this question, here we expanded the toolkit to modulate linear chains and conducted ultra-deep coverage proteomics from flies that express noncleavable, linear chains comprising 2, 4, or 6 moieties. We found that these chains regulate shared and distinct cellular processes in Drosophila by impacting hundreds of proteins, such as the circadian factor Cryptochrome. Our results provide key insight into the proteome subsets and cellular pathways that are influenced by linear poly-ubiquitin chains with distinct lengths and suggest that the ubiquitin system is exceedingly pliable.
Collapse
Affiliation(s)
- Oluwademilade Nuga
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
| | - Kristin Richardson
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
| | - Nikhil C Patel
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Junmin Peng
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
- Department of Neurology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
| |
Collapse
|
3
|
Suranjika S, Barla P, Sharma N, Dey N. A review on ubiquitin ligases: Orchestrators of plant resilience in adversity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112180. [PMID: 38964613 DOI: 10.1016/j.plantsci.2024.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Ubiquitin- proteasome system (UPS) is universally present in plants and animals, mediating many cellular processes needed for growth and development. Plants constantly defend themselves against endogenous and exogenous stimuli such as hormonal signaling, biotic stresses such as viruses, fungi, nematodes, and abiotic stresses like drought, heat, and salinity by developing complex regulatory mechanisms. Ubiquitination is a regulatory mechanism involving selective elimination and stabilization of regulatory proteins through the UPS system where E3 ligases play a central role; they can bind to the targets in a substrate-specific manner, followed by poly-ubiquitylation, and subsequent protein degradation by 26 S proteasome. Increasing evidence suggests different types of E3 ligases play important roles in plant development and stress adaptation. Herein, we summarize recent advances in understanding the regulatory roles of different E3 ligases and primarily focus on protein ubiquitination in plant-environment interactions. It also highlights the diversity and complexity of these metabolic pathways that enable plant to survive under challenging conditions. This reader-friendly review provides a comprehensive overview of E3 ligases and their substrates associated with abiotic and biotic stresses that could be utilized for future crop improvement.
Collapse
Affiliation(s)
- Sandhya Suranjika
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India; Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), KIIT Road, Patia, Bhubaneswar, Odisha, India
| | - Preeti Barla
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India
| | - Namisha Sharma
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India
| | - Nrisingha Dey
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India.
| |
Collapse
|
4
|
Chowdhury S, Sen A, Das D, Chakrabarti P. Deubiquitinase JOSD1 tempers hepatic proteotoxicity. Cell Death Discov 2024; 10:405. [PMID: 39284830 PMCID: PMC11405666 DOI: 10.1038/s41420-024-02177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Derangements in protein homeostasis and associated proteotoxicity mark acute, chronic, and drug-induced hepatocellular injury. Metabolic dysfunction-associated proteasomal inhibition and the use of proteasome inhibitors often underlie such pathological hepatic proteotoxicity. In this study, we sought to identify a candidate deubiquitinating enzyme (DUB) responsible for reversing the proteotoxic damage. To this end, we performed a siRNA screening wherein 96 DUBs were individually knocked down in HepG2 cells under proteasomal inhibitor-induced stress for dual readouts, apoptosis, and cell viability. Among the putative hits, we chose JOSD1, a member of the Machado-Josephin family of DUBs that reciprocally increased cell viability and decreased cell death under proteotoxicity. JOSD1-mediated mitigation of proteotoxicity was further validated in primary mouse hepatocytes by gain and loss of function studies. Marked plasma membrane accumulation of monoubiquitinated JOSD1 in proteotoxic conditions is a prerequisite for its protective role, while the enzymatically inactive JOSD1 C36A mutant was conversely polyubiquitinated, does not have membrane localisation and fails to reverse proteotoxicity. Mechanistically, JOSD1 physically interacts with the suppressor of cytokine signalling 1 (SOCS1), deubiquitinates it and enhances its stability under proteotoxic stress. Indeed, SOCS1 expression is necessary and sufficient for the hepatoprotective function of JOSD1 under proteasomal inhibition. In vivo, adenovirus-mediated ectopic expression or depletion of JOSD1 in mice liver respectively protects or aggravates hepatic injury when challenged with proteasome blocker Bortezomib. Our study thus unveils JOSD1 as a potential candidate for ameliorating hepatocellular damage in liver diseases.
Collapse
Affiliation(s)
- Saheli Chowdhury
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Abhishek Sen
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debajyoti Das
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Department of Medicine-Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Partha Chakrabarti
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Nuga O, Richardson K, Patel N, Wang X, Pagala V, Stephan A, Peng J, Demontis F, Todi SV. Linear ubiquitin chains remodel the proteome and influence the levels of hundreds of regulators in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593206. [PMID: 38766269 PMCID: PMC11100727 DOI: 10.1101/2024.05.09.593206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Ubiquitin controls many cellular processes via its post-translational conjugation onto substrates. Its use is highly variable due to its ability to form poly-ubiquitin with various topologies. Among them, linear chains have emerged as important regulators of immune responses and protein degradation. Previous studies in Drosophila melanogaster found that expression of linear poly-ubiquitin that cannot be dismantled into single moieties leads to their own ubiquitination and degradation or, alternatively, to their conjugation onto proteins. However, it remains largely unknown which proteins are sensitive to linear poly-ubiquitin. To address this question, here we expanded the toolkit to modulate linear chains and conducted ultra-deep coverage proteomics from flies that express non-cleavable, linear chains comprising 2, 4, or 6 moieties. We found that these chains regulate shared and distinct cellular processes in Drosophila by impacting hundreds of proteins. Our results provide key insight into the proteome subsets and cellular pathways that are influenced by linear poly-ubiquitin with distinct lengths and suggest that the ubiquitin system is exceedingly pliable.
Collapse
|
6
|
Kelsall IR. Non-lysine ubiquitylation: Doing things differently. Front Mol Biosci 2022; 9:1008175. [PMID: 36200073 PMCID: PMC9527308 DOI: 10.3389/fmolb.2022.1008175] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
The post-translational modification of proteins with ubiquitin plays a central role in nearly all aspects of eukaryotic biology. Historically, studies have focused on the conjugation of ubiquitin to lysine residues in substrates, but it is now clear that ubiquitylation can also occur on cysteine, serine, and threonine residues, as well as on the N-terminal amino group of proteins. Paradigm-shifting reports of non-proteinaceous substrates have further extended the reach of ubiquitylation beyond the proteome to include intracellular lipids and sugars. Additionally, results from bacteria have revealed novel ways to ubiquitylate (and deubiquitylate) substrates without the need for any of the enzymatic components of the canonical ubiquitylation cascade. Focusing mainly upon recent findings, this review aims to outline the current understanding of non-lysine ubiquitylation and speculate upon the molecular mechanisms and physiological importance of this non-canonical modification.
Collapse
|
7
|
Fry M. Question-driven stepwise experimental discoveries in biochemistry: two case studies. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2022; 44:12. [PMID: 35320436 DOI: 10.1007/s40656-022-00491-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Philosophers of science diverge on the question what drives the growth of scientific knowledge. Most of the twentieth century was dominated by the notion that theories propel that growth whereas experiments play secondary roles of operating within the theoretical framework or testing theoretical predictions. New experimentalism, a school of thought pioneered by Ian Hacking in the early 1980s, challenged this view by arguing that theory-free exploratory experimentation may in many cases effectively probe nature and potentially spawn higher evidence-based theories. Because theories are often powerless to envisage workings of complex biological systems, theory-independent experimentation is common in the life sciences. Some such experiments are triggered by compelling observation, others are prompted by innovative techniques or instruments, whereas different investigations query big data to identify regularities and underlying organizing principles. A distinct fourth type of experiments is motivated by a major question. Here I describe two question-guided experimental discoveries in biochemistry: the cyclic adenosine monophosphate mediator of hormone action and the ubiquitin-mediated system of protein degradation. Lacking underlying theories, antecedent data bases, or new techniques, the sole guides of the two discoveries were respective substantial questions. Both research projects were similarly instigated by theory-free exploratory experimentation and continued in alternating phases of results-based interim working hypotheses, their examination by experiment, provisional hypotheses again, and so on. These two cases designate theory-free, question-guided, stepwise biochemical investigations as a distinct subtype of the new experimentalism mode of scientific enquiry.
