1
|
Wang Q, Daiß JL, Xu Y, Engel C. Snapshots of RNA polymerase III in action - A mini review. Gene 2022; 821:146282. [PMID: 35149153 DOI: 10.1016/j.gene.2022.146282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/20/2022] [Accepted: 02/03/2022] [Indexed: 11/04/2022]
Abstract
RNA polymerase (Pol) III is responsible for the transcription of tRNAs, 5S rRNA, U6 snRNA, and other non-coding RNAs. Transcription factors such as TFIIIA, -B, -C, SNAPc, and Maf1 are required for promoter recognition, promoter opening, and Pol III activity regulation. Recent developments in cryo-electron microscopy and advanced purification approaches for endogenous multi-subunit complexes accelerated structural studies resulting in detailed structural insights which allowed an in-depth understanding of the molecular mechanisms underlying Pol III transcription. Here, we summarize structural data on Pol III and its regulating factors providing a three-dimensional framework to guide further analysis of RNA polymerase III.
Collapse
Affiliation(s)
- Qianmin Wang
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Precision Medicine, Shanghai, China; Present address: Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Julia L Daiß
- Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Youwei Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Christoph Engel
- Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
2
|
Palo MZ, Zhu J, Mishanina TV, Landick R. Conserved Trigger Loop Histidine of RNA Polymerase II Functions as a Positional Catalyst Primarily through Steric Effects. Biochemistry 2021; 60:3323-3336. [PMID: 34705427 DOI: 10.1021/acs.biochem.1c00528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In all domains of life, multisubunit RNA polymerases (RNAPs) catalyze both the extension of mRNA transcripts by nucleotide addition and the hydrolysis of RNA, which enables proofreading by removal of misincorporated nucleotides. A highly conserved catalytic module within RNAPs called the trigger loop (TL) functions as the key controller of these activities. The TL is proposed to act as a positional catalyst of phosphoryl transfer and transcript cleavage via electrostatic and steric contacts with substrates in its folded helical form. The function of a near-universally conserved TL histidine that contacts NTP phosphates is of particular interest. Despite its exceptional conservation, substitutions of the TL His with Gln support efficient catalysis in bacterial and yeast RNAPs. Unlike bacterial TLs, which contain a nearby Arg, the TL His is the only acid-base catalyst candidate in the eukaryotic RNAPII TL. Nonetheless, replacement of the TL His with Leu is reported to support cell growth in yeast, suggesting that even hydrogen bonding and polarity at this position may be dispensable for efficient catalysis by RNAPII. To test how a TL His-to-Leu substitution affects the enzymatic functions of RNAPII, we compared its rates of nucleotide addition, pyrophosphorolysis, and RNA hydrolysis to those of the wild-type RNAPII enzyme. The His-to-Leu substitution slightly reduced rates of phosphoryl transfer with little if any effect on intrinsic transcript cleavage. These findings indicate that the highly conserved TL His is neither an obligate acid-base catalyst nor a polar contact for NTP phosphates but instead functions as a positional catalyst mainly through steric effects.
Collapse
Affiliation(s)
- Michael Z Palo
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Junqiao Zhu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Tatiana V Mishanina
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Multisubunit DNA-Dependent RNA Polymerases from Vaccinia Virus and Other Nucleocytoplasmic Large-DNA Viruses: Impressions from the Age of Structure. Microbiol Mol Biol Rev 2017; 81:81/3/e00010-17. [PMID: 28701329 DOI: 10.1128/mmbr.00010-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The past 17 years have been marked by a revolution in our understanding of cellular multisubunit DNA-dependent RNA polymerases (MSDDRPs) at the structural level. A parallel development over the past 15 years has been the emerging story of the giant viruses, which encode MSDDRPs. Here we link the two in an attempt to understand the specialization of multisubunit RNA polymerases in the domain of life encompassing the large nucleocytoplasmic DNA viruses (NCLDV), a superclade that includes the giant viruses and the biochemically well-characterized poxvirus vaccinia virus. The first half of this review surveys the recently determined structural biology of cellular RNA polymerases for a microbiology readership. The second half discusses a reannotation of MSDDRP subunits from NCLDV families and the apparent specialization of these enzymes by virus family and by subunit with regard to subunit or domain loss, subunit dissociability, endogenous control of polymerase arrest, and the elimination/customization of regulatory interactions that would confer higher-order cellular control. Some themes are apparent in linking subunit function to structure in the viral world: as with cellular RNA polymerases I and III and unlike cellular RNA polymerase II, the viral enzymes seem to opt for speed and processivity and seem to have eliminated domains associated with higher-order regulation. The adoption/loss of viral RNA polymerase proofreading functions may have played a part in matching intrinsic mutability to genome size.
Collapse
|
4
|
Miropolskaya N, Esyunina D, Kulbachinskiy A. Conserved functions of the trigger loop and Gre factors in RNA cleavage by bacterial RNA polymerases. J Biol Chem 2017; 292:6744-6752. [PMID: 28242762 DOI: 10.1074/jbc.m116.766592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/16/2017] [Indexed: 11/06/2022] Open
Abstract
RNA cleavage by RNA polymerase (RNAP) is the central step in co-transcriptional RNA proofreading. Bacterial RNAPs were proposed to rely on the same mobile element of the active site, the trigger loop (TL), for both nucleotide addition and RNA cleavage. RNA cleavage can also be stimulated by universal Gre factors, which should replace the TL to get access to the RNAP active site. The contributions of the TL and Gre factors to RNA cleavage reportedly vary between RNAPs from different bacterial species and, probably, different types of transcription complexes. Here, by comparing RNAPs from Escherichia coli, Deinococcus radiodurans, and Thermus aquaticus, we show that the functions of the TL and Gre factors in RNA cleavage are conserved in various species, with important variations that may be related to extremophilic adaptation. Deletions of the TL strongly impair intrinsic RNA cleavage by all three RNAPs and eliminate the interspecies differences in the reaction rates. GreA factors activate RNA cleavage by wild-type RNAPs to similar levels. The rates of GreA-dependent cleavage are lower for ΔTL RNAP variants, suggesting that the TL contributes to the Gre function. Finally, neither the TL nor GreA can efficiently activate RNA cleavage in certain types of backtracked transcription complexes, suggesting that these complexes adopt a catalytically inactive conformation probably important for transcription regulation.
Collapse
Affiliation(s)
- Nataliya Miropolskaya
- From the Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square 2, Moscow 123182, Russia
| | - Daria Esyunina
- From the Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square 2, Moscow 123182, Russia
| | - Andrey Kulbachinskiy
- From the Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square 2, Moscow 123182, Russia
| |
Collapse
|
5
|
Rijal K, Maraia RJ. Active Center Control of Termination by RNA Polymerase III and tRNA Gene Transcription Levels In Vivo. PLoS Genet 2016; 12:e1006253. [PMID: 27518095 PMCID: PMC4982682 DOI: 10.1371/journal.pgen.1006253] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/21/2016] [Indexed: 01/18/2023] Open
Abstract
The ability of RNA polymerase (RNAP) III to efficiently recycle from termination to reinitiation is critical for abundant tRNA production during cellular proliferation, development and cancer. Yet understanding of the unique termination mechanisms used by RNAP III is incomplete, as is its link to high transcription output. We used two tRNA-mediated suppression systems to screen for Rpc1 mutants with gain- and loss- of termination phenotypes in S. pombe. 122 point mutation mutants were mapped to a recently solved 3.9 Å structure of yeast RNAP III elongation complex (EC); they cluster in the active center bridge helix and trigger loop, as well as the pore and funnel, the latter of which indicate involvement of the RNA cleavage domain of the C11 subunit in termination. Purified RNAP III from a readthrough (RT) mutant exhibits increased elongation rate. The data strongly support a kinetic coupling model in which elongation rate is inversely related to termination efficiency. The mutants exhibit good correlations of terminator RT in vitro and in vivo, and surprisingly, amounts of transcription in vivo. Because assessing in vivo transcription can be confounded by various parameters, we used a tRNA reporter with a processing defect and a strong terminator. By ruling out differences in RNA decay rates, the data indicate that mutants with the RT phenotype synthesize more RNA than wild type cells, and than can be accounted for by their increased elongation rate. Finally, increased activity by the mutants appears unrelated to the RNAP III repressor, Maf1. The results show that the mobile elements of the RNAP III active center, including C11, are key determinants of termination, and that some of the mutations activate RNAP III for overall transcription. Similar mutations in spontaneous cancer suggest this as an unforeseen mechanism of RNAP III activation in disease.
