1
|
Tei R. The dynamic regulatory network of phosphatidic acid metabolism: a spotlight on substrate cycling between phosphatidic acid and diacylglycerol. Biochem Soc Trans 2024; 52:2123-2132. [PMID: 39417337 PMCID: PMC11555698 DOI: 10.1042/bst20231511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Mammalian cells utilize over 1000 different lipid species to maintain cell and organelle membrane properties, control cell signaling and processes, and store energy. Lipid synthesis and metabolism are mediated by highly interconnected and spatiotemporally regulated networks of lipid-metabolizing enzymes and supported by vesicle trafficking and lipid-transfer at membrane contact sites. However, the regulatory mechanisms that achieve lipid homeostasis are largely unknown. Phosphatidic acid (PA) serves as the central hub for phospholipid biosynthesis, acting as a key intermediate in both the Kennedy pathway and the CDP-DAG pathway. Additionally, PA is a potent signaling molecule involved in various cellular processes. This dual role of PA, both as a critical intermediate in lipid biosynthesis and as a significant signaling molecule, suggests that it is tightly regulated within cells. This minireview will summarize the functional diversity of PA molecules based on their acyl tail structures and subcellular localization, highlighting recent tools and findings that shed light on how the physical, chemical, and spatial properties of PA species contribute to their differential metabolic fates and functions. Dysfunctional effects of altered PA metabolism as well as the strategies cells employ to maintain PA regulation and homeostasis will also be discussed. Furthermore, this review will explore the differential regulation of PA metabolism across distinct subcellular membranes. Our recent proximity labeling studies highlight the possibility that substrate cycling between PA and DAG may be location-dependent and have functional significance in cell signaling and lipid homeostasis.
Collapse
Affiliation(s)
- Reika Tei
- Department of Genetics, Stanford University, Stanford, CA 94305, U.S.A
| |
Collapse
|
2
|
Somerharju P, Virtanen JA, Hermansson M. Hypothesis: Chemical activity regulates and coordinates the processes maintaining glycerophospholipid homeostasis in mammalian cells. FASEB Bioadv 2020; 2:182-187. [PMID: 32161907 PMCID: PMC7059623 DOI: 10.1096/fba.2019-00058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 07/19/2019] [Accepted: 12/31/2019] [Indexed: 02/06/2023] Open
Abstract
Mammalian cells maintain the complex glycerophospholipid (GPL) class compositions of their various membranes within close limits because this is essential to their well‐being or viability. Surprisingly, however, it is still not understood how those compositions are maintained except that GPL synthesis and degradation are closely coordinated. Here, we hypothesize that abrupt changes in the chemical activity of the individual GPL classes coordinate synthesis and degradation as well other the homeostatic processes. We have previously proposed that only a limited number of “allowed” or “optimal” GPL class compositions exist in cellular membranes because those compositions are energetically more favorable than others, that is, they represent local free energy minima (Somerharju et al 2009, Biochim. Biophys. Acta 1788, 12‐23). This model, however, could not satisfactorily explain how the “optimal” compositions are sensed by the key homeostatic enzymes, that is, rate‐limiting synthetizing enzymes and homeostatic phospholipases. We now hypothesize that when the mole fraction of a GPL class exceeds an optimal value, its chemical activity abruptly increases which (a) increases its propensity to efflux from the membrane thus making it susceptible for hydrolysis by homeostatic phospholipases; (b) increases its potency to inhibit its own biosynthesis via a feedback mechanism; (c) enhances its conversion to another glycerophospholipid class via a novel process termed “head group remodeling” or (d) enhances its translocation to other subcellular membranes. In summary, abrupt change in the chemical activity of the individual GPL classes is proposed to regulate and coordinate those four processes maintaining GPL class homeostasis in mammalian cells.