Collapse
Affiliation(s)
- Michael Fry
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, POB 9649, 31096, Haifa, Israel.
| |
Collapse
|
8
|
Hensley K, Danekas A, Farrell W, Garcia T, Mehboob W, White M. At the intersection of sulfur redox chemistry, cellular signal transduction and proteostasis: A useful perspective from which to understand and treat neurodegeneration. Free Radic Biol Med 2022; 178:161-173. [PMID: 34863876 DOI: 10.1016/j.freeradbiomed.2021.11.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022]
Abstract
Although we can thoroughly describe individual neurodegenerative diseases from the molecular level through cell biology to histology and clinical presentation, our understanding of them and hence treatment gains have been depressingly limited, partly due to difficulty conceptualizing different diseases as variations within the same overarching pathological rubric. This review endeavors to create such rubric by knitting together the seemingly disparate phenomena of oxidative stress, dysregulated proteostasis, and neuroinflammation into a cohesive triad that highlights mechanistic connectivities. We begin by considering that brain metabolic demands necessitate careful control of oxidative homeostasis, largely through sulfur redox chemistry and glutathione (GSH). GSH is essential for brain antioxidant defense, but also for redox signaling and thus neuroinflammation. Delicate regulation of neuroinflammatory pathways (NFκB, MAPK-p38, and NLRP3 particularly) occurs through S-glutathionylation of protein phosphatases but also through redox-sensing elements like ASK1; the 26S proteasome and cysteine deubiquitinases (DUBs). The relationship amongst triad elements is underscored by our discovery that LanCL1 (lanthionine synthetase-like protein-1) protects against oxidant toxicity; mediates GSH-dependent reactivation of oxidized DUBs; and antagonizes the pro-inflammatory cytokine, tumor necrosis factor-α (TNFα). We highlight currently promising pharmacological efforts to modulate key triad elements and suggest nexus points that might be exploited to further clinical advantage.
Collapse
Affiliation(s)
- Kenneth Hensley
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA.
| | - Alexis Danekas
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| | - William Farrell
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| | - Tiera Garcia
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| | - Wafa Mehboob
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| | - Matthew White
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| |
Collapse
|
9
|
The role of ubiquitin-specific peptidases in glioma progression. Biomed Pharmacother 2021; 146:112585. [PMID: 34968923 DOI: 10.1016/j.biopha.2021.112585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022] Open
Abstract
The balance between ubiquitination and deubiquitination is crucial for protein stability, function and location under physiological conditions. Dysregulation of E1/E2/E3 ligases or deubiquitinases (DUBs) results in malfunction of the ubiquitin system and is involved in many diseases. Increasing reports have indicated that ubiquitin-specific peptidases (USPs) play a part in the progression of many kinds of cancers and could be good targets for anticancer treatment. Glioma is the most common malignant tumor in the central nervous system. Clinical treatment for high-grade glioma is unsatisfactory thus far. Multiple USPs are dysregulated in glioma and have the potential to be therapeutic targets. In this review, we collected studies on the roles of USPs in glioma progression and summarized the mechanisms of USPs in glioma tumorigenesis, malignancy and chemoradiotherapy resistance.
Collapse
|
10
|
Chauhan R, Bhat AA, Masoodi T, Bagga P, Reddy R, Gupta A, Sheikh ZA, Macha MA, Haris M, Singh M. Ubiquitin-specific peptidase 37: an important cog in the oncogenic machinery of cancerous cells. J Exp Clin Cancer Res 2021; 40:356. [PMID: 34758854 PMCID: PMC8579576 DOI: 10.1186/s13046-021-02163-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023] Open
Abstract
Protein ubiquitination is one of the most crucial posttranslational modifications responsible for regulating the stability and activity of proteins involved in homeostatic cellular function. Inconsistencies in the ubiquitination process may lead to tumorigenesis. Ubiquitin-specific peptidases are attractive therapeutic targets in different cancers and are being evaluated for clinical development. Ubiquitin-specific peptidase 37 (USP37) is one of the least studied members of the USP family. USP37 controls numerous aspects of oncogenesis, including stabilizing many different oncoproteins. Recent work highlights the role of USP37 in stimulating the epithelial-mesenchymal transition and metastasis in lung and breast cancer by stabilizing SNAI1 and stimulating the sonic hedgehog pathway, respectively. Several aspects of USP37 biology in cancer cells are yet unclear and are an active area of research. This review emphasizes the importance of USP37 in cancer and how identifying its molecular targets and signalling networks in various cancer types can help advance cancer therapeutics.
Collapse
Affiliation(s)
- Ravi Chauhan
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Ajaz A Bhat
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Tariq Masoodi
- Department of Genomic Medicine, Genetikode, Mumbai, India
| | - Puneet Bagga
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Ashna Gupta
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Zahoor Ahmad Sheikh
- Department of Surgical Oncology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, India
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar.
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| | - Mayank Singh
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
11
|
Snyder NA, Silva GM. Deubiquitinating enzymes (DUBs): Regulation, homeostasis, and oxidative stress response. J Biol Chem 2021; 297:101077. [PMID: 34391779 PMCID: PMC8424594 DOI: 10.1016/j.jbc.2021.101077] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Abstract
Ubiquitin signaling is a conserved, widespread, and dynamic process in which protein substrates are rapidly modified by ubiquitin to impact protein activity, localization, or stability. To regulate this process, deubiquitinating enzymes (DUBs) counter the signal induced by ubiquitin conjugases and ligases by removing ubiquitin from these substrates. Many DUBs selectively regulate physiological pathways employing conserved mechanisms of ubiquitin bond cleavage. DUB activity is highly regulated in dynamic environments through protein-protein interaction, posttranslational modification, and relocalization. The largest family of DUBs, cysteine proteases, are also sensitive to regulation by oxidative stress, as reactive oxygen species (ROS) directly modify the catalytic cysteine required for their enzymatic activity. Current research has implicated DUB activity in human diseases, including various cancers and neurodegenerative disorders. Due to their selectivity and functional roles, DUBs have become important targets for therapeutic development to treat these conditions. This review will discuss the main classes of DUBs and their regulatory mechanisms with a particular focus on DUB redox regulation and its physiological impact during oxidative stress.
Collapse
Affiliation(s)
- Nathan A Snyder
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Gustavo M Silva
- Department of Biology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
12
|
Advances in the Development Ubiquitin-Specific Peptidase (USP) Inhibitors. Int J Mol Sci 2021; 22:ijms22094546. [PMID: 33925279 PMCID: PMC8123678 DOI: 10.3390/ijms22094546] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Ubiquitylation and deubiquitylation are reversible protein post-translational modification (PTM) processes involving the regulation of protein degradation under physiological conditions. Loss of balance in this regulatory system can lead to a wide range of diseases, such as cancer and inflammation. As the main members of the deubiquitinases (DUBs) family, ubiquitin-specific peptidases (USPs) are closely related to biological processes through a variety of molecular signaling pathways, including DNA damage repair, p53 and transforming growth factor-β (TGF-β) pathways. Over the past decade, increasing attention has been drawn to USPs as potential targets for the development of therapeutics across diverse therapeutic areas. In this review, we summarize the crucial roles of USPs in different signaling pathways and focus on advances in the development of USP inhibitors, as well as the methods of screening and identifying USP inhibitors.