Collapse
Affiliation(s)
- Keshab Rijal
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard J. Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
6
|
Hoffmann NA, Jakobi AJ, Moreno-Morcillo M, Glatt S, Kosinski J, Hagen WJH, Sachse C, Müller CW. Molecular structures of unbound and transcribing RNA polymerase III. Nature 2015; 528:231-6. [PMID: 26605533 PMCID: PMC4681132 DOI: 10.1038/nature16143] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/13/2015] [Indexed: 12/11/2022]
Abstract
Transcription of genes encoding small structured RNAs such as transfer RNAs, spliceosomal U6 small nuclear RNA and ribosomal 5S RNA is carried out by RNA polymerase III (Pol III), the largest yet structurally least characterized eukaryotic RNA polymerase. Here we present the cryo-electron microscopy structures of the Saccharomyces cerevisiae Pol III elongating complex at 3.9 Å resolution and the apo Pol III enzyme in two different conformations at 4.6 and 4.7 Å resolution, respectively, which allow the building of a 17-subunit atomic model of Pol III. The reconstructions reveal the precise orientation of the C82-C34-C31 heterotrimer in close proximity to the stalk. The C53-C37 heterodimer positions residues involved in transcription termination close to the non-template DNA strand. In the apo Pol III structures, the stalk adopts different orientations coupled with closed and open conformations of the clamp. Our results provide novel insights into Pol III-specific transcription and the adaptation of Pol III towards its small transcriptional targets.
Collapse
Affiliation(s)
- Niklas A. Hoffmann
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Arjen J. Jakobi
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Notkestr. 85, 22607 Hamburg, Germany
| | - Maria Moreno-Morcillo
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sebastian Glatt
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Jan Kosinski
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Wim J. H. Hagen
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Carsten Sachse
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Correspondence and requests for materials should be addressed to C.S. () or C.W.M. ()
| | - Christoph W. Müller
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Correspondence and requests for materials should be addressed to C.S. () or C.W.M. ()
| |
Collapse
|
7
|
Čabart P, Jin H, Li L, Kaplan CD. Activation and reactivation of the RNA polymerase II trigger loop for intrinsic RNA cleavage and catalysis. Transcription 2015; 5:e28869. [PMID: 25764335 PMCID: PMC4574878 DOI: 10.4161/trns.28869] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In addition to RNA synthesis, multisubunit RNA polymerases (msRNAPs) support enzymatic reactions such as intrinsic transcript cleavage. msRNAP active sites from different species appear to exhibit differential intrinsic transcript cleavage efficiency and have likely evolved to allow fine-tuning of the transcription process. Here we show that a single amino-acid substitution in the trigger loop (TL) of Saccharomyces RNAP II, Rpb1 H1085Y, engenders a gain of intrinsic cleavage activity where the substituted tyrosine appears to participate in acid-base chemistry at alkaline pH for both intrinsic cleavage and nucleotidyl transfer. We extensively characterize this TL substitution for each of these reactions by examining the responses RNAP II enzymes to catalytic metals, altered pH, and factor inputs. We demonstrate that TFIIF stimulation of the first phosphodiester bond formation by RNAP II requires wild type TL function and that H1085Y substitution within the TL compromises or alters RNAP II responsiveness to both TFIIB and TFIIF. Finally, Mn(2+) stimulation of H1085Y RNAP II reveals possible allosteric effects of TFIIB on the active center and cooperation between TFIIB and TFIIF.
Collapse
Affiliation(s)
- Pavel Čabart
- a Department of Biochemistry and Biophysics; Texas A&M University; College Station, TX
| | | | | | | |
Collapse
|
8
|
Rijal K, Maraia RJ, Arimbasseri AG. A methods review on use of nonsense suppression to study 3' end formation and other aspects of tRNA biogenesis. Gene 2014; 556:35-50. [PMID: 25447915 DOI: 10.1016/j.gene.2014.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 12/26/2022]
Abstract
Suppressor tRNAs bear anticodon mutations that allow them to decode premature stop codons in metabolic marker gene mRNAs, that can be used as in vivo reporters of functional tRNA biogenesis. Here, we review key components of a suppressor tRNA system specific to Schizosaccharomyces pombe and its adaptations for use to study specific steps in tRNA biogenesis. Eukaryotic tRNA biogenesis begins with transcription initiation by RNA polymerase (pol) III. The nascent pre-tRNAs must undergo folding, 5' and 3' processing to remove the leader and trailer, nuclear export, and splicing if applicable, while multiple complex chemical modifications occur throughout the process. We review evidence that precursor-tRNA processing begins with transcription termination at the oligo(T) terminator element, which forms a 3' oligo(U) tract on the nascent RNA, a sequence-specific binding site for the RNA chaperone, La protein. The processing pathway bifurcates depending on a poorly understood property of pol III termination that determines the 3' oligo(U) length and therefore the affinity for La. We thus review the pol III termination process and the factors involved including advances using gene-specific random mutagenesis by dNTP analogs that identify key residues important for transcription termination in certain pol III subunits. The review ends with a 'technical approaches' section that includes a parts lists of suppressor-tRNA alleles, strains and plasmids, and graphic examples of its diverse uses.
Collapse
Affiliation(s)
- Keshab Rijal
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Maraia
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Aneeshkumar G Arimbasseri
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Nielsen S, Zenkin N. Transcription. Response to Comment on "Mechanism of eukaryotic RNA polymerase III transcription termination". Science 2014; 345:524. [PMID: 25082695 DOI: 10.1126/science.1254246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Arimbasseri et al., in their Comment, suggest that to terminate transcription in vivo, RNA polymerase III uses a mechanism other than hairpin-dependent termination and that properties of purified polymerase may depend on preparation procedure. Evidence suggests that our preparation is indeed different from that of other methods. Our new data suggest that, apart from hairpin-dependent termination, one or more "fail-safe" termination mechanisms may exist in the cell.
Collapse
Affiliation(s)
- Soren Nielsen
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK.
| |
Collapse
|
10
|
Knippa K, Peterson DO. Fidelity of RNA Polymerase II Transcription: Role of Rbp9 in Error Detection and Proofreading. Biochemistry 2013; 52:7807-17. [DOI: 10.1021/bi4009566] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kevin Knippa
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States
| | - David O. Peterson
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States
| |
Collapse
|
11
|
Abstract
Gene expression in organisms involves many factors and is tightly controlled. Although much is known about the initial phase of transcription by RNA polymerase III (Pol III), the enzyme that synthesizes the majority of RNA molecules in eukaryotic cells, termination is poorly understood. Here, we show that the extensive structure of Pol III-synthesized transcripts dictates the release of elongation complexes at the end of genes. The poly-T termination signal, which does not cause termination in itself, causes catalytic inactivation and backtracking of Pol III, thus committing the enzyme to termination and transporting it to the nearest RNA secondary structure, which facilitates Pol III release. Similarity between termination mechanisms of Pol III and bacterial RNA polymerase suggests that hairpin-dependent termination may date back to the common ancestor of multisubunit RNA polymerases.
Collapse
Affiliation(s)
- Soren Nielsen
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Yulia Yuzenkova
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| |
Collapse
|
12
|
Arimbasseri AG, Rijal K, Maraia RJ. Transcription termination by the eukaryotic RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:318-30. [PMID: 23099421 PMCID: PMC3568203 DOI: 10.1016/j.bbagrm.2012.10.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 01/22/2023]
Abstract
RNA polymerase (pol) III transcribes a multitude of tRNA and 5S rRNA genes as well as other small RNA genes distributed through the genome. By being sequence-specific, precise and efficient, transcription termination by pol III not only defines the 3' end of the nascent RNA which directs subsequent association with the stabilizing La protein, it also prevents transcription into downstream DNA and promotes efficient recycling. Each of the RNA polymerases appears to have evolved unique mechanisms to initiate the process of termination in response to different types of termination signals. However, in eukaryotes much less is known about the final stage of termination, destabilization of the elongation complex with release of the RNA and DNA from the polymerase active center. By comparison to pols I and II, pol III exhibits the most direct coupling of the initial and final stages of termination, both of which occur at a short oligo(dT) tract on the non-template strand (dA on the template) of the DNA. While pol III termination is autonomous involving the core subunits C2 and probably C1, it also involves subunits C11, C37 and C53, which act on the pol III catalytic center and exhibit homology to the pol II elongation factor TFIIS and TFIIFα/β respectively. Here we compile knowledge of pol III termination and associate mutations that affect this process with structural elements of the polymerase that illustrate the importance of C53/37 both at its docking site on the pol III lobe and in the active center. The models suggest that some of these features may apply to the other eukaryotic pols. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
|
13
|
Distinguishing core and holoenzyme mechanisms of transcription termination by RNA polymerase III. Mol Cell Biol 2013; 33:1571-81. [PMID: 23401852 DOI: 10.1128/mcb.01733-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcription termination by RNA polymerase (Pol) III serves multiple purposes; it delimits interference with downstream genes, forms 3' oligo(U) binding sites for the posttranscriptional processing factor, La protein, and resets the polymerase complex for reinitiation. Although an interplay of several Pol III subunits is known to collectively control these activities, how they affect molecular function of the active center during termination is incompletely understood. We have approached this using immobilized Pol III-nucleic acid scaffolds to examine the two major components of termination, transcription pausing and RNA release. This allowed us to distinguish two mechanisms of termination by isolated Saccharomyces cerevisiae Pol III. A core mechanism can operate in the absence of C53/37 and C11 subunits but requires synthesis of 8 or more 3' U nucleotides, apparently reflecting inherent sensitivity to an oligo(rU·dA) hybrid that is the termination signal proper. The holoenzyme mechanism requires fewer U nucleotides but uses C53/37 and C11 to slow elongation and prevent terminator arrest. N-terminal truncation of C53 or point mutations that disable the cleavage activity of C11 impair their antiarrest activities. The data are consistent with a model in which C53, C37, and C11 activities are functionally integrated with the active center of Pol III during termination.