Collapse
Affiliation(s)
| | - Jorma A Virtanen
- Medicum Faculty of Medicine University of Helsinki Helsinki Finland
| | | |
Collapse
|
3
|
Villar M, Valiente M, Toscano M, Galmés M, González C, Ortiz M, Vega F, Oporto M, Bibiloni P, Chinchilla JL, Molina J, Ríos Á, Peña C, Rubí S. Development of a thin layer chromatography method for plasma correction of [ 18F]fluorocholine metabolites in positron emission tomography quantification studies in humans. Nucl Med Biol 2019; 74-75:34-40. [PMID: 31473490 DOI: 10.1016/j.nucmedbio.2019.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/05/2019] [Accepted: 08/19/2019] [Indexed: 11/27/2022]
Abstract
INTRODUCTION After its intravenous injection, [18F]fluorocholine is oxidized by choline-oxidase into its main plasma metabolite, [18F]fluorobetaine. If PET kinetic modeling quantification of [18F]fluorocholine uptake is intended, the plasma input time-activity-curve of the parent tracer must be obtained, i.e., the fraction of the total plasma radioactivity corresponding to the nonmetabolized [18F]fluorocholine at each time has to be known. Hence our aim was to develop an easy-routine Thin-Layer-Chromatography (TLC) method to separate and quantify the relative fractions of [18F]fluorocholine and [18F]fluorobetaine as a function of time during PET imaging in humans. METHODS First, we tested several combinations of solvents systems and layers to select the one showing the best resolution on non-radioactive standards. Thereafter, [18F]fluorobetaine was obtained through chemical oxidation of an [18F]fluorocholine sample at diferent incubation times and we applied the selected TLC-system to aliquots of this oxidation solution, both in a saline and in human deproteinized plasma matrices. The plates were detected by a radio-TLC-scanner. This TLC-system was finally applied to arterial plasma samples from 9 patients with high-grade-glioma undergoing brain PET imaging and a parent fraction curve was obtained in each of them. RESULTS A TLC-system based on Silica-Gel-60//MeOH-NH3 was selected from the choline/betaine non-radioactive standards assay. Radiochromatograms of [18F]fluorocholine oxidation solution yielded two separated and well-defined peaks, Rf = 0,03 ([18F]fluorocholine) and Rf = 0.78 (18F]fluorobetaine) consistent with those observed on non-radioactive standards. During the oxidation, the [18F]fluorocholine radioactivity peak decreased progressively at several incubation times, while the other peak ([18F]fluorobetaine) increased accordingly. The mean values of the parent fraction of [18F]fluorocholine of the 9 patients studied (mean+/-SD) were 94% ± 6%, 58% ± 15%, 43% ± 10%, 39% ± 6% and 37% ± 6% at 2.8 min, 5.8 min, 8.8 min, 11.7 min and 14.7 min post-injection, respectively. CONCLUSIONS We have developed a TLC-system, easy to perform in a standard radiopharmacy unit, that enables the metabolite correction of arterial input function of [18F]fluorocholine in patients undergoing PET oncologic quantitative imaging.
Collapse
Affiliation(s)
- Marina Villar
- Radiopharmacy Unit, Hospital Universitari Son Espases, Palma, Spain
| | - Manuel Valiente
- Radiopharmacy Unit, Hospital Universitari Son Espases, Palma, Spain
| | - María Toscano
- Radiopharmacy Unit, Hospital Universitari Son Espases, Palma, Spain
| | - Margalida Galmés
- Radiopharmacy Unit, Hospital Universitari Son Espases, Palma, Spain
| | - Carlos González
- SCOPIA Research Group, Universitat de les Illes Balears, Palma, Spain
| | - Marta Ortiz
- Department of Hospital Pharmacy, Hospital Universitari Son Espases, Palma, Spain
| | - Fernando Vega
- Radiopharmacy Unit, Hospital Universitari Son Espases, Palma, Spain
| | - Magdalena Oporto
- Department of Nuclear Medicine, Hospital Universitari Son Espases, Palma, Spain
| | - Pedro Bibiloni
- SCOPIA Research Group, Universitat de les Illes Balears, Palma, Spain
| | | | - Jesús Molina
- Department of Nuclear Medicine, Hospital Universitari Son Espases, Palma, Spain
| | - Ángel Ríos
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma, Spain
| | - Cristina Peña
- Department of Nuclear Medicine, Hospital Universitari Son Espases, Palma, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma, Spain
| | - Sebastià Rubí
- Department of Nuclear Medicine, Hospital Universitari Son Espases, Palma, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma, Spain.
| |
Collapse
|
4
|
Hermansson M, Hänninen S, Hokynar K, Somerharju P. The PNPLA-family phospholipases involved in glycerophospholipid homeostasis of HeLa cells. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1058-1065. [DOI: 10.1016/j.bbalip.2016.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/25/2016] [Accepted: 06/10/2016] [Indexed: 12/17/2022]
|
5
|
Lenz-Majewski mutations in PTDSS1 affect phosphatidylinositol 4-phosphate metabolism at ER-PM and ER-Golgi junctions. Proc Natl Acad Sci U S A 2016; 113:4314-9. [PMID: 27044099 DOI: 10.1073/pnas.1525719113] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Lenz-Majewski syndrome (LMS) is a rare disease characterized by complex craniofacial, dental, cutaneous, and limb abnormalities combined with intellectual disability. Mutations in thePTDSS1gene coding one of the phosphatidylserine (PS) synthase enzymes, PSS1, were described as causative in LMS patients. Such mutations render PSS1 insensitive to feedback inhibition by PS levels. Here we show that expression of mutant PSS1 enzymes decreased phosphatidylinositol 4-phosphate (PI4P) levels both in the Golgi and the plasma membrane (PM) by activating the Sac1 phosphatase and altered PI4P cycling at the PM. Conversely, inhibitors of PI4KA, the enzyme that makes PI4P in the PM, blocked PS synthesis and reduced PS levels by 50% in normal cells. However, mutant PSS1 enzymes alleviated the PI4P dependence of PS synthesis. Oxysterol-binding protein-related protein 8, which was recently identified as a PI4P-PS exchanger between the ER and PM, showed PI4P-dependent membrane association that was significantly decreased by expression of PSS1 mutant enzymes. Our studies reveal that PS synthesis is tightly coupled to PI4P-dependent PS transport from the ER. Consequently, PSS1 mutations not only affect cellular PS levels and distribution but also lead to a more complex imbalance in lipid homeostasis by disturbing PI4P metabolism.