Collapse
|
13
|
Basar MA, Beck DB, Werner A. Deubiquitylases in developmental ubiquitin signaling and congenital diseases. Cell Death Differ 2021; 28:538-556. [PMID: 33335288 PMCID: PMC7862630 DOI: 10.1038/s41418-020-00697-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Metazoan development from a one-cell zygote to a fully formed organism requires complex cellular differentiation and communication pathways. To coordinate these processes, embryos frequently encode signaling information with the small protein modifier ubiquitin, which is typically attached to lysine residues within substrates. During ubiquitin signaling, a three-step enzymatic cascade modifies specific substrates with topologically unique ubiquitin modifications, which mediate changes in the substrate's stability, activity, localization, or interacting proteins. Ubiquitin signaling is critically regulated by deubiquitylases (DUBs), a class of ~100 human enzymes that oppose the conjugation of ubiquitin. DUBs control many essential cellular functions and various aspects of human physiology and development. Recent genetic studies have identified mutations in several DUBs that cause developmental disorders. Here we review principles controlling DUB activity and substrate recruitment that allow these enzymes to regulate ubiquitin signaling during development. We summarize key mechanisms of how DUBs control embryonic and postnatal differentiation processes, highlight developmental disorders that are caused by mutations in particular DUB members, and describe our current understanding of how these mutations disrupt development. Finally, we discuss how emerging tools from human disease genetics will enable the identification and study of novel congenital disease-causing DUBs.
Collapse
Affiliation(s)
- Mohammed A Basar
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David B Beck
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
Bonacci T, Emanuele MJ. Dissenting degradation: Deubiquitinases in cell cycle and cancer. Semin Cancer Biol 2020; 67:145-158. [PMID: 32201366 PMCID: PMC7502435 DOI: 10.1016/j.semcancer.2020.03.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/27/2020] [Accepted: 03/09/2020] [Indexed: 01/01/2023]
Abstract
Since its discovery forty years ago, protein ubiquitination has been an ever-expanding field. Virtually all biological processes are controlled by the post-translational conjugation of ubiquitin onto target proteins. In addition, since ubiquitin controls substrate degradation through the action of hundreds of enzymes, many of which represent attractive therapeutic candidates, harnessing the ubiquitin system to reshape proteomes holds great promise for improving disease outcomes. Among the numerous physiological functions controlled by ubiquitin, the cell cycle is among the most critical. Indeed, the discovery that the key drivers of cell cycle progression are regulated by the ubiquitin-proteasome system (UPS) epitomizes the connection between ubiquitin signaling and proliferation. Since cancer is a disease of uncontrolled cell cycle progression and proliferation, targeting the UPS to stop cancer cells from cycling and proliferating holds enormous therapeutic potential. Ubiquitination is reversible, and ubiquitin is removed from substrates by catalytic proteases termed deubiquitinases or DUBs. While ubiquitination is tightly linked to proliferation and cancer, the role of DUBs represents a layer of complexity in this landscape that remains poorly captured. Due to their ability to remodel the proteome by altering protein degradation dynamics, DUBs play an important and underappreciated role in the cell cycle and proliferation of both normal and cancer cells. Moreover, due to their enzymatic protease activity and an open ubiquitin binding pocket, DUBs are likely to be important in the future of cancer treatment, since they are among the most druggable enzymes in the UPS. In this review we summarize new and important findings linking DUBs to cell cycle and proliferation, as well as to the etiology and treatment of cancer. We also highlight new advances in developing pharmacological approaches to attack DUBs for therapeutic benefit.
Collapse
Affiliation(s)
- Thomas Bonacci
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Michael J Emanuele
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
15
|
Natural Exogenous Antioxidant Defense against Changes in Human Skin Fibroblast Proteome Disturbed by UVA Radiation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3216415. [PMID: 33204393 PMCID: PMC7661135 DOI: 10.1155/2020/3216415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022]
Abstract
Daily exposure of the skin to UVA radiation causes oxidative modifications to cellular components and biomolecules. These include proteins involved in the metabolism and cytoprotection of fibroblasts, and their modification can contribute to the disruption of cell function and the development of skin disorders. Therefore, there remains a need for highly active cytoprotective compounds with antioxidant properties. The purpose of this study was to investigate the effect of ascorbic acid on the activity of rutin against UVA-induced changes in the proteome of human fibroblasts. All analyses were carried out on fibroblasts cultured in a three-dimensional system exposed to UVA radiation and incubated with rutin and ascorbic acid. Their proteomic profile was analyzed using nano-HPLC, which revealed 150 proteins whose expression was significantly altered between treatment conditions. UVA radiation led to changes in the expression of 82 proteins. However, some of these changes were mitigated by rutin and ascorbic acid separately (23 and 25 proteins, respectively) and rutin and ascorbic acid together (23 proteins). UVA radiation has led to the upregulation of proteins involved in gene expression, catalytic processes and antioxidant pathways, and downregulation of proteins with binding activity. Nevertheless, rutin and ascorbic acid used separately or together have countered these changes to varying degrees. Moreover, rutin and ascorbic acid stimulated fibroblasts irradiated by UVA to increase the expression of the signalling molecules responsible for the opening of the transmembrane channels. In the context of the results obtained, the observed cytoprotective effect of the cooperation of rutin and ascorbic acid results not only from the overlapping properties of the compounds. The effect of rutin alone is probably inhibited by its limited bioavailability. Therefore, its interaction with ascorbic acid increases membrane penetration and improves the cytoprotective effect on skin fibroblasts.
Collapse
|
16
|
Blount JR, Johnson SL, Todi SV. Unanchored Ubiquitin Chains, Revisited. Front Cell Dev Biol 2020; 8:582361. [PMID: 33195227 PMCID: PMC7659471 DOI: 10.3389/fcell.2020.582361] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
The small modifier protein, ubiquitin, holds a special place in eukaryotic biology because of its myriad post-translational effects that control normal cellular processes and are implicated in various diseases. By being covalently conjugated onto other proteins, ubiquitin changes their interaction landscape - fostering new interactions as well as inhibiting others - and ultimately deciding the fate of its substrates and controlling pathways that span most cell physiology. Ubiquitin can be attached onto other proteins as a monomer or as a poly-ubiquitin chain of diverse structural topologies. Among the types of poly-ubiquitin species generated are ones detached from another substrate - comprising solely ubiquitin as their constituent - referred to as unanchored, or free chains. Considered to be toxic byproducts, these species have recently emerged to have specific physiological functions in immune pathways and during cell stress. Free chains also do not appear to be detrimental to multi-cellular organisms; they can be active members of the ubiquitination process, rather than corollary species awaiting disassembly into mono-ubiquitin. Here, we summarize past and recent studies on unanchored ubiquitin chains, paying special attention to their emerging roles as second messengers in several signaling pathways. These investigations paint complex and flexible outcomes for free ubiquitin chains, and present a revised model of unanchored poly-ubiquitin biology that is in need of additional investigation.