Collapse
|
14
|
Maraia RJ, Lamichhane TN. 3' processing of eukaryotic precursor tRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:362-75. [PMID: 21572561 PMCID: PMC3092161 DOI: 10.1002/wrna.64] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Biogenesis of eukaryotic tRNAs requires transcription by RNA polymerase III and subsequent processing. 5' processing of precursor tRNA occurs by a single mechanism, cleavage by RNase P, and usually occurs before 3' processing although some conditions allow observation of the 3'-first pathway. 3' processing is relatively complex and is the focus of this review. Precursor RNA 3'-end formation begins with pol III termination generating a variable length 3'-oligo(U) tract that represents an underappreciated and previously unreviewed determinant of processing. Evidence that the pol III-intrinsic 3'exonuclease activity mediated by Rpc11p affects 3'oligo(U) length is reviewed. In addition to multiple 3' nucleases, precursor tRNA(pre-tRNA) processing involves La and Lsm, distinct oligo(U)-binding proteins with proposed chaperone activities. 3' processing is performed by the endonuclease RNase Z or the exonuclease Rex1p (possibly others) along alternate pathways conditional on La. We review a Schizosaccharomyces pombe tRNA reporter system that has been used to distinguish two chaperone activities of La protein to its two conserved RNA binding motifs. Pre-tRNAs with structural impairments are degraded by a nuclear surveillance system that mediates polyadenylation by the TRAMP complex followed by 3'-digestion by the nuclear exosome which appears to compete with 3' processing. We also try to reconcile limited data on pre-tRNA processing and Lsm proteins which largely affect precursors but not mature tRNAs.A pathway is proposed in which 3' oligo(U) length is a primary determinant of La binding with subsequent steps distinguished by 3'-endo versus exo nucleases,chaperone activities, and nuclear surveillance.
Collapse
Affiliation(s)
- Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver NationalInstitute of Child Health and Human Development, NationalInstitutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
15
|
Iben JR, Mazeika JK, Hasson S, Rijal K, Arimbasseri AG, Russo AN, Maraia RJ. Point mutations in the Rpb9-homologous domain of Rpc11 that impair transcription termination by RNA polymerase III. Nucleic Acids Res 2011; 39:6100-13. [PMID: 21450810 PMCID: PMC3152337 DOI: 10.1093/nar/gkr182] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RNA polymerase III recognizes and pauses at its terminator, an oligo(dT) tract in non-template DNA, terminates 3' oligo(rU) synthesis within this sequence, and releases the RNA. The pol III subunit Rpc11p (C11) mediates RNA 3'-5' cleavage in the catalytic center of pol III during pausing. The amino and carboxyl regions of C11 are homologous to domains of the pol II subunit Rpb9p, and the pol II elongation and RNA cleavage factor, TFIIS, respectively. We isolated C11 mutants from Schizosaccharomyces pombe that cause pol III to readthrough terminators in vivo. Mutant RNA confirmed the presence of terminator readthrough transcripts. A predominant mutation site, F32, resides in the C11 Rpb9-like domain. Another mutagenic approach confirmed the F32 mutation and also isolated I34 and Y30 mutants. Modeling Y30, F32 and I34 of C11 in available cryoEM pol III structures predicts a hydrophobic patch that may interface with C53/37. Another termination mutant, Rpc2-T455I, appears to reside internally, near the RNA-DNA hybrid. We show that the Rpb9 and TFIIS homologous mutants of C11 reflect distinct activities, that differentially affect terminator recognition and RNA 3' cleavage. We propose that these C11 domains integrate action at the upper jaw and center of pol III during termination.
Collapse
Affiliation(s)
- James R Iben
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Commissioned Corps, US Public Health Service, Bethesda, MD, USA. 20892
| | | | | | | | | | | | | |
Collapse
|
16
|
Kassavetis GA, Prakash P, Shim E. The C53/C37 subcomplex of RNA polymerase III lies near the active site and participates in promoter opening. J Biol Chem 2009; 285:2695-706. [PMID: 19940126 DOI: 10.1074/jbc.m109.074013] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C53 and C37 subunits of RNA polymerase III (pol III) form a subassembly that is required for efficient termination; pol III lacking this subcomplex displays increased processivity of RNA chain elongation. We show that the C53/C37 subcomplex additionally plays a role in formation of the initiation-ready open promoter complex similar to that of the Brf1 N-terminal zinc ribbon domain. In the absence of C53 and C37, the transcription bubble fails to stably propagate to and beyond the transcriptional start site even when the DNA template is supercoiled. The C53/C37 subcomplex also stimulates the formation of an artificially assembled elongation complex from its component DNA and RNA strands. Protein-RNA and protein-DNA photochemical cross-linking analysis places a segment of C53 close to the RNA 3' end and transcribed DNA strand at the catalytic center of the pol III elongation complex. We discuss the implications of these findings for the mechanism of transcriptional termination by pol III and propose a structural as well as functional correspondence between the C53/C37 subcomplex and the RNA polymerase II initiation factor TFIIF.
Collapse
Affiliation(s)
- George A Kassavetis
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0634, USA.
| | | | | |
Collapse
|
17
|
Sydow JF, Cramer P. RNA polymerase fidelity and transcriptional proofreading. Curr Opin Struct Biol 2009; 19:732-9. [PMID: 19914059 DOI: 10.1016/j.sbi.2009.10.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/15/2009] [Accepted: 10/15/2009] [Indexed: 02/06/2023]
Abstract
Whereas mechanisms underlying the fidelity of DNA polymerases (DNAPs) have been investigated in detail, RNA polymerase (RNAP) fidelity mechanisms remained poorly understood. New functional and structural studies now suggest how RNAPs select the correct nucleoside triphosphate (NTP) substrate to prevent transcription errors, and how the enzymes detect and remove a misincorporated nucleotide during proofreading. Proofreading begins with fraying of the misincorporated nucleotide away from the DNA template, which pauses transcription. Subsequent backtracking of RNAP by one position enables nucleolytic cleavage of an RNA dinucleotide that contains the misincorporated nucleotide. Since cleavage occurs at the same active site that is used for polymerization, the RNAP proofreading mechanism differs from that used by DNAPs, which contain a distinct nuclease specific active site.
Collapse
Affiliation(s)
- Jasmin F Sydow
- Gene Center Munich and Center for Integrated Protein Science Munich, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | |
Collapse
|
18
|
Richard P, Manley JL. Transcription termination by nuclear RNA polymerases. Genes Dev 2009; 23:1247-69. [PMID: 19487567 DOI: 10.1101/gad.1792809] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Gene transcription in the cell nucleus is a complex and highly regulated process. Transcription in eukaryotes requires three distinct RNA polymerases, each of which employs its own mechanisms for initiation, elongation, and termination. Termination mechanisms vary considerably, ranging from relatively simple to exceptionally complex. In this review, we describe the present state of knowledge on how each of the three RNA polymerases terminates and how mechanisms are conserved, or vary, from yeast to human.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
19
|
Walmacq C, Kireeva ML, Irvin J, Nedialkov Y, Lubkowska L, Malagon F, Strathern JN, Kashlev M. Rpb9 subunit controls transcription fidelity by delaying NTP sequestration in RNA polymerase II. J Biol Chem 2009; 284:19601-12. [PMID: 19439405 DOI: 10.1074/jbc.m109.006908] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rpb9 is a small non-essential subunit of yeast RNA polymerase II located on the surface on the enzyme. Deletion of the RPB9 gene shows synthetic lethality with the low fidelity rpb1-E1103G mutation localized in the trigger loop, a mobile element of the catalytic Rpb1 subunit, which has been shown to control transcription fidelity. Similar to the rpb1-E1103G mutation, the RPB9 deletion substantially enhances NTP misincorporation and increases the rate of mismatch extension with the next cognate NTP in vitro. Using pre-steady state kinetic analysis, we show that RPB9 deletion promotes sequestration of NTPs in the polymerase active center just prior to the phosphodiester bond formation. We propose a model in which the Rpb9 subunit controls transcription fidelity by delaying the closure of the trigger loop on the incoming NTP via interaction between the C-terminal domain of Rpb9 and the trigger loop. Our findings reveal a mechanism for regulation of transcription fidelity by protein factors located at a large distance from the active center of RNA polymerase II.