Collapse
|
6
|
Batchu KC, Hokynar K, Jeltsch M, Mattonet K, Somerharju P. Substrate efflux propensity is the key determinant of Ca2+-independent phospholipase A-β (iPLAβ)-mediated glycerophospholipid hydrolysis. J Biol Chem 2015; 290:10093-103. [PMID: 25713085 DOI: 10.1074/jbc.m115.642835] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Indexed: 12/13/2022] Open
Abstract
The A-type phospholipases (PLAs) are key players in glycerophospholipid (GPL) homeostasis and in mammalian cells; Ca(2+)-independent PLA-β (iPLAβ) in particular has been implicated in this essential process. However, the regulation of this enzyme, which is necessary to avoid futile competition between synthesis and degradation, is not understood. Recently, we provided evidence that the efflux of the substrate molecules from the bilayer is the rate-limiting step in the hydrolysis of GPLs by some secretory (nonhomeostatic) PLAs. To study whether this is the case with iPLAβ as well, a mass spectrometric assay was employed to determine the rate of hydrolysis of multiple saturated and unsaturated GPL species in parallel using micelles or vesicle bilayers as the macrosubstrate. With micelles, the hydrolysis decreased with increasing acyl chain length independent of unsaturation, and modest discrimination between acyl positional isomers was observed, presumably due to the differences in the structure of the sn-1 and sn-2 acyl-binding sites of the protein. In striking contrast, no significant discrimination between positional isomers was observed with bilayers, and the rate of hydrolysis decreased with the acyl chain length logarithmically and far more than with micelles. These data provide compelling evidence that efflux of the substrate molecule from the bilayer, which also decreases monotonously with acyl chain length, is the rate-determining step in iPLAβ-mediated hydrolysis of GPLs in membranes. This finding is intriguing as it may help to understand how homeostatic PLAs are regulated and how degradation and biosynthesis are coordinated.
Collapse
Affiliation(s)
| | - Kati Hokynar
- From the Departments of Biochemistry and Developmental Biology and
| | - Michael Jeltsch
- Biomedicine, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Kenny Mattonet
- Biomedicine, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | | |
Collapse
|
7
|
Hermansson M, Hokynar K, Somerharju P. Mechanisms of glycerophospholipid homeostasis in mammalian cells. Prog Lipid Res 2011; 50:240-57. [DOI: 10.1016/j.plipres.2011.02.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 02/21/2011] [Accepted: 02/25/2011] [Indexed: 01/09/2023]
|
8
|
Déchamps S, Wengelnik K, Berry-Sterkers L, Cerdan R, Vial HJ, Gannoun-Zaki L. The Kennedy phospholipid biosynthesis pathways are refractory to genetic disruption in Plasmodium berghei and therefore appear essential in blood stages. Mol Biochem Parasitol 2010; 173:69-80. [PMID: 20478340 DOI: 10.1016/j.molbiopara.2010.05.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 05/04/2010] [Accepted: 05/08/2010] [Indexed: 12/15/2022]
Abstract
Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are the main membrane phospholipids (PLs) of Plasmodium parasites and can be generated by the de novo (Kennedy) CDP-choline and CDP-ethanolamine pathways and by the CDP-diacylglycerol dependent pathway. The Kennedy pathways initiate from exogenous choline and ethanolamine involving choline kinase (CK) and ethanolamine kinase (EK), followed by the choline-phosphate cytidylyltransferase (CCT) and ethanolamine-phosphate cytidylyltransferase (ECT) that catalyse the formation of CDP-choline and CDP-ethanolamine. Finally, in Plasmodium, PC and PE are apparently synthesized by a common choline/ethanolamine-phosphotransferase (CEPT). Here, we have studied the essential nature of the Kennedy pathways in Plasmodium berghei, a rodent malaria parasite. Sequence analysis of the P. berghei CEPT, CCT, ECT and CK enzymes revealed the presence of all catalytic domains and essential residues and motifs necessary for enzymatic activities. Constructs were designed for the generation of gene knockout and GFP-fusions of the cept, cct, ect and ck genes in P. berghei. We found that all four genes were consistently refractory to knockout attempts. At the same time, successful tagging of these proteins with GFP demonstrated that the loci were targetable and indicated that these genes are essential in P. berghei blood stage parasites. GFP-fusions of CCT, ECT and CK were found in the cytosol whereas the GFP-CEPT mainly localised in the endoplasmic reticulum. These results indicate that both CDP-choline and CDP-ethanolamine de novo pathways are essential for asexual P. berghei development and are non-redundant with other possible sources of PC and PE.