Collapse
Affiliation(s)
- Jessica R Blount
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Sean L Johnson
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
17
|
Dong A, Yang Y, Liu S, Zenda T, Liu X, Wang Y, Li J, Duan H. Comparative proteomics analysis of two maize hybrids revealed drought-stress tolerance mechanisms. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1805015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Anyi Dong
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Yatong Yang
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Songtao Liu
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Tinashe Zenda
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Xinyue Liu
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Yafei Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Jiao Li
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Huijun Duan
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| |
Collapse
|
18
|
Taylor NC, McGouran JF. Strategies to Target Specific Components of the Ubiquitin Conjugation/Deconjugation Machinery. Front Chem 2020; 7:914. [PMID: 31998698 PMCID: PMC6966607 DOI: 10.3389/fchem.2019.00914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
The regulation of ubiquitination status in the cell is controlled by ubiquitin ligases acting in tandem with deubiquitinating enzymes. Ubiquitination controls many key processes in the cell from division to death making its tight regulation key to optimal cell function. Activity based protein profiling has emerged as a powerful technique to study these important enzymes. With around 100 deubiquitinating enzymes and 600 ubiquitin ligases in the human genome targeting a subclass of these enzymes or even a single enzyme is a compelling strategy to unpick this complex system. In this review we will discuss different approaches adopted, including activity-based probes centered around ubiquitin-protein, ubiquitin-peptide and mutated ubiquitin scaffolds. We examine challenges faced and opportunities presented to increase specificity in activity-based protein profiling of the ubiquitin conjugation/deconjugation machinery.
Collapse
Affiliation(s)
- Neil C Taylor
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Joanna F McGouran
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Vengayil V, Rashida Z, Laxman S. The E3 ubiquitin ligase Pib1 regulates effective gluconeogenic shutdown upon glucose availability. J Biol Chem 2019; 294:17209-17223. [PMID: 31604822 PMCID: PMC6873170 DOI: 10.1074/jbc.ra119.009822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/27/2019] [Indexed: 12/31/2022] Open
Abstract
Cells use multiple mechanisms to regulate their metabolic states in response to changes in their nutrient environment. One example is the response of cells to glucose. In Saccharomyces cerevisiae growing in glucose-depleted medium, the re-availability of glucose leads to the down-regulation of gluconeogenesis and the activation of glycolysis, leading to "glucose repression." However, our knowledge of the mechanisms mediating the glucose-dependent down-regulation of the gluconeogenic transcription factors is limited. Using the major gluconeogenic transcription factor Rds2 as a candidate, we identify here a novel role for the E3 ubiquitin ligase Pib1 in regulating the stability and degradation of Rds2. Glucose addition to cells growing under glucose limitation results in a rapid ubiquitination of Rds2, followed by its proteasomal degradation. Through in vivo and in vitro experiments, we establish Pib1 as the ubiquitin E3 ligase that regulates Rds2 ubiquitination and stability. Notably, this Pib1-mediated Rds2 ubiquitination, followed by proteasomal degradation, is specific to the presence of glucose. This Pib1-mediated ubiquitination of Rds2 depends on the phosphorylation state of Rds2, suggesting a cross-talk between ubiquitination and phosphorylation to achieve a metabolic state change. Using stable isotope-based metabolic flux experiments, we find that the loss of Pib1 results in an imbalanced gluconeogenic state, regardless of glucose availability. Pib1 is required for complete glucose repression and enables cells to optimally grow in competitive environments when glucose again becomes available. Our results reveal the existence of a Pib1-mediated regulatory program that mediates glucose repression when glucose availability is restored.
Collapse
Affiliation(s)
- Vineeth Vengayil
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore 560065, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Zeenat Rashida
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore 560065, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore 560065, India
| |
Collapse
|
20
|
Newton VL, Riba-Garcia I, Griffiths CEM, Rawlings AV, Voegeli R, Unwin RD, Sherratt MJ, Watson REB. Mass spectrometry-based proteomics reveals the distinct nature of the skin proteomes of photoaged compared to intrinsically aged skin. Int J Cosmet Sci 2019; 41:118-131. [PMID: 30661253 DOI: 10.1111/ics.12513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/15/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE With increasing age, skin is subject to alterations in its organization, which impact on its function as well as having clinical consequences. Proteomics is a useful tool for non-targeted, semi-quantitative simultaneous investigation of high numbers of proteins. In the current study, we utilize proteomics to characterize and contrast age-associated differences in photoexposed and photoprotected skin, with a focus on the epidermis, dermal-epidermal junction and papillary dermis. METHODS Skin biopsies from buttock (photoprotected) and forearm (photoexposed) of healthy volunteers (aged 18-30 or ≥65 years) were transversely sectioned from the stratum corneum to a depth of 250 μm. Following SDS-PAGE, each sample lane was segmented prior to analysis by liquid chromatography-mass spectrometry/mass spectrometry. Pathway analysis was carried out using Ingenuity IPA. RESULTS Comparison of skin proteomes at buttock and forearm sites revealed differences in relative protein abundance. Ageing in skin on the photoexposed forearm resulted in 80% of the altered proteins being increased with age, in contrast to the photoprotected buttock where 74% of altered proteins with age were reduced. Functionally, age-altered proteins in the photoexposed forearm were associated with conferring structure, energy and metabolism. In the photoprotected buttock, proteins associated with gene expression, free-radical scavenging, protein synthesis and protein degradation were most frequently altered. CONCLUSION This study highlights the necessity of not considering photoageing as an accelerated intrinsic ageing, but as a distinct physiological process.
Collapse
Affiliation(s)
- V L Newton
- Centre for Dermatology Research, Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, and Salford Royal NHS Foundation Trust, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - I Riba-Garcia
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Core Technology facility (3rd Floor), 46 Grafton Street, Manchester, M13 9NT, UK
| | - C E M Griffiths
- Centre for Dermatology Research, Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, and Salford Royal NHS Foundation Trust, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | | | - R Voegeli
- DSM Nutritional Products Ltd, Kaiseraugst, Switzerland
| | - R D Unwin
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Core Technology facility (3rd Floor), 46 Grafton Street, Manchester, M13 9NT, UK
| | - M J Sherratt
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - R E B Watson
- Centre for Dermatology Research, Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, and Salford Royal NHS Foundation Trust, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
21
|
Dharadhar S, Kim RQ, Uckelmann M, Sixma TK. Quantitative analysis of USP activity in vitro. Methods Enzymol 2019; 618:281-319. [PMID: 30850056 DOI: 10.1016/bs.mie.2018.12.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Ubiquitin-specific proteases (USPs) are an important class of deubiquitinating enzymes (DUBs) that carry out critical roles in cellular physiology and are regulated at multiple levels. Quantitative characterization of USP activity is crucial for mechanistic understanding of USP function and regulation. This requires kinetic analysis using in vitro activity assays on minimal and natural substrates with purified proteins. In this chapter we give advice for efficient design of USP constructs and their optimal expression, followed by a series of purification strategies. We then present protocols for studying USP activity quantitatively on minimal and more natural substrates, and we discuss how to include possible regulatory elements such as internal USP domains or external interacting proteins. Lastly, we examine different binding assays for studying USP interactions and discuss how these can be included in full kinetic analyses.
Collapse
Affiliation(s)
- Shreya Dharadhar
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Robbert Q Kim
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michael Uckelmann
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Role of deubiquitinases in DNA damage response. DNA Repair (Amst) 2019; 76:89-98. [PMID: 30831436 DOI: 10.1016/j.dnarep.2019.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022]
Abstract
DNA damage response (DDR) serves as an integrated cellular network to detect cellular stress and react by activating pathways responsible for halting cell cycle progression, stimulating DNA damage repair, and initiating apoptosis. Efficient DDR protects cells from genomic instability while defective DDR can allow DNA lesions to go unrepaired, causing permanent mutations that will affect future generations of cells and possibly cause disease conditions such as cancer. Therefore, DDR mechanisms must be tightly regulated in order to ensure organismal health and viability. One major way of DDR regulation is ubiquitination, which has been long known to control DDR protein localization, activity, and stability. The reversal of this process, deubiquitination, has more recently come to the forefront of DDR research as an important new angle in ubiquitin-mediated regulation of DDR. As such, deubiquitinases have emerged as key factors in DDR. Importantly, deubiquitinases are attractive small-molecule drug targets due to their well-defined catalytic residues that provide a promising avenue for developing new cancer therapeutics. This review focuses on the emerging roles of deubiquitinases in various DNA repair pathways.