Collapse
Affiliation(s)
- Celine Walmacq
- NCI Center for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kuhn CD, Geiger SR, Baumli S, Gartmann M, Gerber J, Jennebach S, Mielke T, Tschochner H, Beckmann R, Cramer P. Functional architecture of RNA polymerase I. Cell 2008; 131:1260-72. [PMID: 18160037 DOI: 10.1016/j.cell.2007.10.051] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 10/02/2007] [Accepted: 10/26/2007] [Indexed: 01/10/2023]
Abstract
Synthesis of ribosomal RNA (rRNA) by RNA polymerase (Pol) I is the first step in ribosome biogenesis and a regulatory switch in eukaryotic cell growth. Here we report the 12 A cryo-electron microscopic structure for the complete 14-subunit yeast Pol I, a homology model for the core enzyme, and the crystal structure of the subcomplex A14/43. In the resulting hybrid structure of Pol I, A14/43, the clamp, and the dock domain contribute to a unique surface interacting with promoter-specific initiation factors. The Pol I-specific subunits A49 and A34.5 form a heterodimer near the enzyme funnel that acts as a built-in elongation factor and is related to the Pol II-associated factor TFIIF. In contrast to Pol II, Pol I has a strong intrinsic 3'-RNA cleavage activity, which requires the C-terminal domain of subunit A12.2 and, apparently, enables ribosomal RNA proofreading and 3'-end trimming.
Collapse
MESH Headings
- Binding Sites
- Cryoelectron Microscopy
- Crystallography, X-Ray
- DNA Polymerase I/chemistry
- DNA Polymerase I/genetics
- DNA Polymerase I/metabolism
- Models, Molecular
- Mutation
- Peptide Elongation Factors/chemistry
- Peptide Elongation Factors/metabolism
- Peptide Initiation Factors/chemistry
- Peptide Initiation Factors/metabolism
- Promoter Regions, Genetic
- Protein Conformation
- Protein Interaction Domains and Motifs
- Protein Interaction Mapping
- Protein Structure, Tertiary
- Protein Subunits
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Structure-Activity Relationship
- Transcription Factors, TFII/chemistry
- Transcription Factors, TFII/metabolism
- Transcription, Genetic
- Transcriptional Elongation Factors/chemistry
- Transcriptional Elongation Factors/metabolism
Collapse
Affiliation(s)
- Claus-D Kuhn
- Gene Center Munich and Center for Integrated Protein Science CIPSM, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Alic N, Ayoub N, Landrieux E, Favry E, Baudouin-Cornu P, Riva M, Carles C. Selectivity and proofreading both contribute significantly to the fidelity of RNA polymerase III transcription. Proc Natl Acad Sci U S A 2007; 104:10400-5. [PMID: 17553959 PMCID: PMC1965525 DOI: 10.1073/pnas.0704116104] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We examine here the mechanisms ensuring the fidelity of RNA synthesis by RNA polymerase III (Pol III). Misincorporation could only be observed by using variants of Pol III deficient in the intrinsic RNA cleavage activity. Determination of relative rates of the reactions producing correct and erroneous transcripts at a specific position on a tRNA gene, combined with computational methods, demonstrated that Pol III has a highly efficient proofreading activity increasing its transcriptional fidelity by a factor of 10(3) over the error rate determined solely by selectivity (1.8 x 10(-4)). We show that Pol III slows down synthesis past a misincorporation to achieve efficient proofreading. We discuss our findings in the context of transcriptional fidelity studies performed on RNA Pols, proposing that the fidelity of transcription is more crucial for Pol III than Pol II.
Collapse
Affiliation(s)
- Nazif Alic
- Commissariat à l'Énergie Atomique, Institut de Biologie et de Technologies de Saclay, F-91191 Gif sur Yvette Cedex, France
| | - Nayla Ayoub
- Commissariat à l'Énergie Atomique, Institut de Biologie et de Technologies de Saclay, F-91191 Gif sur Yvette Cedex, France
| | - Emilie Landrieux
- Commissariat à l'Énergie Atomique, Institut de Biologie et de Technologies de Saclay, F-91191 Gif sur Yvette Cedex, France
| | - Emmanuel Favry
- Commissariat à l'Énergie Atomique, Institut de Biologie et de Technologies de Saclay, F-91191 Gif sur Yvette Cedex, France
| | - Peggy Baudouin-Cornu
- Commissariat à l'Énergie Atomique, Institut de Biologie et de Technologies de Saclay, F-91191 Gif sur Yvette Cedex, France
| | - Michel Riva
- Commissariat à l'Énergie Atomique, Institut de Biologie et de Technologies de Saclay, F-91191 Gif sur Yvette Cedex, France
- To whom correspondence should be addressed. E-mail:
| | - Christophe Carles
- Commissariat à l'Énergie Atomique, Institut de Biologie et de Technologies de Saclay, F-91191 Gif sur Yvette Cedex, France
| |
Collapse
|
22
|
Kassavetis GA, Geiduschek EP. Transcription factor TFIIIB and transcription by RNA polymerase III. Biochem Soc Trans 2007; 34:1082-7. [PMID: 17073756 DOI: 10.1042/bst0341082] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
pol (RNA polymerase) III is charged with the task of transcribing nuclear genes encoding diverse small structural and catalytic RNAs. We present a brief review of the current understanding of several aspects of the pol III transcription apparatus. The focus is on yeast and, more specifically, on Saccharomyces cerevisiae; preponderant attention is given to the TFs (transcription initiation factors) and especially to TFIIIB, which is the core pol III initiation factor by virtue of its role in recruiting pol III to the transcriptional start site and its essential roles in forming the transcription-ready open promoter complex. Certain relatively recent developments are also selected for brief comment: (i) the genome-wide analysis of occupancy of pol III-transcribed genes (and other loci) by the transcription apparatus and the location of pol III transcription in the cell; (ii) progress toward a mechanistic and molecular understanding of the regulation of transcription by pol III in yeast; and (iii) recent experiments identifying a high mobility group protein as a fidelity factor that assures selection of the precise transcriptional start site at certain pol III promoters.
Collapse
Affiliation(s)
- G A Kassavetis
- Division of Biological Sciences and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|
23
|
Abstract
Fidelity of template-dependent nucleic acid synthesis is the main determinant of stable heredity and error-free gene expression. The mechanism (or mechanisms) ensuring fidelity of transcription by DNA-dependent RNA polymerases (RNAPs) is not fully understood. Here, we show that the 3' end-proximal nucleotide of the nascent transcript stimulates hydrolysis of the penultimate phosphodiester bond by providing active groups and coordination bonds to the RNAP active center. This stimulation is much higher in the case of misincorporated nucleotide. We show that during transcription elongation, the hydrolytic reaction stimulated by misincorporated nucleotides proofreads most of the misincorporation events and thus serves as an intrinsic mechanism of transcription fidelity.
Collapse
Affiliation(s)
- Nikolay Zenkin
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA.
| | | | | |
Collapse
|
24
|
Poole AM, Logan DT. Modern mRNA proofreading and repair: clues that the last universal common ancestor possessed an RNA genome? Mol Biol Evol 2005; 22:1444-55. [PMID: 15774424 PMCID: PMC7107533 DOI: 10.1093/molbev/msi132] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RNA repair has now been demonstrated to be a genuine biological process and appears to be present in all three domains of life. In this article, we consider what this might mean for the transition from an early RNA-dominated world to modern cells possessing genetically encoded proteins and DNA. There are significant gaps in our understanding of how the modern protein-DNA world could have evolved from a simpler system, and it is currently uncertain whether DNA genomes evolved once or twice. Against this backdrop, the discovery of RNA repair in modern cells is timely food for thought and brings us conceptually one step closer to understanding how RNA genomes were replaced by DNA genomes. We have examined the available literature on multisubunit RNA polymerase structure and function and conclude that a strong case can be made that the Last Universal Common Ancestor (LUCA) possessed a repair-competent RNA polymerase, which would have been capable of acting on an RNA genome. However, while this lends credibility to the proposal that the LUCA had an RNA genome, the alternative, that LUCA had a DNA genome, cannot be completely ruled out.