Collapse
Affiliation(s)
- Sandrine Déchamps
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, CNRS-Universite Montpellier 2, Place Eugene Bataillon, cc107, Montpellier 34095, Cedex 05, France
| | | | | | | | | | | |
Collapse
|
9
|
Somerharju P, Virtanen JA, Cheng KH, Hermansson M. The superlattice model of lateral organization of membranes and its implications on membrane lipid homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:12-23. [PMID: 19007747 DOI: 10.1016/j.bbamem.2008.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/10/2008] [Accepted: 10/10/2008] [Indexed: 01/10/2023]
Abstract
Most biological membranes are extremely complex structures consisting of hundreds of different lipid and protein molecules. According to the famous fluid-mosaic model lipids and many proteins are free to diffuse very rapidly in the plane of the membrane. While such fast diffusion implies that different membrane lipids would be laterally randomly distributed, accumulating evidence indicates that in model and natural membranes the lipid components tend to adopt regular (superlattice-like) distributions. The superlattice model, put forward based on such evidence, is intriguing because it predicts that 1) there is a limited number of allowed compositions representing local minima in membrane free energy and 2) those energy minima could provide set-points for enzymes regulating membrane lipid compositions. Furthermore, the existence of a discrete number of allowed compositions could help to maintain organelle identity in the face of rapid inter-organelle membrane traffic.
Collapse
Affiliation(s)
- Pentti Somerharju
- Institute of Biomedicine, Department of Medical Biochemistry, University of Helsinki, Finland.
| | | | | | | |
Collapse
|
10
|
Sher RB, Aoyama C, Huebsch KA, Ji S, Kerner J, Yang Y, Frankel WN, Hoppel CL, Wood PA, Vance DE, Cox GA. A Rostrocaudal Muscular Dystrophy Caused by a Defect in Choline Kinase Beta, the First Enzyme in Phosphatidylcholine Biosynthesis. J Biol Chem 2006; 281:4938-48. [PMID: 16371353 DOI: 10.1074/jbc.m512578200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Muscular dystrophies include a diverse group of genetically heterogeneous disorders that together affect 1 in 2000 births worldwide. The diseases are characterized by progressive muscle weakness and wasting that lead to severe disability and often premature death. Rostrocaudal muscular dystrophy (rmd) is a new recessive mouse mutation that causes a rapidly progressive muscular dystrophy and a neonatal forelimb bone deformity. The rmd mutation is a 1.6-kb intragenic deletion within the choline kinase beta (Chkb) gene, resulting in a complete loss of CHKB protein and enzymatic activity. CHKB is one of two mammalian choline kinase (CHK) enzymes (alpha and beta) that catalyze the phosphorylation of choline to phosphocholine in the biosynthesis of the major membrane phospholipid phosphatidylcholine. While mutant rmd mice show a dramatic decrease of CHK activity in all tissues, the dystrophy is only evident in skeletal muscle tissues in an unusual rostral-to-caudal gradient. Minor membrane disruption similar to dysferlinopathies suggest that membrane fusion defects may underlie this dystrophy, because severe membrane disruptions are not evident as determined by creatine kinase levels, Evans Blue infiltration, and unaltered levels of proteins in the dystrophin-glycoprotein complex. The rmd mutant mouse offers the first demonstration of a defect in a phospholipid biosynthetic enzyme causing muscular dystrophy, representing a unique model for understanding mechanisms of muscle degeneration.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Carnitine O-Palmitoyltransferase/metabolism
- Catalysis
- Cell Membrane/metabolism
- Cholesterol/metabolism
- Choline Kinase/genetics
- Choline Kinase/physiology
- Chromosome Mapping
- Coloring Agents/pharmacology
- Creatine Kinase/metabolism
- Crosses, Genetic
- Dystrophin/metabolism
- Evans Blue/pharmacology
- Female
- Genotype
- Glycoproteins/metabolism
- Immunoblotting
- Lipids/chemistry
- Liver/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Electron
- Microscopy, Fluorescence
- Mitochondria/metabolism
- Models, Genetic
- Muscle Proteins/ultrastructure
- Muscle, Skeletal/ultrastructure
- Muscles/pathology
- Muscular Dystrophy, Animal/enzymology
- Muscular Dystrophy, Animal/pathology
- Mutation
- Phenotype
- Phosphatidylcholines/chemistry
- Physical Chromosome Mapping
- Recombination, Genetic
- Sarcolemma/ultrastructure
- Time Factors
- Triglycerides/metabolism
Collapse
Affiliation(s)
- Roger B Sher
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kent C. Regulatory enzymes of phosphatidylcholine biosynthesis: a personal perspective. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1733:53-66. [PMID: 15749057 DOI: 10.1016/j.bbalip.2004.12.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 12/14/2004] [Accepted: 12/17/2004] [Indexed: 12/22/2022]
Abstract
Phosphatidylcholine is a prominent constituent of eukaryotic and some prokaryotic membranes. This Perspective focuses on the two enzymes that regulate its biosynthesis, choline kinase and CTP:phosphocholine cytidylyltransferase. These enzymes are discussed with respect to their molecular properties, isoforms, enzymatic activities, and structures, and the possible molecular mechanisms by which they participate in regulation of phosphatidylcholine levels in the cell.