Collapse
|
23
|
Sun XY, Liu QH, Huang J. iTRAQ-based quantitative proteomic analysis of differentially expressed proteins in Litopenaeus vannamei
in response to infection with WSSV strains varying in virulence. Lett Appl Microbiol 2018; 67:113-122. [DOI: 10.1111/lam.13004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 11/30/2022]
Affiliation(s)
- X.-Y. Sun
- Laboratory for Marine Fisheries Science and Food Production Processes; Qingdao National Laboratory for Marine Science and Technology; Key Laboratory of Maricultural Organism Disease Control; Ministry of Agriculture; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity; Yellow Sea Fisheries Research Institute; Chinese Academy of Fishery Sciences; Qingdao China
| | - Q.-H. Liu
- Laboratory for Marine Fisheries Science and Food Production Processes; Qingdao National Laboratory for Marine Science and Technology; Key Laboratory of Maricultural Organism Disease Control; Ministry of Agriculture; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity; Yellow Sea Fisheries Research Institute; Chinese Academy of Fishery Sciences; Qingdao China
| | - J. Huang
- Laboratory for Marine Fisheries Science and Food Production Processes; Qingdao National Laboratory for Marine Science and Technology; Key Laboratory of Maricultural Organism Disease Control; Ministry of Agriculture; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity; Yellow Sea Fisheries Research Institute; Chinese Academy of Fishery Sciences; Qingdao China
| |
Collapse
|
24
|
Gopinath P, Ohayon S, Nawatha M, Brik A. Chemical and semisynthetic approaches to study and target deubiquitinases. Chem Soc Rev 2018; 45:4171-98. [PMID: 27049734 DOI: 10.1039/c6cs00083e] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ubiquitination is a key posttranslational modification, which affects numerous biological processes and is reversed by a class of enzymes known as deubiquitinases (DUBs). This family of enzymes cleaves mono-ubiquitin or poly-ubiquitin chains from a target protein through different mechanisms and mode of interactions with their substrates. Studying the role of DUBs in health and diseases has been a major goal for many laboratories both in academia and in industry. However, the field has been challenged by the difficulties in obtaining native substrates and novel reagents using traditional enzymatic and molecular biology approaches. Recent advancements in the synthesis and semisynthesis of proteins made it possible to prepare several unique ubiquitin conjugates to study various aspects of DUBs such as their specificities and structures. Moreover, these approaches enable the preparation of novel activity based probes and assays to monitor DUB activities in vitro and in cellular contexts. Efforts made to bring new chemical entities for the selective inhibition of DUBs based on these tools are also highlighted with selected examples.
Collapse
Affiliation(s)
- Pushparathinam Gopinath
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa, 3200008, Israel.
| | - Shimrit Ohayon
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa, 3200008, Israel.
| | - Mickal Nawatha
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa, 3200008, Israel.
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa, 3200008, Israel.
| |
Collapse
|
25
|
Han K, Dai Y, Zhang Z, Zou Z, Wang Y. Molecular Characterization and Expression Profiles of Sp-uchl3 and Sp-uchl5 during Gonad Development of Scylla paramamosain. Molecules 2018; 23:molecules23010213. [PMID: 29351241 PMCID: PMC6017914 DOI: 10.3390/molecules23010213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/13/2018] [Accepted: 01/15/2018] [Indexed: 12/02/2022] Open
Abstract
Ubiquitin C-terminal hydrolases (UCHLs) are a subset of deubiquitinating enzymes, and are involved in numerous physiological processes. However, the role of UCHLs during gonad development has not been studied in crustaceans. In this study, we have first cloned and analyzed expression profiling of Sp-uchl3 and Sp-uchl5 genes from mud crab Scylla paramamosain. The full-length cDNA of Sp-uchl3 is of 1804 bp. Its expression level in the ovary was significantly higher than in other tissues (p < 0.01), and during gonadal development, its expression in both O1 and O5 stages was significantly higher than in the other three stages of ovaries (p < 0.05), while in T3 it was higher than in the former two stages of testes (p < 0.05). Meanwhile, the full-length cDNA of Sp-UCHL5 is 1217 bp. The expression level in the ovary was significantly higher than in other tissues (p < 0.01). Its expression in ovaries was higher than in testes during gonadal development (p < 0.05). The expression level in the O5 stage was the highest, followed by the O3 stage in ovarian development, and with no significant difference in the testis development (p > 0.05). These results provide basic data showing the role of Sp-UCHL3 and Sp-UCHL5 in the gonad development of the crab.
Collapse
Affiliation(s)
- Kunhuang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde 352103, China.
| | - Yanbin Dai
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhihua Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| |
Collapse
|
26
|
Streich FC, Lima CD. Strategies to Trap Enzyme-Substrate Complexes that Mimic Michaelis Intermediates During E3-Mediated Ubiquitin-Like Protein Ligation. Methods Mol Biol 2018; 1844:169-196. [PMID: 30242710 DOI: 10.1007/978-1-4939-8706-1_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Most cellular functions rely on pathways that catalyze posttranslational modification of cellular proteins by ubiquitin (Ub) and ubiquitin-like (Ubl) proteins. Like other posttranslational modifications that require distinct writers, readers, and erasers during signaling, Ub/Ubl pathways employ distinct enzymes that catalyze Ub/Ubl attachment, Ub/Ubl recognition, and Ub/Ubl removal. Ubl protein conjugation typically relies on parallel but distinct enzymatic cascades catalyzed by an E1-activating enzyme, an E2 carrier protein, and an E3 ubiquitin-like protein ligase. One major class of E3, with ca. 600 members, harbors RING or the RING-like SP-RING or Ubox domains. These RING/RING-like domains bind and activate the E2-Ubl thioester by stabilizing a conformation that is optimal for nucleophilic attack by the side chain residue (typically lysine) on the substrate. These RING/RING-like domains typically function together with other domains or protein complexes that often serve to recruit particular substrates. How these RING/RING-like E3 domains function to activate the E2-Ubl thioester while engaged with substrate remains poorly understood. We describe a strategy to generate and purify a unique E2Ubc9-UblSUMO thioester mimetic that can be cross-linked to the SubstratePCNA at Lys164, a conjugation site that is only observed in the presence of E3Siz1. We describe two techniques to cross-link the E2Ubc9-UblSUMO thioester mimetic active site to the site of modification on PCNA and the subsequent purification of these complexes. Finally, we describe the reconstitution and purification of the E2Ubc9-UblSUMO-PCNA complex with the E3Siz1 and purification that enabled its crystallization and structure determination. We think this technique can be extended to other E2-Ubl-substrate/E3 complexes to better probe the function and specificity of RING-based E3 Ubl ligases.
Collapse
Affiliation(s)
- Frederick C Streich
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, USA.
- Howard Hughes Medical Institute, 1275 York Ave, New York, NY, USA.
| |
Collapse
|
27
|
Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. Biochem J 2017; 473:2453-62. [PMID: 27515257 PMCID: PMC4980807 DOI: 10.1042/bcj20160082] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022]
Abstract
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is an extremely abundant protein in the brain where, remarkably, it is estimated to make up 1–5% of total neuronal protein. Although it comprises only 223 amino acids it has one of the most complicated 3D knotted structures yet discovered. Beyond its expression in neurons UCH-L1 has only very limited expression in other healthy tissues but it is highly expressed in several forms of cancer. Although UCH-L1 is classed as a deubiquitinating enzyme (DUB) the direct functions of UCH-L1 remain enigmatic and a wide array of alternative functions has been proposed. UCH-L1 is not essential for neuronal development but it is absolutely required for the maintenance of axonal integrity and UCH-L1 dysfunction is implicated in neurodegenerative disease. Here we review the properties of UCH-L1, and how understanding its complex structure can provide new insights into its roles in neuronal function and pathology.