Collapse
Affiliation(s)
- Anthony M Poole
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden.
| | | |
Collapse
|
25
|
Huang Y, Intine RV, Mozlin A, Hasson S, Maraia RJ. Mutations in the RNA polymerase III subunit Rpc11p that decrease RNA 3' cleavage activity increase 3'-terminal oligo(U) length and La-dependent tRNA processing. Mol Cell Biol 2005; 25:621-36. [PMID: 15632064 PMCID: PMC543423 DOI: 10.1128/mcb.25.2.621-636.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 10/01/2004] [Accepted: 10/15/2004] [Indexed: 11/20/2022] Open
Abstract
Termination by RNA polymerase III (Pol III) produces RNAs whose 3' oligo(U) termini are bound by La protein, a chaperone that protects RNAs from 3' exonucleases and promotes their maturation. Multiple reports indicate that yeasts use La-dependent and -independent pathways for tRNA maturation, with defective pre-tRNAs being most sensitive to decay and most dependent on La for maturation and function. The Rpc11p subunit of Pol III shows homology with the zinc ribbon of TFIIS and is known to mediate RNA 3' cleavage and to be important for termination. We used a La-dependent opal suppressor, tRNASerUGAM, which suppresses ade6-704 and the accumulation of red pigment, to screen Schizosaccaromyces pombe for rpc11 mutants that increase tRNA-mediated suppression. Analyses of two zinc ribbon mutants indicate that they are deficient in Pol III RNA 3' cleavage activity and produce pre-tRNASerUGAM transcripts with elongated 3'-oligo(U) tracts that are better substrates for La. A substantial fraction of pre-tRNASerUGAM contains too few 3' Us for efficient La binding and appears to decay in wild-type cells but has elongated oligo(U) tracts and matures along the La-dependent pathway in the mutants. The data indicate that Rpc11p limits RNA 3'-U length and that this significantly restricts pre-tRNAs to a La-independent pathway of maturation in fission yeast.
Collapse
Affiliation(s)
- Ying Huang
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, NIH, 31 Center Dr., Room 2A25, Bethesda, MD 20892-2426, USA
| | | | | | | | | |
Collapse
|
26
|
Jung Y, Lippard SJ. Multiple states of stalled T7 RNA polymerase at DNA lesions generated by platinum anticancer agents. J Biol Chem 2003; 278:52084-92. [PMID: 14534300 DOI: 10.1074/jbc.m310120200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Transcription inhibition by DNA adducts of cisplatin is considered to be one of the major routes by which this anticancer drug kills cancer cells. Stalled RNA polymerases at platinum-DNA lesions evoke various cellular responses such as nucleotide excision repair, polymerase degradation, and apoptosis. T7 RNA polymerase and site-specifically platinated DNA templates immobilized on a solid support were used to study stalled transcription elongation complexes. In vitro transcription studies were performed in both a promoter-dependent and -independent manner. An elongation complex is strongly blocked by cisplatin 1,2-intrastrand d(GpG) and 1,3-intrastrand d(GpTpG) cross-links located on the template strand. Polymerase action is inhibited at multiple sites in the vicinity of the platinum lesion, the nature of which can be altered by the choice and concentration of NTPs. The [(1R,2R-diaminocyclohexane)Pt]2+ DNA adducts formed by oxaliplatin, which carries a stereochemically more demanding spectator ligand than the ammine groups in cisplatin, also strongly block the polymerase with measurable differences compared with cis-[(NH3)2Pt]2+ lesions. Elongation complexes stopped at sites of platinum damage were isolated and characterized. The stalled polymerase can be dissociated from the DNA by subsequent polymerases initiated from the same template. We also discovered that a polymerase stalled at the platinum-DNA lesion can resume transcription after the platinum adduct is chemically removed from the template.
Collapse
Affiliation(s)
- Yongwon Jung
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | | |
Collapse
|
27
|
Weilbaecher RG, Awrey DE, Edwards AM, Kane CM. Intrinsic transcript cleavage in yeast RNA polymerase II elongation complexes. J Biol Chem 2003; 278:24189-99. [PMID: 12692127 DOI: 10.1074/jbc.m211197200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcript elongation can be interrupted by a variety of obstacles, including certain DNA sequences, DNA-binding proteins, chromatin, and DNA lesions. Bypass of many of these impediments is facilitated by elongation factor TFIIS through a mechanism that involves cleavage of the nascent transcript by the RNA polymerase II/TFIIS elongation complex. Highly purified yeast RNA polymerase II is able to perform transcript hydrolysis in the absence of TFIIS. The "intrinsic" cleavage activity is greatly stimulated at mildly basic pH and requires divalent cations. Both arrested and stalled complexes can carry out the intrinsic cleavage reaction, although not all stalled complexes are equally efficient at this reaction. Arrested complexes in which the nascent transcript was cleaved in the absence of TFIIS were reactivated to readthrough blocks to elongation. Thus, cleavage of the nascent transcript is sufficient for reactivating some arrested complexes. Small RNA products released following transcript cleavage in stalled ternary complexes differ depending upon whether the cleavage has been induced by TFIIS or has occurred in mildly alkaline conditions. In contrast, both intrinsic and TFIIS-induced small RNA cleavage products are very similar when produced from an arrested ternary complex. Although alpha-amanitin interferes with the transcript cleavage stimulated by TFIIS, it has little effect on the intrinsic cleavage reaction. A mutant RNA polymerase previously shown to be refractory to TFIIS-induced transcript cleavage is essentially identical to the wild type polymerase in all tested aspects of intrinsic cleavage.
Collapse
Affiliation(s)
- Rodney G Weilbaecher
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
28
|
Paul CP, Good PD, Li SXL, Kleihauer A, Rossi JJ, Engelke DR. Localized expression of small RNA inhibitors in human cells. Mol Ther 2003; 7:237-47. [PMID: 12597912 DOI: 10.1016/s1525-0016(02)00038-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Several types of small RNAs have been proposed as gene expression repressors with great potential for use in gene therapy. RNA polymerase III (pol III) provides an ideal means of expressing small RNAs in cells because its normal products are small, highly structured RNAs that are found in a variety of subcellular compartments. We have designed cassettes that use human pol III promoters for the high-level expression of small RNAs in the cytoplasm, nucleoplasm, and nucleolus. The levels and subcellular destinations of the transcripts are compared for transcripts expressed using the U6 small nuclear RNA (snRNA), 5S ribosomal RNA (rRNA), and the 7SL RNA component of the signal recognition particle. The most effective location for a particular inhibitory RNA is not necessarily predictable; thus these cassettes allow testing of the same RNA insert in multiple subcellular locations. Several small interfering RNA (siRNA) inserts were tested for efficacy. An siRNA insert that reduces lamin expression when transcribed from the U6 snRNA promoter in the nucleus has no effect on lamin expression when transcribed from 5S rRNA and 7SL RNA-based cassettes and found in the nucleolus and cytoplasm. To test further the generality of U6-driven siRNA inhibitors, siRNAs targeting HIV were tested by co-transfection with provirus in cell culture. Although the degree of HIV-1 inhibition varied among inserts, results show that the U6 cassette provides a means of expressing an siRNA-like inhibitor of HIV gene expression.
Collapse
Affiliation(s)
- Cynthia P Paul
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109-0606, USA
| | | | | | | | | | | |
Collapse
|
29
|
Fish RN, Kane CM. Promoting elongation with transcript cleavage stimulatory factors. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:287-307. [PMID: 12213659 DOI: 10.1016/s0167-4781(02)00459-1] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Transcript elongation by RNA polymerase is a dynamic process, capable of responding to a number of intrinsic and extrinsic signals. A number of elongation factors have been identified that enhance the rate or efficiency of transcription. One such class of factors facilitates RNA polymerase transcription through blocks to elongation by stimulating the polymerase to cleave the nascent RNA transcript within the elongation complex. These cleavage factors are represented by the Gre factors from prokaryotes, and TFIIS and TFIIS-like factors found in archaea and eukaryotes. High-resolution structures of RNA polymerases and the cleavage factors in conjunction with biochemical investigations and genetic analyses have provided insights into the mechanism of action of these elongation factors. However, there are yet many unanswered questions regarding the regulation of these factors and their effects on target genes.
Collapse
Affiliation(s)
- Rachel N Fish
- Department of Molecular and Cell Biology, University of California-Berkeley, 401 Barker Hall, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
30
|
Van Mullem V, Landrieux E, Vandenhaute J, Thuriaux P. Rpa12p, a conserved RNA polymerase I subunit with two functional domains. Mol Microbiol 2002; 43:1105-13. [PMID: 11918799 DOI: 10.1046/j.1365-2958.2002.02824.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rpa12p is a subunit of RNA polymerase I formed of two zinc-binding domains. The N-terminal zinc region (positions 1-60) is poorly conserved from yeast to man. The C-terminal domain contains an invariant Q.RSADE.T.F motif shared with the TFIIS elongation factor of RNA polymerase II and its archaeal counterpart. Deletions removing the N-terminal domain fail to grow at 34 degrees C, are sensitive to nucleotide-depleting drugs and become lethal in rpa14-Delta mutants lacking the non-essential RNA polymerase I subunit Rpa14p. They also strongly alter the immunofluorescent properties of RNA polymerase I in the nucleolus. Finally, they prevent the binding of Rpa12p to immunopurified polymerase I and impair a specific two-hybrid interaction with the second largest subunit. In all these respects, N-terminal deletions behave like full deletions. In contrast, C-terminal deletions retaining only the first N-terminal 60 amino acids are indistinguishable from wild type. Thus, the N-terminal zinc domain of Rpa12p determines its anchoring to RNA polymerase I and is the only critical part of that subunit in vivo.