Collapse
|
12
|
Kuge O, Hasegawa K, Ohsawa T, Saito K, Nishijima M. Purification and characterization of Chinese hamster phosphatidylserine synthase 2. J Biol Chem 2003; 278:42692-8. [PMID: 12912985 DOI: 10.1074/jbc.m307270200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylserine (PtdSer) in mammalian cells is synthesized through the action of PtdSer synthase (PSS) 1 and 2, which catalyze the conversion of phosphatidylcholine and phosphatidylethanolamine, respectively, to PtdSer. The PtdSer synthesis in intact cells and an isolated membrane fraction is inhibited by exogenous PtdSer, indicating that inhibition of PtdSer synthases by PtdSer is important for the regulation of PtdSer biosynthesis. In this study, to examine whether the inhibition occurs through the direct interaction of PtdSer with the synthases or is mediated by unidentified factor(s), we purified a FLAG and HA peptide-tagged form of Chinese hamster PSS 2 to near homogeneity. The purified enzyme, as well as the crude enzyme in a membrane fraction, was inhibited on the addition of PtdSer to the enzyme assay mixture. In contrast to PtdSer, phosphatidylcholine and phosphatidylethanolamine did not significantly inhibit the purified enzyme. Furthermore, PtdSer-resistant PtdSer synthesis was observed on cell-free assaying of the membrane fraction prepared from a Chinese hamster ovary cell strain whose PtdSer synthesis in vivo is not inhibited by exogenous PtdSer. These results suggested that the interaction of PtdSer with PSS 2 or a very minor protein co-purified with PSS 2 was critical for the regulation of PSS 2 activity in intact cells.
Collapse
Affiliation(s)
- Osamu Kuge
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | | | | | |
Collapse
|
13
|
Charron AJ, Sibley LD. Host cells: mobilizable lipid resources for the intracellular parasite Toxoplasma gondii. J Cell Sci 2002; 115:3049-59. [PMID: 12118061 DOI: 10.1242/jcs.115.15.3049] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Successful replication of the intracellular parasite Toxoplasma gondii within its parasitophorous vacuole necessitates a substantial increase in membrane mass. The possible diversion and metabolism of host cell lipids and lipid precursors by Toxoplasma was therefore investigated using radioisotopic and fluorophore-conjugated compounds. Confocal microscopic analyses demonstrated that Toxoplasma is selective with regards to both the acquisition and compartmentalization of host cell lipids. Lipids were compartmentalized into parasite endomembranes and, in some cases, were apparently integrated into the surrounding vacuolar membrane. Additionally,some labels became concentrated in discrete lipid bodies that were biochemically and morphologically distinct from the parasite apical secretory organelles. Thin layer chromatography established that parasites readily scavenged long-chain fatty acids as well as cholesterol, and in certain cases modified the host-derived lipids. When provided with radiolabeled phospholipid precursors, including polar head groups, phosphatidic acid and small fatty acids, intracellular parasites preferentially accrued phosphatidylcholine(PtdCho) over other phospholipids. Moreover, Toxoplasma was found to be competent to synthesize PtdCho from radiolabeled precursors obtained from its environment. Together, these studies underscore the ability of Toxoplasma gondii to divert and use lipid resources from its host, a process that may contribute to the biogenesis of parasite membranes.
Collapse
Affiliation(s)
- Audra J Charron
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
14
|
Somerharju P, Virtanen JA, Cheng KH. Lateral organisation of membrane lipids. The superlattice view. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1440:32-48. [PMID: 10477823 DOI: 10.1016/s1388-1981(99)00106-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Most biological membranes are extremely complex structures consisting of hundreds or even thousands of different lipid and protein molecules. The prevailing view regarding the organisation of these membranes is based on the fluid-mosaic model proposed by Singer and Nicholson in 1972. According to this model, phospholipids together with some other lipids form a fluid bilayer in which these lipids are diffusing very rapidly laterally. The idea of rapid lateral diffusion implies that, in general, the different lipid species would be randomly distributed in the plain of the membrane. However, there are recent data indicating that the components tend to adopt regular (superlattice-like) distributions in fluid, mixed bilayers. Based on this, a superlattice model of membranes has been proposed. This superlattice model is intriguing because it allows only a limited certain number of 'critical' compositions. These critical compositions could play a key role in the regulation of the lipid compositions of biological membranes. Furthermore, such putative critical compositions could explain how compositionally distinct organelles can exist despite of rapid inter-organelle membrane traffic. In this review, these intriguing predictions are discussed along with the basic principles of the model and the evidence supporting it.