Collapse
|
28
|
Chemical ubiquitination for decrypting a cellular code. Biochem J 2017; 473:1297-314. [PMID: 27208213 PMCID: PMC5298413 DOI: 10.1042/bj20151195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/15/2016] [Indexed: 02/06/2023]
Abstract
The modification of proteins with ubiquitin (Ub) is an important regulator of eukaryotic biology and deleterious perturbation of this process is widely linked to the onset of various diseases. The regulatory capacity of the Ub signal is high and, in part, arises from the capability of Ub to be enzymatically polymerised to form polyubiquitin (polyUb) chains of eight different linkage types. These distinct polyUb topologies can then be site-specifically conjugated to substrate proteins to elicit a number of cellular outcomes. Therefore, to further elucidate the biological significance of substrate ubiquitination, methodologies that allow the production of defined polyUb species, and substrate proteins that are site-specifically modified with them, are essential to progress our understanding. Many chemically inspired methods have recently emerged which fulfil many of the criteria necessary for achieving deeper insight into Ub biology. With a view to providing immediate impact in traditional biology research labs, the aim of this review is to provide an overview of the techniques that are available for preparing Ub conjugates and polyUb chains with focus on approaches that use recombinant protein building blocks. These approaches either produce a native isopeptide, or analogue thereof, that can be hydrolysable or non-hydrolysable by deubiquitinases. The most significant biological insights that have already been garnered using such approaches will also be summarized.
Collapse
|
29
|
The Regulations of Deubiquitinase USP15 and Its Pathophysiological Mechanisms in Diseases. Int J Mol Sci 2017; 18:ijms18030483. [PMID: 28245560 PMCID: PMC5372499 DOI: 10.3390/ijms18030483] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/14/2017] [Accepted: 02/18/2017] [Indexed: 02/06/2023] Open
Abstract
Deubiquitinases (DUBs) play a critical role in ubiquitin-directed signaling by catalytically removing the ubiquitin from substrate proteins. Ubiquitin-specific protease 15 (USP15), a member of the largest subfamily of cysteine protease DUBs, contains two conservative cysteine (Cys) and histidine (His) boxes. USP15 harbors two zinc-binding motifs that are essential for recognition of poly-ubiquitin chains. USP15 is grouped into the same category with USP4 and USP11 due to high degree of homology in an N-terminal region consisting of domains present in ubiquitin-specific proteases (DUSP) domain and ubiquitin-like (UBL) domain. USP15 cooperates with COP9 signalosome complex (CSN) to maintain the stability of cullin-ring ligase (CRL) adaptor proteins by removing the conjugated ubiquitin chains from RBX1 subunit of CRL. USP15 is also implicated in the stabilization of the human papillomavirus type 16 E6 oncoprotein, adenomatous polyposis coli, and IκBα. Recently, reports have suggested that USP15 acts as a key regulator of TGF-β receptor-signaling pathways by deubiquitinating the TGF-β receptor itself and its downstream transducers receptor-regulated SMADs (R-SMADs), including SMAD1, SMAD2, and SMAD3, thus activating the TGF-β target genes. Although the importance of USP15 in pathologic processes remains ambiguous so far, in this review, we endeavor to summarize the literature regarding the relationship of the deubiquitinating action of USP15 with the proteins involved in the regulation of Parkinson’s disease, virus infection, and cancer-related signaling networks.
Collapse
|
30
|
A cell-free organelle-based in vitro system for studying the peroxisomal protein import machinery. Nat Protoc 2016; 11:2454-2469. [PMID: 27831570 DOI: 10.1038/nprot.2016.147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Here we describe a protocol to dissect the peroxisomal matrix protein import pathway using a cell-free in vitro system. The system relies on a postnuclear supernatant (PNS), which is prepared from rat/mouse liver, to act as a source of peroxisomes and cytosolic components. A typical in vitro assay comprises the following steps: (i) incubation of the PNS with an in vitro-synthesized 35S-labeled reporter protein; (ii) treatment of the organelle suspension with a protease that degrades reporter proteins that have not associated with peroxisomes; and (iii) SDS-PAGE/autoradiography analysis. To study transport of proteins into peroxisomes, it is possible to use organelle-resident proteins that contain a peroxisomal targeting signal (PTS) as reporters in the assay. In addition, a receptor (PEX5L/S or PEX5L.PEX7) can be used to report the dynamics of shuttling proteins that mediate the import process. Thus, different but complementary perspectives on the mechanism of this pathway can be obtained. We also describe strategies to fortify the system with recombinant proteins to increase import yields and block specific parts of the machinery at a number of steps. The system recapitulates all the steps of the pathway, including mono-ubiquitination of PEX5L/S at the peroxisome membrane and its ATP-dependent export back into the cytosol by PEX1/PEX6. An in vitro import(/export) experiment can be completed in 24 h.
Collapse
|
31
|
Grou CP, Pinto MP, Mendes AV, Domingues P, Azevedo JE. The de novo synthesis of ubiquitin: identification of deubiquitinases acting on ubiquitin precursors. Sci Rep 2015; 5:12836. [PMID: 26235645 PMCID: PMC4522658 DOI: 10.1038/srep12836] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 07/09/2015] [Indexed: 12/24/2022] Open
Abstract
Protein ubiquitination, a major post-translational modification in eukaryotes, requires an adequate pool of free ubiquitin. Cells maintain this pool by two pathways, both involving deubiquitinases (DUBs): recycling of ubiquitin from ubiquitin conjugates and processing of ubiquitin precursors synthesized de novo. Although many advances have been made in recent years regarding ubiquitin recycling, our knowledge on ubiquitin precursor processing is still limited, and questions such as when are these precursors processed and which DUBs are involved remain largely unanswered. Here we provide data suggesting that two of the four mammalian ubiquitin precursors, UBA52 and UBA80, are processed mostly post-translationally whereas the other two, UBB and UBC, probably undergo a combination of co- and post-translational processing. Using an unbiased biochemical approach we found that UCHL3, USP9X, USP7, USP5 and Otulin/Gumby/FAM105b are by far the most active DUBs acting on these precursors. The identification of these DUBs together with their properties suggests that each ubiquitin precursor can be processed in at least two different manners, explaining the robustness of the ubiquitin de novo synthesis pathway.
Collapse
Affiliation(s)
- Cláudia P Grou
- 1] Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal [2] Organelle Biogenesis and Function Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Manuel P Pinto
- 1] Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal [2] Organelle Biogenesis and Function Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Andreia V Mendes
- 1] Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal [2] Organelle Biogenesis and Function Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, UI-QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jorge E Azevedo
- 1] Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal [2] Organelle Biogenesis and Function Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal [3] Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
32
|
Ubiquitin C-terminal hydrolases cleave isopeptide- and peptide-linked ubiquitin from structured proteins but do not edit ubiquitin homopolymers. Biochem J 2015; 466:489-98. [PMID: 25489924 PMCID: PMC4353193 DOI: 10.1042/bj20141349] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Modification of proteins with ubiquitin (Ub) occurs through a variety of topologically distinct Ub linkages, including Ube2W-mediated monoubiquitylation of N-terminal alpha amines to generate peptide-linked linear mono-Ub fusions. Protein ubiquitylation can be reversed by the action of deubiquitylating enzymes (DUBs), many of which show striking preference for particular Ub linkage types. Here, we have screened for DUBs that preferentially cleave N-terminal Ub from protein substrates but do not act on Ub homopolymers. We show that members of the Ub C-terminal hydrolase (UCH) family of DUBs demonstrate this preference for N-terminal deubiquitylating activity as they are capable of cleaving N-terminal Ub from SUMO2 and Ube2W, while displaying no activity against any of the eight Ub linkage types. Surprisingly, this ability to cleave Ub from SUMO2 was 100 times more efficient for UCH-L3 when we deleted the unstructured N-terminus of SUMO2, demonstrating that UCH enzymes can cleave Ub from structured proteins. However, UCH-L3 could also cleave chemically synthesized isopeptide-linked Ub from lysine 11 (K11) of SUMO2 with similar efficiency, demonstrating that UCH DUB activity is not limited to peptide-linked Ub. These findings advance our understanding of the specificity of the UCH family of DUBs, which are strongly implicated in cancer and neurodegeneration but whose substrate preference has remained unclear. In addition, our findings suggest that the reversal of Ube2W-mediated N-terminal ubiquitylation may be one physiological role of UCH DUBs in vivo.