Collapse
Affiliation(s)
- Vincent Van Mullem
- Laboratoire de Génétique Moléculaire, URBM, Facultés Universitaires Notre-Dame de la Paix, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | | | | | | |
Collapse
|
31
|
Rozenfeld S, Thuriaux P. A genetic look at the active site of RNA polymerase III. EMBO Rep 2001; 2:598-603. [PMID: 11454743 PMCID: PMC1083950 DOI: 10.1093/embo-reports/kve136] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2001] [Revised: 05/22/2001] [Accepted: 05/23/2001] [Indexed: 11/14/2022] Open
Abstract
rpc160-112, a mutant of the RNA polymerase III active site, is corrected in vivo by six second-site mutants obtained by random mutagenesis. These mutants introduce single-site amino acid replacements at the two large subunits of the enzyme. The mutated motifs are conserved in RNA polymerases I and II and, for some of them, in the bacterial enzyme, thus delineating key elements of the active site in eukaryotic RNA polymerases.
Collapse
Affiliation(s)
- S Rozenfeld
- Service de Biochimie & Génétique Moléculaire, CEA/Saclay. Bât. 142, F-91191 Gif/Yvette, France
| | | |
Collapse
|
32
|
Affiliation(s)
- E P Geiduschek
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|
33
|
Dieci G, Corradini R, Sforza S, Marchelli R, Ottonello S. Inhibition of RNA polymerase III elongation by a T10 peptide nucleic acid. J Biol Chem 2001; 276:5720-5. [PMID: 11073963 DOI: 10.1074/jbc.m009367200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The terminator elements of eukaryotic class III genes strongly contribute to overall transcription efficiency by allowing fast RNA polymerase III (pol III) recycling. Being constituted by a run of thymidine residues on the coding strand (a poly(dA) tract on the transcribed strand), pol III terminators are expected to form highly stable triple-helix complexes with oligothymine peptide nucleic acids (PNAs). We analyzed the effect of a T10 PNA on in vitro transcription of three yeast class III genes (coding for two different tRNAs and the U6 small nuclear RNA) having termination signals of at least ten T residues. At nanomolar concentrations, the PNA almost completely inhibited transcription of supercoiled, but not linearized, templates in a sequence-specific manner. The total RNA output of the first transcription cycle was not affected by PNA concentrations strongly inhibiting multiple round transcription. Thus, an impairment of pol III recycling fully accounts for the observed inhibition. As revealed by the size and the state (free or transcription complex-associated) of the RNAs produced in PNA-inhibited reactions, pol III is "roadblocked" by the DNA-PNA adduct before reaching the terminator region. On different templates, the distance between the active site and the leading edge of the arrested polymerase ranged from 10 to 20 base pairs. Given their ability to efficiently block pol III elongation, oligothymine PNAs lend themselves as potential cell growth inhibitors interfering with eukaryotic class III gene transcription.
Collapse
Affiliation(s)
- G Dieci
- Istituto di Scienze Biochimiche, Università di Parma, I-43100 Parma, Italy.
| | | | | | | | | |
Collapse
|
34
|
Kulish D, Lee J, Lomakin I, Nowicka B, Das A, Darst S, Normet K, Borukhov S. The functional role of basic patch, a structural element of Escherichia coli transcript cleavage factors GreA and GreB. J Biol Chem 2000; 275:12789-98. [PMID: 10777576 DOI: 10.1074/jbc.275.17.12789] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcript cleavage factors GreA and GreB of Escherichia coli are involved in the regulation of transcription elongation. The surface charge distribution analysis of their three-dimensional structures revealed that the N-terminal domains of GreA and GreB contain a small and large basic "patch," respectively. To elucidate the functional role of basic patch, mutant Gre proteins were engineered in which the size and charge distribution of basic patch were modified and characterized biochemically. We found that Gre mutants lacking basic patch or carrying basic patch of decreased size bind to RNA polymerase and induce transcript cleavage reaction in minimally backtracked ternary elongation complex (TEC) with the same efficiency as the wild type factors. However, they exhibit substantially lower readthrough and cleavage activities toward extensively backtracked and arrested TECs and display decreased efficiency of photocross-linking to the RNA 3'-terminus. Unlike wild type factors, basic patch-less Gre mutants are unable to complement the thermosensitive phenotype of GreA(-):GreB(-) E. coli strain. The large basic patch is required but not sufficient for the induction of GreB-type cleavage reaction and for the cleavage of arrested TECs. Our results demonstrate that the basic patch residues are not directly involved in the induction of transcript cleavage reaction and suggest that the primary role of basic patch is to anchor the nascent RNA in TEC. These interactions are essential for the readthrough and antiarrest activities of Gre factors and, apparently, for their in vivo functions.
Collapse
Affiliation(s)
- D Kulish
- Department of Microbiology and Immunology, State University of New York, Health Science Center at Brooklyn, New York 11203, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hausner W, Lange U, Musfeldt M. Transcription factor S, a cleavage induction factor of the archaeal RNA polymerase. J Biol Chem 2000; 275:12393-9. [PMID: 10777522 DOI: 10.1074/jbc.275.17.12393] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have analyzed the function of an archaeal protein (now called transcription factor S (TFS)) that shows sequence similarity to eukaryotic transcription factor IIS (TFIIS) as well as to small subunits of eukaryotic RNA polymerases I (A12.6), II (B12.2), and III (C11). Western blot analysis with antibodies against recombinant TFS demonstrated that this protein is not a subunit of the RNA polymerase. In vitro transcription experiments with paused elongation complexes at position +25 showed that TFS is able to induce cleavage activity in the archaeal RNA polymerase in a similar manner to TFIIS. In the presence of TFS, the cleavage activity of the RNA polymerase truncates the RNA back to position +15 by releasing mainly dinucleotides from the 3'-end of the nascent RNA. Furthermore, TFS reduces the amount of non-chaseable elongation complexes at position +25 as well as position +45. These findings clearly demonstrate that this protein has a similar function to eukaryotic TFIIS.
Collapse
Affiliation(s)
- W Hausner
- Institut für Allgemeine Mikrobiologie, University of Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Federal Republic of Germany.
| | | | | |
Collapse
|
36
|
Bhargava P, Kassavetis GA. Abortive initiation by Saccharomyces cerevisiae RNA polymerase III. J Biol Chem 1999; 274:26550-6. [PMID: 10473618 DOI: 10.1074/jbc.274.37.26550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Promoter escape can be rate-limiting for transcription by bacterial RNA polymerases and RNA polymerase II of higher eukaryotes. Formation of a productive elongation complex requires disengagement of RNA polymerase from promoter-bound eukaryotic transcription factors or bacterial sigma factors. RNA polymerase III (pol III) stably associates with the TFIIIB-DNA complex even in the absence of localized DNA unwinding associated with the open promoter complex. To explore the role that release of pol III from the TFIIIB-DNA complex plays in limiting the overall rate of transcription, we have examined the early steps of RNA synthesis. We find that, on average, only three rounds of abortive initiation precede the formation of each elongation complex and that nearly all pol III molecules escape the abortive initiation phase of transcription without significant pausing or arrest. However, when elongation is limited to 5 nucleotides, the intrinsic exoribonuclease activity of pol III cleaves 5-mer RNA at a rate considerably faster than product release or reinitiation. This cleavage also occurs in the normal process of forming a productive elongation complex. The possible role of nucleolytic retraction in disengaging pol III from TFIIIB is discussed.
Collapse
Affiliation(s)
- P Bhargava
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634, USA.
| | | |
Collapse
|
37
|
Loizos N, Darst SA. Mapping interactions of Escherichia coli GreB with RNA polymerase and ternary elongation complexes. J Biol Chem 1999; 274:23378-86. [PMID: 10438515 DOI: 10.1074/jbc.274.33.23378] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli GreA and GreB modulate transcription elongation by interacting with the ternary elongation complex (containing RNA polymerase, DNA template, and RNA transcript) to induce hydrolytic cleavage of the transcript and release of the 3'-terminal fragment. Hydroxyl radical protein footprinting and alanine-scanning mutagenesis were used to investigate the interactions of GreB with RNA polymerase alone and in a ternary elongation complex. A major determinant for binding GreB to both RNA polymerase and the ternary elongation complex was identified. In addition, the hydroxyl radical footprinting indicated major conformational changes of GreB, in terms of reorientations of the N- and C-terminal domains with respect to each other, particularly upon interactions with the ternary elongation complex.