Collapse
Affiliation(s)
- P Somerharju
- Institute of Biomedicine, Department of Medical Chemistry, University of Helsinki, P.O. Box 8, Siltavuorenpenger 10A, 00014, Helsinki, Finland
| | | | | |
Collapse
|
15
|
Saito K, Nishijima M, Kuge O. Genetic evidence that phosphatidylserine synthase II catalyzes the conversion of phosphatidylethanolamine to phosphatidylserine in Chinese hamster ovary cells. J Biol Chem 1998; 273:17199-205. [PMID: 9642289 DOI: 10.1074/jbc.273.27.17199] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylserine (PS) in mammalian cells is synthesized through the exchange of free L-serine with the base moiety of phosphatidylcholine or phosphatidylethanolamine (PE). The serine base exchange in Chinese hamster ovary (CHO) cells is catalyzed by at least two enzymes, PS synthase (PSS) I and II. A PSS I-lacking mutant of CHO-K1 cells, PSA-3, which exhibits approximately 2-fold lower serine base exchange activity than CHO-K1, is defective in the conversion of phosphatidylcholine to PS but has the ability to convert PE to PS. The PSA-3 mutant requires exogenous PS or PE for cell growth. In the present study, from PSA-3 mutant cells, we isolated a mutant, named PSB-2, with a further decrease in the serine base exchange activity. The activity in the homogenate of PSB-2 mutant cells was approximately 10% that of PSA-3 mutant cells and approximately 5% that of CHO-K1 cells. The PSB-2 mutant exhibited an approximately 80% reduction in the PSS II mRNA level relative to that in PSA-3 mutant and CHO-K1 cells. These results showed that the PSB-2 mutant is defective in PSS II. Like the PSA-3 mutant, the PSB-2 mutant grew well in medium supplemented with PS. However, in the medium supplemented with PE, the PSB-2 mutant was incapable of growth, in contrast to the PSA-3 mutant. In the medium with exogenous PE, the PSB-2 mutant was defective in PS biosynthesis, whereas the PSA-3 mutant synthesized a normal amount of PS. A metabolic labeling experiment with exogenous [32P]PE revealed that the PSB-2 mutant was defective in the conversion of exogenous PE to PS. This defect and the growth and PS biosynthetic defects of the PSB-2 mutant cultivated with exogenous PE were complemented by the PSS II cDNA. In addition, the cDNA of the other PS synthase, PSS I, was shown not to complement the defect in the conversion of exogenous PE to PS of the PSB-2 mutant, implying that PSS I negligibly contributes to the conversion of PE to PS in CHO-K1 cells. These results indicated that PSS II is critical for the growth and PS biosynthesis of PSA-3 mutant cells cultivated with exogenous PE and suggested that most of the PS formation from PE in CHO-K1 cells is catalyzed by PSS II.
Collapse
Affiliation(s)
- K Saito
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162, Japan
| | | | | |
Collapse
|
16
|
James PF, Lake AC, Hajra AK, Larkins LK, Robinson M, Buchanan FG, Zoeller RA. An animal cell mutant with a deficiency in acyl/alkyl-dihydroxyacetone-phosphate reductase activity. Effects on the biosynthesis of ether-linked and diacyl glycerolipids. J Biol Chem 1997; 272:23540-6. [PMID: 9295290 DOI: 10.1074/jbc.272.38.23540] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the accompanying paper (James, P. F., and Zoeller, R. A. (1997) J. Biol. Chem. 272, 23532-23539), we reported the isolation of a series of mutants from the fibroblast-like cell line, CHO-K1, that are deficient in the incorporation of the long chain fatty alcohol, hexadecanol, into complex lipids. All but one of these mutants, FAA. K1B, were deficient in long-chain-fatty alcohol oxidase (FAO) activity. We have further characterized this FAO+ isolate. FAA.K1B cells displayed a 40% decrease in [9,10-3H]hexadecanol uptake when compared with the parent strain. Although incorporation of hexadecanol into the phospholipid fraction was decreased by 52%, the cells accumulated label in alkylglycerol (20-fold over wild type). The increase in 1-alkylglycerol labeling corresponded to a 4-fold increase in alkylglycerol mass. Short term labeling with 32Pi showed a 45-50% decrease in overall phospholipid biosynthesis in FAA.K1B. Both diacyl- and ether-linked species were affected, suggesting a general defect in phospholipid biosynthesis. Mutant cells were able to partially compensate for the decreased biosynthesis by decreasing the turnover of the phospholipid pools. The primary lesion in FAA. K1B was identified as a 95% reduction in acyl/alkyl-dihydroxyacetone-phosphate reductase activity. Whole cell homogenates from FAA.K1B were unable to reduce either acyl-dihydroxyacetone phosphate (DHAP) or alkyl-DHAP, supporting the notion that the reduction of these two compounds is catalyzed by a single enzyme. These data suggest that the biosynthesis of diacyl phospholipids, in Chinese hamster ovary cells, begins with the acylation of dihydroxyacetone phosphate as well as glycero-3-phosphate and that the "DHAP pathway" contributes significantly to diacyl glycerolipid biosynthesis. Also, the severe reduction in acyl/alkyl-DHAP reductase activity in FAA.K1B resulted in only a moderate decrease in ether lipid biosynthesis. These latter data together with the observed increase in alkylglycerol levels support the existence of a shunt pathway that is able to partially bypass the enzymatic lesion.