Collapse
|
33
|
Trang VH, Rodgers ML, Boyle KJ, Hoskins AA, Strieter ER. Chemoenzymatic synthesis of bifunctional polyubiquitin substrates for monitoring ubiquitin chain remodeling. Chembiochem 2014; 15:1563-8. [PMID: 24961813 DOI: 10.1002/cbic.201402059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Indexed: 11/06/2022]
Abstract
Covalent attachment of ubiquitin to target proteins is one of the most pervasive post-translational modifications in eukaryotes. Target proteins are often modified with polymeric ubiquitin chains of defined lengths and linkages that may further undergo dynamic changes in composition in response to cellular signals. Biochemical characterization of the enzymes responsible for building and destroying ubiquitin chains is often thwarted by the lack of methods for preparation of the appropriate substrates containing probes for biochemical or biophysical studies. We have discovered that a yeast ubiquitin C-terminal hydrolase (Yuh1) also catalyzes transamidation reactions that can be exploited to prepare site-specifically modified polyubiquitin chains produced by thiol-ene chemistry. We have used this chemoenzymatic approach to prepare dual-functionalized ubiquitin chains containing fluorophore and biotin modifications. These dual-functionalized ubiquitin chains enabled the first real-time assay of ubiquitin chain disassembly by a human deubiquitinase (DUB) enzyme by single molecule fluorescence microscopy. In summary, this work provides a powerful new tool for elucidating the mechanisms of DUBs and other ubiquitin processing enzymes.
Collapse
Affiliation(s)
- Vivian H Trang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave. Madison, WI 53706 (USA)
| | | | | | | | | |
Collapse
|
34
|
Pollmann L, Wettern M. The Ubiquitin System in Higher and Lower Plants - Pathways in Protein Metabolism. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1989.tb00063.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Abstract
The two homologous mammalian proteins called β-arrestin1 (also known as arrestin2) and β-arrestin2 (also called arrestin3) are now widely accepted as endocytic and signaling adaptors for G protein-coupled receptors (GPCRs), growth factor receptors, and ion channels. The sustained interactions of β-arrestins with activated GPCRs have been shown to correlate with the agonist-induced ubiquitination on distinct domains in the β-arrestin molecule. Additionally, ubiquitination of β-arrestin promotes its interaction with proteins that mediate endocytosis (e.g., clathrin) and signaling (e.g., c-RAF). Recent studies have demonstrated that deubiquitination of β-arrestin by specific deubiquitinating enzymes (DUBs) acts as an important regulatory mechanism, which determines the stability of β-arrestin-GPCR binding and fine-tunes β-arrestin-dependent signaling to downstream kinases. Accordingly, ubiquitination/deubiquitination of β-arrestin can serve as an on/off switch for its signaling and endocytic functions. Moreover, by regulating the stability and localization of signalosomes, deubiquitination of β-arrestins by DUBs imparts spatial and temporal resolution in GPCR signaling.
Collapse
Affiliation(s)
- Sudha K Shenoy
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
36
|
Clague MJ, Barsukov I, Coulson JM, Liu H, Rigden DJ, Urbé S. Deubiquitylases from genes to organism. Physiol Rev 2013; 93:1289-315. [PMID: 23899565 DOI: 10.1152/physrev.00002.2013] [Citation(s) in RCA: 348] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ubiquitylation is a major posttranslational modification that controls most complex aspects of cell physiology. It is reversed through the action of a large family of deubiquitylating enzymes (DUBs) that are emerging as attractive therapeutic targets for a number of disease conditions. Here, we provide a comprehensive analysis of the complement of human DUBs, indicating structural motifs, typical cellular copy numbers, and tissue expression profiles. We discuss the means by which specificity is achieved and how DUB activity may be regulated. Generically DUB catalytic activity may be used to 1) maintain free ubiquitin levels, 2) rescue proteins from ubiquitin-mediated degradation, and 3) control the dynamics of ubiquitin-mediated signaling events. Functional roles of individual DUBs from each of five subfamilies in specific cellular processes are highlighted with an emphasis on those linked to pathological conditions where the association is supported by whole organism models. We then specifically consider the role of DUBs associated with protein degradative machineries and the influence of specific DUBs upon expression of receptors and channels at the plasma membrane.
Collapse
Affiliation(s)
- Michael J Clague
- Cellular and Molecular Physiology, Institute of Translational Medicine, and Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| | | | | | | | | | | |
Collapse
|
37
|
Okada K, Ye YQ, Taniguchi K, Yoshida A, Akiyama T, Yoshioka Y, Onose JI, Koshino H, Takahashi S, Yajima A, Abe N, Yajima S. Vialinin A is a ubiquitin-specific peptidase inhibitor. Bioorg Med Chem Lett 2013; 23:4328-31. [DOI: 10.1016/j.bmcl.2013.05.093] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/25/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
|
38
|
Micel LN, Tentler JJ, Smith PG, Eckhardt GS. Role of ubiquitin ligases and the proteasome in oncogenesis: novel targets for anticancer therapies. J Clin Oncol 2013; 31:1231-8. [PMID: 23358974 DOI: 10.1200/jco.2012.44.0958] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ubiquitin proteasome system (UPS) regulates the ubiquitination, and thus degradation and turnover, of many proteins vital to cellular regulation and function. The UPS comprises a sequential series of enzymatic processes using four key enzyme families: E1 (ubiquitin-activating enzymes), E2 (ubiquitin-carrier proteins), E3 (ubiquitin-protein ligases), and E4 (ubiquitin chain assembly factors). Because the UPS is a crucial regulator of the cell cycle, and abnormal cell-cycle control can lead to oncogenesis, aberrancies within the UPS pathway can result in a malignant cellular phenotype and thus has become an attractive target for novel anticancer agents. This article will provide an overall review of the mechanics of the UPS, describe aberrancies leading to cancer, and give an overview of current drug therapies selectively targeting the UPS.
Collapse
|
39
|
Haj-Yahya M, Eltarteer N, Ohayon S, Shema E, Kotler E, Oren M, Brik A. N-methylation of isopeptide bond as a strategy to resist deubiquitinases. Angew Chem Int Ed Engl 2012; 51:11535-9. [PMID: 23065695 DOI: 10.1002/anie.201205771] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/23/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Mahmood Haj-Yahya
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | | | | | | | | | |
Collapse
|
40
|
Haj-Yahya M, Eltarteer N, Ohayon S, Shema E, Kotler E, Oren M, Brik A. N-Methylation of Isopeptide Bond as a Strategy to Resist Deubiquitinases. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205771] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Liao C, Peng Y, Ma W, Liu R, Li C, Li X. Proteomic analysis revealed nitrogen-mediated metabolic, developmental, and hormonal regulation of maize (Zea mays L.) ear growth. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5275-88. [PMID: 22936831 PMCID: PMC3430998 DOI: 10.1093/jxb/ers187] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Optimal nitrogen (N) supply is critical for achieving high grain yield of maize. It is well established that N deficiency significantly reduces grain yield and N oversupply reduces N use efficiency without significant yield increase. However, the underlying proteomic mechanism remains poorly understood. The present field study showed that N deficiency significantly reduced ear size and dry matter accumulation in the cob and grain, directly resulting in a significant decrease in grain yield. The N content, biomass accumulation, and proteomic variations were further analysed in young ears at the silking stage under different N regimes. N deficiency significantly reduced N content and biomass accumulation in young ears of maize plants. Proteomic analysis identified 47 proteins with significant differential accumulation in young ears under different N treatments. Eighteen proteins also responded to other abiotic and biotic stresses, suggesting that N nutritional imbalance triggered a general stress response. Importantly, 24 proteins are involved in regulation of hormonal metabolism and functions, ear development, and C/N metabolism in young ears, indicating profound impacts of N nutrition on ear growth and grain yield at the proteomic level.