Collapse
Affiliation(s)
- N Loizos
- The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
38
|
Bobkova EV, Habib N, Alexander G, Hall BD. Mutational analysis of the hydrolytic activity of yeast RNA polymerase III. J Biol Chem 1999; 274:21342-8. [PMID: 10409694 DOI: 10.1074/jbc.274.30.21342] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For 25 mutant alleles of ret1, encoding the second largest subunit of yeast RNA polymerase III, we have studied the polymerase III nuclease activity, measuring both the total yield and dinucleotide product composition. Mutations affecting amino acids 309-325 gave slightly elevated nuclease activity. In region 367-376, two mutations gave 12-15-fold increased nuclease activity. Our results do not support the catalytic role in nuclease activity proposed for the conserved DDRD motif in this region (Shirai, T., and Go, M. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 9056-9060). Mutations centered on a basic region from amino acids 480 to 490, which aligns with Escherichia coli beta-subunit sequences between Rif(r) clusters I and II, produce changes in the relative yields of A- and G-containing dinucleotides. Four such mutant polymerases pause during elongation at GPy sequences and, in addition, have a reduced frequency of termination at T(5) terminator sequences. We propose that the side chains of these mutationally altered amino acids are in direct contact with bases in the RNA-DNA hybrid very near the growing 3'-end. Two mutations in domain I near the C terminus produced very large increases in exonuclease activity and strongly increased termination, suggesting that this region also contacts the nascent RNA in the hybrid region.
Collapse
Affiliation(s)
- E V Bobkova
- Department of Genetics, University of Washington, Seattle, Washington 98195-7360, USA
| | | | | | | |
Collapse
|
39
|
Chédin S, Riva M, Schultz P, Sentenac A, Carles C. The RNA cleavage activity of RNA polymerase III is mediated by an essential TFIIS-like subunit and is important for transcription termination. Genes Dev 1998; 12:3857-71. [PMID: 9869639 PMCID: PMC317263 DOI: 10.1101/gad.12.24.3857] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Budding yeast RNA polymerase III (Pol III) contains a small, essential subunit, named C11, that is conserved in humans and shows a strong homology to TFIIS. A mutant Pol III, heterocomplemented with Schizosaccharomyces pombe C11, was affected in transcription termination in vivo. A purified form of the enzyme (Pol III Delta), deprived of C11 subunit, initiated properly but ignored pause sites and was defective in termination. Remarkably, Pol III Delta lacked the intrinsic RNA cleavage activity of complete Pol III. In vitro reconstitution experiments demonstrated that Pol III RNA cleavage activity is mediated by C11. Mutagenesis in C11 of two conserved residues, which are critical for the TFIIS-dependent cleavage activity of Pol II, is lethal. Immunoelectron microscopy data suggested that C11 is localized on the mobile thumb-like stalk of the polymerase. We propose that C11 allows the enzyme to switch between an RNA elongation and RNA cleavage mode and that the essential role of the Pol III RNA cleavage activity is to remove the kinetic barriers to the termination process. The integration of TFIIS function into a specific Pol III subunit may stem from the opposite requirements of Pol III and Pol II in terms of transcript length and termination efficiency.
Collapse
Affiliation(s)
- S Chédin
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, F-91191 Gif sur Yvette Cedex, France
| | | | | | | | | |
Collapse
|
40
|
Williams LA, Kane CM. Isolation and characterization of the Schizosaccharomyces pombe gene encoding transcript elongation factor TFIIS. Yeast 1998. [DOI: 10.1002/(sici)1097-0061(19960315)12:3<227::aid-yea905>3.0.co;2-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
41
|
Polyakov A, Richter C, Malhotra A, Koulich D, Borukhov S, Darst SA. Visualization of the binding site for the transcript cleavage factor GreB on Escherichia coli RNA polymerase. J Mol Biol 1998; 281:465-73. [PMID: 9698562 DOI: 10.1006/jmbi.1998.1958] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure of Escherichia coli core RNA polymerase (RNAP) complexed with the transcript cleavage factor GreB was determined from electron micrographs of negatively stained, flattened helical crystals. A binding assay was developed to establish that GreB was incorporated into the RNA polymerase crystals with high occupancy through interactions between the globular C-terminal domain and the RNA polymerase. Comparison of the core RNAP:GreB structure with the previously determined structure of core RNAP located the GreB binding site on one face of the RNA polymerase, next to but not in the 25 A-diameter channel of RNA polymerase.
Collapse
Affiliation(s)
- A Polyakov
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY, 10021, USA
| | | | | | | | | | | |
Collapse
|
42
|
Mote J, Reines D. Recognition of a human arrest site is conserved between RNA polymerase II and prokaryotic RNA polymerases. J Biol Chem 1998; 273:16843-52. [PMID: 9642244 PMCID: PMC3371603 DOI: 10.1074/jbc.273.27.16843] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA sequences that arrest transcription by either eukaryotic RNA polymerase II or Escherichia coli RNA polymerase have been identified previously. Elongation factors SII and GreB are RNA polymerase-binding proteins that enable readthrough of arrest sites by these enzymes, respectively. This functional similarity has led to general models of elongation applicable to both eukaryotic and prokaryotic enzymes. Here we have transcribed with phage and bacterial RNA polymerases, a human DNA sequence previously defined as an arrest site for RNA polymerase II. The phage and bacterial enzymes both respond efficiently to the arrest signal in vitro at limiting levels of nucleoside triphosphates. The E. coli polymerase remains in a template-engaged complex for many hours, can be isolated, and is potentially active. The enzyme displays a relatively slow first-order loss of elongation competence as it dwells at the arrest site. Bacterial RNA polymerase arrested at the human site is reactivated by GreB in the same way that RNA polymerase II arrested at this site is stimulated by SII. Very efficient readthrough can be achieved by phage, bacterial, and eukaryotic RNA polymerases in the absence of elongation factors if 5-Br-UTP is substituted for UTP. These findings provide additional and direct evidence for functional similarity between prokaryotic and eukaryotic transcription elongation and readthrough mechanisms.
Collapse
Affiliation(s)
| | - Daniel Reines
- To whom correspondence should be addressed. Tel.: 404-727-3361; Fax: 404-727-3452;
| |
Collapse
|
43
|
Bobkova EV, Hall BD. Substrate specificity of the RNase activity of yeast RNA polymerase III. J Biol Chem 1997; 272:22832-9. [PMID: 9278445 DOI: 10.1074/jbc.272.36.22832] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Using yeast RNA polymerase III ternary complexes stalled at various positions on the template, we have analyzed the cleavage products that are retained and released by the transcription complexes. The retained 5' products result from cleavage at uridine residues during retraction, whereas the yield of mononucleotides and dinucleotides released indicates that multiple cuts occur near the 3' end. Comparison of the cleavage patterns of uridine-containing and 5-bromouridine-containing transcripts suggests that RNA within an RNA-DNA hybrid duplex is the substrate for the 3'-5' exonuclease. During transcription of the SUP4 tRNATyr gene, RNA polymerase III produces not only full-length pre-tRNATyr but also short oligonucleotides, indicating that exonuclease digestion and transcription are concurrent processes. To explore the possibility that these oligonucleotides are released by the action of the RNA polymerase III nuclease at previously observed uridine-rich pause sites, we tested modified templates lacking the arrest sites present in the SUP4 tRNATyr gene. Comparative studies of cleavage during transcription for these templates show a direct correlation between the number of natural pause sites and the yield of 3' products made. At the natural arrest sites and the terminator, RNA polymerase III carries out multiple cleavage resynthesis steps, producing short oligoribonucleotides with uridine residues at the 3' terminus.
Collapse
Affiliation(s)
- E V Bobkova
- Department of Genetics, University of Washington, Seattle, Washington 98195-7360, USA
| | | |
Collapse
|
44
|
Labhart P. Transcript cleavage in an RNA polymerase I elongation complex. Evidence for a dissociable activity similar to but distinct from TFIIS. J Biol Chem 1997; 272:9055-61. [PMID: 9083031 DOI: 10.1074/jbc.272.14.9055] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Stalled Xenopus RNA polymerase I (pol I) elongation complexes bearing a 52-nucleotide RNA were prepared by promoter-initiated transcription in the absence of UTP. When such complexes were isolated and incubated in the presence of Mg2+, the associated RNA was shortened from the 3'-end, and mono- and dinucleotides were released. Shortened transcripts were still associated with the DNA and were quantitatively reelongated upon addition of NTPs. The cleavage activity could be removed from the pol I-ternary complex with buffers containing 0.25% Sarkosyl. These findings indicate that a factor with characteristics similar to elongation factor TFIIS is associated with the pol I elongation complex. However, addition of recombinant Xenopus TFIIS to Sarkosyl-washed pol I elongation complexes had no effect, whereas it showed the expected effects in control reactions with identically prepared pol II elongation complexes. The results thus suggest the existence of a pol I-specific cleavage/elongation factor. I also report the sequence of a novel type of Xenopus TFIIS. The predicted amino acid sequences of the present and previously identified Xenopus TFIIS are less than 65% conserved. Thus, like mammalian species, Xenopus has at least two highly divergent forms of TFIIS.