Collapse
Affiliation(s)
- P F James
- Department of Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Uchida T. Stimulation of phospholipid synthesis in HeLa cells by epidermal growth factor and insulin: activation of choline kinase and glycerophosphate acyltransferase. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1304:89-104. [PMID: 8954133 DOI: 10.1016/s0005-2760(96)00109-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The cultivation of HeLa cells in the absence of growth factors reduced proliferation with a considerable decrease in the phospholipid content. A single addition of EGF or insulin was not enough to stimulate proliferation, but still sufficient to efficiently restore the phospholipid content to the level of serum-grown cells. Both EGF and insulin stimulated the synthesis of major phospholipids in HeLa cells. Irrespective of whether cells were stimulated or not, the phospholipid composition and the phospholipid/protein ratio remained constant, suggesting the existence of a mechanism that keeps them constant under varying conditions. The degradation of phosphatidylcholine was not affected by EGF or insulin. Both EGF and insulin increased choline kinase activity equally and promoted the conversion of choline to cholinephosphate, accompanied by an expansion of the cholinephosphate pool in treated cells. The level of glycerophosphate acyltransferase was enhanced by EGF and insulin but EGF was more effective than insulin. The present results provide evidence that one of the roles of EGF and insulin during cell growth is to stimulate the synthesis of phospholipids.
Collapse
Affiliation(s)
- T Uchida
- Department of Biochemistry, Gunma University School of Medicine, Japan.
| |
Collapse
|
18
|
Saito K, Kuge O, Akamatsu Y, Nishijima M. Immunochemical identification of the pssA gene product as phosphatidylserine synthase I of Chinese hamster ovary cells. FEBS Lett 1996; 395:262-6. [PMID: 8898108 DOI: 10.1016/0014-5793(96)01049-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have previously shown that a Chinese hamster ovary (CHO) cell mutant defective in phosphatidylserine synthase I recovers the enzyme activity on transfection with a pssA cDNA clone isolated from the parental CHO-K1. The resultant transfectant, CDT-1, exhibited about 20-fold higher specific activity of the enzyme in the membrane fraction than CHO-K1 cells. Polyclonal antibodies against two peptides of the predicted pssA product cross-reacted with a membrane protein having an apparent molecular mass of 42 kDa, which was overproduced in CDT-1 cells. By immunoprecipitation with the antibody, phosphatidylserine synthase I activity as well as the 42-kDa protein was eliminated from solubilized membrane proteins of CDT-1 cells. Both the enzyme activity and the 42-kDa protein of CHO-K1 cells were enriched in the mitochondria-associated membrane fraction and the microsome fraction, but neither was enriched in the mitochondria fraction or the cytosol fraction. These results suggest that the pssA gene encodes phosphatidylserine synthase I.
Collapse
Affiliation(s)
- K Saito
- The Department of Biochemistry and Cell Biology, National Institute of Health, Tokyo, Japan
| | | | | | | |
Collapse
|
19
|
Weinhold PA, Charles L, Feldman DA. Regulation of CTP: phosphocholine cytidylyltransferase in HepG2 cells: effect of choline depletion on phosphorylation, translocation and phosphatidylcholine levels. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1210:335-47. [PMID: 8305489 DOI: 10.1016/0005-2760(94)90238-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We studied the effect of choline depletion on the biosynthesis of phosphatidylcholine (PC) and the distribution and phosphorylation of cytidylyltransferase (CT) in HepG2 cells. Phosphocholine concentrations decreased within 24 h of choline depletion to values less than 2% of controls. The incorporation of [3H]glycerol into PC was reduced in choline-depleted (CD) cells. The apparent turnover of PC was similar in CD and choline-supplemented (CS) cells (T1/2 = 20 h). The methylation pathway for PC synthesis increased nearly 10-fold in CD cells. Cell growth was similar in CD and CS cells. Over 95% of CT activity in CS cells was in the soluble pool. Choline depletion resulted in a progressive decrease in CT activity and immunodetected enzyme in the soluble pool and a corresponding increase in membrane CT over a 48-h period. Choline supplementation of CD cells caused a rapid release of membrane CT (complete release by 3 h). Two phosphorylated forms of CT were identified. One form contained a higher level of phosphorylation (HPCT) than the other form (LPCT). HPCT migrated slightly slower than LPCT on SDS gels. CD cells contained only LPCT in both soluble and membrane pools. CS cells contained only HPCT. During choline depletion PC content decreased nearly 20% but CT binding did not occur until LPCT was generated in cytosol. Conversely, choline supplementation released LPCT into cytosol and HPCT was formed only after the release. We conclude that both the induction of binding sites, perhaps by depletion of PC and dephosphorylation of HPCT to LPCT, are required for CT translocation to membranes. The release of CT from membranes is initiated by changes in membrane binding sites followed by trapping of the CT in the soluble pool by phosphorylation of LPCT to HPCT.