Collapse
Affiliation(s)
- Chengsong Liao
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yunfeng Peng
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Wei Ma
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Renyi Liu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Chunjian Li
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Xuexian Li
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
42
|
|
43
|
Spasser L, Brik A. Chemistry and Biology of the Ubiquitin Signal. Angew Chem Int Ed Engl 2012; 51:6840-62. [DOI: 10.1002/anie.201200020] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Indexed: 01/07/2023]
|
44
|
Aberrant structures of Parkinson’s disease-associated ubiquitin C-terminal hydrolase L1 predicted by molecular dynamics. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.03.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Abstract
Protein ubiquitination, the covalent attachment of ubiquitin to target proteins, has emerged as one of the most prevalent posttranslational modifications (PTMs), regulating nearly every cellular pathway. The diversity of signaling associated with this particular PTM stems from the myriad ways in which a target protein can be modified by ubiquitin, e.g., monoubiquitin, multi-monoubiquitin, and polyubiquitin linkages. In this Review, we focus on developments in both enzymatic and chemical methods that engender ubiquitin with new chemical and physical properties. Moreover, we highlight how these methods have enabled studies directed toward (i) characterizing enzymes responsible for reversing the ubiquitin modification, (ii) understanding the influence of ubiquitin on protein function and crosstalk with other PTMs, and (iii) uncovering the impact of polyubiquitin chain linkage and length on downstream signaling events.
Collapse
Affiliation(s)
- Eric R. Strieter
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706,
United States
| | - David A. Korasick
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706,
United States
| |
Collapse
|
46
|
Bavikar SN, Spasser L, Haj-Yahya M, Karthikeyan SV, Moyal T, Ajish Kumar KS, Brik A. Chemical Synthesis of Ubiquitinated Peptides with Varying Lengths and Types of Ubiquitin Chains to Explore the Activity of Deubiquitinases. Angew Chem Int Ed Engl 2011; 51:758-63. [DOI: 10.1002/anie.201106430] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 10/12/2011] [Indexed: 01/27/2023]
|
47
|
Bavikar SN, Spasser L, Haj-Yahya M, Karthikeyan SV, Moyal T, Ajish Kumar KS, Brik A. Chemical Synthesis of Ubiquitinated Peptides with Varying Lengths and Types of Ubiquitin Chains to Explore the Activity of Deubiquitinases. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201106430] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Fraile JM, Quesada V, Rodríguez D, Freije JMP, López-Otín C. Deubiquitinases in cancer: new functions and therapeutic options. Oncogene 2011; 31:2373-88. [PMID: 21996736 DOI: 10.1038/onc.2011.443] [Citation(s) in RCA: 356] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Deubiquitinases (DUBs) have fundamental roles in the ubiquitin system through their ability to specifically deconjugate ubiquitin from targeted proteins. The human genome encodes at least 98 DUBs, which can be grouped into 6 families, reflecting the need for specificity in their function. The activity of these enzymes affects the turnover rate, activation, recycling and localization of multiple proteins, which in turn is essential for cell homeostasis, protein stability and a wide range of signaling pathways. Consistent with this, altered DUB function has been related to several diseases, including cancer. Thus, multiple DUBs have been classified as oncogenes or tumor suppressors because of their regulatory functions on the activity of other proteins involved in tumor development. Therefore, recent studies have focused on pharmacological intervention on DUB activity as a rationale to search for novel anticancer drugs. This strategy may benefit from our current knowledge of the physiological regulatory mechanisms of these enzymes and the fact that growth of several tumors depends on the normal activity of certain DUBs. Further understanding of these processes may provide answers to multiple remaining questions on DUB functions and lead to the development of DUB-targeting strategies to expand the repertoire of molecular therapies against cancer.
Collapse
Affiliation(s)
- J M Fraile
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | |
Collapse
|
49
|
Ahn J, Novince Z, Concel J, Byeon CH, Makhov AM, Byeon IJL, Zhang P, Gronenborn AM. The Cullin-RING E3 ubiquitin ligase CRL4-DCAF1 complex dimerizes via a short helical region in DCAF1. Biochemistry 2011; 50:1359-67. [PMID: 21226479 DOI: 10.1021/bi101749s] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cullin4A-RING E3 ubiquitin ligase (CRL4) is a multisubunit protein complex, comprising cullin4A (CUL4), RING H2 finger protein (RBX1), and DNA damage-binding protein 1 (DDB1). Proteins that recruit specific targets to CRL4 for ubiquitination (ubiquitylation) bind the DDB1 adaptor protein via WD40 domains. Such CRL4 substrate recognition modules are DDB1- and CUL4-associated factors (DCAFs). Here we show that, for DCAF1, oligomerization of the protein and the CRL4 complex occurs via a short helical region (residues 845-873) N-terminal to DACF1's own WD40 domain. This sequence was previously designated as a LIS1 homology (LisH) motif. The oligomerization helix contains a stretch of four Leu residues, which appear to be essential for α-helical structure and oligomerization. In vitro reconstituted CRL4-DCAF1 complexes (CRL4(DCAF1)) form symmetric dimers as visualized by electron microscopy (EM), and dimeric CRL4(DCAF1) is a better E3 ligase for in vitro ubiquitination of the UNG2 substrate compared to a monomeric complex.
Collapse
Affiliation(s)
- Jinwoo Ahn
- University of Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kumar KSA, Spasser L, Ohayon S, Erlich LA, Brik A. Expeditious chemical synthesis of ubiquitinated peptides employing orthogonal protection and native chemical ligation. Bioconjug Chem 2011; 22:137-43. [PMID: 21235224 DOI: 10.1021/bc1004735] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ubiquitination-the attachment of ubiquitin to a protein target-is involved in a wide range of cellular processes in eukaryotes. This dynamic posttranslational modification utilizes three enzymes to link, through an isopeptide bond, the C-terminal Gly of ubiquitin to the lysine side chain from a protein target. Progress in the field aiming at deciphering the role of ubiquitination in biological processes has been very dependent on the discovery of the enzymatic machinery, which is known to be very specific to each protein target. Chemical approaches offer a complementary route to the biochemical methods to construct these conjugates in vitro in order to assist in unraveling the role of ubiquitination on protein function. Herein is presented a novel method for the rapid synthesis of ubiquitinated peptides employing solid-phase peptide to generate the critical isopeptide linkage. Using these tools, several ubiquitinated peptides derived from known ubiquitinated proteins were prepared. Among them is the ubiquitinated C-terminal fragment of H2B, which can be used in the synthesis of monoubiquitinated H2B. For the first time, we systematically assessed the effect of the length of the ubiquitinated peptides on the UCH-L3 activity and found that peptides of up to ∼20 residues are preferred substrates.
Collapse
Affiliation(s)
- K S Ajish Kumar
- Department of Chemistry, Ben Gurion University, Beer Sheva, Israel 84105
| | | | | | | | | |
Collapse
|