Collapse
Affiliation(s)
- P Labhart
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
45
|
Sastry SS, Ross BM. Nuclease activity of T7 RNA polymerase and the heterogeneity of transcription elongation complexes. J Biol Chem 1997; 272:8644-52. [PMID: 9079696 DOI: 10.1074/jbc.272.13.8644] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have discovered that T7 RNA polymerase, purified to apparent homogeneity from overexpressing Escherichia coli cells, possesses a DNase and an RNase activity. Mutations in the active center of T7 RNA polymerase abolished or greatly decreased the nuclease activity. This nuclease activity is specific for single-stranded DNA and RNA oligonucleotides and does not manifest on double-stranded DNAs. Under the conditions of promoter-driven transcription on double-stranded DNA, no nuclease activity was observed. The nuclease attacks DNA oligonucleotides in mono- or dinucleotide steps. The nuclease is a 3' to 5' exonuclease leaving a 3'-OH end, and it degrades DNA oligonucleotides to a minimum size of 3 to 5 nucleotides. It is completely dependent on Mg2+. The T7 RNA polymerase-nuclease is inhibited by T7 lysozyme and heparin, although not completely. In the presence of rNTPs, the nuclease activity is suppressed but an unusual 3'-end-initiated polymerase activity is unmasked. RNA from isolated pre-elongation and elongation complexes arrested by a psoralen roadblock or naturally paused at the 3'-end of an oligonucleotide template exhibited evidence of nuclease activity. The nuclease activity of T7 RNA polymerase is unrelated to pyrophosphorolysis. We propose that the nuclease of T7 RNA polymerase acts only in arrested or paused elongation complexes, and that in combination with the unusual 3'-end polymerizing activity, causes heterogeneity in elongation complexes. Additionally, during normal transcription elongation, the kinetic balance between nuclease and polymerase is shifted in favor of polymerase.
Collapse
Affiliation(s)
- S S Sastry
- Laboratory of Molecular Genetics, Box 174, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
46
|
Koulich D, Orlova M, Malhotra A, Sali A, Darst SA, Borukhov S. Domain organization of Escherichia coli transcript cleavage factors GreA and GreB. J Biol Chem 1997; 272:7201-10. [PMID: 9054416 DOI: 10.1074/jbc.272.11.7201] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The GreA and GreB proteins of Escherichia coli induce cleavage of the nascent transcript in ternary elongation complexes of RNA polymerase. Gre factors are presumed to have two biologically important and evolutionarily conserved functions: the suppression of elongation arrest and the enhancement of transcription fidelity. A three-dimensional structure of GreB was generated by homology modeling on the basis of the known crystal structure of GreA. Both factors display similar overall architecture and surface charge distribution, with characteristic C-terminal globular and N-terminal coiled-coil domains. One major difference between the two factors is the "basic patch" on the surface of the coiled-coil domain, which is much larger in GreB than in GreA. In both proteins, a site near the basic patch cross-links to the 3' terminus of RNA in the ternary transcription complex. GreA/GreB hybrid molecules were constructed by genetic engineering in which the N-terminal domain of one protein was fused to the C-terminal domain of the other. In the hybrid molecules, both the coiled-coil and the globular domains contribute to specific binding of Gre factors to RNA polymerase, whereas the antiarrest activity and the GreA or GreB specificity of transcript cleavage is determined by the N-terminal domain. These results implicate the basic patch of the N-terminal coiled-coil domain as an important functional element responsible for the interactions with nascent transcript and determining the size of the RNA fragment to be excised during the course of the cleavage reaction.
Collapse
Affiliation(s)
- D Koulich
- Department of Microbiology and Immunology, State University of New York, Health Science Center at Brooklyn, Brooklyn, New York 11203, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Ternary complexes of DNA-dependent RNA polymerase with its DNA template and nascent transcript are central intermediates in transcription. In recent years, several unusual biochemical reactions have been discovered that affect the progression of RNA polymerase in ternary complexes through various transcription units. These reactions can be signaled intrinsically, by nucleic acid sequences and the RNA polymerase, or extrinsically, by protein or other regulatory factors. These factors can affect any of these processes, including promoter proximal and promoter distal pausing in both prokaryotes and eukaryotes, and therefore play a central role in regulation of gene expression. In eukaryotic systems, at least two of these factors appear to be related to cellular transformation and human cancers. New models for the structure of ternary complexes, and for the mechanism by which they move along DNA, provide plausible explanations for novel biochemical reactions that have been observed. These models predict that RNA polymerase moves along DNA without the constant possibility of dissociation and consequent termination. A further prediction of these models is that the polymerase can move in a discontinuous or inchworm-like manner. Many direct predictions of these models have been confirmed. However, one feature of RNA chain elongation not predicted by the model is that the DNA sequence can determine whether the enzyme moves discontinuously or monotonically. In at least two cases, the encounter between the RNA polymerase and a DNA block to elongation appears to specifically induce a discontinuous mode of synthesis. These findings provide important new insights into the RNA chain elongation process and offer the prospect of understanding many significant biological regulatory systems at the molecular level.
Collapse
Affiliation(s)
- S M Uptain
- Department of Molecular and Cell Biology, University of California at Berkeley 94720, USA.
| | | | | |
Collapse
|
48
|
Jeon C, Agarwal K. Fidelity of RNA polymerase II transcription controlled by elongation factor TFIIS. Proc Natl Acad Sci U S A 1996; 93:13677-82. [PMID: 8942993 PMCID: PMC19388 DOI: 10.1073/pnas.93.24.13677] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Fidelity of DNA and protein synthesis is regulated by a proofreading mechanism but function of a similar mechanism during RNA synthesis has not been demonstrated. Analysis of transcriptional fidelity and its control has been hampered by the necessity to employ complex DNA templates requiring either a promoter and initiation factors or 3'-extended templates. To circumvent this difficulty, we have created an RNA-DNA dumbbell template that can be recognized as a template-primer and extended by RNA polymerase II. By employing this system, we demonstrate that RNA polymerase II can misincorporate a nucleotide and carry out template-dependent elongation at the mispaired end. The transcripts containing misincorporated residues can be cleaved by the very slow 3'-->5' ribonuclease activity of the RNA polymerase II, but enhancement of this activity by the elongation factor TFIIS generates RNA with a high degree of fidelity. This enhanced preferential cleavage of misincorporated transcripts suggests an important role for TFIIS in maintaining transcriptional fidelity.
Collapse
Affiliation(s)
- C Jeon
- Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637, USA
| | | |
Collapse
|
49
|
Tschochner H. A novel RNA polymerase I-dependent RNase activity that shortens nascent transcripts from the 3' end. Proc Natl Acad Sci U S A 1996; 93:12914-9. [PMID: 8917519 PMCID: PMC24020 DOI: 10.1073/pnas.93.23.12914] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A novel RNase activity was identified in a yeast RNA polymerase I (pol I) in vitro transcription system. Transcript cleavage occurred at the 3' end and was dependent on the presence of ternary pol I/DNA/RNA complexes and an additional protein factor not identical to transcription factor IIS (TFIIS). Transcript cleavage was observed both on arrested complexes at the linearized ends of the transcribed DNA and on intrinsic blocks of the DNA template. Shortened transcripts that remained associated within the ternary complexes were capable of resuming RNA chain elongation. Possible functions of the nuclease for transcript elongation or termination are discussed.
Collapse
Affiliation(s)
- H Tschochner
- Institut für Biochemie I, Universität Heidelberg, Germany.
| |
Collapse
|
50
|
Rudd MD, Luse DS. Amanitin greatly reduces the rate of transcription by RNA polymerase II ternary complexes but fails to inhibit some transcript cleavage modes. J Biol Chem 1996; 271:21549-58. [PMID: 8702941 DOI: 10.1074/jbc.271.35.21549] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The toxin alpha-amanitin is frequently employed to completely block RNA synthesis by RNA polymerase II. However, we find that polymerase II ternary transcription complexes stalled by the absence of NTPs resume RNA synthesis when NTPs and amanitin are added. Chain elongation with amanitin can continue for hours at approximately 1% of the normal rate. Amanitin also greatly slows pyrophosphorolysis by elongation-competent complexes. Complexes which are arrested (that is, which have paused in transcription for long periods in the presence of excess NTPs) are essentially incapable of resuming transcription in the presence of alpha-amanitin. Complexes traversing sequences that can provoke arrest are much more likely to stop transcription in the presence of the toxin. The substitution of IMP for GMP at the 3' end of the nascent RNA greatly increases the sensitivity of stalled transcription complexes to amanitin. Neither arrested nor stalled complexes display detectable SII-mediated transcript cleavage following amanitin treatment. However, arrested complexes possess a low level, intrinsic transcript cleavage activity which is completely amanitin-resistant; furthermore, pyrophosphorolytic transcript cleavage in arrested complexes is not affected by amanitin.
Collapse
Affiliation(s)
- M D Rudd
- Department of Molecular Biology, Cleveland Clinic Foundation Research Institute, Cleveland, Ohio 44195, USA
| | | |
Collapse
|