Collapse
|
20
|
Hatch GM, Oskin A, Vance DE. Involvement of the lysosome in the catabolism of intracellular lysophosphatidylcholine and evidence for distinct pools of lysophosphatidylcholine. J Lipid Res 1993. [DOI: 10.1016/s0022-2275(20)35105-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
21
|
A somatic cell mutant defective in phosphatidylglycerophosphate synthase, with impaired phosphatidylglycerol and cardiolipin biosynthesis. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)41612-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
22
|
Tijburg LB, Nishimaki-Mogami T, Vance DE. Evidence that the rate of phosphatidylcholine catabolism is regulated in cultured rat hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1085:167-77. [PMID: 1892885 DOI: 10.1016/0005-2760(91)90091-u] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The regulation of phosphatidylcholine (PC) catabolism has been studied in choline-deficient rat hepatocytes. Supplementation of choline-deficient hepatocytes, prelabeled with [3H]choline, with 100 microM choline increased the rate of PC catabolism by approx. 2-fold. The major product of PC degradation was glycerophosphocholine in both choline-deficient and choline-supplemented cells. Choline supplementation decreased the radioactivity recovered in lysoPC by 50%. This effect was accompanied by a 2-fold increase of labeled glycerophosphocholine. Comparable results were obtained when PC of the cells was prelabeled with [3H]methionine or [3H]glycerol. The activity of phospholipase A in cytosol, mitochondria and microsomes isolated from choline-deficient rat liver was similar to the activity in control liver, when determined with [3H]PC vesicles as the substrate. Measurement of the activity of phospholipase A with endogenously [3H]choline-labeled PC showed that the formation of lysoPC in mitochondria isolated form choline-supplemented cells was 40% lower than in choline-deficient cells. Alternatively, the formation of [3H]glycerophosphocholine and [3H]choline in microsomes from choline-supplemented cells was significantly higher (1.4-fold) than in microsomes from choline-deficient cells. These results suggest that the rate of PC catabolism is regulated in rat hepatocytes and that the concentration of PC might be an important regulatory factor.
Collapse
Affiliation(s)
- L B Tijburg
- Lipid and Lipoprotein Research Group, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
23
|
|
24
|
Hanada K, Nishijima M, Akamatsu Y. A temperature-sensitive mammalian cell mutant with thermolabile serine palmitoyltransferase for the sphingolipid biosynthesis. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)45681-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
25
|
|
26
|
Affiliation(s)
- C Kent
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-6799
| |
Collapse
|
27
|
Isolation and characterization of a Chinese hamster ovary cell mutant with altered regulation of phosphatidylserine biosynthesis. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)47193-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Tijburg LB, Geelen MJ, van Golde LM. Regulation of the biosynthesis of triacylglycerol, phosphatidylcholine and phosphatidylethanolamine in the liver. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1004:1-19. [PMID: 2663077 DOI: 10.1016/0005-2760(89)90206-3] [Citation(s) in RCA: 191] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- L B Tijburg
- Laboratory of Veterinary Biochemistry, University of Utrecht, The Netherlands
| | | | | |
Collapse
|
29
|
Affiliation(s)
- J D Esko
- Department of Biochemistry, School of Medicine, University of Alabama, Birmingham 35294
| |
Collapse
|
30
|
Post M, van Golde LM. Metabolic and developmental aspects of the pulmonary surfactant system. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 947:249-86. [PMID: 3285891 DOI: 10.1016/0304-4157(88)90011-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- M Post
- Hospital for Sick Children, Division of Neonatology, Toronto, Ontario, Canada
| | | |
Collapse
|
31
|
Characterization of the pathways for phosphatidylethanolamine biosynthesis in Chinese hamster ovary mutant and parental cell lines. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67579-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Reduction of phosphatidylcholine turnover in a Nb 2 lymphoma cell line after prolactin treatment. A novel mechanism for control of phosphatidylcholine levels in cells. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)57480-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
33
|
Kuge O, Nishijima M, Akamatsu Y. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. III. Genetic evidence for utilization of phosphatidylcholine and phosphatidylethanolamine as precursors. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)38452-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. I. Inhibition of de novo phosphatidylserine biosynthesis by exogenous phosphatidylserine and its efficient incorporation. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)38450-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
35
|
Kuge O, Nishijima M, Akamatsu Y. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. II. Isolation and characterization of phosphatidylserine auxotrophs. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)38451-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
36
|
Voelker DR, Frazier JL. Isolation and characterization of a Chinese hamster ovary cell line requiring ethanolamine or phosphatidylserine for growth and exhibiting defective phosphatidylserine synthase activity. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)36044-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
37
|
Voelker DR. Disruption of phosphatidylserine translocation to the mitochondria in baby hamster kidney cells. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)38623-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
38
|
Wright PS, Morand JN, Kent C. Regulation of phosphatidylcholine biosynthesis in Chinese hamster ovary cells by reversible membrane association of CTP: phosphocholine cytidylyltransferase. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)39540-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Maeda M, Nishijima M, Akamatsu Y, Sakakibara Y. Alteration in the characters of CDP-choline synthetase and phospholipid-choline exchange enzyme upon choline starvation in Chinese hamster ovary cells. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)88917-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
40
|
Warden CH, Friedkin M. Regulation of choline kinase activity and phosphatidylcholine biosynthesis by mitogenic growth factors in 3T3 fibroblasts. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)88929-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Complete purification of choline kinase from rat kidney and preparation of rabbit antibody against rat kidney choline kinase. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)42660-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|